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and critically re-examine the astrophysical determinations of light nuclei abundances. We
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range of ideas and theoretical models of fundamental interactions beyond the standard
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1. Introduction

A remarkable scientific achievement in the second half of the 20th century has been the establishment of ‘‘Standard
Models’’ of Particle Physics (SMPP) and Cosmology (SMC). In particular, the latter has been possible thanks to an incredibly
fast growth of the amount and quality of observations over the last couple of decades. The picture revealed is at the same
time beautifully simple and intriguinglymysterious: on one hand, known gauge interactions and Einstein’s general relativity
seem able to explain a huge wealth of information in terms of a few free parameters specifying the composition/initial
conditions of the Universe; on the other hand, these numbers are not explained in terms of dynamical processes involving
the known fields and interactions. This is the case of the ‘‘dark energy’’ density (consistent with a cosmological constant), of
the non-baryonic darkmatter, of the baryon–antibaryon asymmetry, the flatness, homogeneity and isotropy of the universe
on large scales, etc.
The very success of the cosmological laboratory is thus providing much indirect evidence for physics beyond the SMPP.

On the other hand, advances in particle physics (a very recent example being the phenomenology ofmassive neutrinos) have
an impact at the cosmological level. This interplay has proven extremely fertile ground for the development of ‘astroparticle
physics’, especially since many theories beyond the SMPP predict new phenomena far beyond the reach of terrestrial
laboratories, but potentially testable in astrophysical and cosmological environments. In this respect, the nucleosynthesis
taking place in the primordial plasma plays a twofold role: it is undoubtedly one of the observational pillars of the hot
Big Bang model, being indeed known simply as ‘‘Big Bang Nucleosynthesis’’ (BBN); at the same time, it provides one of
the earliest direct cosmological probes nowadays available, constraining the properties of the universe when it was a
few seconds old, or equivalently at the MeV temperature scale. Additionally, it is special in that all known interactions
play an important role: gravity sets the dynamics of the ‘‘expanding cauldron’’, weak interactions determine the neutrino
decoupling and the neutron–proton equilibrium freeze-out, electromagnetic and nuclear processes regulate the nuclear
reaction network.
The basic framework of the BBN emerged in the decade between the seminal Alpher–Bethe–Gamow (known as αβγ )

paper in 1948 [1] and the essential settlement of the paradigm of the stellar nucleosynthesis of elements heavier than 7Li
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with the B2FH paper [2]. This pioneering period – an account of which can be found in [3] – established the basic picture
that sees the four light-elements 2H, 3He, 4He and 7Li as products of the early fireball, and virtually all the rest produced in
stars or as a consequence of stellar explosions.
In the following decades, the emphasis on the role played by the BBN has evolved significantly. In the simplest scenario,

the only free parameters in primordial nucleosynthesis are the baryon to photon ratio η (equivalently, the baryon density
of the universe) and the neutrino asymmetry parameters, ηνα (see Section 6.3). However, only neutrino asymmetries larger
than η by many orders of magnitude have appreciable effects. This is why the simple case where all ηνα ’s are assumed to be
negligibly small (e.g., of the same order of η) is typically denoted as Standard BBN (SBBN). Since several species of ‘nuclear
ashes’ form during BBN, SBBN is an over-constrained theory whose self-consistency can be checked comparing predictions
with two or more light nuclide determinations. The agreement of predicted abundances of the light elements with their
measured abundances (spanning more than nine orders of magnitude!) confirmed the credibility of BBN as a cosmological
probe. At the same time, the relatively narrow range of η where a consistent picture emerged was the first compelling
argument in favor of the non-baryonic nature of the ‘‘dark matter’’ invoked for astrophysical dynamics.
The past decade, when for the first time a redundancy of determinations of η has been possible, has stressed BBN as a

consistency tool for the SMC. Beside BBN, one can infer the density of baryons from the Lyman-α opacity in quasar spectra
due to intervening high redshift hydrogen clouds [4–6]; from the baryon fraction in clusters of galaxies, deduced from
the hot x-ray emission [7]; most importantly, from the height of the Doppler peak in the angular power spectrum of the
cosmicmicrowave background anisotropy (see [8] for the latestWMAP results). These determinations are not onlymutually
consistent with each other, but the two most accurate ones (from the CMB and BBN) agree within 5%–10%. While losing to
CMB the role of ‘‘barometer of excellence’’, BBN made possible a remarkable test of consistency of the whole SMC.
It comes without surprise that this peculiar ‘natural laboratory’ has inspired many investigations, as testified by the

numerous reviews existing on the subject, see e.g. [9–14]. Why then a new review? In the opinion of the authors, a new BBN
review seemsworthy because at present, given the robustness of the cosmological scenario, the attention of the community
is moving towards a new approach to the BBN. On one hand, one uses it as a precision tool in combination with other
cosmological information to reduce the number of free parameters to extract frommulti-parameter fits. On the other hand,
BBN is an excellent probe to explore the very early universe, constraining scenarios beyond the SMPP. The latter motivation
is particularly intriguing given the perspectives of the forthcoming LHC age to shed light on the TeV scale. A new synergy
with the Lab is expected to emerge in the coming years, continuing a long tradition in this sense. Finally, a wealth of data
from nuclear astrophysics and neutrino physics have had a significant impact on BBN, and it is meaningful to review and
assess it. In particular, the recent advances in the neutrino sector have made obsolete many exotic scenarios popular in the
literature still a decade ago and improved numerous constraints, providing a clear example of the synergy we look forward
to in the near future.
This review is structured as follows: in Section 2 we summarize the main cosmological notions as well as most of the

symbols used in the rest of the article. Section 3 is devoted to the description of the Standard BBN scenario. Section 4 treats
the status of observations of light nuclei abundances, which in Section 5 are compared with theoretical predictions. The
following sections deal with exotic scenarios: Section 6 with neutrino properties, Section 7 with inhomogeneous models,
Section 8 with constraints to fundamental interactions and Section 9 with massive particles. In Section 10 we report our
conclusions. Although this article is a review, many analyses have been implemented ex-novo and some original results are
presented here for the first time. Due to the large existing literature and to space limitation, we adopt the criterion to be as
complete as possible in the post-2000 literature, while referring to previous literature only when pertinent to the discussion
or when still providing the most updated result. Also, we adopt a more pedagogical attitude in introducing arguments that
have rarely or never entered previous BBN reviews, as for example extra dimensions or variation of fundamental constants
in Section 8, while focusing mainly on new results (as opposed to a ‘theory review’) in subjects that have been extensively
treated in the past BBN literature (as in SUSYmodels leading to cascade nucleosynthesis, the gravitino ‘problem’, etc.). Other
topics, which for observational or theoretical reasons have attracted far less interest in the past decade in relation to BBN
bounds, are only briefly mentioned or omitted completely (this is the case of technicolor or cosmic strings). Older literature
containing a more extensive treatment of these topics can be typically retraced from the quoted reviews. In the following,
unless otherwise stated, we use natural units h̄ = c = kB = 1, although conventional units in the astronomical literature
(as parsec and multiples of it) are occasionally used where convenient for the context.

2. Standard cosmology

To keep this review self-contained, and fix the notation which we will be using in this paper, we summarize here the
main aspects of the cosmological model which are relevant for our analysis. The standard hot Big Bang model is based on
three fundamental astronomical observations: the Hubble law, the almost perfect black body spectrum of the background
photon radiation, and the homogeneity and isotropy of the universe on large scales, see e.g. [15,16], The latter, also known
under the spell of Cosmological Principle implies that the metric itself should be homogeneous and isotropic, and singles out
the Friedmann–Lemaître–Robertson–Walker (FLRW) models. In comoving spherical coordinates one has:

ds2 = gµνdxµdxν = dt2 − a2(t)
[
dr2

1− kr2
+ r2(dθ2 + sin2 θdφ2)

]
, (1)
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where a(t) is the cosmic scale-factor and k = 1, 0,−1 the rescaled spatial curvature signature for an elliptic, euclidean or
hyperbolic space, respectively.
The Einstein field equations relate the energy–momentum tensor of the perfect fluid representing the matter-energy

content of the universe,

Tµν = −P gµν + (P + ρ)uµuν, (2)

with the space–time curvature Rµνρσ ,

Rµν −
R
2
gµν = 8π GN Tµν +Λgµν, (3)

where Rµν is the Ricci tensor, Rµν ≡ gρσRρµσν , R the scalar curvature, R = gµνRµν ,GN theNewton gravitational constant, and
Λ the cosmological constant. Substituting the FLRWmetric (1) in the Einstein’s equations (3) gives the Friedmann–Lemaître
(FL) equation for the Hubble parameter H ,

H2 ≡
(
ȧ
a

)2
=
8π GN
3

ρ −
k
a2
. (4)

The equation of state of the fluid filling the universe, P = P(ρ), specifying the pressure as a function of the energy density,
along with the covariant conservation of the energy momentum tensor (which accounts for the entropy conservation if the
fluid corresponds to a thermal bath of particle excitations),

d(ρa3)
da

= −3 Pa2, (5)

allows one to get the evolution of ρ as function of a,

ρM ∝ a−3, (6)

ρR ∝ a−4, (7)
ρΛ ∝ const, (8)

for matter (both baryonic and dark matter, PB, PDM ∼ 0), radiation (PR = ρR/3), or cosmological constant (PΛ = −ρΛ),
respectively.
As usual, the present values of radiation, baryon matter, dark matter and cosmological constant energy densities will

be expressed in terms of the parameters Ωi = ρ0i /ρcr , i = R, B,DM,Λ, with ρcr = 3H
2
0/(8πGN) the critical density

today and H0 = 100 h km s−1 Mpc−1, with h = 0.73+0.04−0.03 [17]. To quantify the baryon density parameter we will also use
ωb ≡ ΩBh2 and the baryon to photondensity ratio,η = nB/nγ . The latter is also proportional to the initial baryon–antibaryon
asymmetry per comoving volume produced at some early stage of the universe evolution. This ratio keeps constant after
the e+− e− annihilation phase taking place at a value of the photon temperature T ∼ 0.3 MeV (see later). Moreover, at low
energy scales there are no baryon violating interactions at work, thus the value of η can be simply related toΩB, see e.g. [18]

η10 ≡ η × 1010 =
273.45ΩBh2

1− 0.007Yp

(
2.725 K
T0

)3 (6.708× 10−45 MeV−2
GN

)
, (9)

where Yp stands for 4Hemass fraction (see Section 3.1) and T0 the photon temperature today. Note that the numerical factor
multiplying Yp takes into account the effect of the 4He binding energy on the whole energy budget in baryonic matter.
Matter and radiation fluids can be usually described in terms of a bath of particle excitations of the corresponding

quantum fields. In particular, at high temperatures rapid interactions among them ensures thermodynamical equilibrium
and each particle specie is described by an equilibrium (homogeneous and isotropic) phase space distribution function,

fi(|p|, T ) =
[
exp

(
Ei(|p|)− µi

T

)
± 1

]−1
, (10)

where Ei(|p|) =
√
|p|2 +m2i is the energy, +/− corresponds to the Fermi–Dirac/Bose–Einstein statistics, and µi the

chemical potential, which is zero for particles which can be emitted or absorbed in any number (like photons).
In the comoving frame, the number density, energy density and pressure can be expressed as follows

ni(T ) = gi

∫
d3p
(2π)3

fi(|p|, T ), (11)

ρi(T ) = gi

∫
d3p
(2π)3

Ei(|p|)fi(|p|, T ), (12)

Pi(T ) = gi

∫
d3p
(2π)3

|p|2

3 Ei(|p|)
fi(|p|, T ), (13)
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where gi is the number of internal degrees of freedom. The BBN takes place in the radiation dominated phase, hence non-
relativistic particles contribute negligibly to the total energy density, which therefore can be conveniently written in terms
of the photon energy density ργ = π2T 4/15,

ρ ∼ ρR = g∗
ργ

2
, (14)

which defines g∗, the total number of relativistic degrees of freedom,

g∗ =
∑
Bi

gi

(
Ti
T

)4
+
7
8

∑
Fi

gi

(
Ti
T

)4
, (15)

where the first and second terms are due to all boson and fermion species, respectively. The possibility is left in the previous
formula of different Ti for different species, accounting for pseudo-thermal distributions of decoupled fluids (like relativistic
neutrinos at BBN times).
Finally, we will also exploit in the following the definition of the entropy density, s(T ), in terms of the phase space

distribution function. For a given specie i one has:

si(T ) =
ρi + Pi
T
= gi

∫
d3p
(2π)3

3m2i + 4|p|
2

3 T Ei(|p|)
fi(|p|, T ). (16)

The total entropy density is conventionally written as

s(T ) =
π4

45 ζ (3)
g∗s(T )nγ =

2π2

45
g∗s(T )T 3, (17)

where nγ = (2 ζ (3)/π2) T 3 is the number density of photons and

g∗s(T ) =
∑
Bi

gi

(
Ti
T

)3
+
7
8

∑
Fi

gi

(
Ti
T

)3
. (18)

Use of Eq. (5) implies that entropy per comoving volume is a conserved quantity, s(t)a3 = const.

3. Big bang nucleosynthesis

3.1. Overview

Extrapolating the present universe back in the past, we infer that during its early evolution, before the epoch of
nucleosynthesis, it was hot and dense enough for electrons, positrons, photons, neutrinos and nucleons, as well heavier
nuclei, to be in kinetic and chemical equilibrium due to the high (weak, strong and electromagnetic) interaction rates.
In particular, the initial values of all nuclear densities are set by Nuclear Statistical Equilibrium (NSE). NSE implies that
they constitute a completely negligible fraction of the total baryon density, which is all in the form of free neutrons and
protons. As expansion proceeds, weak process rates become eventually smaller than the expansion rate H at that epoch,
hence some particle species can depart from thermodynamical equilibrium with the remaining plasma. This is the case
of neutrinos which only interact via weak processes and freeze out at a temperature of about 2–3 MeV. Soon after, at
a temperature TD ∼ 0.7 MeV, neutron–proton charged-current weak interactions also become too slow to guarantee
neutron–proton chemical equilibrium. The n/p density ratio departs from its equilibrium value and freezes out at the value
n/p = exp(−1m/TD) ∼ 1/7, with 1m = 1.29 MeV the neutron–proton mass difference, and is then only reduced
by subsequent neutron decays. At this stage, the photon temperature is already below the deuterium binding energy
BD ' 2.2 MeV, thus one would expect sizable amounts of 2H to be formed via n+ p→ 2H+ γ process. However, the large
photon-nucleon density ratio η−1, which is of the order of 109, delays deuterium synthesis until the photo–dissociation
process become ineffective (deuterium bottleneck). This takes place at a temperature TN such that exp(BD/TN)η ∼ 1,
i.e. TN ∼ 100 keV, which states the condition that the high energy tail in the photon distribution with energy larger than BD
has been sufficiently diluted by the expansion.
Once 2H starts forming, a whole nuclear process network sets in, leading to heavier nuclei production, until BBN

eventually stops, see Section 4. An estimate of the main BBN outcome, i.e. 4He, can be obtained with very simple arguments,
yet it provides quite an accurate result. Indeed, the final density n4He of

4He is very weakly sensitive to the whole nuclear
network, and a very good approximation is to assume that all neutrons which have not decayed at TN are eventually bound
into helium nuclei, see e.g. [19,12]. This leads to the famous result for the helium mass fraction Yp ≡ 4 n4He/nB

Yp ∼
2

1+ exp(1m/TD) exp(t(TN)/τn)
∼ 0.25, (19)

with t(TN) the value of time at TN and τn the neutron lifetime.
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Table 1
Nuclides which are typically considered in BBN numerical studies.

Z N
0 1 2 3 4 5 6 7 8

0 n

1 H 2H 3H

2 3He 4He

3 6Li 7Li 8Li

4 7Be 9Be

5 8B 10B 11B 12B

6 11C 12C 13C 14C

7 12N 13N 14N 15N

8 14O 15O 16O

On the other hand, the determination of all light nuclei produced during BBN, and a more accurate determination of 4He
as well, can be only pursued by a simultaneous solution of a set of coupled kinetic equations which rule the evolution of
the various nuclei, supplemented by Einstein’s equations, covariant conservation of total energy momentum tensor, as well
as conservation of baryon number and electric charge. This is typically obtained numerically, although nice semi-analytical
studies have been also recently performed [20].
To summarize the general BBN setting, we start with some definitions. We consider Nnuc species of nuclides, whose

number densities, ni, are normalized with respect to the total number density of baryons nB,

Xi =
ni
nB

i = p, 2H, 3He, . . . . (20)

The list of nuclides which are typically considered in BBN analysis is reported in Table 1. To quantify the most interesting
abundances, those of 2H, 3He, 4He and 7Li, we also use in the following the short convenient definitions

2H/H ≡ X2H/Xp,
3He/H ≡ X3He/Xp, Yp ≡ 4X4He,

7Li/H ≡ X7Li/Xp, (21)

i.e. the 2H, 3He and 7Li number density normalized to hydrogen, and the 4He mass fraction, Yp. Notice that, although the
above definition of Yp is widely used, it is only approximately related to the real helium mass fraction, since the 4He mass
is not given by 4 times the atomic mass unit. The difference is quite small, of the order of 0.5% due to the effect of 4He
binding energy. However, in view of the present precision of theoretical analysis on 4He yield, this difference cannot be
neglected, and one should clearly state if one refers to the conventional quantity Yp (as we do here, too) or the ‘‘true’’ helium
mass fraction. In the (photon) temperature range of interest for BBN, 10 MeV & T & 10 keV, electrons and positrons are
kept in thermodynamical equilibrium with photons by fast electromagnetic interactions and are distributed according to a
Fermi–Dirac function fe± , with chemical potential±µe, parameterized in the following by the ratioφe ≡ µe/T . The chemical
potential of electrons is very small, due to the universe charge neutrality [21,22],

µe

T
∼
ne
nγ
=
np
nγ
∼ 10−10. (22)

To follow the neutrino-antineutrino fluid in detail, it is necessary to write down evolution equations for their distribution
in phase space, rather than simply using their energy density. This is due to the fact, as we will illustrate in details in the
following, that they are slightly reheated during the e+ − e− annihilation phase and develop non-thermal momentum-
dependent features. We denote these distributions by fνe(|p|, t), fν̄e(|p|, t) and

fνµ = fντ ≡ fνx(|p|, t), fν̄µ = fν̄τ ≡ fν̄x(|p|, t). (23)

In the standard scenario of no extra relativistic degrees of freedom at the BBN epoch apart from photons and neutrinos, the
neutrino chemical potential is bound to be a small fraction of the neutrino temperature. This bound applies to all neutrino
flavors, whose distribution functions are homogenized via flavor oscillations [23–25]. In this section we focus on non-
degenerate neutrinos, namely fνe = fν̄e and fνx = fν̄x , while we will consider in details the effect of neutrino–antineutrino
asymmetry in Section 6.3.
The set of differential equations ruling primordial nucleosynthesis is the following, see for example [26–30]:

ȧ
a
= H =

√
8πGN
3

ρ, (24)

ṅB
nB
= −3H, (25)
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ρ̇ = −3H (ρ + P), (26)

Ẋi =
∑
j,k,l

Ni

(
Γkl→ij

XNkk X
Nl
l

Nk!Nl!
− Γij→kl

XNii X
Nj
j

Ni!Nj!

)
≡ Γi, (27)

nB
∑
j

Zj Xj = ne− − ne+ ≡ L
(me
T
, φe

)
≡ T 3 L̂

(me
T
, φe

)
, (28)

(
∂

∂t
− H|p|

∂

∂|p|

)
fνα (|p|, t) = Iνα

[
fνe , fν̄e , fνx , fν̄x , fe− , fe+

]
, (29)

where ρ and P denote the total energy density and pressure, respectively,

ρ = ργ + ρe + ρν + ρB, (30)

P = Pγ + Pe + Pν + PB. (31)

Eq. (24) is the definition of the Hubble parameter H , whereas Eqs. (25) and (26) state the total baryon number and
entropy conservation per comoving volume, respectively. The set of Nnuc Boltzmann equations (27) describes the density
evolution of each nuclide specie, Eq. (28) states the universe charge neutrality in terms of the electron chemical potential,
with L (me/T , φe) the charge density in the lepton sector in unit of the electron charge, and finally Eqs. (29) are the Boltzmann
equations for neutrino species, with Iνα

[
fνe , fνx

]
standing for the collisional integralwhich contains allmicroscopic processes

creating or destroying the specie να .
Since electromagnetic and nuclear scatterings keep the non-relativistic baryons in kinetic equilibrium their energy

density ρB and pressure PB are given by

ρB =

[
Mu +

∑
i

(
1Mi +

3
2
T
)
Xi

]
nB, (32)

PB = T nB
∑
i

Xi, (33)

with1Mi andMu the i-th nuclide mass excess and the atomic mass unit, respectively.
The pressure and energy density of the electromagnetic plasma (e± and γ ) receives a contribution at first order in the

fine structure coupling α when considering QED finite temperature corrections which change the electromagnetic plasma
equation of state via the appearance of a thermalmass for both photons and e±, which in turn change the particle dispersion
relation Ee,γ (p). This has been studied e.g. in [31–33]. These corrections also enter Eq. (26), the expression of the expansion
rate H , as well as the thermal averaged n–p weak conversion rates, which depend upon electron–positron distribution
function (see later). It has been shown that at the time of BBN, all these effects slightly influence the 4He abundance, at the
level of per mille [32].
In Eq. (27) i, j, k, ldenote nuclear species,Ni the number of nuclides of type i entering a given reaction (and analogouslyNj,

Nk,Nl), while the Γ ’s denote symbolically the reaction rates. For example, in the case of decay of the species i,Ni = 1,Nj = 0
and

∑
Γi→kl is the inverse lifetime of the nucleus i. For two-body collisions Ni = Nj = Nk = Nl = 1 and Γij→kl = 〈σij→kl v〉,

the thermal averaged cross-section for the reaction is i+ j→ k+ l times the i–j relative velocity. In Eq. (28), Zi is the charge
number of the i-th nuclide, and the function L̂(ξ , ω) is defined as

L̂(ξ , ω) ≡
1
π2

∫
∞

ξ

dζ ζ
√
ζ 2 − ξ 2

(
1

eζ−ω + 1
−

1
eζ+ω + 1

)
. (34)

Eqs. (24)–(29) constitute a set of coupled differential equations which have been implemented in numerical codes
since the pioneering works of Wagoner, Fowler and Hoyle [26] and Kawano [34,35]. Before discussing some details of this
implementation and its present status,we describe two crucial phenomenawhich take place before the BBN, the freezing out
of neutrino distribution functions and of the neutron–proton density ratio, when the weak charged current n–p processes
become too slow to ensure chemical equilibrium between the two nucleon species. At the time these two phenomena
occur the synthesis of deuterium, and thus of the whole nuclear chain, is still strongly forbidden by photo–dissociation
processes, and all baryon density is in the form of free neutrons and protons. This means that in principle they could be
treated independently of thewhole set of nuclear processeswhich leads to the proper BBN phase. In particular, once obtained
the shape of neutrino distribution functions, they can be used as given inputs when solving the set of Eqs. (24)–(25), thus
significantly simplifying the problem.

3.2. The role of neutrinos in BBN and neutrino decoupling

At early epochs neutrinos were kept in thermal contact with the electromagnetic primordial plasma by rapid weak
interactionswith electrons andpositrons, controlled by a rateΓw ' 〈σw v〉ne± ∼ G2F T

2
×T 3.When the temperature dropped
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below a few MeV, these weak processes became too slow compared to the Hubble expansion rate (Γw < H ∼
√
GNT 2) and

the process of neutrino decoupling took place. An accurate estimate for the neutrino decoupling temperature is 2.3 MeV
for the electron neutrino and slightly larger for νµ,τ , 3.5 MeV [36], since the latter only interact with the electromagnetic
plasma via neutral current processes.
Shortly after, the e± pairs began to annihilate almost entirely into photons, thus producing a difference between the

temperatures of the relic photons and neutrinos. The MeV to 0.1 MeV range is crucial for BBN physics, and in particular for
the neutron–proton fraction, so it comeswithout surprise that BBN is sensitive to the properties of neutrinos: it derives from
the basic facts that the neutrino decoupling, the deuterium binding energy, the n–p mass difference and the electron mass
all fall in the MeV range. In more detail, neutrinos enter BBN equations in three ways:

I the momentum distributions of the νe and ν̄e entering the n–p inter-conversion weak rates;
II their overall energy density content ρν , which determines the Hubble expansion rate;
III their overall pressure Pν , which enters the energy–momentum conservation law. Assuming the equation of state of
relativistic species Pν = ρν/3, this effect is not independent from the previous one, and we shall not discuss it further.

The effect (I) is clearly model-dependent, in the sense that it can be quantified and parameterized only on the basis of a
physically-motivated hypothesis. One popular example where the effect of neutrinos is dominated by this distortion is the
case of a νe − ν̄e asymmetry, see Section 6.3. Concerning the effect (II), it is customary to parameterize it via an effective
number of neutrinos Neff [37,38], defined by the relation

ρν ≡
Neff
3
ρν,0, (35)

where ρν,0 is the energy density in neutrinos in the limit of instantaneous decoupling from the e+, e−, γ plasma and no
radiative or plasma corrections (see Eq. (40) below). Nowadays, precision electroweak measurements at the Z0-resonance
pin down the number of light active neutrino specieswith high accuracy,Nν = 2.9840±0.0082 [39], consistentwithin∼2 σ
with the known three families of the SMPP. However, well before these measurements were available, BBN was already
invoked to favor 3 light, thermalized (and thus probably active with respect to weak interactions) neutrino families, with a
range notwider than 2-4 (see Refs. in the reviews [12,13,11]).While this connection between collider physics and cosmology
has been historically important, we would like here to clarify some commonmisunderstanding and ambiguities on the BBN
bound on Neff. If the bound is derived by changing only Neff, but without including any effect of the type (I), it is incorrect
to refer to it as a bound on neutrino properties. It is rather a statement on the rate of expansion of the universe at the
BBN time, which may be indicative e.g. of the presence of additional (semi)relativistic species in the plasma, or of exotic
thermal histories. Any reasonable BBN bound on the number of neutrino species Nν requires a modification of the type
(I) as well. Since no universal parametrization exists, this is often neglected. Yet, this should not diminish the importance
of the point. For example, if we accompany the rescaling of Eq. (35) by an identical rescaling of the νe and ν̄e distribution
function (i.e. adopting a gray-body parametrization, keeping the temperature of the spectrum unchanged but altering the
normalization), the range of Yp that for standard parameters corresponds to 2.8 ≤ Neff ≤ 3.6 (see Section 5) translates
into a more severe constraint, 2.85 ≤ Nν ≤ 3.12. It is worth noting that no role is played in BBN by possible heavy fourth
generation neutrinos, whose mass must be larger than∼45 GeV to avoid the Z-width bound. Even if such a neutrino exists,
it would be natural to expect it to be unstable and rather short-lived, for example due to mixing with the light neutrinos
(neutrino oscillations prove that family lepton-numbers are violated). Even if some protective symmetry prevents the decay
(so that it accounts for a subleading fraction of the cold dark matter), no effect on the BBN is present, and we do not discuss
it further.
A major consequence of the settlement of the neutrino oscillation issue is that a very refined calculation of the neutrino

decoupling is possible. The standard picture in the instantaneous decoupling limit is very simple (see e.g. [19]): coupled
neutrinos had a momentum spectrum with an equilibrium Fermi–Dirac (FD) form3 with temperature T ,

feq(|p|, T ) =
[
exp

(
|p|
T

)
+ 1

]−1
, (36)

which is preserved after decoupling. Shortly after neutrino decoupling the photon temperature drops below the electron
mass,me, and e± annihilations heat the photons. If one assumes that this entropy transfer did not affect the neutrinos because
they were already completely decoupled (instantaneous decoupling limit), using conservation of entropy per comoving
volume it is easy to calculate the difference between the temperatures of relic photons and neutrinos and thus the eventual
neutrino energy density ρν,0 introduced before.

3 It was noted in [40] (and more recently the topic reanalyzed in [41]) that the 4He abundance in the early Universe is sensitive to the difference
between FD or an exotic Bose–Einstein (BE) distribution of the (quasi)thermal neutrino bath, a conclusion which is expected according to the spin-
statistics theorem but otherwise difficult to prove in laboratory experiments. They found indeed a good sensitivity to the quantum nature of the statistics,
Yp(BE)− Yp(FD) ' −(3%–4%)Yp(FD) (or equivalent to Neff ' 2.4), with the present range of Yp thus disfavoring a BE spectral shape.
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At high temperatures, T ≥ 2–3 MeV, one can write the conservation of entropy per comoving volume in the form (we
are considering a temperature range well below muon annihilation epoch)(

se±,γ + sν
)
a3 = const. (37)

After ν-decoupling, one has instead two separate conservation conditions for neutrinos and for the electromagnetic plasma.
Nevertheless, until photons are reheated by e± annihilation, both photon and neutrino temperatures redshift by the same
amount and keep equal. If one specifies the entropy conservation laws at the two different epochs, ain well before e±
annihilation, and aend well after this phase, one obtains

sν(ain)a3in = sν(aend)a
3
end,

se±,γ (ain)a
3
in = sγ (aend)a

3
end, (38)

where in the second equation one takes into account that both photon and e± degrees of freedom contribute at ain, while
only photons are present (and reheated) at aend. The ratio of these two equations using the expression of entropy density
(16), gives the well known asymptotic ratio of neutrino/photon temperatures after e± annihilation phase,

Tν
T
=

(
2

2+ 4× 7/8

)1/3
=

(
4
11

)1/3
' 1.401, (39)

and the instantaneous decoupling expression of the neutrino energy density in terms of ργ ,

ρν,0 = 3
7
8

(
4
11

)4/3
ργ . (40)

However, the processes of neutrino decoupling and e± annihilations are sufficiently close in time so that some relic
interactions between e± and neutrinos exist. These relic processes are more efficient for larger neutrino energies, leading to
non-thermal distortions in the neutrino spectra (larger for νe than for νµ,τ , since νe also feel charged-current interactions)
and a slightly smaller increase of the comoving photon temperature. Even in absence of mixing, a proper calculation of the
process of non-instantaneous neutrino decoupling requires the solution of themomentum-dependent Boltzmann equations
for the neutrino spectra (29), a set of integro-differential kinetic equations that are quite challenging to attack numerically.
In the last two decades a series of works has been devoted to solving this system in an increasingly general and precise
way, ultimately also including finite temperature QED corrections to the electromagnetic plasma (a full list of the pre-2002
works is reported in [42]). To give a feeling of the overall effect, it suffices to say that the combination of these corrections
leads to an effective neutrino number Neff ' 3.046, while asymptotically one finds Tν/T = 1.398, slightly smaller than the
instantaneous decoupling value [43].
The existence of neutrino oscillations imposes modifications to these corrections. The effect of fν distortions on the Yp

yield in the simplified case of two-neutrinomixing, averagedmomentum, andMaxwell–Boltzmann statistics was estimated
in [44,45]. All three approximations were relaxed in [43] and a full calculation was performed with a density matrix
formalism. The neutrino ensemble is described by the momentum-dependent density matrices %p [46–49]. The form of
the neutrino density matrix for a mode with momentum p is

%p(t) =

(
%ee %eµ %eτ
%µe %µµ %µτ
%τe %τµ %ττ

)
. (41)

The diagonal elements correspond to the usual number density of the different flavors, while the off-diagonal terms are non-
zero in the presence of neutrino mixing. There exists a corresponding set of equations for the antineutrino density matrix
%̄p. In absence of a neutrino asymmetry (or of additional couplings flipping ν’s into ν̄ and vice versa) antineutrinos follow
the same evolution as neutrinos, and a single matrix suffices to describe the system. The equations of motion for the density
matrices are

i%̇p =
[
H0 + H1, %p

]
+ C[%p], (42)

where the first commutator term includes the free Hamiltonian H0 and the effective potential of neutrinos in medium H1,
while the last term is a collisional term of order G2F describing the breaking of coherence induced by neutrino scattering and
annihilation as well as neutrino production by collisions in the primeval plasma. In a FLRW universe, %̇p =

(
∂t − Hp ∂p

)
%p.

