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Abstract

Determining the DNA sequence in the human genome in a fast, cheap and reliable way

can be the key to predicting a number of genetic disorders. The cost of sequencing a

whole genome, from scratch, has been dramatically reduced over the years. The National

Institutes of Health proposed the ”US$1000 genome challenge” in 2004, which would be

the target cost for sequencing one entire human genome. The technologies inspired by

this challenge are expected to be a new step in modern medicine. One of the promissing

technologies is DNA sequencing using graphene nanopores. In such a device the transverse

current is measured while the DNA strand passes through a graphene nanopore. In

principle, this device could significantly reduce the time and the cost of DNA sequencing

in comparison with the existing methods, as one could envision a single-step process where

a full strand is sequenced in one go.

In our project we proposed to simulate such a device. We were interested to see

whereas different kind of pores help in stabilizing the bases. The second problem that

we have adressed were if the transverse current changes when different nucleobases are

inside the pore. In order to calculate electronic transport the system needed to be treated

quantum mechanically. At the same time we were interested in dynamics of the DNA

inside the pore and the effects of the water and ions. For this purporses we used a com-

bination of density functional theory coupled to classical molecular dynamics to simulate

the electronic structure of a graphene sheet as a DNA strand passes through a nanopore

drilled in the sheet. The effects of the solvent and of counter-ions were included in the

simulation via the classical part of the simulation (using QM/MM approach) whereas

the rest is simulated quantum mechanically (using DFT). From different snapshots of the

simulation we used the Non-equilibrium Greens functions methodology to calculate the

electronic transport properties of this system.

Our results show that pore termination and the presence of water tend to signifi-

cantly alter the results. In particular, different pores, either hydrogen or nitrogen lead

to significantly different charge transfer effects. Water molecules, either classically or

quantum-mechanically described tend to screen this charge transfer.

From the transport point of view we also observe significant changes due to pore

termination, but we also note that there is not enough distinction between bases in either

case.
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Chapter 1

Introduction

1.1 Nanoscience and applications in biology

Nanoscience is arguably one of the most important research areas in modern science [10].

It is the field of research where at least one of the dimension of the material of interest is

in the nanometer scale. These small systems draw our attention, because many of their

properties might change when the size of the device becomes nanoscopic. Applications

of nanoscopic systems have been shown in areas of diverse as microelectronics, coating,

paints and biology [11]. The biological sciences might be one of the largest beneficia-

ries of nanoscience. The main reason is because biological molecules have dimensions

commensurate with nanoscale materials.

Applications in biology come in a variety of forms. An example can be drug delivery

[12]. The application of the new technologies in the drug delivery can benefit from the

reduction of the amount of the used component, reducing the chances of missing in a dose

and localyzing the delivery of potent compounds. In addition, there may be no need to use

carrier, flavoring agents, binders and coating, that are used in the drugs nowadays [12].

The current nanotechnologies in the drug delivery include the nanoparticles of application.

Nanoparticles are usually smaller than 100nm, they are made by forming nanocrystals or

drug-polymerer complexes or by creating nanoscale shells that entrap drug molecules [12].

They are often taken by cells where larger particles would be excluded. Small molecules

can be loaded into nanoparticle that are not recognized by the immune system [13] and

that can be targered to particular tissue types.

Another possibility is to use nanoparticles, in this case metallic, as the drug itself.

It comes with the success of platinum anticancer drugs [14], that used as a component

of nearly 50% of all cancer treatment. One is now looking for new metallic compounds

which at the nanoscale result in lower side-effects [14].

An alternative for the nanoparticles can be nanoscopic tubular structures or nan-

otubes. While nanoparticles can be regarded or zero-dimensional nanostructures (in the

sence that all dimensions are nanoscopic), nanotubes are called one-dimensional (since all

but one dimension are nanoscopic). Nanotubes have some advantages relative to nanopar-

1



Introduction 2

ticles for biological applications [15]. First, they have larger inner volumes (relative to the

dimension of the tube), that can be filled with desired chemical species. In addition, they

have distinct inner and outer surfaces, which can be modified for biochemical functional-

ization. Nanotubes can have an open ”mouth”, which makes the inner surface accessible

and the incorporation within the tubes particularly easy [11]. There exist several types

of nanotubes, such as carbon nanotubes, peptide nanotubes and template-synthesized

nanotubes [15].

Carbon nanotubes (tubular structures obtained by rolling a sheet of hexagonal carbon

atoms) can also be used for development of biosensors. For example, Dai and colleagues

[16] attached a reactive molecule to the sidewalls of single-walled nanotubes, that further

can be used to attach proteins to their walls. Lieber’s group used single-walled nanotubes

as probe tips for atomic-force microscopy imaging of biomacromolecules [17].