The Hamiltonian can be written explicitly in the flavor basis as

H0 = U
M2

2 p
UĎ, M2 = diag(m21,m

2
2,m

2
3), (43)

whereU is the mixing matrix which, assuming vanishing CP-violating phases, writes

U =

( c12c13 s12c13 s13
−s12c23 − c12s23s13 c12c23 − s12s23s13 s23c13
s12s23 − c12c23s13 −c12s23 − s12c23s13 c23c13

)
. (44)
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Fig. 1. Frozen distortions of the flavor neutrino spectra as a function of the comovingmomentum, for the best fit solar and atmosphericmixing parameters.
R is the scale factor. In the case where we allow for θ13 6= 0 consistently with present bounds (blue dotted lines), one can distinguish the distortions for νµ
and ντ (middle and lower, respectively). From [43]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 2
Neff and1Yp obtained for different cases, with and without neutrino oscillations, as reported in [43].

Case Neff 1Yp

No mixing (no QED) 3.035 1.47× 10−4

No mixing 3.046 1.71× 10−4

Mixing, θ13 = 0 3.046 2.07× 10−4

Mixing, sin2(θ13) = 0.047 3.046 2.12× 10−4

Mixing, Bimaximal, θ13 = 0 3.045 2.13× 10−4

Here cij = cos θij and sij = sin θij for ij = 12, 23, or 13. Apart for CP-violating phases, there are five oscillation parameters:
1m221 = m

2
2 − m

2
1,1m

2
32 = m

2
3 − m

2
2, θ12, θ23 and θ13. Best-fit values and uncertainties for these parameters (and upper

bound for θ13) can be found in [17].
Neglecting non-diagonal components of the effective potential, the matter term writes

H1 = diag(Ve, Vµ, Vτ ), (45)

where, assuming T � mµ,

Ve = −
8
√
2GF p
3

(
ρνe+ν̄e

M2Z
+
ρe−+e+

M2W

)
, (46)

Vµ = −
8
√
2GF p
3M2Z

ρνµ+ν̄µ , (47)

Vτ = −
8
√
2GF p
3M2Z

ρντ+ν̄τ . (48)

Finally, the collisions of neutrinos with e± or among themselves are described by the term C[·], which is proportional
to G2F . For the off-diagonal terms it is sufficient to adopt simple damping coefficient as reported in [23]. Instead, for the
diagonal ones, in order to properly calculate the neutrino heating process one must consider the exact collision integral Iνα ,
that includes all relevant two-body weak reactions of the type να(1)+ 2→ 3+ 4 involving neutrinos and e±, see e.g. [50].
The kinetic equations for the neutrino density matrix are supplemented by the covariant conservation equation for the total
energy–momentum tensor. Given the order of the effects considered, one should also include the finite temperature QED
corrections to the electromagnetic plasma [33].
We show in Fig. 1 the asymptotic values of the flavor neutrino distribution, both without oscillations and with non-

zero mixing. The dependence of the non-thermal distortions in momentum is well visible, which reflects the fact that more
energetic neutrinos were interacting with e± for a longer period. Moreover, the effect of neutrino oscillations is evident,
reducing the difference between the flavor neutrino distortions. Fitting formulae for these distributions are available in
[43]. In Table 2 we report the effect of non-instantaneous neutrino decoupling on the radiation energy density, Neff, and on
the 4Hemass fraction. By taking also into account neutrino oscillations, one finds a global change of1Yp ' 2.1×10−4which
agrees with the results in [45] due to the inclusion of QED effects. Nevertheless the net effect due to oscillations is about
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Table 3
Comparison of the exact BBN results with a fixed-1Neff approximation. From [43].

Nuclide Exact (No ν-oscillations) Fixed1Neff = 0.013

1Yp 1.71× 10−4 1.76× 10−4

1(2H/H) −0.0068× 10−5 +0.0044× 10−5

1(3He/H) −0.0011× 10−5 +0.0007× 10−5

1(7Li/H) +0.0214× 10−10 −0.0058× 10−10

a factor of 3 smaller than what was previously estimated, due to the failure of the momentum-averaged approximation to
reproduce the true distortions.
It is worth remarking that the precise computation of the effect of particular neutrino decoupling scenario on primordial

yields can only be performed numerically. The neutrino distribution functions, once obtained by the solution of Eq. (42),
have to be substituted in Eqs. (24)–(28) which will predict the primordial abundance. The process is particularly involved,
it is in fact important to follow the single neutrino distribution as a function of time because of the particular role played
by the different neutrino flavors. In particular, the Neff reported in Table 2 is the contribution of neutrinos to the whole
radiation energy budget, but only at the very end of neutrino decoupling. Hence, not all the 1Neff there reported will be
really contributing to BBN processes. In order to clarify this subtle point, we report in Table 3 the effect on all light nuclides,
of the non-instantaneous neutrino decoupling in the simple scenario of no neutrino oscillation, and compare this column
with the simple prescription of adding a fix 1Neff = 0.013 contribution to radiation. Even though Yp is reproduced (by
construction), this is not the case for the other nuclear yields.

3.3. The neutron–proton chemical equilibrium and the role of weak rates

Neutrons and protons are kept in chemical equilibrium by charged current weak interactions,
(a) νe + n→ e− + p, (d) νe + p→ e+ + n,
(b) e− + p→ νe + n, (e) n→ e− + νe + p,

(c) e+ + n→ νe + p, (f) e− + νe + p→ n, (49)
which enforce their number density ratio to follow the equilibrium value, n/p = exp(−1m/T ). Shortly before the onset of
BBN, processes (a)–(f) become too slow, chemical equilibrium is lost and the ratio n/p freezes out for temperatures lower
than the decoupling temperature TD ∼ 1MeV. Residual free neutrons are partially depleted by decay until deuterium starts
forming at TN and neutrons get bound in nuclei, first in deuterium and eventually in 4He.
The leading role of (a)–(f) in fixing the neutron fraction at the BBN, and thus Yp, simply means that to get an accurate

theoretical prediction for 4He abundance requires a careful treatment of the weak rates. Large improvements on this issue
have been obtained in the last decade, which we summarize in the following. Extensive analysis can be found in e.g. [32,51].
At the lowest order, the calculation is rather straightforward, and is obtained by using V–A theory and in the limit of

infinite nucleon mass (we will refer to this as the Born limit), see [52]. The latter approximation is justified in view of the
typical energy scale of interest, of order T ∼ MeV,much smaller than the nucleonmassMN . For example, the neutron decay
rate takes the form (neglecting the very small neutrino masses)

ωB(n→ e− + νe + p) =
G2F
2π3

(
CV 2 + 3CA2

) ∫
d|pe||pe|

2
|pν |

2Θ(|pν |)
[
1− fν̄e(|pν |)

] [
1− fe(|pe|)

]
, (50)

where CV and CA are the nucleon vector and axial coupling, and |pν | = 1m−
√
|pe|2 +m2e . The rates for all other processes

(a)–(d), (f) can be simply obtained from (50) by changing the statistical factors and the expression for neutrino energy in
terms of the electron energy. An average can be performed at this level of approximation over equilibrium Fermi–Dirac
distribution for leptons, i.e. neglecting the effects of distortion in neutrino-antineutrino distribution functions, but taking
into account the time evolution of the neutrino to photon temperature ratio Tν/T . In Fig. 2 we report the Born rates, ωB,
for n–p processes. The accuracy of Born approximation results in being, at best, of the order of 7%. This can be estimated
by comparing the prediction of Eq. (50) for the neutron lifetime at very low temperatures, with the experimental value
τ exn = (885.7± 0.8) s [17].
The Born calculation can be improved by considering four classes of effects:

Electromagnetic radiative corrections. These are typically split into outer and inner terms (for a review see e.g. [53]). The first
ones involve the nucleon as a whole and consist of a multiplicative factor to the squared modulus of transition amplitude of
the form

1+
α

2π
g(Ee, Eν), (51)

where analytic expression for g(Ee, Eν), can be found in Ref. [54]. On the other hand, the inner corrections are deeply related
to the nucleon structure. They have been estimated in Ref. [55], and applied in the BBN context in [32,51]. Furthermore,
when electron and proton are both either in the initial or final state, one should also add the effect of Coulomb correction
[56–58], due to rescattering of the electron in the proton electromagnetic field and leading to the Fermi factor
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Fig. 2. The total Born rates, ωB , for n→ p (solid line) and p→ n transitions (dashed line). From [51].

1+ απ
Ee
|pe|

. (52)

Finite nucleon mass corrections. For finite nucleon mass MN and at order 1/MN , the weak hadronic current receives a
contribution from the weak magnetic moment coupling,

Jwmµ = i
GF
√
2

f2
MN
up(p) σµν (p− q)νun(q), (53)

where, from conservation of vector current (CVC), f2 = Vud(µp − µn)/2 = 1.81Vud. Both scalar and pseudoscalar
contributions can be shown to bemuch smaller and negligible for the accuracywe are interested in. At the same order 1/MN
the allowed phase space for the relevant scattering and decay processes gets changed, due to nucleon recoil. Finally, one has
to consider the effect of the initial nucleon thermal distribution in the comoving frame. All these effects are proportional to
me/MN or T/MN , and in the temperature range relevant for BBN, can be as large as radiative corrections. This has been first
pointed out in [59,60] and then also numerically evaluated in [32,51].
Thermal-Radiative corrections. The n–p rates get slight corrections from the presence of the surrounding electromagnetic
plasma. To compute these corrections onemay use Real Time formalism for Finite Temperature Field Theory [61] to evaluate
the finite temperature contribution of the graphs of Fig. 3, for the n→ p processes. Inverse processes p→ n are obtained
by inverting the momentum flow in the hadronic line. The first order in α is given by interference of one-loop amplitudes
of Fig. 3(b) and (c) with the Born result (Fig. 3 (a)). Photon emission and absorption processes (Fig. 3 (d)), which also give an
order α correction, should be included to cancel infrared divergences. Notice that photon emission (absorption) amplitudes
by the proton line are suppressed asM−1p and can be neglected.
All field propagators get additional on-shell contributions proportional to the number density of that particular specie in

the surrounding medium. For γ and e± (neglecting the small electron chemical potential) we have

i1µνγ (k) = −
[
i
k2
+ 2πδ(k2) fγ (k)

]
gµν, (54)

iSe(pe) =
i

6 pe −me
− 2πδ(pe2 −m2e )fe(Ee) (6 pe +me), (55)

with fγ the photon distribution function. The whole set of thermal/radiative corrections have been computed by several
authors [56,57,62–66,58,67–74]. Though they agree on the order of magnitude –which is quite small – there is nevertheless
no consensus on the detailed value, due for example to different ways of treating thewave function renormalization at finite
temperature. Finally, it was correctly pointed out in [75] that a (small) contribution to neutron–proton chemical equilibrium
is also provided by photon–proton interactions (and inverse processes),

γ + p→ e+ + νe + n, e+ + νe + n→ γ + p. (56)

The corresponding thermal averaged rates can be found in e.g. [18].
Non-instantaneous neutrino decoupling effects. Distortion of neutrino distribution functions changes the weak rates (a)–(f)
which are enhanced by the largermean energy of electron neutrinos. On the other hand, there is an opposite effect due to the
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Fig. 3. The tree level Born (a), the one-loop (b), (c), and the photon emission/absorption diagrams (d) for n→ p processes.

change in electron–positron temperature. Finally, since the photon temperature is reducedwith respect to the instantaneous
decoupling value (11/4)1/3, the onset of BBN, via 2H synthesis, takes place earlier in time. This means that fewer neutrons
decay from the time of freezing out of weak interactions, and this in turn corresponds to a larger 4He yield.
The effect of all corrections to the weak rates discussed so far has been considered in details in [32,51,18]. The leading

contribution is given by electromagnetic radiative corrections, which decrease monotonically with increasing temperature
for both p → n and n → p processes, and by finite nucleon mass effects. Their sum changes the Born estimate for a
few percent correction at the freeze out temperature T ∼ MeV. Comparing the theoretical prediction for the neutron
lifetime at zero temperature using GF = (1.16637 ± 0.00001) × 10−5 GeV−2, CV = 0.9725 ± 0.0013 and the ratio
CA/CV = −1.2720± 0.0018, [17], one finds τ thn = 886.5 s, quite an accurate result when compared with the experimental
value (agreement is at the 0.1% level). It is worth commenting here on the fact that a recent measurement of the neutron
lifetime exists [76], which gives τn = 878.5 ± 0.7stat ± 0.3syst and results in a 5.6σ discrepancy from the previous most
precise result, which in turn is consistent with the other six determinations used in [17] to determine the best fit. According
to the Particle Data Group, [The result of [76] is so far from other results that it makes no sense to include it in the average. It is
up to workers in this field to resolve this issue. Until this major disagreement is understood our present average of 885.7 ± 0.8
s must be suspect.While implications for BBN of this different lifetime have been explored [77], in the following we shall
assume that the best fit provided by the PDG is correct. Note that the PDG value also appears to be in better agreement with
global electroweak fits [78]. Modulo this caveat, one might be confident that n–p weak rates are presently quite accurately
computed, at per mille precision. Plasma corrections and finite temperature radiative effects are sub-leading, changing the
rates at the level of (0.3%–0.6)% only. Their effect is to slightly increase Yp by a very small amount,1Yp ∼ 1× 10−4, [79].
To conclude, we report a fit of the n–p rates which include all effects described in this section as a function of z =

me/T , [18], accurate at the 0.01% level, which the reader might find useful:

ω(n→ p) =
1
τ exn
exp

(
−qnp/z

) 13∑
l=0

al z−l 0.01 ≤ T/MeV ≤ 10, (57)

ω(p→ n) =


1
τ exn
exp

(
−qpnz

) 10∑
l=1

blz−l 0.1 ≤ T/MeV ≤ 10

0 0.01 ≤ T/MeV < 0.1,
(58)

with
a0 = 1 a1 = 0.15735 a2 = 4.6172
a3 = −0.40520× 102 a4 = 0.13875× 103 a5 = −0.59898× 102

a6 = 0.66752× 102 a7 = −0.16705× 102 a8 = 3.8071
a9 = −0.39140 a10 = 0.023590 a11 = −0.83696× 10−4

a12 = −0.42095× 10−4 a13 = 0.17675× 10−5 qnp = 0.33979,

(59)
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Fig. 4. The evolution of some element abundances produced during BBN. The line M/H refers to the abundance of ‘‘metals’’ (see text).

b0 = −0.62173 b1 = 0.22211× 102 b2 = −0.72798× 102

b3 = 0.11571× 103 b4 = −0.11763× 102 b5 = 0.45521× 102

b6 = −3.7973 b7 = 0.41266 b8 = −0.026210
b9 = 0.87934× 10−3 b10 = −0.12016× 10−4 qpn = 2.8602.

(60)

3.4. Nuclear reaction network

Nuclear processes during the BBN proceed in an environment very different with respect to the perhaps more familiar
stellar plasmas, where stellar nucleosynthesis takes place. The latter is a dense plasmawhere species aremostly in chemical
equilibrium, the former is a hot and low density plasma with a significant population of free neutrons, which expands and
cools down very rapidly, resulting in peculiar ‘‘out of equilibrium’’ nucleosynthetic yields. The low density of the plasma at
the time of BBN is responsible for the suppression of three-body reactions and an enhanced effect of the Coulomb-barrier,
which as a matter of fact inhibits any reaction with interacting nuclei charges Z1Z2 & 6. The most efficient categories of
reactions in BBN are therefore proton, neutron and deuterium captures – (p, γ )(n, γ ), (d, γ ) –, charge exchanges – (p, n) –,
and proton and neutron stripping – (d, n), (d, p).
From amore technical point of view, accurate BBN predictions require a detailed knowledge of the nuclear rates entering

the set of Eq. (27): a physical understanding of the basic reaction chains helps however to implement a code with a good
compromise between reliability and computational time. In this section we start with the phenomenology of nuclear
processes related with the choice of such nuclear network, whereas a chronology of the codes devoted to solve the whole
set of equations, and related numerical issues, is reported in Section 3.4.1.
After the freeze-out of weak interactions, p(n, γ )2H is the only reaction able to synthesize sensible amounts of nuclei,

since it involves the only two nuclear species with non-vanishing abundances, protons and neutrons. The very high
entropy of the primordial plasma keeps this reaction in equilibrium down to energies much lower than its Q -value, which
corresponds to the deuterium binding energy of BD ' 2.2 MeV. The deuterium bottleneck ends at a temperature of
TD ∼ 100 keV, given roughly by the condition exp(BD/TD)η ∼ 1, which ensures that the high energy tail of the photon
distribution has been sufficiently diluted by the expansion. At this point, almost instantaneously all the available neutrons
are locked into deuterium nuclei. The effect of the bottleneck on the following nuclear processes is two-fold: the ‘‘delayed’’
population of the deuterium specie results in BBN taking place at relatively low temperatures, with consequences on the
efficiency of all the following reactions. Second, but not less important, is the intervening decay of the neutron, which alters
the neutron to proton ratio at the time of effective deuterium production. Efficient production of deuterium marks the
effective beginning of the nuclear phase of BBN: the nuclear path towards heavier elements, before all 3H, 3He, 4He, is
enabled by the interaction of deuterium nuclei with nucleons and other 2H nuclei. The bulk of the remaining 7Li is produced
via tritium and especially 3He radiative capture on 4He. The latter path leads to 7Be, which eventually decays into 7Li by
electron capture. The evolution of light nuclide abundances as a function of the temperature of the plasma is shown in
Fig. 4: they undergo the nuclear phase of departure from chemical equilibrium and, by the time the universe cools to few
keV, they reach their final values. It is worth noting the dramatic change that all species undergo following the deuterium
synthesis at 1/T & 14 MeV−1.
The most important nuclear processes for the BBN were identified in [80] (reactions R0–R11 in Table 4). Reaction R9

provides actually only a sub-leading contribution to 7Li for today’s preferred value of η, beingmore relevant at lower ηwhere
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Table 4
The most relevant reactions for BBN.

Symbol Reaction Symbol Reaction

R0 τn R8 3He(α, γ )7Be
R1 p(n, γ )d R9 3H(α, γ )7Li
R2 2H(p, γ )3He R10 7Be(n, p)7Li
R3 2H(d, n)3He R11 7Li(p, α)4He
R4 2H(d, p)3H R12 4He(d, γ )6Li
R5 3He(n, p)3H R13 6Li(p, α)3He
R6 3H(d, n)4He R14 7Be(n, α)4He
R7 3He(d, p)4He R15 7Be(d, p)24He

Fig. 5. The most relevant reactions for BBN.

7Li production is direct rather than coming from 7Be synthesis. Also, if one is concerned with the traces of 6Li produced in
BBN, the reactions R12 : 4He(d, γ )6Li, and R13 : 6Li(p, α)3He are relevant. Due to their larger uncertainties, even reactions as
R14 : 7Be(n, α)4He and perhaps R15 : 7Be(d, p)24He are important in the 7Li error budget determination. All these reactions
are summarized in Table 4 and Fig. 5. Both leading and sub-leading reactions of some interest have been discussed e.g. in
[18], which we mostly follow here. Other compilations can be found in [81–83].
These reactions are not only important to understand the nuclear physics of the BBN, but also to assess an error budget for

its theoretical predictions. The first ‘‘modern’’ papers addressing these issues are [84,80]. For example, in [80], the authors
performed a systematic analysis of the nuclear network in BBN, as it had been implemented in the first publicly released
code [26],with the – at the time–new rates compiled in [85]. For the range ofη allowed at the time, they identified the twelve
leading reactions reported in Table 4. A detailed study of their rates and uncertainties led to a new code [35], implementing
an updated nuclear network.
Inferring theuncertainties on the light elements yields is conceptually a three-stepprocess. First, onehas to determine the

uncertainties on the cross-sections σi(E) (as functions of energy) measured in the Lab or theoretically predicted. Since a first
principle computation is virtually impossible for almost all processes, onehas to rely on some formof theoreticallymotivated
fitting formulae and interpolate between and extrapolate beyond the data. Indeed, the reactions in the early universe happen
in a thermal plasma, so the relevant nuclear input are the temperature-dependent rates given by the convolution of the
cross-sections with the Maxwell–Boltzmann distribution of nuclides, i.e. 〈σv〉 ∝ T−3/2

∫
∞

0 dE σ(E) E exp(−E/T ). These
can be approximated with analytical formulae in some simple hypotheses for the functional form of σ(E). Although no
modern compilation relies on such approximations, they are often used to suggest a fitting formula for the numerical
integration results. Anyway, it is the uncertainties on these rates that ultimately propagate onto the final errors on the
nuclides. The formalism/machinery to treat this problem can be found in classical papers (as [80]), textbooks [86,87] and
has also been reported in several compilations of the last decade [81–83,18], so we do not repeat it here.Wewant to remark,
however, that: (a) In the last decade, in particular following [81], a world-wide effort in obtaining new measurements
at low energy for several important reactions involving light nuclei has been undergone; (b) in several cases, especially
when new measurements have become available, the different experimental data sets do not seem to agree within the
quoted uncertainties. In this situation, it is a tricky business to assess uncertainties in a statistically meaningful way, unless
one has reason to believe that some of the datasets are affected by unaccounted systematics and decides for example
to dismiss the older measurements. Here we follow the prescription illustrated in [18] and motivated on the basis of
the arguments presented in [88]. While in agreement with the error estimates given in other compilations [82,83] when
statistical errors dominate, we warn the reader that our procedure tends to produce smaller errors than other compilations
when discrepancies among datasets exist.
An additional technical aspect arises in the way uncertainties are accounted for in the BBN calculations. A lot of attention

has been paid in the last two decades to this problem. Onemay adoptMonte Carlo simulations directly, with various degrees
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Table 5
The light nuclide abundances for WMAP 5-year result ΩBh2 = 0.02273 ± 0.00062 (second column). The uncertainties due to ΩBh2 (σωb ) and nuclear
rate errors (σii) are also shown in the third and fourth columns, respectively. The last two columns report the rates mostly contributing to the nuclear
uncertainties, and their relative contributions in percent in a quadrature sum, according to [18].

Nuclide i Central value σωb σii Rate δσ 2/σ 2 (%)

Yp 0.2480 +0.0002
−0.0003 ±0.0002 R0 98.5

2H/H×105
R2 49

2.53 ±0.11 ±0.04 R3 37
R4 14

3He/H×105
1.02 +0.01

−0.02 ±0.03 R7 80.7

R2 16.8

7Li/H×1010
R14 40.9

4.7 ±0.3 ±0.4 R8 25.1
R15 16.2
R7 8.6

6Li/H×1014 1.1 ±0.1 +1.7
−1.1 R13 ∼100

of sophistication [84,80,89], or use an error matrix approach as in [90] and its generalization in [91]. Each one has its own
advantages and disadvantages, but the agreement between the two is typically very good [90]. In Table 5 we report the light
nuclide abundances for WMAP 5-year result ΩBh2 = 0.02273 ± 0.00062 [8] (second column), showing in the third and
fourth columns, respectively, the uncertainties due toΩBh2 (σωb ) and nuclear rates errors (σii).

4 The last two columns report
the rates mostly contributing to the nuclear uncertainties, and their relative contributions in percent in a quadrature sum,
according to [18].
To illustrate the main dependence of the yields on the nuclear rates, we report here the scaling relations introduced in

[82] and normalizedwith respect to the predictions of PArthENoPE [93] around the fiducial value ofωb = 0.02273 (WMAP
5-years). The scalings are:

2H
H
= 2.53× 10−5 R−0.553 R−0.454 R−0.322 R−0.201

( ωb

0.02273

)−1.62 ( τn

τn,0

)0.41
(61)

3He
H
= 1.02× 10−5 R−0.777 R0.382 R−0.254 R−.203 R−0.175 R0.081

( ωb

0.02273

)−0.59 ( τn

τn,0

)0.15
, (62)

Yp = 0.2480 R0.0063 R0.0054 R0.0051

( ωb

0.02273

)0.39 ( τn

τn,0

)0.72
, (63)

7Li
H
= 4.7× 10−10R1.341 R0.968 R−0.767 R−0.7110 R0.713 R0.592 R−0.275

( ωb

0.02273

)2.12 ( τn

τn,0

)0.44
. (64)

It is clear, for example, that Yp prediction is dominated by the neutron mean lifetime (see Section 3.3). For all the other
reactions the relative weight of the different cross-sections is consistent with what is reported in Table 5, modulo a caveat:
some important reactions may have a minor impact on the uncertainty due to their better determination or vice versa. This
is the case of R1, whose role does not reflect in the error budget being theoretically well under control (at the% level), or
conversely the case of R14, R15, which contribute appreciably to the 7Li error budget in Table 5 due to the assumption done
in [18] that they are only known at the order of magnitude. In general, while improvements in the nuclear reaction rates
would still sharpen the BBN predictions (especially for 7Li), it is fair to conclude that these uncertainties are at the moment
negligible compared to the observational ones (see Section 4.4). Thus an experimental campaign does not seemmandatory
for BBN purposes alone. Yet, a careful assessment of the systematic uncertainties would be useful in reducing the present
discrepancies in data regression protocols. A realistic account especially of scale uncertainties in the already existing datasets,
perhaps excluding unreliable measurements and correcting underestimated error assignments would be certainly a more
useful input from the experimental community.
It is worth commenting here on an additional robust prediction of BBN: elements heavier than 7Li are virtually absent

from the chemical composition of the early universe. This was realized from the first pioneering studies on BBN [1,94], and
mostly explained in terms of the very high entropy and on the low density of the primordial plasma. They result in extremely
low abundances A ≥ 2 elements at the weak reaction freeze-out, and an inhibition of three-body reactions.5 respectively.

4 A recent analysis finds a larger value for 7Li/H = (5.24+0.71
−0.67)10

−10 , due to new determinations of the rate R8 , see [92] and references therein. This
further exacerbates the 7Li problem, see Sections 4.4 and 4.5.
5 The leading reaction for the synthesis of 12C in stars is the 3α→ 12C.
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Table 6
A comparison of light nuclei theoretical predictions in some recent analyses. Results are either produced by public numerical tools, or obtained by using
fitting formulae made available by the authors or finally, simply quoted in the papers. The theoretical errors are estimated using [93], and account for the
effects of nuclear rate uncertainties. Results are shown for a baryon fractionΩBh2 = 0.0224.

[35] [90] [97] [82] [14] [93]

Yp 0.2463 0.2479 0.2483 0.2485 0.2485 0.2479± 0.0002
2H/H× 105 2.57 2.60 2.60 2.55 2.59 2.58± 0.04
3He/H× 105 1.04 1.04 1.02 1.01 1.04 1.03± 0.03
7Li/H× 1010 4.53 4.42 4.91 4.26 4.50 4.57± 0.4

To assess more quantitatively the robustness of this result, the present authors have recently studied the nuclear processes
involved in the production of A ≥ 8 elements in BBN [95]. It was confirmed that their synthesis can only start at T . 60 keV
(see Fig. 4), close to the freeze-out of nuclear reactions, when they have a very small efficiency. Heavier elements in BBN are
in fact produced by an α capture over 7Li and subsequent build-up of 12C; their final abundance, mainly produced by means
of an α capture over 7Li and subsequent proton capture, is to be well below 10−10 that of hydrogen (see Fig. 4 for details).
While processes till now neglectedwere identified and included, their role does not alter this basic conclusion. An important
implication of these results follows for the first stars in the universe, known as Population III stars, whose formation process
and initial mass function is thought to be critically dependent on the carbon and oxygen content of the environment.6While
the amount of ‘‘heavy’’ element predicted in SBBN is safely below the critical level to alter the standard (but yet to be tested)
scenario, in exoticmodels thismight not be true.More in general, evenwhen roughly reproducing 2H, 3He, 4He and 7Li yields
of the SBBN, exotic scenarios may differ for the predictions of 6Li, 9Be or elements with A ≥ 12 (‘metals’ in the astrophysical
jargon). Examples of this will be provided in Sections 7.1 and 9.2.3.

3.4.1. Numerical solution of the BBN set of equations
Despite of the fact that some simple estimate of BBN predictions can be made on the back of the envelope, detailed

theoretical estimates that can be compared with experimental data require a careful numerical solution of BBN equations
(24)–(27) and (29). This is particularly relevant when one considers exotic scenarios with extra parameters or where a
different BBN dynamics is considered, with the aim of constraining physics beyond the SMPP. Since the original Wagoner
computer code [27,28] much effort has been devoted to develop numerical tools and provide reliable numerical results
[34,35,90,32,51,97,30,11,98–100,82,18,101]. In 1988, Kawano modified the BBN program of Wagoner [34], and in 1992 an
updated and user friendly public version has been released [35], which has served as a reference tool for a wide number of
research groups. Nuclear reaction rates were updated in 1993 [80] and radiative and Coulomb corrections to the weak rates,
to which the 4He abundance is very sensitive, as well plasma effects, were included as a constant multiplicative factor to
n–p weak rates. In 1993 Kernan discovered a relatively large time-step systematic error in the 4He abundance prediction of
the public Kawano code, δYp = 0.0017, since then routinely added to its result. This, strictly speaking, is not fully adequate
because different users use different step sizes and furthermore, numerical error is machine dependent. In 1999 Lopez and
Turner wrote a new nucleosynthesis code [32], which used the same nuclear rates but incorporated more accurately the
radiative, finite nucleon mass and finite temperature corrections to the weak rates. The code used by Olive, Steigman and
Walker [11] agreed, over the whole range 1 ≤ η10 ≤ 10, better than the 0.1% level, with the predicted 4He abundance
of the Lopez and Turner code. In 2000, the weak rate corrections were also calculated in [51] and included in a BBN code.
This code was developed and continuously updated over almost a decade, giving particular care also to the treatment of
neutrino decoupling and the nuclear reaction chain which enters the light abundances evolution [30,18]. It was eventually
made public in 2008 with the name PArthENoPE [93]. Details can be found in [101], where particular emphasis is given to
a comparison with [35]. To our knowledge, only the original Kawano code or improved versions of it7 and PArthENoPE are
publicly available.
To examine the concordance of theoretical predictionswe have considered some recent results obtained using numerical

BBN codes, either publicly available or whose outputs have been made public by the authors as fitting formulae versus
the baryon density or finally, simply quoted in their papers for some reference value of ΩBh2. These results are shown in
Table 6. The list is of course largely incomplete, but we think it is representative enough to give the idea of the status of BBN
theoretical accuracy. In the last column we also quote the theoretical uncertainty due to nuclear rate (experimental) errors,
as estimated using [93]. We see that all results are in very good agreement, in particular Yp agrees at the±0.1% level in the
most recent calculations. There is a somehow larger spread of 7Li estimates which are however all compatible within the
larger theoretical uncertainty (Table 6).
We report the fit of themain nuclide abundances as function ofωb ≡ ΩBh2 and the number of effective degree of freedom,

Neff. The fit holds for 0.015 ≤ ωb ≤ 0.029 and 0 ≤ Neff ≤ 7. The fitting function for all nuclei is∑
n

∑
m

anm ωnb N
m
eff, (65)

6 For a review we address the reader to the proceedings of the last plenary conference on the topic [96].
7 See the link http://www-thphys.physics.ox.ac.uk/users/SubirSarkar/bbn.htmlfor a version of the Kawano standard code, made Linux-friendly by
S. Dodelson.

http://arxiv.org///www-thphys.physics.ox.ac.uk/users/SubirSarkar/bbn.html
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Table 7
Coefficients of the fit of Eq. (65) for the Yp abundance.

m n
0 1 2 3 4 5

0 0.24307 −14.242 1418.4 −65863. 1.4856× 106 −1.3142× 107

1 −3.6433× 10−2 14.337 −1375.0 64741. −1.4966× 106 1.3601× 107

2 1.6132× 10−2 −4.5189 444.13 −21353. 502610. −4.6405× 106

3 −1.6279× 10−3 0.43362 −42.850 2069.4 −48890. 452740.

Table 8
Coefficients of the fit of Eq. (65) for the 2H/H× 105 abundance.

m n
0 1 2 3 4

0 14.892 −1551.6 70488. −1.5390× 106 1.3164× 107

1 6.1888 −916.16 56639. −1.6046× 106 1.7152× 107

2 −0.60319 118.51 −8556.3 267580. −3.0624× 106

3 4.5346× 10−2 −8.7506 624.51 −19402. 221200.

Table 9
Coefficients of the fit of Eq. (65) for the 3He/H× 105 abundance.

m n
0 1 2 3 4

0 3.1820 −298.88 15974. −422530. 4.4031× 106

1 0.57549 −91.210 6376.6 −201070. 2.3486× 106

2 −0.15717 33.689 −2651.2 89571. −1.0998× 106

3 1.4594× 10−2 −3.2160 256.66 −8780.2 109100.

Table 10
Coefficients of the fit of Eq. (65) for the 7Li/H× 1010 abundance.

m n
0 1 2 3 4

0 2.5274 −614.44 62186. −1.5670× 106 1.4339× 107

1 1.9384× 10−2 55.173 −11365. 492710. −6.2826× 106

2 −8.6994× 10−2 16.437 −431.32 −13313. 359980.
3 2.2257× 10−2 −4.2339 260.16 −6277.3 55300.

and the coefficient are reported in Tables 7–10. The fit accuracy is better than 0.13% for Yp, than 0.3% for 2H/H and 7Li/H, and
than 0.6% for 3He/H.

4. Observational abundances

The abundances of primordial elements are inferred from measurements performed in a large variety of astrophysical
environments. What precision cosmology era has meant in this field is an increased number and precision of spectroscopic
data over the past two decades. Presently, the situation is still quite involved due to the presence of relevant systematic
errors which are comparable to (where not dominant over) the statistical uncertainties. Unfortunately, these errors are to a
large extent irreducible and intrinsic to the astrophysical determinations themselves, which rely on highly evolved systems
where reprocessing, astration, and contaminations from younger systems are possibly present and difficult to correct for.
Since our nearby universe is far from reflecting its primordial conditions, the methods proposed and developed in the

last forty years to infer primordial yields have focused on very old and hence little evolved astrophysical regions, as well as
on the capability to correct for the effect of the galactic evolution on the pristine abundances. For example, due to its very
weak binding, any 2H nucleus contained into pre-stellar nebulae is burned out during their collapse. Hence, the post-BBN
deuterium evolution is expected to be a monotonic function of time and astrophysical deuterium measurements can be
assumed to represent lower bounds of its primordial abundance.
Unfortunately, such a simple scheme cannot be applied to the more tightly bound 3He nucleus. In this case, in fact, in

stellar interior it can be either produced by 2H-burning or destroyed in the hotter regions. As a consequence, all the 3He
nuclides surviving the stellar evolution phase contribute to the chemical composition of the InterStellar Medium (ISM) and
thus stellar and galactic evolutionmodels are necessary to track back the primordial 3He abundance from the post-BBN data,
at least in the regions where stellar matter is present. For this reason the inferred primordial 3He abundance is intrinsically
a model-dependent quantity.
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The situation of 4He is reversedwith respect to that of deuterium, since in this case the hydrogen burning in the successive
stellar population has increased the amount of 4He as well as ‘‘metals’’ (nuclei with Z > 4) such as C, N and O. Usually, 4He
is measured in old and very little evolved systems versus their metallicity, and extrapolating linearly to zero-metallicity.
While this is certainly a reasonable approach, still it could lead to some systematic uncertainty.
Finally, 7Li, whose bulk is also believed to be produced in the primordial cauldron, is a very weakly bound nuclide which

has an extremely involved post-BBN chemical evolution. In fact, it is easily destroyed in the interiors of stars but can survive
in the cooler outer layers of stars with shallow convective zones, where it can be measured by means of absorption spectra.
However, the scenario ismuchmore involveddue to the observation of enhanced lithiumabundance in some red-giants. This
suggests that 7Li formed in the interior of some stars may be transported by convectivemodes to the cooler exteriors. In this
case these stars behave as lithium producers and thus enrich the ISM with lithium. Furthermore, the cosmic rays scattering
on ISM nuclei can contribute to the total amount of 7Li and since CNO elements are necessary for spallation processes, this
would imply a correlation between post-BBN 7Li and the metallicity, which may help in tracking back this non-primordial
component.

4.1. Deuterium

It is commonly believed that there are no astrophysical sources of deuterium since it is destroyed by stellar evolution
processes [102] and non-thermal production channels have been constrained to be negligible (see e.g. [103]). Thus, any
astrophysical observation can provide a lower bound for the primordial abundance. Therefore, the local ISM in the Milky
Way can provide an order of magnitude more determinations of 2H/H than high redshift Quasar Absorption Systems (QAS)
(see Ref. [104] for the most recent compilation), given its easier observational accessibility. By using the Far-Ultraviolet
Spectroscopic Explorer (FUSE) [105], a large database of Galactic 2H/Hmeasurements has been compiled. However, despite
FUSE and other satellite observations, providing measurements of 2H/H in almost 50 lines of sight, the picture of Galactic
deuterium abundances remains puzzling. In particular, inside the Local Bubble (<100 pc from the Sun) the deuterium to
hydrogen ratio seems roughly constant at 2H/H|p = (1.56±0.04)×10−5 [106]. However, beyond this bound, an unexpected
scatter of a factor of∼2 in 2H/H values is observed [107,106,104,108] aswell as correlationswith heavy element abundances,
which suggest that ISM deuterium might have suffered stellar processing, namely astration (see for example [109]), but
also that it may reside in dust particles which evade gas-phase observations. This is supported by a measurement in the
lower halo [110] which indicates that the Galactic 2H abundance has been reduced by a factor of only 1.12± 0.13 since its
formation. As an alternative explanation, it is worth reporting the possible existence of a strong late infall of pre-galactic
material with primordial composition (high 2H) (see for example [111,112]) which has some observational evidence via the
study of kinematics of high latitude gas regions. Finally, it is important tomention the analysis of Infrared Space Observatory
spectra of H2, H-2H, CH4, and CH23H in Jupiter’s atmosphere which led authors of Ref. [113] to infer the value of deuterium
to hydrogen ratio for the protosolar cloud 2H/Hpsc = (2.1 ± 0.4) × 10

−5, which corresponds to our galaxy value when its
age was two thirds of the present one.
The astrophysical environments which seem most appropriate to obtain reliable measurements of the primordial

deuterium fraction are the hydrogen-rich clouds absorbing the light of background QSOs at high redshifts, as recognized
already in [114]. Conventional models of galactic nucleosynthesis (chemical evolution) predict a small contamination of
pristine 2H/H [115]. However, a successful implementation of this method requires: (i) neutral hydrogen column density
in the range 17 . log[N(HI)/cm

−2
] . 21; (ii) low metallicity [M/H] to reduce the chances of deuterium astration; (iii) low

internal velocity dispersion of the atoms of the clouds, allowing the isotope shift of only 81.6 km /s to be resolved [116]. For
this reason, only a handful of determinations have been obtained since the advent of the>8m class telescopes in the 1990s
in damped Lyman-α systems and Lyman limit systems:
(i) Q1009+2956, with the absorber placed at z = 2.504, yielding 2H/H =

(
3.98+0.59

−0.67

)
× 10−5 (log 2H/H =

−4.40+0.06
−0.08) [117,118].

(ii) PKS1937-1009 (I), with the absorber placed at z = 3.572, yielding 2H/H = (3.3 ± 0.3) × 10−5 (log 2H/H =
−4.49± 0.04) [117].

(iii) HS 0105+1619, with the absorber placed at z = 2.536 with metallicity [Si/H] ∼ 0.01, yielding 2H/H = (2.54 ±
0.23)× 10−5 (log 2H/H = −4.596± 0.040) [119].

(iv) Q2206-199, with the absorber placed at z = 2.0762 with metallicity [Si/H] = −2.23, yielding 2H/H = (1.65 ±
0.35)× 10−5 (log 2H/H = −4.78+0.08

−0.10) [120].
(v) Q0347-3819, with the absorber placed at z = 3.024855 with metallicity [Si/H] = −0.95 ± 0.02, yielding

2H/H = (3.75 ± 0.25) × 10−5 (log 2H/H = −4.43 ± 0.03) [121]. Note that the previous analysis in [122] yielded
2H/H = (2.24 ± 0.67) × 10−5 due to an incorrect velocity distribution function (see [121]). Similar considerations
apply for the value discussed in (vii) below.

(vi) Q1243+3047, with the absorber placed at z = 2.525659 with metallicity [O/H] = −2.79 ± 0.05, yielding 2H/H =(
2.42+0.35

−0.25

)
× 10−5 (log 2H/H = −4.617+0.058

−0.048) [118].
(vii) PKS1937-1009 (II), with the absorber placed at z = 3.256 with metallicity [Si/H] = −2.0 ± 0.5, yielding 2H/H =(

1.6+0.25
−0.30

)
× 10−5 (log 2H/H = −4.80+0.06

−0.09) [123]. Since not all the ionized deuterium (DI ) components are resolved,
it is often claimed that this value of 2H/H is more dependent on the precise description of the kinematics of the gas
and thus less robust against systematics (see [116]).
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Fig. 6. Hammer–Aitoff projection in Galactic coordinates of the positions of the eight quasars along which nine measurements of deuterium abundance
have been reported (see (i)–(ix), in the text).

(viii) SDSS 1558-0031, with the absorber placed at z = 2.70262 with metallicity [O/H] = −1.49, yielding 2H/H =(
3.31+0.49

−0.43

)
× 10−5 (log 2H/H = −4.48± 0.06) [124].

(ix) Q0913+072 shows six well-resolved DI Lyman series transitions placed at z = 2.61843 and recently observed with
the ESO VLT [116]. With an oxygen abundance of about 1/250 of the solar value the authors of Ref. [116] deduce a
value of the deuterium abundance 2H/H =

(
2.75+0.27

−0.24

)
× 10−5 (log 2H/H = −4.56± 0.04).

(x) Q0014+813, with the absorber placed at z = 3.32, yielding 2H/H ∼ (1.9 ± 0.5) × 10−4 [125,126]. Very old and no
more used after [127].

(xi) Q0420-388, with the absorber placed at z = 3.08, implying, if the deuterium identification is correct, that the
2H/H ratio could have any value ≤ 2 × 10−5. Whereas, if the OI/HI ratio is constant throughout the complex, then
2H/H ∼ 2× 10−4 [128].

(xii) BR1202-0725, two Lyman-α systems placed at z = 4.383 and z = 4.672, yielding 2H/H ≤ 1.5× 10−4 [129].
(xiii) PG1718+4807, with the absorber placed at z = 0.701 2H/H ∈ (1.8−3.1)×10−4 [130–133], but having been criticized

in past by Ref. [132].
(xiv) Q0130-4021, with the absorber placed at z 2.8withmetallicity [Si/H]≤ −2.6, yielding 2H/H ≤ 6.7×10−5 (log 2H/H ≤

−4.17) [134], considered not very interesting and thus typically neglected.

Recently, three different analysis of high-redshift systems appeared:

(1) in [124,14] quasars used are:HS0105+1619, Q2206-199, PKS1937-1009 (I), Q1009+2956, Q1243+3047, SDSS 1558-0031,
and the cumulative value reported is

2H/H =
(
2.68+0.27

−0.25

)
× 10−5,

when averaging over 2H/H determinations [14], or rather

log 2H/H = −4.55± 0.04 H⇒ 2H/H =
(
2.82+0.27

−0.25

)
× 10−5,

when the log’s are used;
(2) the authors of [135] use: HS 0105+1619, Q2206-199, PKS1937-1009 (I), Q1009+2956, Q1243+3047 and the cumulative
value reported is

2H/H = (2.78± 0.29)× 10−5,

averaging over the log[2H/H] determinations;
(3) finally, in the very recent analysis of [116] the following sample is exploited: HS 0105+1619, Q0913+072, Q1009+2956,
Q1243+3047, SDSS 1558-0031, PKS1937-1009 (I), Q2206-199. An average consistent with all the data is log[2H/H] =
−4.55± 0.03 or, equivalently,

2H/H = (2.82+0.20
−0.19)× 10

−5.

The positions in the sky of the reported measurements (i)–(ix), are given in galactic coordinates in Fig. 6, and in redshift
space in Fig. 7. We have performed a re-analysis of 2H/H using these results, averaging over the values of log[2H/H] and
using the method described in Ref. [136] which has the particular advantage to give a continuous χ2 function even in the

case of asymmetric errors. In particular, let us denote with xi
+σ+i
−σ−i

the generic measurement of log[2H/H] corresponding to

the i-th QSA. According to Ref. [136] one can define the following quantities:

σi ≡
σ+i + σ

−

i

2
Ai ≡

σ+i − σ
−

i

σ+i + σ
−

i
, (66)
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Fig. 7. The nine measurements of (i)–(ix) QSA’s used in our analysis. The horizontal band represents the value of Eq. (68).

and define a total χ2(µ) =
∑
i χ
2
i (µ), where each contribution χ

2
i is expanded up to A

2
i terms

χ2i (µ) =

(
xi − µ
σi

)2 (
1− 2 Ai

(
xi − µ
σi

)
+ 5 A2i

(
xi − µ
σi

)2)
. (67)

Using this procedure we find a value of the reduced χ2,
√
χ2min/(9− 1) = 2.715, which shows the effect of some systematic

effects and that one ormore uncertainties have been underestimated. If one chooses to treat all the data on the same footing,
one can account for this by inflating each uncertainty by the multiplicative factor 2.715. In this case, after repeating the
procedure, the new minimization leads to the result

log 2H/H = −4.53± 0.04 H⇒ 2H/H =
(
2.98+0.29

−0.23

)
× 10−5. (68)

In [116] it was argued that the determinations (v) and (vii) of our list are less robust against systematics in the modeling
of the cloud, due to the minor number of resolved deuterium lines. To be more conservative, one can thus exclude these
two data from the regression. In this case, with the choice for central values and symmetric error bars done in [116], we
reproduce their results. However, we find that it is not irrelevant to take into account the asymmetric errors in the regression
procedure. When using the published asymmetric errors in log[2H/H] and applying the same procedure as above, we find a
significantly lowermultiplicative factor

√
χ2(−4.539)/6 = 1.897, showing indeed that the dispersion of themeasurements

for this dataset is more consistent with a statistical one. To be conservative we multiply the error bars by the factor 1.897
and find

log 2H/H = −4.54± 0.03 H⇒ 2H/H =
(
2.87+0.22

−0.21

)
× 10−5, (69)

which is the value we will be using in the following.
To conclude, it is worth mentioning the recent proposal to use the fluctuations in the absorption of cosmic microwave

background photons by neutral gas during the cosmic dark ages, at redshifts z ≈ 7−200, to reveal the primordial deuterium
abundance of the Universe. This method is based on the strength of the cross-correlation of brightness-temperature
fluctuations due to resonant absorption of CMB photons in the 21-cm line of neutral hydrogen, with those due to resonant
absorption of CMB photons in the 92-cm line of neutral deuterium. This results to be proportional to the ratio 2H/H fixed
during the BBN. Although technically challenging, this measurement could provide the cleanest possible determination of
2H/H [137]. A difficulty which has been pointed out – that may prevent the viability of the method at redshifts when the
first UV sources turn on, z . 40 – is that when including Lyβ photons in the analysis, the inferred ratio 2H/H would not be
constant, but depend sensitively on the UV spectrum [138].

4.2. Helium-3

Like deuterium, whose primordial yield is extremely sensitive to the baryon density parameter, η, 3He is a crucial test of
the standard BBN scenario as well. From the observational point of view, several environments are studied in order to derive
its primordial abundance. Terrestrial determinations yield e.g. the ratio 3He/4He ∼ 10−6 from balloon measurements or
∼ 10−8 from continental rock [139,140]. These observations, which show a large spread of values, confirm the idea that the
terrestrial helium has no cosmological nature. In fact, most of it is 4He produced by the radioactive decay of elements such
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Fig. 8. The 16 purple spots represent the HII regions studied in Ref. [148] versus their distance from galactic center. Also the PSM and LISMmeasurements
are reported. The black solid line stands for the linear fit of purple data, whereas the red band represents the upper bound obtained in [148].

as uranium and thorium. No natural radioactive decay produces 3He, hence its observed terrestrial traces can be ascribed to
unusual processes such as the testing of nuclear weapons or the infusion of extraterrestrial material.
In the solar system, 3He is measured through the solar wind and meteorites [141]. The most accurate value was

measured in Jupiter’s atmosphere by the Galileo Probe [142]. These measurements support the idea of the conversion
of the deuterium initially present in the outer parts of the Sun into 3He via nuclear reactions. One can infer that in the
ProtoSolar Material (PSM) out of which the Sun formed, 3He/4He = (1.66 ± 0.05) × 10−4 [142,140] and simultaneously
2H/H = (2.6 ± 0.7) × 105 [142]. Note that in order to transform the above mentioned ratios 3He/4He into 3He/H one
can use the value 4He/H ∼ 0.1 and thus derive the important ratio 3He /2 H = 0.6 ± 0.2 which allows one to constrain
electromagnetically decaying particles (see Section 9).
The previous observation of 3He/4He is compatible with the samemeasurement performed in meteoritic gases, yielding

3He/4He = (1.5±0.3)×10−4 [143–146]. Further information comes from Local Inter-Stellar Medium (LISM). Occasionally,
LISM atoms crossing the termination shock region that separates the solar system from interstellar space get ionized. By
counting the helium ions in this particular component of the solar wind, the Ulysses spacecraft has measured a 3He/4He
ratio of 2.48+0.68

−0.62 × 10
−4 [147], which is not inconsistent with the idea that 3He at our galaxy’s location might have grown

in the last 4.6 billion years since the birth of the Sun.
Far beyond the LISM, only one spectral transition allows the detection of 3He, namely the 3.46 cm spin-flip transition of

3He+, the analog of the widely used 21-cm line of hydrogen; this is a powerful tool for the isotope identification, as there
is no corresponding transition in 4He+. The emission is quite weak, hence 3He has been observed outside the solar system
only in a few HII regions and Planetary Nebulae (PN) in the Galaxy. The values found in PN result one order of magnitude
larger than PSM and LISM determinations (for example 3He/H = (2−5)×10−4 is measured in NGC3242 [148]), confirming
a net stellar production of 3He in at least some stars. From the expected correlation between metallicity of the particular
galactic environment and its distance from the center of the galaxy, one would expect a gradient in 3He abundance versus
metallicity and/or distance. In Ref. [148] the 3He/H abundance ratios are reported for the sample of simple HII regions.
Figs. 8 and 9 report the data as functions of the distance from galactic center and metallicity, respectively, together

with the two determination from PSM and LISM. No significant correlation between the 3He abundance and location (or
metallicity) in the Galaxy is revealed. The linear fits reported in Figs. 8 and 9 as black solid lines correspond respectively to

(3He/H)× 105 = 2.194− 0.030 Rgal(kpc), (70)

(3He/H)× 105 = 1.910+ 0.014 [O/H] , (71)

where [O/H] ≡ log(O/H) − log(O/H)�. Note that we adopt (O/H)� = 4.2 × 10−4 [149], differently from [148] where
log(O/H)� = 6.3×10−4was used. Qualitatively, these data suggest a remarkable compensation between stellar production
and destruction of 3He.
The failure in observing a galactic 3He dependence on metallicity, typically predicted by a chemical evolution model

of the Galaxy (see [150] for a review) has been referred to as the ‘‘3He problem’’. However, in the last years this subject
received new insight [151] by the study of 3D mixing models which seem to reconcile the predictions with the data. In
this scenario, by assuming a more conservative approach, the authors of Ref. [148] prefer to report an upper limit to the
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Fig. 9. The data of Ref. [148] versus metallicity are reported. The black solid line stands for the linear fit of purple data, whereas the red band represents
the upper bound obtained in [148].

primordial abundance of 3He by using the observations of a peculiar galactic HII region,
3He/H < (1.1± 0.2)× 10−5. (72)

This upper bound is reported as the red band in Figs. 8 and 9 [14].
A different approach could be based on the observation that the ratio (2H+ 3He)/H shows a high level of stability during

the galactic evolution. This is partially supported by observations and chemical evolution models (see for example [152]).
In this case, by using the value reported in Ref. [153] for PSM, namely (2H+ 3He)/H = (3.6± 0.5)× 10−5, and considering
it as a good estimate for the primordial value one gets

3He
H
= (0.7± 0.5)× 10−5 (73)

by using the primordial deuterium abundance discussed in the previous section, whose upper bound is consistent with the
one derived from Eq. (72).

4.3. Helium-4

The post-BBN evolution of 4He can be simply understood in terms of nuclear stellar processes which, through successive
generations of stars, have burned hydrogen into 4He and heavier elements, hence increasing the 4He abundance above its
primordial value [14]. Since the history of stellar processing can be tagged by measuring themetallicity (Z) of the particular
astrophysical environment, the primordial value of 4He mass fraction Yp can be derived by extrapolating the Yp–O/H and
Yp–N/H correlations to O/H and N/H→ 0, as proposed originally in Refs. [154–156]. However, heavy elements like oxygen
are produced by short-lived massive stars whereas 4He is essentially synthesized in all stars, so one has to minimize model-
dependent evolutionary corrections. The key data for inferring 4He primordial abundance are provided by observations of
helium and hydrogen emission lines generated from the recombination of ionized hydrogen and helium in low-metallicity
extragalactic HII regions [14]. Many attempts to determine Yp have been made, constructing these correlations for various
samples of Dwarf Irregular (DIrrs) and Blue Compact Galaxies (BCGs) [157]. These systems are the least chemically evolved
known galaxies. Plausibly, they contain very little helium synthesized in stars after the BBN, minimizing the chemical
evolution problems that affect e.g. the determination of 3He [158].
Uncertainties in the determination of Yp can be statistical or systematic. Statistical uncertainties can be decreased by

obtaining very high signal-to-noise ratio spectra of BCGs. These BCGs are undergoing intense bursts of star formation,
giving birth to high-excitation supergiant HII regions and allowing an accurate determination of the helium abundance
in the ionized gas through the BCG emission-line spectra. The theory of nebular emission is understood well enough not to
introduce additional uncertainty. According to the standard scenario, the universe was born with zerometallicity; hence, Yp
can be determined extrapolating to Z → 0 the relationship between Z and the 4He abundance for a sample of objects. This
procedure relies on the determination of the individual Yp and Z values and of the slope dYp/dZ , which is assumed to be
linear. The uncertainty affecting Yp depends directly on the uncertainties on dYp/dZ and the ensemble of the (Yp, Z) pairs.
For this reason, it has long been thought that the best results are obtained from the analysis of extremely low metallicity
objects like DIrrs and BCGs, since their use minimizes the uncertainty associated with dYp/dZ . However, the authors of
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Refs. [159,160] have noted that this advantage is outweighed by the relatively higher uncertainty on the Yp-values, which
derives from the (unknown) collisional contribution to the Balmer line intensities, an uncertainty especially affecting these
objects since collisional contribution is quite important at high temperatures and rapidly fades away at intermediate and
low temperatures [161]. Mostly following the analysis reported in Ref. [162] we list below the most recent estimates of Yp.

(i) In Ref. [158] is reported the estimate Yp = 0.2421± 0.0021. According to Ref. [162] the differences with the previous
determination are mainly systematic. One is due to the use in Ref. [162] of HeI recombination coefficients studied in
Refs. [163,164], which yield Yp values about 0.0040 higher than the previous ones. Moreover, in Ref. [162] they use
some recent HI collisional data, which further increase the Yp values over the older HI collisional corrections by about
0.0025.

(ii) The value quoted in Ref. [165] is Yp = 0.249±0.009. The small sample size used and the large uncertainty affecting the
parameters derived from theHII regions considered in the analysis are responsible in this case for the very conservative
error estimate. Also in this case, the systematic differences with Ref. [162] are due to the HeI recombination data used
by both groups and to the estimation of the collisional contribution to the H Balmer lines.

(iii) In Ref. [166], based on a reanalysis of a sample of 33 HII regions from Ref. [158], the authors determined a value of
Yp = 0.250±0.004. In addition to a different treatment of the underlyingH andHeI absorption there are few systematic
effects discussed in detail in Ref. [162].

(iv) In Ref. [162], the authors present a new 4Hemass fraction determination, yielding Yp = 0.2477± 0.0029. This result is
based on new atomic physics computations of the recombination coefficients of HeI and of the collisional excitation of
the HI Balmer lines together with observations and photoionization models of metal-poor extragalactic HII regions.

(v) Finally, in Ref. [167] is reported the estimate Yp = 0.2516± 0.0011 when using the HeI emissivity of Ref. [163].

All recent analyses of Yp agree on the fact that the systematic error is the main responsible for the spread of the Yp
determinations. For example, in Ref. [162] three of the fourmain sources of error (1Yp ≥ 0.01) in estimating Yp are reported
to be of systematic nature. Different authors however, report different error budgets (sometimes analyzing the sameobjects).
Nevertheless, the use of new HeI recombination coefficients studied in Refs. [163,164] has sensibly changed the predictions
by pushing them up a few percent as shown in Refs. [162,167]. For this reason we will use their determinations only to
derive an estimate of primordial Yp.
In particular, in Ref. [162] the uncertainty quoted on the value of Yp seems to provide a more realistic estimate (0.003) of

the residual indetermination affecting the 4He mass fraction, versus the more optimistic (0.001) reported in Ref. [167], due
to a very large sample of objects included in the analysis. For this reason we prefer to average the two main values as not
weighted by their uncertainties, and use the more conservative error estimate of Ref. [162] at 1− σ . In summary, we adopt
for the 4He mass fraction

Yp = 0.250± 0.003. (74)

Note that this range of values totally contains the one of Ref. [167], but only partially covers the determination of Ref. [162]
which points out slightly smaller values. Hence the effects of newHeI recombination coefficients [163,164] on global Yp data
analysis is to push slightly upward its estimate, and this is going to affect at a certain level the determination of cosmological
parameters, as will be discussed in the following sections.
Wewould like to briefly point out that other constraints on Yp can be obtained by indirect methods. For example, in [168]

Yp was bounded from studies of Galactic Globular Clusters (GGC). The value they found, Yp . YGGC = 0.250± (0.006)stat ±
(0.019)sys, is consistent with the above estimate. Finally, CMB anisotropies are sensitive to the reionization history, and
thus to the fraction of baryons in the form of 4He. Present data only allow a marginal detection of a non-zero Yp, and even
with PLANCK the error bars from CMBwill be larger than the present systematic spread of the astrophysical determinations
[169–173]. On the other hand, imposing a self-consistent BBN prior on Yp would improve the diagnostic power of CMB data
on other parameters, thus representing another nice synergy of CMB and BBN, besides the concordance test provided by η.

4.4. Lithium-7

Lithium’s two stable isotopes, 6Li and 7Li, continue to puzzle astrophysicists and cosmologists who try to reconcile their
primordial abundance as inferred from observations with the BBN predictions. From the astrophysical point of view the
questions mainly concern the observation of lithium in cold interstellar gas and in all type of stars in which lithium lines are
either detected or potentially detectable [174].
A chance to link primordial 7Liwith the BBN abundancewas first proposed by Spite & Spite (1982) [175],who showed that

the lithium abundance in the warmest metal-poor dwarfs was independent of metallicity for [Fe/H] < −1.5. The constant
lithium abundance defining what is commonly called the Spite plateau suggested that this may be the lithium abundance in
pre-Galactic gas provided by the BBN. The very metal-poor stars in the halo of the Galaxy or in similarly metal-poor GGC
thus represent ideal targets for probing the primordial abundance of lithium. Even though lithium is easily destroyed in the
hot interiors of stars, theoretical expectations supported by observational data suggest that although lithiummay have been
depleted in many stars, the overall trend is that its galactic abundance has increased with time [14].
There is quite a long tale of 7Li determinations appearing in the literature, starting from the Spite & Spite (1982) value

of [7Li/H] = 2.05 ± 0.15 (by definition [7Li/H] ≡ 12 + log10(7Li/H)). For the sake of brevity we will restrict our analysis
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roughly to the determinations of the last decade. The implicit assumption is that, hopefully, the more recent papers have
reached a better understanding of the systematics involved in the inference of the primordial 7Li abundance.
In Refs. [176,177] a study of a set of very metal-poor stars showed a very small intrinsic dispersion in the 7Li abundance

determinations. Moreover, the authors found evidence for a decreasing trend in the 7Li abundance toward lower metallicity
indicating that the primordial abundance of 7Li can be inferred only after allowing for nucleosynthesis processes that must
have been at work in the early stages of the Galaxy. The primordial 7Li abundance reported is [7Li/H] = 2.09±+0.19

−0.13

(7Li/H =
(
1.23+0.68

−0.32

)
× 10−10). Different studies of halo and GGC stars provided higher lithium plateau abundance

[
7Li/H] = 2.24 ± 0.01 [178,179]. A similar analysis is contained in Ref. [180], where high resolution, high signal-to-noise
ratio spectra of 12 turn-off stars in the metal-poor globular cluster NGC 6397 were used. The author conclude that, within
the errors, they all have the same lithium abundance [7Li/H] = 2.34± 0.06.
In Ref. [181], a study of 7Li abundance in 62 halo dwarfs was performed by using accurate equivalent widths and a

temperature scale from an improved infrared fluxmethod. For 41 plateau stars (thosewith Teff > 6000 K) the 7Li abundance
is found to be independent of temperature and metallicity, with a star-to-star scatter of only 0.06 dex over a broad range
of temperatures (6000 K < Teff < 6800 K) and metallicities (−3.4 < [Fe/H] < −1). Thus they report a mean 7Li plateau
abundance of [7Li/H] = 2.37±0.05. In Ref. [182] the authors underwent a very detailed reanalysis of available observations;
bymeans of a careful treatment of systematic uncertainties and of the error budget, they find [7Li/H] = 2.21±0.09 for their
full sample and [7Li/H] = 2.18 ± 0.07 for an analysis restricted to unevolved (dwarf) stars only. They also argued that no
convincing/conclusive evidence for a correlation between 7Li and metallicity can be claimed at present. More recently, the
authors of Ref. [174] have studied a set of 24 very high quality spectra metal-poor halo dwarfs and subgiants, acquired with
ESOs VLT/UVES. The derived one-dimensional, non-Local Thermodynamical Equilibrium (non-LTE) 7Li abundances from the
LiI 670.8 nm line reveal a pronounced dependence onmetallicity butwith negligible scatter around this trend. The estimated
primordial 7Li abundance is 7Li/H ∈ (1.1 − 1.5) × 10−10 ([7Li/H] = 2.095 ± 0.055). Recently Ref. [183] has reported the
spectroscopic observations of stars in themetal poor globular cluster NGC6397 that reveal trends of atmospheric abundance
with evolutionary stage for various elements. These element-specific trends are reproducedby stellar-evolutionmodelswith
diffusion and turbulent mixing. They compare their observations of lithium and iron to models of stellar diffusion, finding
evidence that both lithium and iron have settled out of the atmospheres of these old stars. Applying their stellar models to
the data they infer for the unevolved abundances, [Fe/H] = 2.1 and [7Li/H] = 2.54± 0.10.
The list of the last ten years estimates for 7Li abundance is then the following:

(i) [7Li/H] = 2.24± 0.01 [178,179];
(ii) [7Li/H] = 2.09+0.19

−0.13 [176,177];
(iii) [7Li/H] = 2.34± 0.06 [180];
(iv) [7Li/H] = 2.37± 0.05 [181];
(v) [7Li/H] = 2.21± 0.09 [182];
(vi) [7Li/H] = 2.095± 0.055 [174];
(vii) [7Li/H] = 2.54± 0.10 [183].

All but (marginally) the latter value are inconsistent with standard BBN predictions for the preferred range of η singled
out by CMBdata,which fits remarkablywell deuteriumabundance. It is unclear how to combine the different determinations
in a single estimate, or if the value measured is truly indicative of a primordial yield. A conservative approach (similar to
the one used for 4He) is to quote the simple (un-weighted) average and half-width of the above distribution of data as best
estimate of the average and ‘‘systematic’’ error on 7Li/H, obtaining[ 7Li

H

]
= 2.27± 0.23 H⇒

( 7Li
H

)
=
(
1.86+1.30

−1.10

)
× 10−10. (75)

Note that the statistical error is much smaller (of the order of 0.01), but we will not need it since, due to its uncertain status
as a tracer of the primordial value, 7Li is typically excluded in ‘‘conservative’’ BBN statistical analyses (or rather invoked to
support particular non-standard BBN scenarios).

4.5. Lithium-6 and ‘‘The lithium problems’’

It is clear from the above discussion and from the substantial disagreement of almost all of the 7Li observations with
the standard BBN predicted value (by about 0.4 dex, assuming the central value of the quoted average) that some piece of
(astro)physics is missing. For a detailed discussion of possible causes we address the reader to the excellent review given in
Ref. [174] (see also [184]). Here we want to remark that: (i) a ∼1.5–2 lower value of η at the BBN time with respect to the
best fit deduced from CMB data is excluded by the agreement between deuterium observations and CMB value of η, but also
by the inferred upper limit of the primordial 3He abundance; (ii) underestimated errors in the adopted nuclear reaction rates
are now excluded: the laboratory measurements of the crucial 3He(α, γ )7Be cross-section [185–188], its inferred rate from
solar neutrino data [189], and the measurement of the proposed alternative channel for 7Be destruction 7Be(d, p)2α [190]
all point to the conclusion that nuclear uncertainties cannot explain the discrepancy between observed and predicted
primordial 7Li abundances; (iii) systematic errors in the abundance analysis, although in principle still possible, seem very
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unlikely. The introduction of 3D model atmospheres, even accounting for non-LTE, has not resulted in a significant upward
revision of the lithium abundance obtained from more primitive 1D atmospheres.
The most likely causes of the ‘‘problem’’ are thus: (a) either somemodification to the BBN scenario; (b) or, perhaps more

likely, that the lithium abundance of very metal-poor stars is not the one of the primordial gas. We will illustrate later some
scenarios of the type (a). Here, however, we want to point out that explanations of the type (b) are probably not trivial and
might involve both reprocessing in situ (the observed stars) and earlier lithium synthesis/depletion in the pre-galactic, young
universe environment. Indeed, even assuming that some diffusion and turbulentmixingmechanism like the one pointed out
in [183] can explain the 7Li problem, still an issue remains with 6Li. The presence of the fragile 6Li isotope, which is produced
during the BBN at the level of 6Li/H ∼ 10−15 − 10−14, has been recently confirmed in a few metal-poor halo stars, with
some hint of a plateau vs. metallicity8 with abundance as high as 6Li/H ∼ 6 × 10−12 [174]. These data (at least partially)
confirm the first observations reported in literature already fifteen years ago [193–197]. In particular, in Ref. [174] 6Li is
detected in 9 of 24 analyzed stars at the> 2σ significance level. However, it is worth stressing that these observations have
been questioned in Ref. [198,199]. According to these papers the convective asymmetry generates an excess absorption in
the red wing of the 7Li absorption feature that could mimic the presence of 6Li at a level comparable with published values.
This would mean that only an upper limit on 6Li/7Li can be derived at present.
Both 7Li, 6Li can be produced by fusion (α + α → Li) and spallation (p + CNO → LiBeB) reactions by ordinary cosmic

ray primaries impinging on nucleons and nuclei in the intergalactic medium (see e.g. [200]). Additionally, observations are
performed not in ‘‘inert’’ gas clouds, but in stellar atmospheres, where thermonuclear burning depletion (of particularly
fragile nuclei) is a crucial effect. It follows that primordial production mechanisms and later astrophysical effects might be
competing. Viable astrophysical candidates for the acceleration of cosmic rays, able to account for the 6Li observed at low
metallicity include: the massive black hole in the Galactic center [201], radio-loud AGNs (one of which could have been
present in our Galaxy in the past) [202], and PopIII stars [203,204] which may also explain the depletion of 7Li [205], but
have been recently challenged on the light of further constraints adopted in themodel of [206]. The shocks developed during
structure formation [207], which however conflict with astrophysical constraints [208], are not powerful enough, since in
the early times of Galaxy formation, the masses of the assembling dark haloes were still quite small and the corresponding
virial velocities insufficient [201].
Perhaps, themost convincing explanation proposed until now is that 6Limay be produced in situ from stellar flareswithin

the first billion years of the star’s life [209]. In particular, the anomalously high 3He/4He ratio found in solar flares (∼0.5) and
the kinematically much more favorable process 4He(3He, p)6Li compared to α α → 7Li fusion reactions provide a physical
mechanism for producing large quantities of 6Li without overproducing 7Li. The main issue with this or other scenarios
might be the difficulty to test them.
A great help in solving this issue might come from detecting lithium in a different environment. In Ref. [210], it was

proposed to independently test the pre-Galactic Li abundance by looking at high velocity gas clouds falling onto our Galaxy,
with metallicities as low as 10% of the solar one. If these low-metallicity clouds have a mostly pre-Galactic composition,
with a small contamination from the Galaxy, they might allow probing the lithium abundance at least free of the possibility
of thermonuclear depletion in situ. Another proposal to detect the cosmological recombination of lithium via its effect on
the microwave background anisotropies [211] has been proved not to be viable [212].
Wewill not use 6Li to derive constraints in this review. However, using the observed 6Li as an upper limit to its primordial

value turns out to be a powerful constraint in some regions of parameter space for exotic models. While reporting them in
the following, we warn the reader that their robustness relies on the assumption that no destruction or major reprocessing
of the 7Li and 6Li observed in the halo stars has happened, which might be overly optimistic.

5. Standard BBN theoretical predictions versus data

The goal of a theoretical analysis of BBN is to obtain a reliable estimate of the model parameters, once the experimental
data on primordial abundances are known. In this section we will consider only the case of the standard BBN, where the
only two free parameters are the value of the baryon energy density parameterΩBh2 (or equivalently the baryon to photon
number density, η) and possibly, a non-standard value for the relativistic energy content during the BBN. The latter, after
e± annihilation can be parameterized in terms of the effective number of neutrinos we have recalled in Section 3.2,

ρR =

(
1+

7
8

(
4
11

)4/3
Neff

)
ργ . (76)

Similar analyses have been recently presented by various groups,whichmight be slightly different depending on the adopted
values of Yp and/or 2H/H experimental determination, see e.g. [213–215,91,216,82,217–220].
In the minimal scenario the parameters reduces to the baryon density only, since 1Neff is assumed to vanish. Fig. 10

shows the dependence on η10 of the final value of the primordial yields, calculated using PArthENoPE, along with the
experimental values of the abundances and their corresponding uncertainties, as discussed in the previous section.

8 However, taking into account predictions for 6Li destruction during the pre-main sequence evolution tilts the plateau suggesting a 6Li increase with
metallicity. Basically, fairly uncertain stellar pre-main-sequence destruction of 6Li could be responsible for an apparent plateau [191,192,174].
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Fig. 10. Values of the primordial abundances as a function of η10 , calculated for 1Neff = 0. The hatched blue bands represent the experimental
determination with 1−σ statistical errors on Yp , 2H , and 7Li, while the red band is the upper bound obtained in Ref. [148]. Note that for a high value of η10
all 7Li comes from 7Be radioactive decay via electron capture. The vertical green band represents the WMAP 5-year resultΩBh2 = 0.02273± 0.00062 [8].

To get confidence intervals for η, one constructs a likelihood function

L(η) ∝ exp
(
−χ2(η)/2

)
, (77)

with

χ2(η) =
∑
ij

[Xi(η)− Xobsi ]Wij(η)[Xj(η)− X
obs
j ]. (78)

The proportionality constant can be obtained by requiring normalization to unity, andWij(η) denotes the inverse covariance
matrix,

Wij(η) = [σ 2ij + σ
2
i,expδij + σ

2
ij,other ]

−1, (79)
where σij and σi,exp represent the nuclear rate uncertainties and experimental uncertainties of nuclide abundance Xi,
respectively (we use the nuclear rate uncertainties as in Ref. [18]), while by σ 2ij,other we denote the propagated squared error
matrix due to all other input parameter uncertainties (τn, GN, etc.). We use the following values for the experimental yields
of 2H and 4He (see previous section):

2H/H =
(
2.87+0.22

−0.21

)
× 10−5, Yp = 0.250± 0.003. (80)

We first consider 2H abundance alone, to illustrate the role of deuterium as an excellent baryometer. In this case the
best fit values found are ΩBh2 = 0.021 ± 0.001 (η10 = 5.7 ± 0.3) at 68% C.L., and ΩBh2 = 0.021 ± 0.002 at 95% C.L..
A similar analysis can be performed using 4He. In this case we get ΩBh2 = 0.028+0.011−0.007 (η10 = 7.6

+3.0
−1.9)

9 at 68% C.L., and
ΩBh2 = 0.028+0.024

−0.012 at 95% C.L.. Fig. 11 shows, as from our discussion in the previous section, that the determination
of ΩBh2 is mainly dominated by deuterium. In any case, the result is compatible at 2-σ with the WMAP 5-year result
ΩBh2 = 0.02273 ± 0.00062 [8]. The slight disagreement might have some impact on the determination from CMB
anisotropies of the primordial scalar perturbation spectral index ns, as noticed in [116], where the BBN determination of
ΩBh2 from deuterium is used as a prior in the analysis of the five year data of WMAP.
In Table 11 we report the values of relevant abundances for some different baryon densities, evaluated using

PArthENoPE [93]. Notice the very low prediction for 6Li (see discussion in Section 4) and that, for these values of baryon
density, almost all 7Li is produced by 7Be via its eventual electron capture process.
If one relaxes the hypothesis of a standard number of relativistic degrees of freedom, it is possible to obtain bounds on

the largest (or smallest) amount of radiation present at the BBN epoch, in the form of decoupled relativistic particles, or non-
standard features of active neutrinos (but see our previous discussion in Section 3.2). Fig. 12 displays the contour plots 68%
and 95% C.L. of the total likelihood function, in the plane (ΩBh2, Neff). After marginalization one getsΩBh2 = 0.021± 0.001
and Neff = 3.18+0.22−0.21 at 68% C.L., and ΩBh

2
= 0.021 ± 0.002 and Neff = 3.18+0.44−0.41 at 95% C.L.. Hence the global analysis

results to be compatible with Neff = 3.046 andΩBh2 = 0.02273 found by WMAP at 1-σ level (see Fig. 12).

9 Note that η10 reported in this section is conventionally defined, according to PArthENoPE, as η10 ≡ 273.49ΩBh2 which is slightly different from the
definition of Eq. (9), but simply connected to it.
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Table 11
The theoretical values of the nuclear abundances for some value ofΩBh2 .

ΩBh2 0.017 0.019 0.021 0.023 0.028

Yp 0.245 0.246 0.247 0.248 0.250
2H/H× 105 4.00 3.36 2.87 2.48 1.79
3He/H× 105 1.22 1.14 1.07 1.01 0.903
7Li/H× 1010 2.53 3.22 3.99 4.83 7.08
7Be/H× 1010 2.15 2.89 3.69 4.56 6.88
6Li/H× 1014 1.72 1.45 1.25 1.08 0.791

Fig. 11. Likelihood functions for 2H/H (narrow) and Yp (broad).

Fig. 12. Contours at 68 and 95% C.L. of the total likelihood function for deuterium and 4He in the plane (ΩBh2 , Neff). The bands show the 95% C.L. regions
from deuterium (almost vertical) and Helium-4 (horizontal). The red cross corresponds to the standard Neff and ΩBh2 = 0.02273 as indicated by WMAP
5-year results.

6. BBN and neutrino physics

We have already stressed how large is the impact of neutrino physics and neutrino properties on BBN. In fact, the
discovery of neutrino masses via oscillations, combined with the stringent bounds on the effective electron neutrino mass
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via tritiumdecay experiments, has had a profound impact on the phenomenology of active neutrinos in the early universe. At
themoment we know that: (at least two) neutrinos aremassive; all themasses are small (mν . eV, possiblymuch smaller);
individual lepton numbers are violated (with mixing angles much larger than in the quark sector), although it is not known
if the overall lepton number, L, is conserved. We do not know yet if the neutrino mass term in the Lagrangian is of the Dirac
(∼[M ν̄LνR+ h.c.], flavor indexes omitted) or Majorana (∼[M ν̄cLνR+ h.c.], where ν

c
L is the charge conjugate field) type, but

in either case new physics is required. In the Dirac case, one is forced to introduce the yet undetected right-handed neutrino
fields, νR. In theMajorana case, one assumes (differently from the SMPP) that the lepton number L is violated and introduces
aMajoranamass operator, which is allowed for neutrinos, being the only neutral fermions in the SMPP. The important news
for BBN are that even the incomplete knowledge of the mass matrixM that we have at present is enough to conclude that
the phenomenology of active neutrinos in the BBN is greatly simplified. A plethora of cases once popular in the literature are
now excluded. Among the oneswhichwere of remarkable interest only a decade agowe canmention: (i) a lower-than-three
effective number of neutrinos due to a ‘‘massive ντ ’’ (improper, not being ντ a mass eigenstate) ; (ii) a decaying ‘‘ντ ’’; (iii)
the thermalization of right-handed neutrinos (for the Dirac mass case), which is inhibited by the smallness of the neutrino
masses by which they are coupled to the active states. We do not treat these issues further and address the interested
reader to these historical topics to the review [42]. In the following, we focus on the bounds on electromagnetic interactions
of neutrinos in Section 6.1, while Section 6.2 treats other exotic interactions. The topic of neutrino asymmetry is briefly
reviewed in Section 6.3, while Section 6.4 treats the impact on BBN of sterile neutrino states.

6.1. Bounds on electromagnetic interactions of neutrinos

Dropping flavor indexes, the most general structure of effective neutrino electromagnetic interactions is

Lint = −eν ν̄ γµ ν Aµ − aν ν̄ γµ γ5 ν ∂λFµλ −
1
2
ν̄ σαβ (µ+ ε γ5) νFαβ (81)

where Fαβ is the electromagnetic field tensor, σαβ = [γα, γβ ], and the form factors {eν, aν, µ, ε}, which are functions of the
transferred squared momentum q2, in the limit q2 → 0 correspond to the electric charge, anapole moment, magnetic and
electric dipole moment, respectively.
In principle, Dirac neutrinos may have a very small electric charge eν . BBN bounds may be derived by requiring both

that right-handed partners are not populated and that neutrinos are not kept in equilibrium too long after the weak freeze-
out, which would alter the photon–neutrino temperature relation. However, for the range of masses presently allowed, the
BBN bounds are never competitive with other astrophysical or laboratory constraints, as for instance the red giant bound of
eν . 2× 10−14 [221]. Actually, the indirect bound coming from the neutrality of matter is stronger (eν . 10−21, [222]; see
also [223] and reference therein for details), so we ignore in the following a possible neutrino charge.
The possibility of a neutrino charge radius10 (which can be negative),

〈r2〉 =
6
e

(
∂eν(q2)
∂q2

)
q2=0

, (82)

has been considered in the literature. After a long debate, it has been finally established that 〈r2〉 is a well-defined (gauge-
independent) quantity [224–226]. The Standard Model expectations are in the range 〈r2〉 ' 1–4 nb. Differently from the
case of the magnetic moment, the charge radius does not couple neutrinos to on-shell photons, so stellar cooling arguments
are not very sensitive to 〈r2〉. Yet, for Dirac neutrinos the channel e−e+ → νRν̄R is still effective, provided that new physics
(NP) violates the cancelation between vector and axial contribution that otherwise applies in the SMPP. If this cancelation
does not take place, the corresponding bounds from SN 1987 A [227] and nucleosynthesis [228] read

|〈r2〉|NP . 2 (7) nb, from SN1987A (BBN). (83)

For Majorana neutrinos, the previous bounds do not apply. In this case, however, even in the ντ -sector where BBN may
have a sensitivity comparable to or better than laboratory experiments, even a change of one order of magnitude above the
SMPP level in the channel e−e+ → ντ ν̄τ due to new physics would only bring changes at the 0.1% level in Yp, so that only
laboratory bounds are meaningful. For a further discussion of this point, see [229].
Another consequence of the existence of neutrino masses is that a neutrino magnetic moment is naturally present (and

it is usually expressed in terms of Bohr magnetons,µB), although for Majorana particles only off-diagonal elements in flavor
space are non-vanishing. There are two possible processes of interest for BBN: (i) the thermalization of Dirac neutrinos via
e.g. the process νLe→ νRe; (ii) a radiative decay of the kind ν iL → ν

j
L γ , the latter being possible also forMajorana neutrinos.

In absence of primordial magnetic fields, the BBN bound on the diagonal elements coming from the thermalization of right-
handed neutrinos is not as restrictive as the one coming from red giant cooling argument (from plasmon decay γ ∗ → νν̄,

10 In complete analogy, one can define an anapole radius 〈r2a 〉 from aν . For Majorana neutrinos, symmetries require some of the e.m. couplings to vanish.
Since the astrophysical/cosmological bounds do not typically distinguish between 〈r2〉 and 〈r2a 〉, or electric and dipole magnetic moments, we shall quote
bounds on 〈r2〉 and µ in this loose sense.
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µ . 3× 10−12 µB [221]). The radiative decay rate for a transition i→ j is

Γ
γ

ij =
|µij|

2
+ |εij|

2

8π

(
m2i −m

2
j

mi

)3
' 5.3 s−1

(
µ

µB

)2 ( m2i −m2j
mi × 1 eV

)3
, (84)

and typical bounds lead to a lifetime definitively too long to affect the BBN cosmology. In any case, the very cosmological
bounds on the neutrino lifetime in [230] exclude any effect of the radiative neutrino decay at the BBN epoch. However,
in presence of very strong primordial magnetic fields, the BBN bound via spin-precession may be as stringent as µ .
10−20 µB [231]. Although very model-dependent (see [231], in particular Eqs. (50, 51)), this is to our knowledge the only
bound probing the level of intensity expected for the dipole moment in the SMPP enlarged with a Dirac neutrinomass term,
which is µ = 3eGF mν/(8

√
2π2) = 32× 10−20 (mν/eV)µB.

6.2. Bounds on other exotic interactions of neutrinos

Besides anomalous electromagnetic interactions, neutrinos might undergo non-standard-interactions (NSI) with
electrons. Ref. [232] considered low-energy four-fermions interactions of the kind

L
αβ

NSI = −2
√
2GF [εLαβ (ν̄

α
L γ

µν
β

L )(ēLγµeL)+ ε
R
αβ(ν̄

α
L γ

µν
β

L )(ēRγµeR)], (85)

with the NSI parameters εLαβ ε
R
αβ constrained by laboratory measurements to be at most of O(1). It was found that, for

NSI parameters within the ranges allowed by present laboratory data, non-standard neutrino–electron interactions do not
essentially modify the density of relic neutrinos nor the bounds on neutrino properties from cosmological observables.
Qualitatively, this depends on the fact that a large modification of the neutrino spectra would only be achieved if the
decoupling temperature were brought below the electron mass. The presence of neutrino–electron NSI within laboratory
bounds may enhance the entropy transfer from electron–positron pairs into neutrinos, up to a value of Neff = 3.12 (and
1Yp ' 6 × 10−4), which are almost three times the corrections due to non-thermal distortions that appear for standard
weak interactions, but still probably too small to be detectable in the near future, even for PLANCK.
Another scenario is the one where neutrinos couple to a scalar or pseudoscalar particle with a Yukawa-type interaction

of the kind

Lνφ =
1
2
∂µφ∂

µφ −
1
2
m2φφ

2
− φ

∑
`ȷ

ν`Lλ`ȷν
ȷ
L, (86)

where `, ȷ are flavor indexes and, in case of pseudoscalar coupling, λ`ȷ → γ5λ`ȷ. We shall denote these couplings simply as
λ if we ignore flavor effects and only refer to constraints within a factor of O(1). A famous case of this kind is the Majoron
model [233–235] where the Majoron φ is the Goldstone boson associated to the breaking of the lepton number symmetry
(and thusmφ → 0). Although laboratory bounds rule out the original model as an explanation of the small neutrinomasses,
still it represents a prototype of ‘‘secret neutrino interactions’’, where neutrinos interact with a sector precluded from other
standard model particles, and may thus have stronger interactions among themselves at low energies, than predicted by
the SMPP. In the early universe, a large enough λwould allow to populate thermally the species φ. Formφ � 1 MeV, it was
found in [236] that λ . 10−5, if one considers one additional boson (1Neff = 3/7) to be incompatible with the observations.
If this is instead considered viable, the same process ν̄ν ↔ φφ may be responsible for a ‘‘neutrinoless universe’’ well after
the BBN epoch, provided thatmφ � mν [237].
Relatively less attention has been paid to the case where the associated (pseudo)boson is massive (although a particle

of this kind might have other ‘‘cosmological virtues’’, as providing a warm dark matter candidate, see e.g. [238]). In [239]
the authors assumedMeV-scale φ particles produced at early epochs via additional couplings with other SMPP particles and
later decaying into neutrinos in out-of-equilibrium conditions (with a rateΓ (φ→ νν) = 3λ2mφ/(8π)); when this happens
before the photon last scattering epoch, the produced neutrino burst directly influences the CMB anisotropy spectrum, as
well as the late LSS formation. They show that current cosmological observations of light element abundances, Cosmic
Microwave Background (CMB) anisotropies, and Large Scale Structures (LSS) are compatible with very large deviations
from the standard picture. They also calculate the bounds on non-thermal distortions which can be expected from future
observations, finding that the present situation is likely to persist with future CMB and LSS data alone. On the other hand,
the degeneracy affecting CMB and LSS data could be removed by additional constraints from primordial nucleosynthesis or
independent neutrino mass scale measurements.
In [240], the particle φ was considered to be the inflaton, only coupled to neutrinos and with a mass mφ � 1 MeV, to

determine via BBN and other cosmological observation the constraint on the lowest possible reheating temperature TRH .
In particular, the author derives constraints from partial thermalization as well as neutrino spectral distortions. Barring
fine-tuning, the resulting bound is TRH & 4 MeV. A factor ∼2 lower bound was found in [241] if no φ boson is included
but oscillations are taken into account. It is worth noticing that in scenarios with late-time entropy production a constraint
arises anyway due to the incomplete background neutrino thermalization, even if the neutrinos do not couple to φ directly,
as already noted in [242,243]. In [244], light scalar particles annihilating into neutrinoswere considered to analyze the effect
on BBNofMeV-scale darkmatter particles, invoked to explain the excess of 511 keV photons frompositron annihilation from
the Galactic Center [245]. If such particles only couple to neutrinos, they need to be heavier than∼1 MeV to be consistent
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with the Yp constraints. If they have an additional coupling to e+ e− at the level required to explain the Galactic Center
positrons, the bounds may be more stringent (but then depend on the details of the model).
We have seen that a Dirac mass term could in principle be responsible for the production of right-handed neutrinos in

the primordial plasma. While this possibility is excluded by the smallness of neutrino masses, it is still possible to populate
νR via direct right-handed currents mediated byWR bosons, of the kind ν̄R 6WRνR (or analogous coupling with right-handed
charged leptons). These are possible in some extensions of the standard electro-weak model. If one assumes that the right-
handed interaction has the same form as the left-handed one but with heavier intermediate bosons, one can obtain from
BBN a lower limit on their mass of the order of mWR & 75mW [246,11,247], which depends however on the exact particle
spectrum of the physics beyond the SMPP up to∼75mW .

6.3. Neutrino asymmetry

The origin of the most fundamental parameter in the BBN, the baryon asymmetry ηB = (nB − nB̄)/nγ (or simply η at
late times), is not known. While SMPP and SMC contain all the ingredients required to generate it dynamically from an
initially symmetric universe (B, C, and CP violating interactions, departure from thermal equilibrium) [248], the amount of
CP violation and the strength of the electro-weak phase transition are insufficient to account for an asymmetry as large as
η ∼ 6 × 10−10. The usual theoretical attitude towards the cosmic lepton asymmetry ηL is that sphaleron effects before/at
electroweak symmetry breaking equilibrate the cosmic lepton and baryon asymmetries to within a factor of order unity
(the relations in the limit of ultra-relativistic SMPP particles can be found in [249]). If this is the case, for all phenomeno-
logical purposes ηL is vanishingly small. Sphaleron effects are a crucial ingredient in most baryogenesis scenarios [250,251],
including leptogenesis [252,253]. Yet, no experimental evidence for or against these effects exists, and (even barring the –
phenomenologically viable – alternative that ηB and its leptonic counterpart ηL are simply ‘‘initial cosmological conditions’’)
models have been envisioned where the lepton asymmetry is large, as for example via Affleck–Dine mechanism or Q-balls
[254–257]. Since charge neutrality implies that the electron density matches the proton one, we do know that a large lepton
asymmetry could only reside in the neutrino sector. This asymmetry can be parameterized in terms of the chemical poten-
tials of the different flavor species, µν` , or better in terms of the degeneracy parameter ξ` = µν`/Tν` which is constant in
absence of entropy releases. For neutrinos distributed as a FDwith temperature Tν` , the asymmetry in each flavor is given by

ην` =
nν` − nν̄`
nγ

=
1

12ζ (3)

(
Tν`
Tγ

)3 (
π2ξ` + ξ

3
`

)
. (87)

Without further input, the quantities ξ` are not determined within the Standard Model, and should be constrained obser-
vationally. Over the years, BBN with a lepton asymmetry has been studied by many authors and in different scenarios [26,
258–261,30,29,262,218,263,264,215,91,265,18,266–268]. There are several effects of ξ` 6= 0 on BBN. The most important
one (at least for relatively small ξe) is a shift of the beta equilibrium between protons and neutrons, which is however in-
sensitive to ξµ and ξτ . The leading flavor-blind effect amounts to a mere modification of the radiation density entering the
Hubble expansion rate equation by the amount

1Neff =
∑
`

[
30
7

(
ξ`

π

)2
+
15
7

(
ξ`

π

)4]
. (88)

Moreover, for sufficiently large ξ` the neutrino decoupling temperature is higher than in the standard case [258,259], so
that in principle one could get a non-standard Tν(T ) evolution. A non-zero ξ` slightly modifies the partial neutrino reheat-
ing following the e+e− annihilation, too [29]. Both effects are however typically negligible for the ranges of ξ` presently
allowed. The greater sensitivity to ξe than ξµ,τ made the constraints on the latter quantities looser, allowing on the other
hand a richer phenomenology within a quasi-standard scenario.
Again, the new knowledge on neutrino mixing parameters has rescued the simplicity of the standard cosmological

scenario. A few years ago it was realized that the measured neutrino oscillation parameters imply that neutrinos reach
approximate chemical equilibrium before the BBN epoch. This is due to the effects of the background medium on the
evolution of the neutrino matrix density. In presence of neutrino asymmetry the medium term in the Hamiltonian becomes

H1 = diag(Ve, Vµ, Vτ )±
√
2GF (% − %̄), (89)

with the+ sign for ν, the− sign for ν̄. In particular neutrino self-interactions synchronize the neutrino oscillations and drive
all the potentials to the same value [23,25,24]. Assuming the standard value for Neff, from the Yp range follows the bound
ξe = −0.008± 0.013.11 In Fig. 13 we show the predictions for the primordial light-element abundances as a function of the
neutrino degeneracy parameter ξ , taken to be equal for all flavors [271]. The gray band is the 1 σ predicted range, including
both the uncertainty on η of Ref. [272] and the nuclear reactions and uncertainties adopted in Ref. [18].
The bound relaxes by a factor of 2–3 (depending on other priors used) if additional degrees of freedom are present in

the plasma, i.e. Neff is allowed to vary [215,91,268]. At present, the BBN is by far the best cosmic ‘‘leptometer’’ available, and

11 For some regions in parameter space, the equalization may not be complete, see [269]. Also, at least one way around the equalization of the chemical
potentials has been proposed in [270]: an hypothetical neutrino-Majoron coupling of the order g ∼ 10−6 can suppress neutrino flavor oscillations in the
early universe, in contrast to the usual weak interaction case.
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Fig. 13. Light-element abundances as a function of the neutrino degeneracy parameter. The top panel shows the primordial 4He mass fraction Yp ,
whereas the other panels show the 2H, 3He, and 7Li number fractions relative to hydrogen. The gray 1 σ error bands include the uncertainty of the WMAP
determination of the baryon abundances of Ref. [272] as well as the uncertainties from the nuclear cross sections of Ref. [18]. Updated, from [271].

is virtually the only one sensitive to the sign of ξe. Most of its sensitivity derives however from the sensitivity of Yp to the
variation of the weak n–p rates, so in order to improve these bounds the systematic error in the determination of primordial
helium remains the major obstacle. Yet, even lacking further progress in this direction, in the near future the BBN role will
be still important in combination with other cosmological observables to break degeneracies among different parameters,
as in the case of the PLANCK CMB mission [173,266,267].

6.4. Sterile Neutrinos and BBN

Sterile neutrinos are, by definition, standard model gauge group singlet fermions. Their only coupling to SM particles
arises via their mass and mixing parameters with active neutrinos and, provided their mass is not too high and their mixing
sufficiently small, they are long-lived particles.12 Here, we shall only refer to the case where there is only one additional
neutrino mass eigenstate ν4, with massm4. Even in this case, the resulting 4× 4 neutrino mass matrixU is described by 4
masses, 6 mixing angles and 3 CP-violating phases (and possibly, other 3 phases, not entering oscillations, if neutrinos are
Majorana particles). Namely, onemass, three mixing angles and twomore phases with respect to the 3×3matrix for active
Dirac neutrinos. Since not even the mass pattern of active neutrinos (or their complete mixing matrix) is known, it comes
with no surprise that sterile neutrinos can manifest quite a rich phenomenology. This is especially true in cosmology, due
to the relevance of medium effects. Basically, sterile neutrinos with a typical mixing element with the active sector of the
order sin θs can be populated via incoherent scattering with a rate which, under ‘‘normal’’ conditions, writes

Γs ' sin2 2θs Γa, (90)

12 For a typical mixing element with the active sector of the order sin θs one expects a lifetime for decay into a neutrino and a photon of the order
τs ' 2048π4/(9αG2F sin

2 2θs m54),m4 being the sterile mass scale [273].
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Γa ∼ G2FT
5 being the active neutrino scattering rate. However, in the presence of matter with a potential V , the effective

mixing angle can be efficiently enhanced whenever the resonance condition δm2sa/2 p ' V is fulfilled, giving rise to
potentially large effects even when a small vacuum mixing would make the sterile neutrino undetectable in laboratory
experiments. BBN is sensitive to sterile neutrinos through the following three effects: (i) the partial and total population of
a sterile state induces Neff > 3 and thus affects the Hubble expansion rate; (ii) if νs are produced only after the decoupling of
the active neutrinos from the cosmological plasma, they lead in general to a depletion of νe and ν̄e, thus affecting the weak
n–p rates; (iii) the depletion can be ν − ν̄ asymmetric, again affecting in particular, the weak rates.
The interest in the physics of sterile neutrinos in BBNhas a long history (see e.g. [274–281,213,282]). Due to the otherwise

large parameter space, it has roughly followed the appeal that, from time to time, sterile neutrinos have had in explaining
anomalies in the neutrino phenomenology. An incomplete account includes m4 '17 keV in the beta decay [283,284], the
KARMEN anomaly (m4 ' 33.9 MeV) [285], and in the last few years, the LSND anomaly (m4 ' 1 eV) [286]. The recent
Miniboone results [287], although not ruling out the possibility of more exotic physics, strongly disfavor or rule out the
simplest sterile neutrino models to explain the LSND signal. At the moment, there is no clear theoretical or experimental
argument suggesting the existence of (sufficiently light) sterile neutrinos, yet their rich physics continues to attract a lot of
interest (for a review, see [288]). However, this implies that in absence of theoretical or experimental prejudice, one has to
scan over a large parameter space.
Most of the old literature referred to mixing between a sterile and an active state, neglecting mixing among active

neutrinos. This allowed for several simplifications, but the results are clearly unphysical given the fact that we know that
neutrinos domix, and themixing is large. A densitymatrix formalism is necessary, which differs from the onewe introduced
in Section 3.2 in several points. The vacuum Hamiltonian H0 includes now four mass eigenstates and a 4× 4 mixing matrix.
The refractive term H1 writes now in flavor basis (considering only diagonal elements)

H1 = diag(Ve, Vµ, Vτ , 0). (91)

The matter potentials V` for each flavor is (with ην ≡ ηνe + ηνµ + ηντ )

Ve = ±
√
2GFnγ

[
ηe −

ηn

2
+ ην + ηνe

]
−
8
√
2GF p
3

(
ρνe+ν̄e

M2Z
+
ρe−+e+

M2W

)
(92)

Vµ = ±
√
2GFnγ

[
−
ηn

2
+ ην + ηνµ

]
−
8
√
2GF p
3M2Z

ρνµ+ν̄µ (93)

Vτ = ±
√
2GFnγ

[
−
ηn

2
+ ην + ηντ

]
−
8
√
2GF p
3M2Z

ρντ+ν̄τ (94)

where+ applies to ν,− to ν̄.
As initial conditions one assumes usually thermal populations for the active neutrinos and a vanishing one for the sterile

neutrinos (this assumption is relaxed in some papers, as [289–291], where a partial filling of the initial sterile state has been
considered). In general, assuming that the active-sterile mixing angles are small (to be consistent with the phenomenology
in the laboratory) is the only reasonable simplification. Also, as long as T � mµ, in the limit θ23 = π/4 and θ13 → 0 there
is a µ− τ symmetry which further simplifies the structure ofU. A quite thorough analysis has been performed in [292], at
least for the range δm24i . 1 eV2 which gives rise to the majority of phenomenologically distinct cases. We summarize here
the main features, while addressing to the original literature for details.

• If the terms in the square brackets are very small or have the natural value of the baryon asymmetry, ηi ∼ 10−9, they are
dynamically negligible compared to the terms of orderO(GF/M2W ,Z ) at high temperatures and to the vacuum term H0 at
low temperatures. This is also the situation considered for the standard decoupling in Section 3.2. In this case, the matter
potential is always negative, and the existence of resonance conditions depends only on the mass-square differences
δm24i. If δm

2
4i > 0,∀i, the sterile-active mixing is never resonant, and the analysis simplifies considerably. If however

δm24i < 0 for some value of i, the system may undergo one, two or three resonances, and many sub-cases are possible.
• If a large neutrino asymmetry is present, the square brackets terms may be large enough to change the impact of sterile
neutrinos on BBN, typically weakening the constraints, as first noted in [293]. The reason is that the dominance of the
flavor-diagonal medium term compared to the off-diagonal term due tomixing suppresses the active-sterile oscillations,
producing sterile neutrinos less efficiently than in a symmetric background. Apart for larger value of the potential at a
given temperature, another peculiarity of this case is that its sign is opposite for ν and ν̄: a pattern of resonances appears
independently of the sign of δm2i , and each one only in the ν (or ν̄) sector. In [138], some attention has been paid to
strategies to lift the cosmological bound on sterile neutrinos invoked to explain the LSND anomaly with a moderate
asymmetry (say, η ∼ 10−4). The weakening of the BBN bounds for a growing asymmetry is represented by the shift from
the solid purple line to the dashed ones in Fig. 14. Apart for the asymmetry, the distortion of the neutrino momentum
distributions is negligible in the cases studied in [138]. It is well known, however, that significant deviations from a
pure FD distribution could occur during the evolution. Typically they can be relevant either for relatively small mass
splittings, δm24i . 10−8 eV2 [294] or, for eV scale masses, via matter resonances post weak decoupling, which might
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Fig. 14. The allowed LSND region at 99% C.L. (yellow/light shaded area) compared to the cosmological bounds from BBN and LSS in the presence of
primordial asymmetries. The darker shaded area is already excluded at 99% C.L. by other experiments. The regions below and to the left of the thin lines
are allowed by BBN because they correspond to Yp ≤ 0.258. The regions below and to the left of the thick lines are allowed by LSS because they correspond
toΩνh2 ≤ 0.8 10−2 . From [138].

leave both active and sterile neutrinos with a highly nonthermal spectrum for some choices of neutrino parameters and
energies. This however requires larger initial asymmetries, ην & 0.01 [295,296].

An interesting aspect implicitly omitted above is that, even if the neutrino asymmetry is vanishingly small before the
onset of the active-sterile oscillations, a large ν − ν̄ asymmetry (up to η ∼ 0.1) might be dynamically generated in the
active neutrino sector (and compensated by an opposite one in the sterile sector) via a resonant matter effect. This scenario
requires quite special choices of the parameters: the mixing must be sufficiently small, sin2 2θs . 10−4, |δm2i | < 0 for
some i, and |δm2i | sin

4 2θs . few× 10−9 eV2. For a review we address to [42] and reference therein (see also [292] for some
more details). Perhapsmore general is the following consideration, which is often overlooked in the literature: once a sterile
neutrino is introduced, at least two additional CP-violating phases are naturally introduced in the neutrino mixing matrix.
The vacuum oscillation probability between an active and the sterile state are naturally CP-violating, even when θ13 → 0
and no CP violation happens in the active–active oscillations. One might generate a flavor-dependent lepton-asymmetry as
large as O(sin2 2θs) – which in a large part of the allowed parameter space is much bigger than ηB – without resonances.
Finally, some BBN constraint also arises for moremassive sterile neutrino states, in the keV–MeV range, by requiring that

the energy density stored in the sterile states populated via mixing does not exceed e.g.1Neff = 1. As reviewed in [297], the
bounds are not very competitive compared with others. For significantly heavier states, the most interesting bounds may
come from cascades and dissociation of light elements from the sterile neutrino decays, which we address in Section 9.

7. Inhomogeneous nucleosynthesis

In the standard scenario of nucleosynthesis all constituents are homogeneously and isotropically distributed, in
accordance with the hypothesis of a FLRW universe. Anisotropic models, studied as early as in the 60’s, or models with
adiabatic fluctuations in the radiation energy density may affect nucleosynthesis essentially via a variation in the expansion
rate. The emergence of a concordance cosmology model, supported by CMB and LSS data essentially confirm observationally
that, apart from small initial adiabatic fluctuations (∼10−5) as seed of structure formation, no significant departure from
the homogeneity or isotropy is required. The logical possibility that large fluctuations existed at the horizon scales at BBN
epoch (size of the order of 10−6 deg. in the CMB) is not well motivated either in the favored inflationary scenario to generate
the perturbations. Thus, this line of research has faded away in the last decade: we address the reader to [9] for a historical
overview. However, it is perfectly consistent with the present cosmological scenario to speculate on a varying baryon to
photon and neutron to proton ratio on small scales. These isothermal (or isocurvature) fluctuations may alter BBN in a
non-trivial way, and these scenarios are known as inhomogeneous BBN (IBBN) models. Till the 90’s, the interest in IBBN
was due to two aspects: (i) several theories can lead to inhomogeneous distributions of neutrons and protons at the time
of nucleosynthesis: a first order quark-hadron phase transition [298–300,9], the CP violating interaction of particles with
the bubble enucleated in the electroweak phase transition [301–304], the phase transition involving inflation-generated
isocurvature fluctuations [305] or kaon condensation phase [306]; (ii) therewas some hope that IBBN scenarioswithΩB ' 1
– thus consistent with a flat, matter dominated universe, or at least an open universe without non-baryonic dark matter –
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were phenomenologically viable (see e.g. [307]). Both motivations have lost observational or theoretical support in the last
decade. The agreement between the value ofΩBh2 from standard BBN deuterium abundance and CMB anisotropies is indeed
quite a compelling result in favor of the simplest homogeneous scenario. Theoretically, due to the high mass of the Higgs,
the electroweak phase transition is a smooth cross-over for the SM particle content, and even the QCD phase transition –
although lesswell established – appears to be a crossover orweak first order one, probably insufficient to produce significant
departures from the standard BBN scenario [308].
In the following, we limit ourselves to introduce and briefly describe some recent calculations in IBBN, addressing the

reader to [9] for a throughout overview of the topic. Since IBBN has to reproduce very closely the SBBN yieldswhile requiring
additional parameters, most of its phenomenological interest has declined, too. Today, perhaps the only way to discriminate
IBBN vs. homogeneous BBN lies in the different predictions for the intermediate (CNO) or heavy elements.

7.1. Baryon inhomogeneous models

An important point to be considered is the sensitivity of the predictions to the form of the inhomogeneity itself. Many
studies simply have a 2-phase model with a fraction f at high density and 1 − f at low, while in the paper [309] a more
realistic distribution (log normal) is considered, which allows a bound to be placed on the variance.
If there are large fluctuations in the nucleon density, the differential transport of neutrons and protons can create

neutron-rich regionswhere heavy elements can be formed. Neutrons diffuse by scattering on electrons and protons, protons
scatter on neutrons and Coulomb scatter on electrons, but themean free path of protons is about 106 times smaller than that
of neutrons. The diffusion of other species is negligiblewith respect to neutron scattering due to their largermasses. Neutron
diffusion, however, was not considered in the earliest codes of IBBN [310,311,309], where regions of different nucleon
density were treated as separate homogeneous BBN models. The mass fractions from each model were then averaged,
with a weight given by the corresponding size. A later generation of codes [312–314] introduced in the calculation nucleon
diffusion, but only at early times and high temperatures, before the starting of nucleosynthesis. This led to the neutron
enrichment of the low-density region but, once the original protons were consumed, neutrons could form 4He only when
other protons were produced by neutron decay. The main consequences of this situation on the light element abundances
were: (a) since four neutrons (two ofwhich decaying in two protons)were needed for each 4He nucleus, the final yield of 4He
was reduced; (b) nucleosynthesis time scalewere tuned by neutron decay rate, extending the process to cooler temperatures
and allowing 2H to survive in larger quantities; (c) the high neutron density could help the production of heavier elements
through neutron-rich isotopes. However, once neutron diffusion during nucleosynthesis is taken into account, all the three
previous effects areweakened, sincewhen neutrons are rapidly consumed in the high density region,where nucleosynthesis
begins first, the excess neutrons in the low density region diffuse back. Kurki-Suonio et al. made the significant step forward
of treating nucleon diffusion both before and during nucleosynthesis, with planar symmetric baryon inhomogeneities [315]
or cylindrical and spherical models [316,317]. In order to decrease the number of zones needed to obtain a high accuracy,
nonuniform grids were used [318–322]. The diffusion equation is sufficient for describing the motion of particles in an
IBBN model if the background fluid is stationary, as in the case of neutrons, which are much more mobile than the ions
and electrons they scatter on. The evolution of ions at low temperatures is more complicated, due to momentum transfers
in collisions with other ion components, which move with comparable fluid velocities. In this case, the common diffusion
approximation has to be relaxed and one needs to take into account dissipative processes through hydrodynamic equations
[323–325].
In an inhomogeneous code with treatment of neutron diffusion, the region considered is divided into several zones, s,

where the time evolution of the number density of the specie i, ni,s, obeys the following evolution [322,303,319]

∂ni,s
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)
. (95)

The first three terms are usual, corresponding to reactions which create or destroy nuclides and to the expansion of the
universe, while the last one is due to diffusion of isotope i between zones. The parameters which appear in Eq. (95) are
the inhomogeneity distance scale, r , which measures the physical distance between inhomogeneity regions at the starting
temperature, T ∼ 10 MeV, the stretching function, ξ(r), which implements the non-uniform grid, marking the zone edges,
and the neutron diffusion coefficient, Dn, which is a function of proton density and temperature [312].13 For small distance
scales, r < 1 light-hour, the inhomogeneities are smeared out by neutron diffusion before nucleosynthesis starts, and
the IBBN results approach standard BBN results. The constant parameter p changes with geometry (for example, for the
spherical symmetry p = 2). Other important parameters are the density contrast, R, which is the ratio between the high
and low densities, taken as high as 106, and the volume factor, fv , that is the fraction of space occupied by the high density
region. Note that the higher R, the larger the number of zones needed for a sufficient accuracy of the calculation.
The plots in Fig. 15 are contour maps of the 4He mass fraction, and 2H/H and 7Li/H, taken from Ref. [322], and present

the characteristic features of an IBBN prediction on light element abundances. For small values of ri neutron diffusion

13 Note that, as remarked in [318], in their Eq. (21) the factor π/16 is missing from the numerical value.
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Fig. 15. Mass fraction of 4He and log of the abundances Yi/Yp for i = 2H, 7Li. From Ref. [322].

homogenizes neutrons very quickly and protons as well, since this happens before weak interactions go out of equilibrium.
This means that the final abundances are the same as a homogeneous model. The shift in the contour lines towards low
values of η for distance scales ri starting from∼2–3× 103 cm is due to the fact that, for these values of ri, neutron diffusion
and homogenization take a time of the order of the weak interaction freeze-out. This implies that protons start to be not
efficiently homogenized andnucleosynthesis occurs before in the high density shellswith a larger proton density and has the
characteristics of an earlier nucleosynthesis (larger 4He and 7Li and less 2H). So, to recover the same values of the abundances
of a model with lower ri one needs lower values of η. Up to ri ∼ 105 cm the proton number density is unchanged except
for a slight increase due to neutron decay, and this explains the almost vertical contour lines in this range. The depletion of
neutrons in the high density shells at temperatures just after nucleon freeze-out leads to neutron back-diffusion and amore
efficient nucleosynthesis (and amagnification of the production of 7Be) in the highdensity region. Due to this overproduction
of 7Be, which gives 7Li after decay, the contour lines in the lowest plot in Fig. 15 have a larger shift to lower η. When ri starts
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Fig. 16. Concordance between the observational constraints on 4He, 2H, and 7Li and the model of Ref. [322]. From Ref. [322].

to be larger than 105 cm, neutron back-diffusion does not affect all the shells and nucleosynthesis is concentrated only in
some of them. This leads to a decrease of the final 4He abundance accompanied by an increase in deuterium production,
which corresponds to a shift of the contour lines towards high η. Finally, contours turn back to low values of η, since for very
large ri diffusion cannot homogenize neutrons before nucleosynthesis, a large neutron density remains in the high density
region, giving rise again to 4He overproduction and a 2H suppressed yield. In this region of ri, results are equivalent to the
average of two separate homogeneous BBN models, one of high density (with high 4He and 7Li and low 2H) and one of low
density. The basic shapes of the contour lines of Fig. 15 are common to all IBBN models: for different geometries and values
of the parameters there will be regions in ri where neutron homogenization and diffusion occur at times between weak
freeze-out and nucleosynthesis or after nucleosynthesis.
Fig. 16 shows the concordance between the observational constraints on 4He, 2H, and 7Li and the model of Ref. [322]:

upper plot is for the 7Li constraints from Ryan et al. [177] while lower plot is for the 7Li data of Melendez & Ramirez [181].
In both plots the concordance region between 4He [158] and 2H data [118] is shown in yellow. While upper plot have a
concordance region for 7Li only for a depletion factor ranging from 2.8 to 5.9, the lower plot does not need any depletion in
7Li if ri < 5× 103 (see Ref. [326] for a similar analysis using τn = 878.5± 0.7stat ± 0.3syst [76]).
One interesting consequence of IBBN results is the larger range in the depletion factor one can obtain for 7Li with respect

to the analogous prediction of homogeneous BBN. Fig. 16 shows, moreover, that IBBN allows for larger values of η than SBBN
(up to η ∼ 10−9), requiring at the same time a depletion factor for 7Li to obtain concordance with the observational limits.
Since lithium is produced quite late in nucleosynthesis, its yield is particularly sensitive to the late-time transport

phenomena such as hydrodynamic ion diffusion. In this respect, the results of codes which take into account these
phenomena [325], which are not considered in [322], might explain the observed depletion of lithium. This is a consequence
of late separation of elements due to Thomson drag: Thomson scattering of electrons on background photons makes the
diffusion of ions inefficient which must drag electrons with them to keep charge neutrality. On the other hand, protons and
helium ions, for instance, are allowed to diffuse in opposite directions. While protons diffuse out, helium and lithium get
concentrated in the high density regions, leading to enhanced destruction of 7Li, 2H, and 3He.
Heavy element production in the framework of IBBN was first investigated in Ref. [327] and then in [328,329], in the

approximation of neglecting baryon diffusion. The authors claim that there is a parameter region, for the volume fraction
f and density contrast R, in which heavy elements can be produced enough to affect the observation, while keeping the
light element abundances consistent with observation. The results show that BBN proceeds through both the p-process and
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the r-process, with the transition between the two due to the Coulomb barriers of proton-rich nuclei and the amounts of
neutrons when heavy elements begin to be synthesized.

7.2. Matter–antimatter inhomogeneities

A possible scenario which gives rise to an inhomogeneous baryon-to-photon ratio is antimatter BBN (ABBN) [331–336].
Different baryogenesis models can give rise to matter–antimatter domains [337,338,305,339–342]. In the ABBN scenario,
the antimatter regions have a radius rA, while R is the antimatter-matter ratio in the universe. Antimatter regions should
be small enough to be completely annihilated well before recombination, in order to satisfy CMB constraints. Their size
determines the time when most of the annihilation takes place, before or after significant amounts of 4He are produced
by nucleosynthesis. The first case is realized for typical radii between 105 and 107 m (comoving distance at T = 1 KeV)
[330].14 Thanks to the different diffusion scale of protons and neutrons, the latter can more easily move to antimatter
regions and annihilate. This would produce a reduced neutron to proton ratio with respect to the standard case, which
can be compensated by a larger expansion rate at BBN, provided by more relativistic degrees of freedom, Neff > 3, and
results in the same Yp. Correspondingly, the speed-up of expansion shortens the time interval available for nucleosynthesis,
and implies smaller yields for all other light nuclides, yet this can be compensated by the increase of the reaction rates due
to a higher value of η. The net result is thus, a shift of the agreement of theory vs. data towards larger η for large1Neff, see
Fig. 17, but with the bonus that Neff is no longer constrained, as shown in Fig. 18.

8. Constraints on fundamental interactions

8.1. Extra dimensions and BBN

8.1.1. A short journey to extra dimensions
The idea of introducing extra (spatial) dimensions to generalize the 4-dimensional theory of fundamental interactions

and unify different forces is quite old. As early as 1919, thus shortly after the birth of General Relativity, Kaluza considered
a 5-dimensional version of Einstein theory which described gravity and electromagnetism in a unique setting [343].
Shortly after, in 1926 Oskar Klein stressed the role of having a compact fifth dimension in order to evade constraints from
observations of large accessible extra dimensions [344]. A nice review on Kaluza–Klein theories is [345].
Higher-dimensional theories had perhaps their golden age starting from the late 70’s, after the discovery of the

remarkable properties which superstring and supergravity theories have for particular spacetime dimensionalities. Quite
recently, theorieswith oneormore extra dimensionswith a fundamental scale of TeV−1 have been advocated as possibleway
to address the long-standing problem of hierarchy between the electroweak and the much higher Planck scale [346–349].
In these scenarios, the fundamental gravity scale is lowered down to the TeV range, and the observed Planck mass emerges
as an effective scale at low energies, smaller than the Kaluza–Klein (KK) excitation mass scale. This is due to the dilution of
gravitational interactions in the large (millimeter-sized) extra dimensions (flat scenarios), or the particular configuration of
the gravitational field which provides a static solution to Einstein’s equations (warped extra dimensions). A general feature
of these theories is to assume that ordinary matter is confined to standard 3+ 1-dimensional spacetime, a brane embedded
in a (4+ d)-dimensional manifold, while gravity can propagate in the whole higher dimensional spacetime.
Interestingly, large (experimentally accessible) extra dimension models can be tested using collider physics, as for

example at LHC, for a review see e.g. [350,351]. On the other hand, they may have a large impact on the cosmological
evolution of our universe. The issue of understanding the phenomenological implications of ‘‘brane-cosmology’’ has been
addressed by several scholars in the last ten years, mainly aimed at discussing how these scenarios can be constrained by
cosmological observables, CMB and BBN among others. In the following, after a brief summary of the aspects of the extra
dimension models which are relevant for our discussion, we (mainly) focus on the constraints which can be obtained by
exploiting BBN.
We start by introducing the D = 4+ d dimensional Einstein and matter action, which can be written as

S =
∫
d4xddy

√
−g
M2+dD

2
R+

√
−g Lm, (96)

where the first term corresponds to the Einstein–Hilbert action, R being the 4+d-dimensional scalar curvature for the 4+d
metric g and MD playing the role of the D-dimensional reduced Planck mass, while the second term contains the matter
Lagrangian, with the SMPP fields localized on the 3+ 1-dimensional brane y = 0. In the case of compact extra dimensions
(we will consider the specific case of a d-dimensional torus of radius δ) and for a factorized metric, i.e. if the 4-dimensional
part does not depend upon the d extra coordinates, the action can be reduced to a 4-dimensional action at low energy,
smaller than the inverse compactification radius δ, by integrating over the y coordinates,

S =
∫
d4x
√
−g
M2+dD (2πδ)d

2
R+
√
−g Lm, (97)

14 Smaller antimatter regions would annihilate before neutrino decoupling without any effect on BBN.
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Fig. 17. Light element yields in ABBN as a function of η and Neff for rA = 106.9 m and, from top to bottom, R = 10−2, 10−1.5, 10−1.2 . Thick solid lines, thin
solid lines, and dashed lines are for Yp , log10 2H/H, and log10 7Li/H, respectively. From Ref. [330].

from which we read the expression of the Planck massMP = G
−1/2
N = 1.2× 1019 GeV in terms ofMD and δ,

(2πδ)−1 = MD(
√
8πMD/MP)2/d. (98)

ForMD ∼ TeV, the simplest case of one extra factorized dimension is excluded as it leads to a value of δ which is too large,
of the order of the scale of the solar system, while the scenario is viable for d ≥ 2, as in this case δ ≤ 1 mm.
More generally, one can allow for an explicit dependence of the 4-dimensional metric on the extra coordinates. As in

[352,353], and usually considered in almost the whole literature, we consider a (non-factorized) d = 1 model, where the
extra dimension (the bulk) is compactified on the line segment S1/Z2. The metric (preserving 3-dimensional rotation and
translation invariance) can then be written as

ds2 = −n2(τ , y)dτ 2 + a2(τ , y)dEx2 + b2(τ , y)dy2. (99)
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Fig. 18. Combined allowed region in (η, Neff). The dashed line is the CMB+SNIa constraint from [218]. From Ref. [330].

The Z2 symmetry identifies the points y and−y, so one can restrict to 0 ≤ y ≤ 1/2. Two three-branes are placed at y = 0 (our
‘‘visible’’ brane) and y = 1/2 (a hidden brane, which absorbs the gravitational flux lines of the visible brane). The metric
is obtained as usual from Einstein’s equations (upper case latin indexes A, B = 0, 1, 2, 3, 5 run over the 5-dimensional
spacetime),

GAB = M−35 T AB, (100)

where the stress–energy tensor is the sum of contributions of ordinary matter on the visible brane, bulk matter and fields
living on the hidden brane,

T
AB
=

T ABvis
b(τ , 0)

δ(y)+
T ABhid

b(τ , 1/2)
δ(y− 1/2)+ T ABbulk. (101)

Each termcorresponds to a perfect fluid, parameterized as usual in terms of the energy densityρ andpressure P and specified
by the equation of state P = P(ρ), with furthermore T 05vis = T

05
hid = 0, so that there is no flow of matter on the branes along

the fifth dimension, and finally T ABbulk = diag(−ρbulk, Pbulk, Pbulk, Pbulk, Pbulk,5).
Before considering the cosmological scenarios corresponding to this framework, one should look for the static solutions

of Eq. (100), the analogous of (empty space) Minkowski spacetime. Apart for the case T AB = 0which leads to a (factorizable)
trivial spacetime, Randall and Sundrum (RS) [348,349] found a new solution by considering a pure bulk and brane
cosmological constant terms. Choosing T ABbulk = Λ diag(−1, 1, 1, 1, 1), a static solution is in fact obtained if Λ < 0 and
the two brane tensions ρvis,hid = Λvis,hid are fine-tuned to the values

Λvis = −Λhid = ±

√
−6ΛM35 , (102)

so that the effective cosmological constant in the 3-dimensional space exactly cancels. In this case one finds [348] b(τ , y) =
b0 = const and

a(τ , y) = exp

(
±b0|y|

√
−Λ

6M35

)
≡ exp (±b0|y|m) . (103)

Choosing a negative value forΛvis, so that the solution corresponds to Eq. (103) taken with the positive sign, leads to a nice
solution of the hierarchy problem, since the fundamental mass scale on the invisible brane M5 ∼ MP is red-shifted on our
visible universe by the conformal factor exp (−b0m/2), which can explain the large relative ratio of Planck and electroweak
scales for a moderate value ofmb0 ∼ 102. In other words, the non-trivial dependence of the metric upon y implies that the
KK zero-mode of the graviton wavefunction is peaked around the invisible brane and has an overlap with the visible brane
suppressed by the exponential ‘‘warp’’ factor exp(−mb0/2). Yet the KK towermass gap is potentially as low as the TeV scale,
and thus these graviton excitations can lead to testable effects at high energy colliders as LHC, see e.g. [350] and references
therein.
On the other hand RS also observed that choosing our brane with a positive cosmological constantΛvis > 0, though does

not solve the hierarchy problem, nevertheless it has the nice properties of allowing for a non compact fifth-dimension, as
one can take the limit y→∞maintaining consistency with short-distance force experiments. This scenario is also the one
which is more interesting from the cosmological point of view, as we will discuss soon.
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8.1.2. Brane cosmology and BBN
Adding matter on the branes will lead to an evolving universe analogous to the standard FLRW model. Depending on

the choice of the corresponding reference static solution one starts with, the prediction for the Friedmann-like equation
governing the visible scale factor, i.e. the value of a in the vicinity of our brane y = 0 can be significantly different, leading
to testable predictions for cosmological observables such as BBN, CMB and structure formation.
The equation governing the evolution of a(τ , 0) ≡ a0(τ ) has been worked out in [352]. If ρ and P denote energy density

and pressure on our visible universe, thus dropping the index vis in the following, one obtains the standard conservation
equation,

ρ̇ + 3(ρ + P)
ȧ0
a0
= 0, (104)

which leads to the usual power behavior for ρ ∼ a−3(1+w)0 , as well as the evolution equation for a0,

ä0
a0
+

(
ȧ0
a0

)2
= −

1
36M65

ρ(ρ + 3P)−
1

3b20M
3
5
Tbulk,55, (105)

where the time derivative is with respect to t , with dt = n(τ , 0)dτ and a flat metric in the ordinary 3-dimensional space has
been assumed for simplicity. This expression shows two remarkable properties, namely that it is independent of the energy
density and pressure of the second brane, a manifestation of the local nature of Einstein theory and, furthermore, that the
energy density enters quadratically rather than linearly as in conventional cosmology.
If the dynamics is dominated by the brane energy density, so that one can neglect the last term in Eq. (105), using

Eq. (104) the second order equation (105) can be put in the form

d
dt
(ȧ20a

2
0) =

1
36M65

d
dt
(ρ2a40), (106)

which gives

H2 =
1

36M65
ρ2 +

C

a40
. (107)

The second term in the r.h.s of this expression depends upon the free integration constantC and behaves as a radiation term
[354], thus its popular name of ‘‘dark radiation’’, though the sign of C can be also negative.
This result for the Hubble parameter strongly differs from the usual Friedmann law, unless one consider the very special

case of a radiation dominated phase driven by a positive C, while for a negligible value of C one gets

a0(t) ∼ t1/(3+3w), (108)

thus a slower expansion rate compared to the standard result a0(t) ∼ t2/(3+3w). If we assume that Eq. (107) can be applied
to the present universe, writing the energy density as a fraction of the critical densityΩ ∼ 1,

1 = Ω2
H20M

4
P

64π2M65
+

C

H20
∼

δ2

H−20
+

C

H20
, (109)

with the radius of the fifth dimension, δ (see Eq. (98)), which thus should be of the order of the present Hubble radius, H−10 .
15 This is ruled out by observations (since we could then observe five-dimensional gravity directly), as well as the possibility
that dark radiation provides the dominant contribution to the expansion today.
Strong bounds on this model also come if we assume that it describes the evolution of the universe at the earliest stage

we can probe in a quantitative manner, namely during BBN. A rough constraint can be obtained by considering the different
behavior of the Hubble expansion parameter, which changes the neutron to proton ratio freezing temperature, TD, as well
as the time–temperature relationship in the temperature range from TD down to the deuterium formation at TN ∼ 0.1 MeV
[352,353]. The value of n/p at TD is given by the standard relation n/p = exp(−1m/TD), with16

G2FT
5
D ∼

ρ2

6M35
. (110)

On the other hand, the time–temperature relationship during a radiation dominated epoch is given by Eq. (108) with
w = 1/3, t ∼ T−4. Inserting numerical values and using the expression of the relativistic degrees of freedom, g∗, during

15 Derivation of this result is presented in a slightly different form in [352], where the second order equation for the scale factor is used.
16 We consider the caseC = 0. If dark radiation dominates at BBN, it would be difficult to reconcile later evolutionwith, say, CMB and structure formation
data.
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BBN one gets

TD ∼ 7.5
(
TeV
M5

)3
MeV, (111)

and

t ∼ 2.8× 10−4 s
(
M5
TeV

)3 ( T
MeV

)4
. (112)

Thus, assuming that all neutrons at TN are eventually burned into 4He nuclei, we have

n
p
(TN) ∼

Yp
2− Yp

∼ exp

[
−

1m
7.5 MeV

(
M5
TeV

)3]
e−

t(TN )−t(TD)
τn , (113)

which implies that a correct mass fraction Yp ∼ 0.25 requiresM5 ∼ 8 TeV and a too large compactification radius.
It should be noted that consideringmore than one (flat) extra dimension and an empty bulk could be potentially in better

agreement with both BBN and the requirement of sub-mm extra dimensions, but a careful analysis of this scenario has not
been considered in the literature in details, evaluating the whole network of light nuclei produced during BBN, in particular
2Hand 7Li.We alsomention that it has been pointed out that in general, the presence of the KK tower of gravitonsmay lead to
overclosure of the universe, unless the highest temperature ever achievedwas of the order ofMeV, thuswith a severe impact
on the whole BBN scenario, as well as on the standard inflationary picture for early production of perturbations [45,355].
Interestingly, a much more promising brane cosmology can be obtained by exploiting the RS model. Assuming that the

stress–energy tensor T ABbulk corresponds to a cosmological constant, ρbulk = −Pbulk = −Pbulk,5, it has been shown in [354]
that one can integrate the (0, 0) component of Einstein’s equations and obtain the generalized Friedmann equation in the
vicinity of the visible brane,

ȧ20
a20
=

1
6M25

ρbulk +
1

36M65
ρ2vis +

C

a40
. (114)

This result holds independently of the metric outside and in particular of the time evolution of the scale factor b. If one
assumes that the energy density ρvis can be decomposed as the sum of the contribution of ordinarymatter ρ and a (positive)
cosmological constantΛvis, and the latter is fine-tuned as in the RS model, see Eq. (102), one recovers a standard cosmology
[356,357,353,354],

ȧ20
a20
=

Λvis

18M65
ρ +

1
36M65

ρ2 +
C

a40
, (115)

if one identifies

8πGN =
Λvis

6M65
, (116)

and the limit Λvis � ρ is assumed.17 Of course, choosing the original RS proposal, which provides a beautiful solution to
the hierarchy problem but requires a negative tension on the visible brane, one would obtain a negative sign relative to the
conventional Friedmann equation, so that the visible brane behaves as an anti-gravity world [358]. In particular, this implies
that, as soon as the universe becomes matter dominated, it would collapse on a scale of the order of the matter-radiation
equality time [357].
From Eq. (115) we see that adjusting the value of Λvis as in Eq. (116) for each given M5, the Hubble rate depends on

two new parameters, the fundamental scale M5 which controls the quadratic term in ρ and the dark radiation constant C.
Bounds on both these parameters can be obtained from BBN, and have been discussed by several authors using the simple
argument on 4He mass fraction described above [357,356,354,359–363], namely requiring that both terms be sufficiently
small that an acceptable value for Yp be produced. A more careful analysis based on a full numerical integration of the BBN
dynamics and considering the predictions for 2H and 7Li as well, has been instead performed in [364,365]. In particular [364]
only consider the dark radiation term and its effect on both BBN and CMB, neglecting the effect of linear perturbations of
dark radiation during photon decoupling and recombination. The result of [364] (and of [365] in the limit of large M5) can
be easily translated in terms of the well-known bound on the effective number of neutrino species (see Section 3),

C =
8π
3
GN1Neffρν,0a4. (117)

The allowed range for C can be easily obtained from the result on Neff of Section 3. More interestingly, if the value ofM5 is
sufficiently low, the effect of the ρ2 term can be non-negligible, but it can be compensated by a large and negative value of
C. A degeneracy is thus expected in theM5–C plane which qualitatively is of the form a/M65 +1Neff = const , see Fig. 19.

17 The standard behavior is indeed recovered only in the stronger limit ρ � Λ2vis/M
4
P if the bulk spacetime is not exactly anti-de Sitter [358].
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Fig. 19. The BBN-allowed range in theM5–C plane. From [365].

We have assumed in the previous discussion that the size of the extra dimensional space is stabilized by some dynamical
mechanism, as for example discussed in [366], but indeed it might have some dynamics during cosmological epochs. In
general, for a homogeneous and isotropic model, the evolution of the extra dimensions is controlled by a single scalar field,
the radion, with a canonical kinetic term which interacts with ordinary matter, see e.g. [367]. These interaction terms lead
to a time dependent behavior of the Higgs vacuum expectation value, v, which in turn affects fermion masses. The BBN
is extremely sensitive to such variations, since changing v produces a different Fermi coupling constant, GF , and neutron
proton mass difference, both entering the determination of the freezing temperature, TD, as well as shifting the pion mass
which influences the nucleon potential and the deuterium binding energy. We will discuss this issue in details in the
next section.
Finally, BBN can be also used to put constraints on theories which consider the possibility of bulk neutrinos. As we

have mentioned, in the extra dimension scenarios the SMPP particles are assumed to be localized on the visible brane,
while gravitational interactions can propagate in the bulk. If the fundamental scale is of the order of TeV, this leads to a
serious problem in understanding the smallness of neutrino masses, which is usually thought to be produced via a see-saw
mechanism. For sub-eV neutrino masses, this scheme requires the existence of some new mass scale of order 1011–1012
GeV,much larger than the extra dimension scale. Furthermore, operators as LHLH/MD (H and L are theHiggs and left-handed
fermion doublets, respectively) could be induced in the low energy Lagrangianwhich lead to an unacceptable neutrinomass.
This problemwas realized quite early on and several solutions have been proposed [368–373], which postulate the existence
of one or more gauge singlet neutrinos in the bulk which couple to the lepton doublet on the brane. Their corresponding KK
modes give rise to an infinite tower of sterile neutrinos labeled by an integer n, which mix with active neutrinos and have
masses typically of the order ofmn = n 10−3 eV for an extra dimension size of mm. This mixing has a relevant effect on both
solar and atmospheric neutrino phenomenology since for each mode with mass larger than the three active neutrino with
Dirac mass µi (i = 1, 2, 3) there will be a corresponding vacuum mixing angle θ ∼ µi/mn (see e.g. [374] for a review and
references therein).
Sizeable effects are also expected in cosmology [375–377]. In particular, KK modes of bulk neutrinos can be produced

in the early universe before BBN by incoherent scatterings or coherent oscillations, thus contributing to the total radiation
content parameterized by Neff. Bounds on this parameter from BBN amounts to require that the whole tower of modes
should be equivalent to no more than approximately one active neutrino species. Furthermore, the photoproduction of 2H
and 6Li by decays of modes after BBN may potentially spoil the whole standard nuclei production scenario. These effects
limit the possible values for the extra dimension length scale δ as function of the Dirac active neutrino mass, see e.g. Fig. 20
(from [376]). For illustration, for a neutrino mass of order 0.1 eV [376] find from BBN 0.01 MeV ≤ δ−1 ≤ 103 MeV.

8.2. Variation of fundamental constants

8.2.1. Introductory remarks
Already in 1937 P.A.M. Dirac first introduced the idea that the fundamental constants of physics may be indeed variable

parameters characterizing the particular state of the universe [378]. Physicists have long scrutinized this possibility. On
one hand, a strong effort has been devoted to embed this paradigm into a definite theoretical framework. For example,
theories with extra dimensions such as Kaluza–Klein or string theories, naturally predict that 4-dimensional constants may



44 F. Iocco et al. / Physics Reports 472 (2009) 1–76

Fig. 20. Constraints on the extra dimension length scale R versus active neutrino masses µi for bulk neutrino scenarios. From [376].

vary (in time and space), since they represent effective values in the low energy limit, and are sensitive to the size and
structures of extra dimensions. Any variation of these invisible dimensions, for example over cosmological times, would lead
to varying 4-dimensional constants. On the other hand, measuring variations of fundamental constants has been pursued
at the experimental level by several groups and techniques, ranging from short time laboratory based measurements,
to astronomical or geological scale studies and, finally, to cosmological time variation searches. All these investigations
provided quite strong constraints on the possible time evolution of e.g. the fine structure coupling, α, or the Newton
gravitational constant,GN . Both theoretical and experimental aspects of this intriguing research issue are beautifully covered
in the review [379].
In the following we will summarize the impact that fundamental constant time variations have on BBN, by describing

the main effects on the light nuclei abundances and the bounds which therefore is possible to obtain using BBN as a probe.
Unless otherwise stated, we will limit to constrain the departure of these parameters at the BBN epoch compared to present
values, independent of a specific theoretical model for their evolution (this is instead the approach considered e.g. in [380–
382]). As a general remark, wewould like to stress that all results depend quite strongly upon the general assumptionwhich
are made to perform the analysis, the priors in presently fashionable Bayesian language. In fact,
(1) there are too many constants which enter the BBN physics (the fine structure coupling, the Newton constant, the

strong interaction scale,ΛQCD, the Yukawa couplings, the Higgs vacuum expectation value), so that if they are all considered
as free independent parameters to be fixed by data, one lacks predictive power;
(2) there is no unique theoretical framework which allows for an unambiguous determination of their relative

evolutionary history.
For these reasons, there are two typical strategies which have been exploited. One may assume that only a single

fundamental constant (or a subset of them) is promoted to the role of a free parameter to be constrained, keeping all the
others as fixed. Several analyses of variation of the fine structure coupling,whichwedescribe in the next section are based on
this assumption. On the other hand one can consider a specific theoretical model, which reduces the number of independent
parameter one starts with, and this typically allows for tighter constraints. Examples of this approach has been considered
in the last decade in details, based on dilaton inspired theories, or rather on unified gauge theories, where all gauge coupling
of the SMPP get unified at some high mass scaleMGUT .
To conclude this short introduction, let us stress that checking for a time (and space) variation of fundamental constants

is onlymeaningful for adimensional quantities, such as α. This is due to the fact thatmeasurement of dimensional parameters
is strongly intertwined with both the system of units and the particular measurement technique which is employed, so that
an absolute determination of, say, the time evolution of the speed of light, c , is meaningless.
This can be illustrated with a simple example. Suppose we want to measure the value of c by using a light clock device,

a source S and a mirror placed at a distance D away from S, which reflects the light ray back to S. The value of c is then
computed as the ratio of the distance 2D over the total time elapsed from emission to light collection, which is expressed
in terms of an adimensional number, once units of length L and time T are specified. For example, we can choose an atomic
clock to specify T , using the hyperfine splitting transition rate of caesium-133 atoms. In this case the particular combination
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of fundamental parameters m2ec
2α4/mph̄ (the typical hyperfine frequency) is kept fixed by definition, mp being the proton

mass. If we choose the length unit L as the distance traveled by light in k units of time T , it is rather trivial that there is no
possibility to detect the time variation of the speed of light, as also c in this case is kept fixed by definition. On the other
hand wemay use the standard prototype platinum–iridium bar as the value of L, which depends on the interatomic spacing
of the material, and thus ultimately on the value of the Bohr radius aB = h̄/mecα. In this case if we find that at different
epochs the value of c has changed in these units, this amounts to say that the ratio

c
L/T
∝
mp
me

1
α

(118)

is time dependent. Therefore, either α or the adimensional ratiomp/me or both, change with time.
As this simple example shows, evidences for time varying fundamental constants are in all cases evidences for particular

combination of adimensional quantities, which depends upon the particular choice of units which is adopted. In the
following, when time changes of dimensional parameters are considered, a ratio of two independent and homogenous
constants will be always implicitly understood, as for example the ratioΛQCD/mq, withmq some quark mass, or GNM2GUT .

8.2.2. Varying the fine structure constant
There are several direct measurements in the laboratory on the variation of α over a relatively short time period, using

different techniques, see e.g. [379]. The geological limit from theOklo natural reactor is about |δα/α| ≤ 10−8 over a period of
few billion years [383–385]. Astrophysical observations of high red-shift quasar absorption lines provide the only evidence
for a possible time variation of α [386–388],

δα/α = (−0.57± 0.11)× 10−5. (119)

A result compatible with zero is instead reported by [389,390], which however has been criticized in [391].
Over longer time scales, the value of α can be constrained by cosmological observables, such as CMB and BBN. Indeed,

CMB anisotropies are a very good probe of α since its value is imprinted in the ionisation history of the universe. The main
effects are a change in the redshift of recombination due to a change of hydrogen energy levels, the modification of the
Thomson scattering cross-section which is proportional to α2, and at subleading level a change of 4He abundance [392–
394]. If the value of α is increased, the last scattering surface moves towards larger redshifts, which correspond to a shift of
first Doppler peak towards larger l’s. Moreover, this shift produces a larger Integrated Sachs–Wolfe effect (i.e. more power
around the first peak), while the high multipole diffusion damping is decreased by a larger α, thus increasing the power on
very small scales. With present CMB data, including those from the first year release from WMAP Collaboration, one finds
the bound−0.06 ≤ δα/α ≤ 0.02 at 95% C.L., while a Fisher matrix analysis shows that future experiments such as PLANCK
should be able to constrain variations of α during CMB formation with an accuracy of 0.3% [395].
The value of α enters the physics of primordial nucleosynthesis in several ways and, remarkably, BBN represents the

earliest reliable probe of possible variation of the fine structure coupling over cosmological times, though it suffers from
being model dependent with respect to CMB analysis. This issue was first studied in [396–398], where the focus was on the
abundance of 4He, while a detailed analysis has been presented mainly in [399,400], which we follow for our discussion.
During the early stages of BBN, at the n/p ratio freeze out temperature, TD, the fine structure coupling affects theweak n–p

rates in two ways. First of all, it changes the neutron–proton mass difference 1m, which can be only phenomenologically
parameterized as in [401], where the authors find

1m (MeV) ∼ 2.05− 0.76
(
1+

δα

α

)
. (120)

This result is obtained by studying the the behavior of the nucleon masses versus α, which determines the electromagnetic
quark masses and binding energy. The fact that this parametrization, though quite reasonable, is not deduced from first
principles in a QCD-based calculation, is the main source of possible uncertainties and renders all predictions model-
dependent. Furthermore, weak rates also depend upon α when QED radiative and thermal corrections are included.
However, these corrections are at the level of few percent, see e.g. [51], so the effect is very small for moderate variation of
α, i.e. δα/α � 1. Since the 4Hemass fraction is mainly sensitive to the n/p ratio at freeze out, while it depends more weakly
on the whole set of nuclear reaction rates, this implies that at first approximation the whole dependence of Yp upon α is
through1m, which also fixes the decoupling temperature,18 since

Yp ∼
2

1+ exp(1m/TD(1m))
. (121)

The dependence of other nuclei onα is more involved, and one should scrutinize theway the fine structure constant appears
in the set of nuclear reaction rates. The leading effect is due to the change of Coulomb barrier. Charged particle reactions
at low energies take place via tunneling through a repulsive potential, and this produces most of the energy dependence in

18 Notice that the Fermi coupling constant GF does not depend upon the values of gauge couplings in the SMPP, but on the Higgs vacuum expectation
value only.
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Fig. 21. The relative variation of 2H, 3He and 7Li produced during BBN as a function of the variation of the fine structure coupling, δ = δα/α. From [400].

the cross section,

σ(E) =
S(E)
E
e−2πη, (122)

where η = αZ1Z2
√
µ/2E, with Z1 and Z2 the charges of the incoming nuclei and µ the reduced mass. If one neglects the

dependence on α of the astrophysical S-factor and of reduced mass, as in [399], then only the Sommerfeld parameter η
would change linearly with α, and one can obtain the thermally averaged rates versus δα/α, see Tables 1 and 2 of [399], as
well as the fractional variation of light nuclei abundances. Not surprisingly, the most dramatic changes are those of 7Li, due
to the strong Coulomb barrier in its production.
The analysis of [399] has been improved in [400], see Fig. 21, by including several corrections previously neglected,

which accounts for the α dependence of the S-factor, namely the normalization of initial-state Coulomb penetrabilities,
final state charged particle Coulomb interactions, linear dependence onα of photon coupling to nuclear currents in radiative
processes, photon energy and barrier penetration in external direct captures and, finally, the electromagnetic contribution
to the nuclear masses. All these corrections can amount to a third of the total dependence of 7Li on δα/α, while they are
smaller for 3He and 2H.
These results can be used to get bounds on δα/α by comparing data with the results of a fully numerical computation

of light nuclei versus α, using a modified version of public BBN codes. For example [393] reports at 95% C.L. δα/α =
−0.007± 0.009, using the experimental values of 4He, Yp = 0.244± 0.002, and of deuterium, 2H/H = (3.0± 0.4)× 10−5,
while [400] for the same experimental values obtain δα/α = −0.007+0.010

−0.017. If we use the
2H/H and Yp of Section 4 and the

responsematrix formalism of [402]we find the updated bound−0.007 ≤ δα/α ≤ 0.017 at 95% C.L. It should be noticed that
a varying value of α does not significantly improve the global fit of data when 7Li is also included in the analysis. If one uses
log10(7Li/H) = −9.91

+0.19
−0.13 [177], combined with the deuterium experimental result as above, one would find a reasonable

agreement for δα/α ∼ 0.23 (the standard value being excluded at more than 3-σ ), but including 4He gives a minimum χ2
very far from this value but with a very low likelihood [400]. Stated differently, it seems difficult that the problem of the
lower observed 7Li with respect to theoretical expectation could be alleviated by allowing a different value of α at the BBN
epoch, unless one also includes Neff as a free parameter in the analysis. In this case, a larger value of α, which suppresses the
theoretical value of 7Li, and a slower expansion rate at BBN, Neff < 3 (which is degenerate with α and can compensate for
the otherwise too large amount of 4He for positive δα/α) can reasonably fit all nuclear abundances [403].

8.2.3. The role of Higgs vacuum expectation value, fermion masses andΛQCD
In the SMPP the vacuum expectation value, v, of the Higgs field provides the mass term to vector bosonsW± and Z via

the Higgs–Englert–Brout mechanism, as well as to all fermions via Yukawa couplings. Any variation of the weak scale, v, or
better to say of the ratio of the weak to strong scales, v/ΛQCD, and weak to gravitational scale over cosmological times can
therefore, have a dramatic impact since it induces a time dependence of all massive particles after spontaneous symmetry
breaking of the electroweak symmetry.
Themain effects on BBN are the change of the Fermi coupling constant, the neutron–protonmass difference, the electron

mass and finally, the binding energy of deuterium [404–407]. The change of GF = 1/
√
2v2 re-scales all weak reactions

which keep neutron and proton in equilibrium, and thus shifts the decoupling temperature, TD. Similarly, these rates are
also affected by the variation of the neutron–protonmass difference, due to the u and d quarkmass contribution to1m. This
contribution is proportional to the difference between the two corresponding Yukawa couplings and can be estimated once
the electromagnetic contribution to 1m is singled out. Since the latter can be calculated with relatively little uncertainty,
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being the Born term of the Cottingham formula [401], one obtains, see Eq. (120),

1m (MeV) = 1.29+ 2.053
δv

v
, (123)

with the assumption that in this case only v is considered as a free parameter, while both α and the Yukawa couplings are
fixed to their standard values. This estimate is consistent with recent lattice QCD calculation with dynamical quarks [408].
Finally, the electron mass is shifted linearly with v, δme/me = δv/v. The changes in GF , 1m and me fixes the new value
of1m/TD, which is a key parameter for Yp, as we stressed already several times.19 For example, if v is increased, the lower
value of GF and the largerme (which reduces the available phase space) implies a less efficient n–p rates, so that their freeze
out occurs earlier (more 4He), but the larger effect is due to the increased 1m, which reduces the n/p ratio, and therefore
the final value of Yp.
Finally, changing v alters the deuteron binding energy BD20 through the change in the pion massmπ . Since the pion is a

Goldstone boson, its mass scales as a geometric mean between weak and strong scales as found by Gell-Mann, Oakes and
Renner [410], m2π ∼ (mu + md)ΛQCD ∝ v. It is worth noticing that a change of BD can be induced by a variation of v, as we
are presently discussing, or a time evolving values of Yukawa couplings, yi, with i = u, d, or finally by a change of the strong
interaction scale,ΛQCD, which we consider later on,

δmπ
mπ
=
1
2

(
δΛQCD

ΛQCD
+
δv

v
+
δyu + δyd
yu + yd

)
. (124)

Therefore, the effects which we now describe of a modified value of BD will be relevant when any of these parameters is
assumed to be time-dependant.
The value of BD fixes both the initial conditions for BBN, given by the Nuclear Statistical Equilibrium, as well as the cross-

sections that burn deuterium into heavier nuclei. As BD increases, deuterium becomes more stable, and BBN would start at
a higher temperature epoch TN . Interaction rates of the BBN network occur more rapidly at higher temperature (though the
cross-sections have changed) leading to a more efficient 2H processing. One thus expect in this case a decreased 2H/H ratio
and an increased Yp [411,409], see also Table I in [402].
Static properties of nuclei and, in particular, binding energies depend strongly on mπ , which sets the length scale of

attractive nuclear forces, and gives the dominant contribution to two- and three-body potential via the one and two pion-
exchange terms. Though accurate calculations have been performedwhich reproduce several experimental properties [412–
414], a numerical determination of the functional dependence of binding energies uponmπ is still lacking. On the other hand,
this dependence has been studied extensively in the framework of low energy effective theory that respect the approximate
SU(2)L⊗SU(2)R ofQCD [415–418]. Depending on the values of the coefficients (fixed by data)whichweight the s-wave four-
nucleon operator expansion of the lagrangian density, the result seems to suggest that deuterium remains loosely bound
for a wide range of mπ , or rather that the value of BD strongly changes with mπ [417]. Despite the large uncertainties, the
results are compatible with a linear dependence for small variations around the current value,

BD (MeV) = 2.22
(
1+ r

δmπ
mπ

)
, (125)

with−10 ≤ r ≤ −6 [417,418].
One further caveat is represented by the fact that the role of strange quark mass in nuclear quantities such as binding

energy is not fully understood, being so close to the non-perturbative scale,ΛQCD [419,402]. The sensitivity of BD to ms has
been estimated in [420], by inspecting the role of σ mesonmass to nuclear potential. They find δBD/BD ∼ −17δms/ms. Some
authors have also pointed out that large pionmass variation could also render deuterium an unbound system, and discussed
the values of mπ which would lead to stable di-neutron (or di-proton) systems [419,421,265]. This would have dramatic
consequences on the standard BBN picture, leading to a stable or long-lived 8Be, and by-passing the A = 5 bottleneck
through formation of 5He. Both effects would produce a large enhancement of lithium or metallicity production in the early
universe.
Implementing all changes described so far in a BBN numerical code, and assuming v as a free parameter, one can

typically constrain δv/v at the level of percent. In particular, one can estimate δYp ∼ δv/v(%). Using both 2H/H with
an error of 30% and a rather low value for Yp = 0.238 ± 0.005, which seems presently disfavored, Yoo and Sherrer find
−0.7% ≤ δv/v ≤ 2.0% [407]. Interestingly, a looser bound (10%) is obtained from (pre-WMAP) data on CMB, by considering
the effect of a varying electron mass in both the Thomson scattering cross-section and hydrogen binding energy. We have
updated the bound fromBBNof [407], using the data on 2H/H and Yp discussed in Section 4 and find−0.005 ≤ δv/v ≤ 0.012
at 95% C.L.

19 The change in electron mass also produces a different value for the e+ − e− energy density, and thus of the Hubble parameter, but the effect is sub-
leading [407].
20 Regardless of its expression in terms of fundamental parameters, the effect of changing BD has been studied for example in [409]. Combining a full BBN
data analysis, which also includes 7Li abundance with the WMAP prior on η, they find δBD/BD = −0.019± 0.005, and point out that this 4-σ shift of the
D binding energy might reconcile the whole BBN picture with data, in particular the low value of observed 7Li.
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Table 12
A summary of BBN constraints on fundamental parameters discussed in Sections 8.2.2 and 8.2.3.

Data Range Ref.

δα/α Yp = 0.244± 0.002
2H/H = (3.0± 0.4)× 10−5 −0.016–0.002 (95% C.L.) [393]

δα/α Yp = 0.244± 0.002
2H/H = (3.0± 0.4)× 10−5 −0.024–0.003 (95% C.L.) [400]

δα/α Yp = 0.250± 0.003 This paper
2H/H =

(
2.87+0.022

−0.021

)
× 10−5 −0.015–0.014 (95% C.L.) (using [402])

δv/v Yp = 0.238± 0.005
2H/H =

(
3.0+1.0
−0.5

)
× 10−5 −0.007–0.02 [407]

δv/v Yp = 0.250± 0.003
2H/H =

(
2.87+0.022

−0.021

)
× 10−5 −0.005–0.012 (95% C.L.) This paper

δΛQCD/ΛQCD Yp = 0.238± 0.005
2H/H = (2.6± 0.4)× 10−5 ∼ −0.1–∼0.1 [411]

δΛQCD/ΛQCD
2H/H = (1–10)× 10−5 ∼ −0.06–∼0.06 [419]

The scenario with a varying strong interaction scale, ΛQCD, can be described in quite a complete analogy. In this
case, assuming that the weak scale is kept fixed, while v/ΛQCD is time dependent, the effects are due to the change of
neutron–proton mass difference, since the electromagnetic contribution is weighted by the strong scale,

1m (MeV) = 1.29− 0.76
δΛQCD

ΛQCD
, (126)

and the shift in deuterium and heavier nuclei binding energy [419,411]. In particular, in [411] results are obtained by
exploiting a simplified BBN network up to nuclei with A = 3. This introduces some systematics in the result, but it has
the benefit of reducing the dependence onΛQCD only through the two parameters1m and BD. The result is a bound onΛQCD
at the level of 10%, if one corrects for such a systematic effect.
The effect of 2H binding energy on BBN is also considered in [419], where the authors quote |δΛQCD/ΛQCD| ≤ 0.06 as a

conservative bound. Interestingly, they also point out that evenwhenboth the strong scale and quarkmasses aremodified by
the same amount, so that all binding energies remain unchanged (and so does the reference temperature, TN ), nevertheless
the freezing temperature is changed, since it also involves the Planck mass scale which is assumed to be fixed. In this case
one obtains a bound of the order of (δΛQCD/MP)/(ΛQCD/MP) ≤ 0.1 [419].

8.2.4. Correlated variation of fundamental constants in unified scenarios
A summary of bounds on fundamental parameters considered in the previous sections is presented in Table 12. As we

mentioned already, they refer to a single parameter analysis, i.e. assuming that all but a single fundamental constant are
held fixed. On general grounds, one could expect that this assumption is rather ad hoc. For example, in models with extra
dimensions, or based on embedding of the SMPP into a larger gauge symmetry group, it is quite natural that more than a
single coupling or fundamental scale, if not all, would be time dependent during the (homogeneous) expanding history of
the universe.When using BBN to constrain such a variation (and CMB anisotropies to a lesser extent as they are not sensitive
to strong interactions), one immediately faces the problem of several degeneracies among these parameters. This results in
amuch less predictive power, unless a specific theoretical framework is assumed in the analysis, which reduces the number
of free parameters of the theory, and relates possible variations of different fundamental constants.
The purpose of this section is to describe the impact on the BBN of simultaneous variation of all involved fundamental

parameters and discuss the constraints on these variations which can be obtained when some particular model is assumed
(GUT theories, string-theory inspired dilaton scenario).
The first steps in this programme are basically the following: to identify those combination of fundamental parameters

which influence the BBN dynamics and quantify how light nuclei abundances change when this parameters are left as a
free input. In general, this task is very involved, as large variation of, say, the strong scale parameter,ΛQCD, or quark masses
can change the standard picture of BBN in quite a dramatic way (e.g. by rendering deuteron an unbound state or predicting
bound (pp) or (nn) states which may add new paths to nucleosynthesis). On the other hand, it is easier to study the problem
perturbatively, in the neighborhood of the standard values that all these couplings, mass scales, etc., take today asmeasured
in laboratory. A comprehensive analysis of this sort was lacking until quite recently, and has been mainly pursued in a very
detailed study of Dent, Stern andWetterich [402] (see also a semi-analytical tour de force of [422] in the chiral limit of QCD).
Wewill follow their approach in the following, and choose to work in the units for which the strong interaction scale is held
fixed (see our discussion in Section 8.2.1). One can then identify the following set of fundamental constants playing a role
at the BBN epoch, which we collectively denote by ϕk, k = 1, . . . , 7: the Newton constant, GN ,21 the fine structure coupling,

21 The results of this section have some overlap with the analysis presented later of scenarios when one varies the gravitational action, including a time-
evolving Newton constant.
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Table 13
The response matrix R for 2H, 3He, 4He, 6Li and 7Li (from [402]). The reference value for the baryon fraction isΩBh2 = 0.022.

2H 3He 4He 6Li 7Li

GN 0.94 0.33 0.36 1.4 −0.72
α 3.6 0.95 1.9 6.6 −11
v 1.6 0.60 2.9 5.5 1.7
me 0.46 0.21 0.40 0.97 −0.17
1q −2.9 −1.1 −5.1 −9.7 −2.9
Mq 17 5.0 −2.7 −6 −61
ΩBh2 −1.6 −0.57 0.04 −1.5 2.1

α, the Higgs vacuum expectation value, v, the electron mass, me,22 the light quark mass difference, 1q = md − mu, the
averaged light quark mass, Mq = (md + mu)/2 ∝ m2π [402]. Finally, the baryon density parameter is also included. Notice
that in this analysis variation of the strange quark mass,ms/ΛQCD, is not accounted for.
The leading linear dependence of nuclear abundances Xi (i = 2H, 3H, 4He, 6Li, 7Li) upon small changes of these parameters

is then encoded in the response matrix R defined as

Rik =
ϕk

Xi

∂Xi
∂ϕk

. (127)

This matrix can be evaluated by numerically integrating the BBN equations. In particular, in [402] this has been performed
in two steps, by first varying a set of nuclear physics parameter rj which includes binding energies of light nuclei up to 7Be,
nucleon mass, neutron–proton mass difference, neutron lifetime and a subset of the ϕk, (α, me, GN and η) and computing
the matrix

Cij =
rj
Xi

∂Xi
∂rj
, (128)

and then relating the variation of the rj to small changes of the ϕk,

Fjk =
ϕk

rj

∂rj
∂ϕk

. (129)

The response matrix R is therefore given by the matrix product R = CF . This decomposition turns out to be useful as the
determination ofC is rather robust,while computing F requires some theoretical assumption, as for example the dependence
of binding energies on thepionmass. In Table 13 the entries for theRmatrix are reported [402]. The last row is the logarithmic
variation for small changes of the baryon fraction around the reference valueΩBh2 = 0.022.We have checked that the result
is very weakly dependent on the reference point in the range 0.015–0.025, the variation being of the order of 5% for 2H and
even smaller for 4He.
Using these results one can construct the χ2 function (we do not use 7Li in this analysis)

χ2 =

(
2H(th)(ϕ)−2 H(exp)

)2
σ 22H

+

(
Y (th)p (ϕ)− Y (exp)p

)2
σ 2Yp

, (130)

where the theoretical abundances are computed using the linear expansion in terms of R (but we have retained an exact
dependence on the baryon fraction). In this way, one gets an estimate of the kind of constraints which can be obtained on
all ϕj, and more importantly, it serves to illustrate the degeneracies which appear between the several pairs of fundamental
constants, at least as long as we consider small variations with respect to the standard results, so that the linear expansion
used in Eq. (130) is legitimate.
As an example,we have considered the experimental values and errors of Section 4. The results are shown in the figures of

Table 14, where the various curves correspond to a Fisher matrix analysis around the reference model withΩBh2 ∼ 0.0209
and all other parameters at their standard values (this is indeed, locally, the minimum of the total χ2). When one of the two
selected parameters is the baryon density, the plots correspond to the case where only one fundamental constant is varied
while all others are fixed to the standard value. In this case, one can read from the contours the typical order of magnitude of
the constraint which can be obtained in this single-parameter analysis, which is at the few percent level for α, v,1q andMq,
while it is almost one order of magnitude larger for GN andme. More interestingly, the other bidimensional contours show
the degeneracies among pairs of parameters. In particular, notice the strong correlations of GN with α andme and between
the pairs v–α,me–α,1q–α, v–me, and v–1q.

22 Differently than in our previous discussion,me is assumed an independent parameterwith respect to v. This is equivalent to consider the lepton Yukawa
couplings as varying parameters.
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Table 14
The bidimensional 68% and 95% C.L. contours illustrating the correlation of fundamental parameters in a BBN analysis (2H/H and Yp as in Section 4).

The difficulty of treating simultaneous variations of more than a single fundamental parameter is somehow alleviated if
one works in the framework of a definite theoretical model beyond the SMPP, which imposes further relationships among
(some) of them. A typical example is given by Grand Unified Theories (GUT) which assume that the three SMPP gauge
couplings get unified at some highmass scale,MG, where the dynamics is dictated by a larger (simple) symmetry group. This
scenario and its implications for BBN has beenworked out in details in [423–425,421,402,426]. The general argument is that
in GUT theories unification of couplings implies that the various fundamental constants are likely to vary simultaneously
and, for example, a change of the fine structure coupling implies a much larger variation of the strong interaction scale,
ΛQCD, at low energies.
If we denote by αG the (common) value of the three SU(3)c × SU(2)L × U(1)Y couplings, αi, atMG (typicallyMG ∼ 1016

GeV), then their running is given by Renormalization Group equations,

α−1i (MZ ) = α
−1
G +

bi
2π
log

(
MG
MZ

)
, (131)

where the coefficients bi depend on the particle multiplets. If αG undergoes time variation at a cosmic time above the
unification scale, then one can traces the correlated variation of the SMPP couplings at low energies. Neglecting the threshold
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Table 14 (continued)

effect one obtains [423,424]

δΛQCD

ΛQCD
∼ (34–40)

δα

α
. (132)

Also Yukawa couplings and the Higgs vacuum expectation value v (which is for example, tied to the supersymmetric
breaking scale in most supersymmetric models) are expected to vary and to be related to time evolution of α. However,
the size of the effect is model dependent, or simply unknown, so it is usually parameterized in terms of an unknown
constant, δyi/yi = cδα/α, and similarly for v. In general, in addition to the time evolution of αG, one could also consider
other possibilities, where the GUT mass scaleMG also varies [425].
The BBN constraints in these scenarios on the variation of α (and all other related parameters) have been first analyzed in

a qualitativemanner in [424,421] and thenworked out using a full BBN numerical study in [426,402], with twomain results.
On one hand, the constraints become typically tighter, |δα/α| ≤ 10−5−10−4. Moreover, in some cases the theoretical value
of 7Li is lowered and can be rendered compatible with the experimental result. This is the case, for example, when the weak
scale, v, is determined by dimensional transmutation, so that variation of the largest top quark Yukawa coupling induces
changes of v [398,426], or assuming that the variation of fundamental constants are triggered by an evolving dilaton scalar
field [406,426].

8.2.5. Varying the Newton constant and scalar-tensor theories of gravity
The effect of a varying gravitational constant, GN , on the BBN is through the expansion law, H ∝

√
GN , which determines

both the neutron–proton density ratio at freeze-out (Yp), and the efficiency of 2H burning abundance when nucleosynthesis
starts. We have already seen in the previous section the typical constraints which can be put on δGN/GN , of the order of few
percent. In particular, using the values of Yp and 2H/H already discussed, we find −0.036 ≤ δGN/GN ≤ 0.086, at 95% C.L.,
which is dominated by the effect on 4He. In this case, the limit can be read off directly from the bound on Neff, since a change
of GN is equivalent to the change

δGN
GN
=
7
43
1Neff. (133)
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Recently, the effect of a varying GN has been considered by several authors, with similar results, depending on the
experimental values for light nuclei adopted in their analysis (for earlier studies see e.g. [427,428]). In [429] it is stressed
the sensitivity of 2H to the value of the Newton constant. In the pessimistic case of a large systematic error on Yp, deuterium
can provide a 20% bound. On the other hand, the results of [217], which adopt Yp = 0.249 ± 0.009, suggests that Yp still
gives the strongest possible constraint. If one makes the assumption of a monotonic behavior for the time dependence of
the gravitational constant, GN ∼ t−x, the bound on δGN can also be cast in a constraint on the exponent x and thus on the
present value of ĠN/GN . In [217] it is found−0.0029 < x < 0.0032, and−2.4× 10−13 yr−1 < ĠN/GN < 2.1× 10−13 yr−1.
Our estimate on δGN/GN translates into −0.6 × 10−13 yr−1 < ĠN/GN < 1.6 × 10−13 yr−1 using t0 = 13.7 Gyr for the
lifetime of the Universe.
An interesting class of models which allows for a time dependent gravitational coupling is represented by scalar-tensor

theories of gravity [430,431], where the latter is mediated, in addition to the usual spin-2 gravity field, by a spin-0 scalar ϕ
which couples universally to matter fields. Its dynamics define the evolution of an effective Newton constant for ordinary
matter, to which ϕ is ‘‘universally’’ coupled, as one can read by the action of the model in the ‘‘Einstein’’ frame,

S =
∫

d4x
16πG∗

√
−g

[
R− 2gµν∂µ∂νϕ − V (ϕ)

]
+ Sm

[
F−2(ϕ)gµν;Ψ

]
, (134)

where G∗ is the bare gravitational coupling, V (ϕ) the scalar field potential, and F(ϕ) a positive function, which enters the
coupling of ordinary matter fields Ψ to the metric. Strong constraints on the present (denoted by the index 0) values of the
(generally) ϕ post-Newtonian parameters [432],

γ − 1 = −2
α20

1+ α20
, β − 1 =

1
2

β0α
2
0

(1+ α20)2
, (135)

where

α(ϕ) =
d log F−1/2

dϕ
, β(ϕ) =

dα
dϕ
, (136)

are set by solar system experiments, as the shift of the Mercury perihelion or the Shapiro delay of radio signals from the
Cassini spacecraft as it passes behind the Sun, γ0 − 1 = (2.1 ± 2.3) × 10−5 [433].23 The value of α0 should be thus, very
small, while β0 can still be large.
The implications of models described by the action in Eq. (134) have been discussed by several authors with different

choices of the arbitrary functions F(ϕ) and V (ϕ), see e.g. [435–448,434,449–451]. In the case of a standard Brans–Dicke
theory the value of primordial 4He produced during BBN can be evaluated semi–analytically as a function of the Brans–Dicke
parameter ω (which weights the scalar field kinetic term in the Jordan frame) [442], in case one consider the particular
solution ϕ = const during the radiation dominated epoch, giving the bound ω0 ≥ 100. The fact that the BBN constraints on
the model depend strongly on the particular scalar-tensor theory considered in the analysis, thus providing quite different
bounds onω0, have been stressed in [444], while a quite general numerical code for BBN in scalar-tensormodels is described
in [447,434]. In particular, in [434] it is studied in details the case of a massless dilaton with a quadratic coupling, V (ϕ) = 0,
F(ϕ) = exp(−βϕ2), including the mass threshold effects when the universe cools down. The latter is due to the variation
of the trace of the energy momentum tensor of ordinary matter-radiation, ρ − 3P , whenever a single specie becomes non-
relativistic, which changes the source term in the Klein Gordon equation forϕ. The results of the study of [434] show that the
strongest bound comes from 4He and indeed it is stronger than from solar system experiments, α0 ≤ 10−3 for β ≥ 0.3, see
Fig. 22. Finally, wemention that particular choices of the scalar field potential V (ϕ) (and of the initial conditions for ϕ before
the BBN) can solve the lithium problem, yet leading to values of 2H/H and Yp compatible with the experimental values. One
example is illustrated in Fig. 23, from [450], where the potential is chosen to be V (ϕ) = Λ2ϕ4, and F(ϕ) = exp(−βϕ2). We
see that there is a region in the parameter spacewhich corresponds to primordial abundances of all light nuclei in agreement
with experimental data.

8.2.6. A varying cosmological constant: Quintessence models
Observations of type Ia supernovae [452,453], structure formation [454,455] and CMB [8] provide quite a strong evidence

for an accelerated expansion of the Universe at recent times. The simplest explanation of this result is to invoke a new
component of the total energy–momentum tensor in the form of a cosmological constantΛ (ΛCDMmodel), which is a nice
fit of data, yet it gives rise to two related fine tuning problems. On one hand, the value ofΛ happens to be extremely small
with respect to the typical energy scale of any fundamental physics model, as the Planck mass (122 orders of magnitude
larger), or supersymmetry breaking scale, or finally, the electroweak mass scale (54 orders of magnitude off). Moreover, it
seems really a coincidence that the energy density stored in the form of Λ and matter appears to be of the same order of
magnitude just today,ΩΛ ∼ 0.75 andΩB+DM ∼ 0.25. If the cosmological constant had been larger it would have changed
the whole structure formation history, while a smaller value would have been irrelevant for observations.

23 This bound is also usually presented in terms of a lower limit on the Brans–Dicke parameter ω0 ≥ 400 00, the constant which weights the scalar field
kinetic term in the Jordan frame and in the minimal model with V (ϕ) = 0, F(ϕ) = ϕ.
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Fig. 22. Bounds on the post-newtonian parameters α0 and β from 4He in scalar-tensor theories in the case of a massless dilaton with quadratic coupling,
F(ϕ) = exp(−βϕ2). The value of baryon density isΩBh2 = 0.0224. From [434].

Fig. 23. Bounds on the parameters a and Λ which give acceptable results for 2H/H, Yp and 7Li/H for a scalar-tensor theory defined by α = aϕ2 and
V (ϕ) = Λ2ϕ4 . The initial conditions (pre-BBN) for ϕ are ϕin = −1.3, ϕ̇in = 0. From [450].

To solve (or to alleviate) these two related problems, many attempts have been made in the last two decades and based
on the idea that the ‘‘dark energy’’ whose present value is given byΩΛ, is dynamically changing and is due to the evolution
of a scalar field Q (the quintessence, k-essence, etc. field) see e.g. [456–467]. In particular, depending on the choice of the
field potential, typically modeled as an exponential, V (Q ) = V0 exp(−λQ/MP) or an inverse power, V (Q ) = λΛ4+a/Q a,
the field Q evolves according to an attractor-like solution of the equation of motions. This means that for a wide range of
initial conditions at early times, the evolution of Q rapidly converges towards these solutions (tracker solutions), which lead
naturally to a crossover from the radiation dominated epoch to a dark energy dominated era at late times.
If the Q -field provides a non-negligible contribution to the total energy density during radiation dominated regime, it

follows that its early dynamics can be constrained by nucleosynthesis, and later on by CMB power spectrum. A first rough
estimate can be obtained by requiring that at the neutron–proton decoupling temperature TD ∼ MeV, the scalar field
energy densityΩQ should be small enough not to disturb the eventual amount of frozen neutrons, i.e. of the final 4He mass
fraction, see e.g. [460]. This bound can be cast in terms of the largest acceptable value for deviations of the effective number
of neutrino from its standard value at that particular temperature, as in general the Q energy density would not scale simply
as radiation

ΩQ (TD) ≤
71Neff/4

10.75+ 71Neff/4
≤ 0.09, (137)

where we have used our bound at 95% C.L. on Neff of Section 5.
More detailed analysis have been presented in [468,445]. In [445], the authors consider as amodel the particular potential

of [469],

V (Q ) =
[
(Q − Q0)2 + A

]
exp(−λQ ), (138)
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Fig. 24. Allowed values of the Q field potential parameter α and initial ρQ /ρB at z = 1012 (B stands for ‘‘background’’, i.e. ordinary radiation and matter).
The plots refer to power law (a) and SUGRA corrected potentials (b). Models in which the tracker solution is obtained by the BBN epoch are those in the
band denoted by ‘‘Tracker Solution at BBN’’. Values of α to the right of the lines labeledwQ = −0.6,−0.4,−0.2 are excluded by requiring that the present
equation of state be sufficiently negative. The BBN constraint for a maximum energy density of the quintessence field of 0.1% and 5.6% are shown as dotted
and solid lines, respectively. From [468].

and obtain the bound on the quintessence contribution to the total energy density during BBNΩQ ≤ 0.12, λ ≥ 5.7 at 99%
C.L. In [468] the analysis is performed for both the originally proposed inverse power potential of Ratra and Peebles [457],

V (Q ) = M4+αQ−α, (139)

and a modified version of it based on the hypothesis that the quintessence field be a part of supergravity models. In this
case, for a flat Kähler potential, the potential receives an extra factor exp(3Q 2/2M2P ). Their results are shown in Fig. 24, for
the following choices of Yp and 2H/H

0.226 ≤ Yp ≤ 0.247,

2.9× 10−5 ≤ 2H/H ≤ 4.0× 10−5. (140)

The plots show the bound on the initial ratio of the Q field to background (B) (ordinary radiation andmatter) energy density
at initial redshift z = 1012, assuming equipartition of Q energy at that epoch, Q̇ 2/2 = V (Q ), versus the potential parameter
α. The regions denoted by ‘‘Tracker Solution at BBN’’ denotes models in which the evolution of Q has already reached the
tracker solution. Themain effect of BBN is to exclude a large family of possible kinetic-dominated solutions with a Q -energy
density exceeding that of relativistic species prior or during nucleosynthesis.

8.3. Miscellanea

8.3.1. Testing Friedmann equation
We have already stressed several times that changing the expansion history in the early universe has a big impact on

the BBN predictions for light nuclei abundance, in particular 4He. Several modifications to the standard Friedmann equation
have been already discussed, arising in a variety of contexts such as non-standard theory of gravity, time evolving Newton
constant, or brane-world models. One may also try to perform somehow a blind test of the validity of Friedmann expansion
law without a particular theoretical framework behind, and using a suitable parametrization of possible deviations from
the standard behavior. This has been considered for example in [470], where the Hubble factor is expressed in terms of two
parameters,

H(T ) = H1

(
T

1 MeV

)α
, (141)

where H1 and the exponent α should be constrained by data, once we fix the baryon density parameter, η. A similar analysis
has been performed in [471], with a slight different definition of H(T ). Using Eq. (141) one can compute the values of the
three leading quantities which enter BBN dynamics: the freeze-out temperature, TD, the time elapsed from TD and the onset
of BBN at TN , and the value of the expansion rate at TN . Interestingly, H1 and α show a large degeneracy. The same Helium
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Fig. 25. Contours of constant helium (top) and deuterium (bottom) in the α-H1 plane. Chosen values are Yp = 0.24 and 2H/H = 3 × 10−5 . Squares and
filled circles correspond to η = 10−9 and η = 10−10 , respectively. From [470].

mass fraction and 2H abundance can be obtained increasing at the same time the Hubble rate at every temperature (i.e. H1),
which raises the freezing temperature and thus leads to a larger initial neutron to proton density ratio, and the value of
α (for a definite H1 a larger α means a relatively lower expansion rate at TN ). Furthermore, for each nuclide there are
two branches in the H1–α plane for which Yp or 2H/H are the same, see Fig. 25: a lower branch, where also the standard
result, α = 2, H1 ∼ MeV, is lying, and an upper branch, for higher values of H1, which however cannot simultaneously
fit both 4He mass fraction and deuterium. The whole compatibility region is thus characterized by a single (almost) linear
behavior, log(H1) ∝ α, with 1.5 ≤ α ≤ 3. This bound can also be used to constrain possible non-universal coupling
of gravity to the three neutrino generations as considered in [471], where the study is also extended to the case of a
degenerate BBN, or the possibility that matter and antimatter may have different couplings to gravity [472]. A different
gravitational coupling to bosons and fermions, GN,B and GN,F respectively, has been instead considered in [473], with the
result 0.33 ≤ GN,B/GN,F ≤ 1.10 at 2-σ .
Similar analyses have been also applied in the framework of metric-affine gravity models, where the non-Riemaniann

effects are encoded in a fictitious fluid with equation of state P = ρ [474], or which account for the quantum gravity
corrections for matter fields computed in a loop quantum gravity approach, with a non-canonical equation of state [475].
Finally, one can bound the values of parameters which measure departure from Lorentz invariance [476], see e.g. [477] for
a review of the Lorentz- and CPT-violating extension of the SMPP.
The sensitivity of BBN to any modification of the Friedmann equation can be also exploited to test a specific prediction

of general relativity, which has no analog in Newton theory, namely the fact that pressure contributes to the acceleration of
the scale factor,

ä
a
= −

4πGN
3

(ρ + 3P) . (142)

Indeed the Friedmann equation knows about the pressure contribution in Eq. (142) via the Bianchi identity. If one allows
for deviation from this distinctive feature of Einstein theory and introduces, as in [478], a free constant parameter, χ , which
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Fig. 26. The BBN bounds on the primordial black hole fraction versus their mass. Regions to the right and above the curves are excluded by primordial
nucleosynthesis. From [491].

modifies the spatial component of Einstein’s equations,

ä
a
= −

4πGN
3

(ρ + 3χP) , (143)

one obtains during a radiation dominated expansion (neglecting the spatial curvature term),

H2 =
1+ χ
2
8πGN
3

ρ. (144)

Bounds on χ can then be obtained from the BBN. Not surprisingly, the results of [478] show an excellent agreement with the
standard expectation, χ = 1. Notice that variation of this parameter is completely degenerate with a change of the Newton
constant during the BBN, or a non-standard effective number of neutrinos Neff.

8.3.2. Primordial black holes and BBN
Primordial black holes may form in the early universe in presence of sub-horizon density perturbations of order unity

[479–481]. Assessing cosmological constraints upon their density over somemass ranges can provide important information
on the primordial density fluctuations. For a recent review see e.g. [482]. These constraints have been discussed by many
authors in the 1970s [483–490], while updated analysis using BBN [491] and CMB data [492,493] have been presented quite
recently. Primordial black holes evaporating by the BBN epoch (t ≤ 103 s) have a mass lying in the rangeM ≤ 1010 g, since
there is a simple relation between mass and lifetime, τbh, see e.g. [491],

M ∼ 109
(τbh
s

)1/3
g. (145)

They emit various particles such as neutrinos/antineutrinos, photons, quark-gluon jets which produce hadrons through
fragmentation processes. All these (high energy) particles interact with species already present in the thermal bath, and
induce several effects which can change the standard picture of light nuclei production. For example, production of high
energy neutrinos and antineutrinos change the weak interaction freeze-out temperature, and thus the neutron to proton
ratio. Similarly, large hadron injection after the weak process decoupling temperature TD may revival chemical equilibrium
between nucleons, thus leading to quite different amounts of 4He and deuterium with respect to the standard case.
In Fig. 26 we report the results of [491] for β(M), the primordial black hole initial fraction to the total energy density as

function of their mass. The bound for 109 g≤ M ≤ 1010 g, β(M) ≤ 10−20 is strongly constrained by the upper bound on Yp
(they use Yp ≤ 0.252 in their analysis), since in this mass range the effect of black hole evaporation is to delay the freeze out
of n–p chemical equilibrium. On the other hand, for largermasses and lifetimes, the extra produced neutrons cannot be burn
into 4He and thus contribute to deuterium abundance, which provides a stronger constraint in this region, β(M) ≤ 10−22.

8.3.3. Mirror world
The theory of a hidden mirror world, an exact duplicate of our visible world, is based on the product of two identical

gauge symmetry group G × G′, with G the SMPP group, SU(3)c × SU(2)L × U(1)Y , in the minimal case. The two sectors
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communicate through gravity and, possibly, by other interactions (kineticmixing of photons andmirror photons,24 neutrino
mixing, commongauge symmetry of flavor) and are exchanged by the action of a discrete symmetry, themirror parity,which
implies that both particle sectors are described by the same action, and are characterized by the same particle content. For a
review and a comprehensive list of references we address the reader to [495]. The mirror world would influence the whole
evolution history of the universe through its contribution to the expansion rate, and can represent a natural candidate for
darkmatter, aswell as providing amechanism for baryogenesis. Of course, ifmirror particles populate the primordial plasma
with the same densities of ordinary particles, they would contribute to the effective neutrino number for a too large value
Neff ∼ 6.14 at the onset of BBN, which is excluded by light nuclei abundances. Thus, the mirror particle density should
be reduced, and characterized by a plasma temperature, T ′, lower than the ordinary photon temperature, in order to be
compatible with the bound on 1Neff. This can achieved if the inflationary reheating temperature is different in the two
sectors, and all possible interactions between the two worlds are weak enough to ensure that they do not come into mutual
thermal equilibrium.
The ratio T ′/T can be computed by using entropy conservation. Use of the definition of Section 2 leads to

T ′(t)
T (t)

=

(
s′

s

)1/3 ( g∗s(T )
g∗s(T ′)

)1/3
≡ x

(
g∗s(T )
g∗s(T ′)

)1/3
, (146)

with s (s′) the entropy density of ordinary (mirror) species. During the radiation dominated epoch we have

H(T ) =
[
8πGN
3

π2

30

(
g∗(T )T 4 + g∗(T ′)T ′

4
)]1/2

∼

[
8πGN
3

π2

30
g∗(T )(1+ x4)

]1/2
T 2, (147)

where the last approximate equality holds as long as the value of x is not too small. On the other hand the parameter x can
be re-expressed in terms of 1Neff. Since photons, electron/positron pairs and active neutrinos correspond to g∗ = 10.75
we have

1Neff = 6.14x4, (148)

and thus the BBN bound1Neff ≤ 0.4 gives x ≤ 0.51.
It is interesting to sketch how nucleosynthesis proceeds in the mirror world, in particular to compute the final yield of

mirror 4He. As usual one can use the limit that all (mirror) neutrons get bound in 4He and compute the decoupling and
deuterium formation time. In this case we have [496]

Y ′p ∼
2 exp

[
−t(TN)/τn(1+ x−4)1/2

]
1+ exp

[
1m/TD(1+ x−4)1/6

] , (149)

where it has been used the fact that the weak interaction decoupling temperature in the mirror world is larger than TD by
a factor (1 + x−4)1/6 and that, since T ′N ∼ TN unless the mirror baryon density parameter η

′ is very different than η, the
time of nucleosynthesis is t (T ′ = TN) = t(TN)/(1 + x−4)1/2. As noticed in [496], the estimate (149) is not valid for small
x and η′ = 10−10 − 10−9 ∼ η, since in this case deuterium production can become ineffective, thus inhibiting the whole
BBN reaction network. The result of Y ′p versus x as numerically computed in [496] is shown in Fig. 27. Notice that for large
η′ ≥ 10−8 the value of Y ′p is in good agreement with the estimate provided by Eq. (149). Indeed, this large η

′/η regime is
particularly interesting, since it corresponds to a sizeable contribution of mirror baryons to the present energy density of
the universe,

Ω ′B

ΩB
= x3

η′

η
. (150)

In this case mirror baryons might constitute the dark matter or one of its components.25 In view of the bound on x, this
requires a large value for the ratio η′/η ≥ 10, so that the mirror world would contain a considerably bigger fraction of 4He
than the visible world. Further details on the thermodynamics of the early Universe with mirror dark matter are available
in [499].

24 BBN and CMB bounds on the mixing of photon with a hidden light abelian gauge boson have been recently considered in [494].
25 The growth of perturbations and the power spectrum in presence of a sizeable mirror baryon density has been studied in [496,497] and in more detail
in [498] and reference therein.
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Fig. 27. The primordial mirror 4Hemass fraction as a function of x (see Eq. (146)). The dashed curve is the approximate result of Eq. (149). The solid curves
are obtained via exact numerical calculation. From [496].

9. Massive particles & BBN

The existence in the primordial plasma of one or more species of massive particles (mX � me) besides baryons is at very
least a likely possibility, given the numerous pieces of evidence in favor of the existence of dark matter (DM). A wide variety
of observations suggests that most of the matter in the universe is not in a visible form (withΩDM ' 5ΩB), and several of
them also imply that DM is non-baryonic and cold, i.e. made by particles with a non-relativistic momentum distribution.
Direct and indirect evidence, starting more than seventy years ago with the orbital velocities of galaxies within clusters
[500], now also includes the rotational speeds of galaxies [501], gravitational lensing [502,503], the cosmic microwave
background [8], the large scale structure [455], and the light element abundances themselves [11].
At first sight, it might appear that DM has no impact on BBN since the expansion of the universe at the BBN epoch is

dominated by radiation, and the presence of additional massive particles at the BBN epoch is thus dynamically irrelevant.
We recall that, for example, the analysis of [470,471] without assuming strong priors on η show that the behavior of the
Hubble parameter should be very close to the radiation dominated regime during the BBN, see Section 8.3. Once theWMAP
prior on η is used, this result would narrow even further. Thus, even from an observational point of view, any effect due to
massive particles at the BBN must be of non-gravitational nature.
Additional couplings for the DM particles are far from being a remote possibility: there are instead strong motivations

which point to a connection between darkmatter and the electroweak scale. A stable particlewith an electroweak scalemass
and couplings would naturally be produced in the thermal bath of the early universe in an amount similar to the observed
matter abundance [504]. From a particle physics perspective, the hierarchy problem appears to require new physics at or
above the electroweak scale. Furthermore, stringent constraints from electroweak precision measurements (and from the
stability of the proton) indicate that these new particles respect symmetries which limit their interactions. Such symmetries
can also lead to the stability of one or more of the new particles, such as the lightest exotic particle in the spectrum of R-
parity conserving supersymmetry, K-parity in universal extra dimensional models, or T-parity in little Higgs models. For a
review of DM models, see e.g. [505].
Dark matter cannot bring electric charge by definition (otherwise it would be visible) and – although the reason is less

obvious – it appears that it cannot be strongly interacting (see [506] and reference therein for a recent overview of the
stringent bounds on such scenarios). However,DMmight be produced as a decay product of charged (or strongly interacting)
progenitors, and there are also viable particle physics scenarios where this can take place, the most popular of which being
the so-called super-WIMP scenario [507]. Charged or strongly interacting metastable particles at the BBN epoch may form
bound systemswith baryons, altering the nuclear reactions pattern and thus the yields of light elements. The analysis of this
scenario, which goes under the name of ‘‘catalyzed nucleosynthesis’’, is addressed in Section 9.2. On the other hand, particles
which decay (or annihilate) into Standard Model products, even if only weakly interacting, may affect BBN via the cascades
they induced in the plasma: the injection of secondaries triggers directly or indirectly non-thermal reactions, altering again
standard BBN predictions. Of course, if the lifetime satisfies τX � 1 s, the particles have decayed well before the BBN and
no meaningful bound can be derived.
In general, annihilations have a similar effect as decays, the main difference being the time (or redshift) distribution of

the injection: for decays the rate per unit volume is nX/τX , while for annihilations is given by nXnX̄ 〈σv〉. If we parameterize
〈σv〉 ∝ σn(T/mX )n (n = 0, 1 correspond then to s-wave and p-wave annihilation respectively), in the early universe when
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homogeneity is a good approximation, the former gives an injection rate scaling as (1+ z)3, or (1+ z)6+n for annihilations.
In the following, unless otherwise stated, we will generically refer to ‘‘decays’’ to indicate anymode of injection of energetic
particles in the plasma, thus implicitly including the annihilating case. Some specific features of the annihilation injection
mode will be discussed at the end of Section 9.1.2.

9.1. Cascade nucleosynthesis

The phenomenology of non-thermal BBN bounds strongly depends on the branching ratios of the secondaries the X
particle decays into: the hadronic, electromagnetic (photons, e±), neutrino or inert (exotic invisible) ones. The last case
requires twoormore (meta)stable particles,which does not happen very naturally inmost realisticmodels of physics beyond
the SMPP. Perhaps, one exception is provided by the case of the axino decaying into a gravitino and an axion, see e.g. [508].
In general, the only constraint in this case comes from the requirement that the universe at T ∼ 0.1 MeV is radiation-
dominated, which implies

ρX = mX nX . ργ ⇔
( mX
0.1 GeV

)(nX
nγ

)
. 10−4. (151)

We do not treat this scenario and its constraints further. For more details, see for example [509].
It isworth noting that even a decay into neutrinosX → Y+ν has effects on the BBN. The effects are two-fold: (i) energetic

neutrinos can create charged leptons by annihilation onto the thermal neutrino background26; although with a suppressed
efficiency, sufficiently high energy neutrinos can also produce pions via ν+ν̄th → π++π−which affect the p–n equilibrium.
(ii) electromagnetic (and possibly hadronic) showers are induced by 3 or 4 body decay channels via a virtual or real weak
boson propagator, like X → Y + ν + e+ + e−; the previous final state is always considered as kinematically allowed, when
a tree level X → Y +ν is included in the analysis, since – given the binding energies of nuclei – to induce any change to BBN
the phase space available must be�1 MeV anyway. The importance of these sub-leading channels for phenomenological
constraints from astrophysical arguments has also been emphasized in other contexts [510,511]. We address the reader
to [512] for a more thorough analysis. In the remainder of this section we describe electromagnetic cascades (Section 9.1.1)
and hadronic ones (Section 9.1.2). It is worth noting that, for a very broad range of lifetimes involved (0.1 s . τX . 1012 s),
the thermalization of the secondaries takes place in a timewhich is negligible with respect to the Hubble time, and therefore
redshifting of particles can be safely neglected.

9.1.1. Development of the electromagnetic cascade
There are some features of the electromagnetic cascades in the primordial plasma which significantly simplify the

treatment with respect to hadronic ones. When the injected e+, e−, γ are energetic enough, the cascade develops very
rapidly by a combination of two processes: the pair-production on the CMB thermal distribution (γ +γCMB → e++e−) and
the inverse Compton scattering of the non-thermal electrons and positrons (e±+γCMB → e±+γ ) off the CMBphotons [513–
517]. There is a critical energy, EC (T ), above which the non-thermal spectrum is quickly cutoff by pair-production, leaving
virtually no photon available to photo-dissociate the few available nuclei.27 Although the typical energy for pair-producing
on the bulk of the CMB distribution ism2e/〈ECMB〉 ' m

2
e/2.7 T , since reactions on the energetic tail of the distribution are also

important, EC turns out to be smaller: Numerical calculations estimate EC ' m2e/22 T [517] or EC ' m
2
e/23.6 T [516]. By

equating EC to the 2H and 4He binding energies of 2.2MeV and 19.8MeV respectively, one infers the keV-scale characteristic
temperatures below which a small but non-negligible fraction of γ ’s (at the percent level) is available to photodisintegrate
the light nuclei. This is why meta-stable particles with a too short lifetime cannot significantly affect thermal BBN yields.
Meaningful bounds on electromagnetic cascades are only achieved if τX & 105 s for deuterium dissociation and τX & 107 s
for the more tightly bound 4He (in a radiation-dominated universe t ∝ T−2 ∝ E2C ).
Another interesting feature is that the e.m. cascade develops so rapidly that most of the effect depends only on the total

amount of injected energy E0 and the time of injection, rather than the nature and energy of the primary. It is customary
to define a parameter representing the energy stored in meta-stable particles before the cascade begins (hence the zero
subscripts), for example ζX ≡ mX nX,0/nγ ,0, which together with the decay time τX characterizes almost completely the
process. A quasi-universal shape of non-thermal photons is reached very quickly. Numerical simulations have found a
spectrum below EC well approximated by [516,517]

dNγ
dEγ
=


K0

(
Eγ
EX

)−3/2
for Eγ < EX

K0

(
Eγ
EX

)−2
for EX ≤ Eγ ≤ EC ,

(152)

26 In principle, they can also upscatter e± in the plasma, but decays are only relevant when T � 1 MeV, when almost no charged particle populate the
plasma.
27 No e+, e− remain instead available for electro-disintegrations, since the cross-sectionwith the abundant CMB photons is effective to quickly cool them
down to thermal energies.
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Fig. 28. Number of destroyed nuclei per TeV of electromagnetically interacting energy injected in the plasma at temperature T . From [518].

Fig. 29. Number of produced nuclei per TeV of electromagnetically interacting energy injected in the plasma at temperature T , due to photodisintegration
and fusion reactions. From [518].

where K0 = E0/(E2X [2 + ln(EC/EX )]) is a normalization constant such that the total energy in γ -rays below EC equals the
total energy E0 injected. One has EX ≈ 0.0264EC according to Ref. [516], or EX ≈ 0.03EC according to [514]. A more accurate
calculation of the evolution of this spectrum should include interactions of these ‘‘break-out’’ photons via photon–photon
scattering γ + γCMB → γ + γ , (mainly redistributing the energy of energetic γ -rays right below energy EC ), Bethe–Heitler
pair production γ + p(4He)→ p(4He)+ e− + e+, Compton scattering off thermal electrons γ + e− → γ + e− (with the
produced energetic e− in turn inducing inverse Compton scattering and thus further low-energy γ ’s) and, of course, nuclear
photodisintegration, which directly affects BBN.
In Fig. 28 we show the amounts of destroyed nuclei per TeV of injected electromagnetic energy, E0, at a temperature T .

The sharp rises at characteristic temperatures are due to the pair production threshold effect for energetic γ , which depend
on the binding energy. In Fig. 29 we show a similar plot for the nuclei produced as a result of the dissociations. It is evident
that, although a minor amount of 2H starts to be produced from spallation of 3He already at T ' 1 keV, a major secondary
production of 2H, 3H and 3He happens at T . 0.5 keV, when 4He photodisintegration becomes relevant. In this range, not
only does 2H, 3H and 3He production over-compensate their photodisintegration (which takes place at a slower rate) but a
significant synthesis of 6Li is induced by the non-thermally produced 3H and 3He, with a subleading contribution from direct
photodisintegration of 7Li and 7Be. For a compilation of the reactions involved in the cascade nucleosynthesis calculations,
we address the reader to the excellent review [518]. Also, some relevant newnuclear astrophysics data and their implications
for BBN have been presented in [519].
In Fig. 30 we show a typical result for the excluded regions in the plane ζX–τX (where 0 refers to a time t � τX ), in

this case taken from [189]. In the left panel only deuterium constraints are considered, in the right panel constraints from
all elements are included. The light blue regions are excluded due to underproduction of deuterium: in the left shoulder
at relatively small τX this is due to the fact that direct photodestruction of 2H dominates. For τ & 107 s 4He destruction is
important, and leads typically to over-production of 2H, unless the injected energy is so high that in turn even this secondary
deuterium is destroyed (upper-right corner of the plot). In this parameter range, typically even 4He and 7Li are destroyed to
a level inconsistent with observations, but these additional constraints basically overlap with the deuterium ones. On the
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Fig. 30. Regions of the parameter space ζX–τX excluded by: left panel: 2H overproduction (dark blue) or 2H under-production (light blue); right panel:
including also the constraints from overproduction of 6Li (dark red), shown on the top of the 7Li (yellow) and 4He (green) constraints. From [189].

other hand, if one considers 6Li production from non-thermally produced A = 3 nuclei, one can also disfavor the red region
shown in the right panel due to over-production of 6Li, which is however less robust due to the likely reprocessing of this
fragile isotope in the observed stellar systems. Note that if the metastable particle is the progenitor of the DM candidate,
it must fulfill the condition mX nX & 4mp nB, i.e. a typical value for ζX fulfills ζX & 2 × 10−9 GeV. Larger values imply a
very large mass difference between the X particle and the DM candidate, smaller values refer to metastable particles which
account at most for a sub-leading fraction of the DM today. So, a way to summarize previous constraints is to say that BBN
excludes electromagnetically decaying particles as progenitors of DM when their lifetime is longer than τX & few× 105 s.

9.1.2. Including hadronic channels
Generally, in the decay of the X particles one expects both hadronic and electromagnetic channels. The treatment of

cascades in presence of hadrons is significantly more involved, since it introducesmore particles, more timescales andmore
processes to take into account. The flow-chart in Fig. 31 summarizes the decay scheme and physical processes involved. Note
that a hadronic branching ratio unavoidably leads to secondary electromagnetic showers, which affect BBN along the lines
described in Section 9.1.1. To have a first qualitative understanding of the effects of hadronic particles, it is worth recalling
that different hadronic species interact in the plasma via a few reactions, which assume different relevance at different
times:

• mesons, mostlyπ± and kaons (with rest frame lifetime in the 10−8 s range), have only an effect at times t ≈ 1–10 s, when
ordinary weak interactions are not efficient anymore, but they still have time to interact before decaying. They mostly
act by enhancing the n/p ratio and thus the final value of Yp.
• antinucleons, by the preferred tendency to annihilate onto protons, have a similar final effect of increasing n/p. Compared
with mesons, they also have an additional peculiar effect at later times (t ' 102 s) by annihilating onto Yp and leaving
2H, 3H, and 3He among secondaries.
• nucleons, at early times, nucleons thermalize via electromagnetic processes: magnetic moment scattering off e± for
neutrons, Coulomb stopping off e± and Thomson scattering off thermal photons for protons. However, at late times
other energy lossmechanisms start to dominate for high energy nucleons, namely nucleon–nucleon collision and nuclear
spallation reactions. Due to the different electric charge, these nuclear processes are already dominant for neutrons at
t & 200 s, while for protons only at t & 104 s. When they are effective, a cascade nucleosynthesis can take place:
each nucleon–nucleon scattering will produce another energetic nucleon (a single 100 GeV nucleon can produce several
tens of 10 MeV nucleons) and their effect of spallation over 4He will produce many 2H, 3H, and 3He nuclei. The total
effect will be more efficient than for antinucleons: a single 100 GeV antimatter particle has a much shorter mean free
path before annihilating with a 4He nucleus and produce the mentioned secondaries, and nucleon induced production is
therefore much more efficient. Non-thermal nucleon injection lead to an increased Yp abundance at t ≤ 200 s, increased
2H abundance at 200 s ≤ t ≤ 104 s, or decreased 7Li abundance at t ≈ 103s. Spallation of 4He to produce 2H, 3H, and
3He may have as a secondary effect the synthesis of 6Li.
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Fig. 31. Flow-chart of the decay effects on BBN. From [520].

Fig. 32. Light element nuclei yields for a particle of mass mX = 1 TeV decaying as X → qq̄ as a function of the temperature T of the cascade injection in
the plasma. From [518].

To illustrate this point, in Fig. 32, we report the light element yields produced by the decay X → qq̄ of a singlemetastable
particle with massmX = 1 TeV, as a function of the photon temperature at which the injection takes place. It is interesting
that initially, after hadronization of the quark–antiquark state, on average only 1.56 neutrons result; all others are created
at T ≤ 90 keV by the thermalization of injected neutrons and protons due to inelastic nucleon–nucleon scattering and 4He
spallation. Similarly, all the 2H, 3H, and 3He nuclei are due to 4He spallation processes and n–p nonthermal fusion reactions
(for 2H) induced by the thermalization of the injected energetic nucleons.
For a more quantitative analysis, a numerical treatment is required. Technically, the problem of solving cascade

nucleosynthesis is highly non-trivial, especially in presence of significant hadronic branching ratios. One major difficulty
is that one cannot study the non-thermal effects independently of the earlier standard BBN stage, as it is possible (at
least as first approximation) in the case of electromagnetic cascades. Although already in the 80’s several authors have
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Fig. 33. Conservative BBN constraints on the abundance of relic decaying neutral particles as a function of their lifetime; particle mass ismχ = 1 TeV and
the hadronic branching ratio Bh = 3.33 × 10−2 . Ωχh2 is the contribution neutral particles would have given to the total relic density today, would they
have not decayed. Colored regions are excluded and correspond to constraints imposed by observations (see text). From [518].

Fig. 34. Constraints on the relic abundance of neutral decaying particles as a function of their decay time, for a particle massmχ = 100 GeV and varying
branching ratio, Bh . Numbers in the picture refer to the solid line above and stand for the corresponding log10 Bh . Dotted lines are the actual constraints if
one considers the less conservative 6Li/7Li. From [518].

estimated the effects of injecting a non-thermal population of particles in the plasma at the BBN epoch, only recently
several authors have followed self-consistently the reactions taking place during their thermalization and coupled them
to the simultaneously ongoing thermal nuclear network [521–523,518]. The latest treatments typically adopt a Monte
Carlo technique to calculate the interaction probability of the particle shower, and codes such as PYTHIA are employed
to determine the energy distribution of the shower particles given the initial branching ratios in the decay. Nucleon energy
losses must be taken into account as well. For a more detailed overview of the scheme and techniques of the numerical
treatment, see e.g. [520,518].
The resulting constraints can be presented similarly to the ones for e.m. decays, still it is crucial to specify not only the

injected energy, but also the hadronic branching ratio, Bh. For example, in Fig. 33 we report the BBN constraints derived
in [518] for the decay of particle of mass mX = 1 TeV and hadronic branching ratio, Bh = 3.33 × 10−2. The quantityΩXh2
is the contribution that neutral particles would have given to the total energy density today, would they have not decayed,
and is proportional to the parameter ζX introduced in the previous section (ΩX h2 = (MX n0Xh

2)/ρcr = (n0γ h
2/ρcr)ζX '

3.9×107ζX/ GeV). Colored regions are excluded and correspond to constraints imposed by upper limit for Yp (orange area),
upper limit on 2H (blue), upper limit on 3He/2H (red), and lower limit on 7Li (light blue). The yellow region violates the less
conservative bound from 6Li/7Li. References for observational abundances used to get these constraints, which partly differ
from the ones we have compiled in Section 4, can be found in the original paper [518].
As a consequence of the different mechanisms dominating at different times, the most stringent constraints are given

by: the overproduction of 4He at early times (τχ ≤ 102 s), overproduction of 2H for 102 s ≤ τχ ≤ 103 s, overproduction of
6Li for 103 s ≤ τχ ≤ 107 s, and an overproduction of the 3He/2H ratio for τχ ≥ 107 s. Fig. 34 illustrates how the constraints
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Fig. 35. The abundances of 6Li as produced in scenarios with hadronic cascades injected by neutralino annihilation, for different channels, as labeled. The
annihilation rate is taken to be 〈σv〉 = 10−25 cm3/s. From [522].

depend on the branching ratio, Bh, this time for a particle mass,mχ = 100 GeV, with the allowed region below the lines. In
the limit Bh → 0, one recovers bounds due to the e.m. channels, while even for Bh ∼ 1% metastable particles with a relic
abundance comparable to today’s DM one are excluded if τX & 102 s. Of course, one can turn the argument around and
explore the possibility that decays may explain some discrepancies existing between the SBBN model and observation. In
particular, both ‘‘lithium problems’’ mentioned in Section 4.5may be solved by hadronically decaying particles with lifetime
∼2000 s (see e.g. Fig. 2 in [560,524]). It is worth mentioning that in some of these scenarios ‘‘low-energy’’ observables (like
the properties of gravitino dark matter) would be linked to very high energy physical scales, as the reheating temperature
and the leptogenesis scale, see for example [559,561,525].
In case of an annihilationmode, themajor peculiarity is that in order to have the same injection rate of a decay at an epoch

zinj, a very large annihilation rate at epochs z > zinj is required. Typically, in order to produce significantmodifications of the
light element yields, often an unphysically large 〈σv〉 is required. Stronger bounds follow then fromnon-BBN considerations,
unless a relatively light particle (mX . few GeV) is considered (see e.g. [526]). A possible exception is provided by the 6Li
nuclide. It has been shown that, for typical electroweak-scale WIMP masses, the primordial 6Li yield from DM annihilation
exceeds the SBBN abundance for any 〈σv〉 > 10−27 cm3/s [527,522].
This is illustrated in Fig. 35: interestingly for the annihilation rate required to produce the correct WIMP DM thermal

relic abundance, anO(100) GeV DM particle produces an amount of 6Li in the same range required to explain observational
claims of 6Li.

9.2. Catalyzed BBN

The constraints derived in the previous section assume that, before decaying, the meta-stable particle X is ‘‘inert’’. While
DM can not be charged or strongly interacting, there is no a priori reason why its parent particle should bring no electric or
strong charge.Whenever this happens, the possibility arises that X particlesmay form bound systemswith baryons, altering
the nuclear reaction pattern and thus the yield of light elements. This scenario is currently known as catalyzed BBN (CBBN).
The cosmological role of charged massive particles (CHAMPs) was already considered in the late 80’s [528–530], but the
influence of bound states in BBNhas only been fully appreciated recently. In 2006,within a fewweeks three papers appeared
pointing out the importance of CBBN [531–533] and identifying themain physicalmechanisms responsible for the alteration
in the nuclear network. In the last two years, several articles have followed, clarifying the physical ingredients regulating
this complex scenario, including refinement in the calculation of catalyzed reactions, late-time nucleosynthesis, etc. [523,
534–537,524,538–543]. A quite complete review of the physics can be found in [524], which we shall mainly follow for the
present summary. We limit ourselves to consider singly charged CHAMPs, although it has been argued that negative doubly
charged and stableCHAMPsbound to 4He++maybe viable asDM candidates inwalking technicolor theories [544]. It isworth
noting that, at least qualitatively, one expects similar catalytic mechanisms if the particle X is strongly interacting, rather
than being electrically charged. One physically motivated scenario of this kind is the long-lived gluino in split-SUSY [545–
547]. Some calculations of the primordial nucleosynthesis in presence of massive, strongly interacting particles have been
performed in the past (see [548,549]), where bound states with ‘‘ordinary’’ nuclei were considered. The main difficulty with
this scenario is that the nuclear physics of such bound states is very hard to treat reliably. For example, analogies with toy-
models used to describe hypernuclei are employed [550] and the description of the bound systems is at best parametric. An
accurate treatment is made highly non-trivial by the effects of non-perturbative physics, and we shall not consider them
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Table 15
Binding energies Eb in the Bohr approximation |Eb| ' Z2 αmA/2 and photo-dissociation decoupling temperatures Tph in keV (as calculated in [531]) for
exotic bound states AX .

Bound state pX 2HX 3HX 3HeX 4HeX 7LiX 7BeX 8BeX

|Eb| 25 50 75 299 397 1566 2787 3178
Tph 0.6 1.2 1.8 6.3 8.2 21 32 34

Fig. 36. Bound state fractions f bA ≡ nAX/n
tot
A of nuclei A bound to CHAMP X

− as a function of temperature T , for a model with MX = 100 GeV and
ΩXh2 = 0.1. Shown are f bA for

7Be solid (red), 7Li long-dashed (green), 6Li short-dashed (blue), and 4He dotted (purple), respectively. From [524].

further. Wewant to remark, however, that the BBN cascade bounds that are sometimes considered in the literature for such
particles (see [551]) may be altered, since catalytic effects are completely neglected.

9.2.1. Early time CBBN: Formation of bound states and catalysis
A negatively charged, long lived particle X (or CHAMP) with mass MX � mp would form bound-states with nuclei and

alter the network of reactions leading to the synthesis of light elements. Compared with a generic nucleus A of charge Z and
mass mA, its corresponding bound state with a CHAMP, AX , has a mass higher by∼mX , a charge lower by one unit (Z − 1),
and it is characterized by an AX binding energy given by Eb ' Z2 αmA/2 in the limitmA � mX . Another interesting quantity
is the photo-dissociation temperature Tph of the AX system, defined as the temperature at which the photodissociation rate,
Γph(T ), for the bound nucleus becomes smaller than the Hubble rate, H(T ). Roughly speaking, below Tph the AX system is
stable against photodestruction. In Table 15 we report binding energies in the Bohr-like atom approximation (corrections
are of order ∼10% for 4HeX , up to 50% for 7BeX) and the Tph, as originally calculated in [531]. A precise calculation of the
fractional abundance of bound nuclei requires solving the Boltzmann equation, including all relevant reactions for the AX
state. The inadequacy of simple approaches based on the Saha equation to determine the evolution of the AX abundance
was realized immediately in [531] and further analyzed e.g. in [532,523]. However, even the latter analysis had to rely
on strong approximations on the reaction rates for bound nuclei (that the bound state nucleus would be destroyed in the
interaction, and that standard BBN is over at the time CBBN takes place, etc.). Fig. 36,whichwe take from themore recent and
accurate analysis in [524], shows the evolution of bound state fractions f bA ≡ nAX/n

tot
A of nuclei A bound to X as a function

of temperature T , for a model with mX = 100 GeV and ΩXh2 = 0.1. It confirms that the behavior of f bA is significantly
different than that expected from simple estimates by the Saha equation due to nuclear destruction of bound states and
slow recombination rates (with respect to the Hubble time). This is particularly relevant in f b7Li due to the

7LiX(p, X) 24He
reaction.
Once CHAMP-nuclei states XA are formed in the plasma, each nuclear reaction will have its CHAMP homologue:

standard BBN: A+ A1 → A2 + A3,
CBBN: AX + A1 → A2 + A3 + X .

(153)

At first sight, the main advantage of CBBN reactions is the smaller Coulomb barrier. However, there is a more subtle effect –
whose importance was already recognized in [531] – which acts on homologues of radiative captures, i.e. of reactions of the
kind A(A1, γ )A2. If we denote by λγ the wavelength of the emitted photon, in general of the order of 100 fm, electric dipole
(E1) reaction rates scale as λ−3γ , whereas electric quadrupole (E2) ones scale as λ

−5
γ . The introduction of the photonless state

in the CHAMP-mediated reaction replaces λγ with the Bohr radius of the bound system, approximately 5 fm for 4He. In
terms of the usual parameterization of low-energy nuclear reaction (see Eq. (122)), the former Coulomb effect enters the
exponential barrier-factor, the latter – when present – influences the S-factor, which can be indeed enhanced by orders
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Table 16
Dipole amplitude,Q -values, and catalyzed S-factor enhancement in the cross-section for relevant (α, γ ) reactions.Modified from [523], taking into account
the values recently reported by [540].

EM N(α, γ )C NX(B, C)X− Enhancement
Reaction Transition QSPN (MeV) QCBBN (MeV) SCBBN/SSBBN
2H(α, γ )6Li E2 1.474 1.124 ∼107
3H(α, γ )7Li E1 2.467 2.117 ∼30
3He(α, γ )7Be E1 1.587 1.237 ∼30

of magnitude, as reported in Table 16. Another, usually sub-leading effect in the direction of decreasing S is a decrease of
phase–space due to the reduction of the reaction Q -value.
The most important alteration to the standard scenario in catalyzed BBN is mainly due to the enhancement of the single

6Li producing process,

standard BBN: Yp + 2H→ 6Li+ γ ; Q = 1.47 MeV, (154)

replaced by the process

CBBN: 4HeX + 2H→ 6Li+ X; Q ' 1.13 MeV, (155)

which in [531] was identified to be very effective even for a small fraction of X particles bound with nuclei. The usual BBN
process of Eq. (154) is indeed only allowed at the quadrupole level (due to the almost identical mass to charge ratio of 2H
and Yp), which is the reason for the very small value of 6Li/7Li, as already discussed in Section 4. Another possible path to
enhance the 6Li yield in CBBN was proposed in [533], who noticed that the decay of X when still in a bound state with Yp
could result in a break-up of the Yp nucleus, producing 3He and 3H that would eventually fuse into 6Li when reacting with
Yp. However, the possibility that this would happen is estimated to be very low and the 2H(4HeX, 6Li)X appears to be in all
cases still dominating the production of 6Li [533,523]. The enhancement of the 6Li yield in CBBN due to the process in Eq.
(155) has been confirmed by all the published analysis as the most remarkable effect of CBBN and in particular by [540],
who performed an accurate quantum three-body calculation of the cross-section of the reactions involved in CBBN. The
observational hints of a plateau in 6Li at a value well above standard BBN predictions, as well as the persisting discrepancy
between 7Li observations in the Spite Plateau and the (apparently overproduced) 7Li yield has motivated several authors to
explore the CBBN scenario further, trying to also explain the 7Li ‘‘problem’’. A mechanism to address this issue was pointed
out in [532]. Since significant fractions of 7Li and (mostly) 7Be are in bound states with CHAMPs, 7Be can be depleted by the
enhancement of the CBBN analogues of 7Li(p, α)4He, 7Be(n, p)7Li, and 7Be(n, α)4He. The authors of Ref. [538] performed a
CBBN analysis also adding the effect of X decay cascades. They concluded that in presence of strong showers from decaying
relic particles, bound-state effects on nucleosynthesis are negligible, and both Li problems are solved (if at all) in a way very
similar to the cascade BBN case in absence of catalysis. [535] proposed a more elaborate solution of the 7Li problem: the
7BeX(p, γ )8BX , and the subsequent beta-decay of 8B → 8Be + e+ + νe would deplete the final 7Li abundance, with little
consequence on Yp. The 7BeX(p, γ ) reactionwould happen through a shifting of the resonance as an effect of the X presence,
which would lead to a huge rate enhancement.
To a large extent, the reason why settling these issues is far from trivial is that significant uncertainties remain in the

estimates of binding energies and CBBN reaction rates, due to the use of very simplified nuclear models and of the Born
approximation. An account of the situation has been given in Section III of [524], which we address the reader to for
further technical details. [524] also contains the most systematic and up-to-date analysis of CBBN, including calculations
of rates of AX recombination–photodisintegration and CBBN analogues of BBN nuclear reaction rates. As long as the range
10 keV > T > 0.8 keV is concerned, the author confirms that the most relevant role is played by reaction (155), even when
using the detailed calculation for its rate obtained in [534]. Moreover, in this regime only nine reactions (reported in Table II
of [524]) are sufficient to describe the physics of CBBN. The evolution of light nuclide abundances in presence of bound-state
reactions is shown in Fig. 37, where the enhancement of 6Li abundance is clearly visible (note however that the role of X
decays has been ‘‘switched off’’).

9.2.2. Late time CBBN: HX bound states, CHAMP-exchange, and decays
The authors of [532] suggested the possibility that the formation of bound state nuclei of CHAMPs with 3H, 2H and p

at very late times might induce the suppression of synthesized 6Li. Bound states of Z = 1 nuclei with X form at 1–2 keV
temperatures, see Table 15. These bound states behave essentially as ‘‘long-lived’’ neutrons, which can dissociate Li and 7Be
Coulomb-unsuppressed. [524] carried on an extensive analysis of these effects, making use of reaction rates derived in the
Born approximation, identifying nineteen reactions as relevant when late time CBBN effects are taken into account. These
early results indicated that bound states of CHAMPs with Z = 1 WOULD induce at late times the destruction of most of the
synthesized 6Li and some 7Li. Initially, it appeared that the stringent constraints initially put on the abundance of CHAMPs,
e.g. in [531,536] loosen significantly. To add another layer of complication, an additional late time effect was pointed out in
[524], which somewhat compensates the previous one. It is due to exothermal transfer of CHAMPs from Z = 1 nuclei into
heavier nuclei (CHAMP-exchange reactions), i.e. HX(4He,H)4HeX . By lowering the abundance of neutral states HX , more of
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Fig. 37. Limits on the primordial CHAMP to entropy ratio Yx = nX/s for CHAMPs with intermediate lifetimes. Shown are constraint lines for CHAMPs of
mass mX = 100 GeV and a variety of hadronic branching ratios, Bh = 10−5–1, as labelled in the Figure. Solid (red) lines correspond to the conservative
limit 6Li/7Li < 0.66, whereas dashed (blue) lines correspond to 6Li/7Li < 0.1. From [518], updated (courtesy of K. Jedamzik).

Fig. 38. Evolution of light-element number ratios 7Be/H (solid-red), 7Li/H (long-dashed-green), 6Li/H (short-dashed-blue), and 2H/H (dotted-purple), for
a CHAMP model withMX = 100 GeV,ΩXh2 = 0.01, and τX = 1010 s. Neither effects due to electromagnetic and hadronic energy release during CHAMP
decay nor charge exchange effects have been taken into account. From [524], updated (courtesy of K. Jedamzik).

the 6Li and 7Be produced can survive. The detailed study of bound state reaction rates performed by [540] has finally shown
that CHAMP-exchange reactions dominate the late time CBBN, thus ‘‘protecting’’ the abundances of Li and 7Be produced at
earlier times, as it can be seen in Fig. 38. The late-time drop in 7Be is due to electronic capture decays.

9.2.3. 9Be from CBBN
Finally, we want to point out here that modifications to the yields of heavier than 7Li elements can take place in CBBN.

As we have summarized in Section 3.4, one robust prediction of the standard BBN is the absence of sizeable yields of A > 7
elements. Roughly speaking, this is due to the lack of stable A = 8 elements, and to the inefficiency of the 3α→12 C , which
would respectively allow a slow light element chain to produce heavier elements or ‘‘bridge’’ it, as it happens in stars. The
very short lifetime of 8Be is a problem that can be overcome in CBBN, where sizeable amounts of meta-stable bound states
8BeX can be created through the mechanism 4HeX(α, γ )8BeX at T . 30 keV, as showed by [552]. Once this bound state has
been produced, the neutron capture reaction 8BeX(n, 9Be)X can take place and 9Be be efficiently produced in CBBN, whereas
the analogue SBBNmechanism is suppressed as a consequence of the lifetime of 8Be, shorter than a femtosecond. Although
the absolute abundance of 9Be produced by this mechanism is sensitive to the CHAMP abundance in the plasma, YX , [552]
argued that an enhanced production of 9Be and 6Li are peculiar signatures of CBBN, and found that their ratio is independent
of YX . The author derives the conclusion that the primordial ratio 9Be/6Li ∼ 10−3 should therefore be a ‘‘signature’’ of
CBBN, as it dramatically differs from 9Be/6Li ∼ 10−5 (9Be/H ∼ 10−19, [95]) which one obtains in SBBN. In their detailed
study, [540] have challenged this result by arguing that the rate estimate of 8BeX(n, 9Be)X by [552] is too high; although
strong conclusions would require a careful examination of all the nuclear effects involved, they hint toward a much lower
efficiency of the process proposed by [552]. While this issue is yet to be clarified, the kind of constraints to supersymmetric
scenarios that might follow from a peculiar 9Be production in CBBN has preliminarily been studied in [553,554].
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9.2.4. Constraints in CHAMP parameter space
If the lifetime of the CHAMP is τX ≤ 3 × 102 s, i.e. before that bound states can form, clearly its only effect on BBN is

equivalent to injecting electromagnetically andhadronically interacting particles into the plasma. For intermediate lifetimes,
3×102 s ≤ τX ≤ 5 × 105 s, the main novel constraint is due to the possible overproduction of 6Li via 4HeX(2H, X)6Li.
Fortunately, as this reaction is now known within a factor three in light of the dedicated calculations of [534], this range of
lifetimes is relatively well constrained. However the decay of a CHAMP at this time induces again a cascade nucleosynthesis;
in hadronic cascades from a neutral particle decaying at the same time, it is well known that 6Li overproduction is the main
effect. Thus, unexpectedly, for hadronic branching ratios Bh ≥ 0.01 (and e.g. MX = 1 TeV) the effects of a charged particle
decay do not differ much from those of a neutral one [539]. The results of the previous section apply since the 6Li produced
by the hadronic shower induced reactions dominates over the effect of catalyzed 6Li production. Only for Bh . 10−2 and for
sufficiently large decay times τX the CBBN mechanism provides new bounds.
Finally, for longer lifetimes, τX ≥ 5×105 s, the conservative limits on charged decaying particles initially derived in [539]

appeared to be no stronger than those on neutral particles, due to the large uncertainties in nucleosynthesis at T ≤ 3 keV.
However, the nuclear rate calculations for CBBN presented in [540] strongly reduce those uncertainties. A recent application
of these updated calculations has been performed in [554] with an analysis restricted to aminimal SUGRAmodel with heavy
gravitino, which we address for further details.

10. Conclusions

In this review we have reported the current status of BBN, focusing in the first part on precision calculations possible in
the standard scenario, which provide a tool for current cosmological framework, in the second part on the constraints to
new physics, which become particularly important in the forthcoming LHC era. The ‘‘classical parameter’’ constrained by
BBN is the baryon to photon ratio, η, or equivalently the baryon abundance, ΩBh2. At present, the constraint is dominated
by the deuterium determination, and we findΩBh2 = 0.021± 0.001(1 σ). This determination is consistent with the upper
limit on primordial 3He/H (which provides a lower limit to η), as well as with the range selected by 4He determinations,
which however provides a constraint almost one order of magnitude weaker. The agreement within 2 σ with the WMAP
determination,ΩBh2 = 0.02273 ± 0.00062, represents a remarkable success of the Standard Cosmological Model. On the
other hand, using this value as an input, a factor & 3 discrepancy remains with 7Li determinations, which can hardly be
reconciled even accounting for a conservative error budget in both observations and nuclear inputs. Even more puzzling
are some detections of traces of 6Li at a level far above the one expected from the Standard BBN. If the observational
determinations are solid, both nuclides indicate that either their present observations do not reflect their primordial values,
and should thus be discarded for cosmological purposes, or that the early cosmology is more complicated and exciting than
the Standard BBN lore. Neither a non-standard number ofmassless degrees of freedom in the plasma (parameterized viaNeff)
or a lepton asymmetry ξe (all asymmetries assumed equal) can reconcile the discrepancy. Current bounds on both quantities
come basically from the 4He measurement, Neff = 3.2± 0.4 (1 σ) and ξe = −0.008± 0.013 (1 σ).
On the other hand, other exotic proposals have been invoked to reconcile this discrepancy. Typically they involve

massive meta-stable particles with weak scale interactions, which should be soon produced at the LHC. In Supersymmetric
scenarios, long-lived particles are possible whenever the Next to Lightest Supersymmetric Particle (NLSP) decays into the
Lightest Supersymmetric Particle (LSP) are gravity-mediated, or ‘‘disfavored’’ by phase space arguments, with amodestmass
splitting between NLSP and LSP. Cases frequently considered in the recent literature are neutralino→ gravitino decays, for
example, or stau→ gravitino. The phenomenology associated with the catalysis of reactions due to bound states of charged
particles (as the stau) with ordinary nuclei is a particularly new topic in recent investigations. Also, the importance of a
possible primordial origin of the 6Li measured in a few systems of the 7Li plateau has been recognized: first, the bounds in
parameter space tighten significantly if lithium constraints are used, especially 6Li [555–557,527]; second, because these
exotic BBN scenarios may accommodate for a cosmological origin for 6Li while solving the 7Li excess problem as well,
their phenomenology is very appealing. Although these links among primordial nucleosynthesis, dark matter, and perhaps
SUSY phenomenology are quite fascinating, it is worth stressing that BBN bounds on cascade decays or annihilations of
massive particles applywell beyond the restricted class of SUSY-inspiredmodels. For example, the electromagnetic cascades
following heavy sterile neutrino decays are constrained by these kinds of arguments, as well as decays of massive pseudo
Nambu–Goldstone bosons, as considered in [558,472].
There are two directions along which we can expect the BBN field to develop in the future. On one hand, BBN is an

important tool for precision cosmology, especially if its priors are used in combination with other cosmological observables.
Already BBN provides the best bounds on parameters as Neff and ξe (and bounds on η comparable to the CMB); yet, since
theoretical uncertainties are at themomentwell below observational ones, there is surely room to refine its power, provided
that significantly greater efforts are devoted to determine light element abundances, and in particular Yp. It is instructive in
this sense to look back to what S. Sarkar wrote in his review [12] thirteen years ago:
Thousands of person years of effort have been invested in obtaining the precise parameters of the Z0 resonance in e+ − e−

collisions, which measures the number of light neutrino species (and other particles) which couple to the Z0. In comparison, a
modest amount of work has been done, by a few small teams, on measuring the primordial light element abundances, which
provide a complementary check of this number as well as a probe of new superweakly interacting particles which do not couple
to the Z0.
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Despite the improvements reported in this article, we feel that unfortunately insufficient attention has been devoted to
this problem, if compared to other areas of observational cosmology. In particular, the 4He determination is still plagued
by systematic uncertainties. Although their importance has been recently recognized and assessed more carefully, the fact
that this reanalysis was triggered after the independent determination of η from CMB (and its agreement with the ‘‘low
deuterium determinations’’ in QSO spectra) shows that there is still a long way to go towards a precision era for primordial
elements. On the other hand, a significant improvement has taken place in assessing and reducing theoretical uncertainties,
mostly related to nuclear reaction data. BBN has benefit from a wealth of new nuclear astrophysics measurements at low
energies and covering large dynamical ranges. Given the much larger observational uncertainties, in this sector an effort in
reassessing the systematic errors in older datasets might be more useful in reducing remaining discrepancies in the nuclear
rates error budget. This is in particular the case for reactions involving 7Be.
The other direction of development follows from the interplay with Lab experiments. Neutrinos have reserved many

surprises, and it is not excluded that exotic properties may show up in future experiments with important implications for
BBN, as we illustrated in Section 6. However, it is in particular from LHC that one expects a better understanding of high
energy scales, and thus of the cosmology at earlier times andhigher temperatures.Most theories that go beyond the Standard
Model of Particle Physics require new states to appear at or above the electroweak scale and, as already reported, theymight
have implications for the phenomenology at the BBN epoch. If the LHC should provide indication for the existence of the
SMPP Higgs and nothing else, there will be no natural scale to explore. In this case, albeit sad, BBN and other cosmological
tools might be the only practical means to explore very high energy phenomena leaving their imprint on the cosmos. One
example treated here is the effect of variations of fundamental ‘‘constants’’ on cosmological time-scales that emerge in extra
dimensional scenarios, possibly embedded in grand unified theories or string theories. If, as hopefully more likely, the LHC
will reveal new dynamics above the electroweak scale, we might be able to infer from the empirical evidence the presence
of cosmological effects before the BBN epoch. A new Standard Cosmological Model would emerge as well, perhaps making
the BBN one more step in the ladder back to the Big Bang, rather than the first one.
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