The working principle of these biological sensors is the idea that the electronic current

flowing through the device can be significantly altered by the presence of an external agent

on the system’s surface. This is in fact the working principle of many kinds of sensors.

What makes nanoscopic sensors so exciting is the fact that their surface to volume ratio

tends to be extremely high. This means that small changes to the surface will yield

significant changes to the electronic properties and enhance sensitivity.

As we will show, a newly found material called graphene [5] can also be used as a kind

of sensor with high selectivity, i.e., not only it is able to detect single molecules, it is also

able to differentiate between slightly different molecules [18].

1.2 DNA. Why is DNA so important?

DNA, or deoxyribonucleic acid, is the hereditary material in humans and almost all other

organisms. It encodes the genetic information of almost any living body [19]. The infor-

mation in DNA is stored as a code made up of the sequential arrangement or combination

of four chemical bases: adenine (A), guanine (G), cytosine (C), and thymine (T) (Figure

1.1), which are connected to each other via a phosphate forming a strand of ”beads”. In a

DNA molecule, each type of nucleobase on one strand bonds with just one specific type of

nucleobase on the other strand (called complementary base pairing); adenine bonds only

to thymine through two hydrogen bonds, and cytosine bonds only to guanine via three

hydrogen bonds. A hydrogen bond is the electromagnetic attractive interaction between

polar molecules in which hydrogen is bound to a highly electronegative atom, such as

nitrogen, oxygen or fluorine [10]. In case of DNA hydrogen from one nucleobase bonds

to nitrogen or oxigen from another base. Each base is attached to a sugar molecule and

a phosphate molecule. Together, a base, sugar, and phosphate are called a nucleotide.

Nucleotides are arranged in two long strands that form a spiral called a double helix. This

arrangement of two nucleotides binding together across the strands is called a base pair
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(as shown in Figure 1.1). Furthermore the π interaction between adjacent base pairs

favours the formation of helical structure [20].

Figure 1.1: Representation of the chemical structure of the DNA. We can note the complimen-
tary pairing between C and G, and A and T. We can also see the double stranded
helical nature of the molecule.

As hydrogen bonds are not covalent, they can be broken and rejoined relatively easily.

The two strands of DNA in a double helix can therefore be pulled apart like a zipper, either

by a mechanical force or high temperature. As a result of this complementarity, all the

information in the double-stranded sequence of a DNA helix is duplicated on each strand,

which is vital in DNA replication. Indeed, this reversible and specific interaction between

complementary base pairs is critical for all the functions of DNA in living organisms.

Human DNA consists of about 3 billion bases, and more than 99 percent of those

bases are the same in all people [1]. The order, or sequence, of these bases determines

the information available for building and maintaining an organism. Knowing the DNA

sequence we can compare a plethora of individual human genomes, enabling us to locate

sequences that cause hereditary diseases and to discover mutated ones. Besides, DNA

sequencing can be used in the study of other areas of biology. For example, it can be used

for comparing genomes between species to find common properties and functions [21]. In

essence, once the sequence of DNA has been determined, an endless number of research

areas open up.
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1.3 Problem of DNA sequencing

The DNA sequencing procedure, that is used nowadays was named after Frederic Sanger

[22]. In the current section I will give a brief overview of the Sanger sequencing method

and describe it’s main disadvantages.

Figure 1.2: Main steps of the DNA sequencing, using Sanger method. Figure is extracted from
[1].
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First, the DNA is purified from the cell. Then very large pieces of DNA, such as all

chromosomes or genomes, are cut into smaller pieces and stored in vectors, which are

larger pieces of DNA with the ability to be reproduced when placed in a host cell such

as bacteria. Bacterias containing a vector are placed in a culture medium, where they

multiply a million-fold or more. Each time the bacteria divides, the DNA vector placed

inside is also copied. Subsequently, a sequencing reaction is performed, which contains

four steps. First, the double-stranded DNA is separated into single strands. Then a

new DNA strand is made complementary to the template one. The termination step is

the key to the sequencing reaction. Strand extension is halted by the incorporation of a

dye-labeled nucleotide, which identifies the base at the position where strand extension

stopped. When many reactions are performed together, each of the bases in a DNA

strand can be identified. The newly synthesized DNA strands, each labeled with one of

the four dyes, are now sorted by length using capillary electrophoresis. The results are

then displayed on a computer. The main steps of the Sanger method are shown in the

Figure 1.2. One then needs to reassemble the information by performing this procedure

multiple times and using various computational tools to virtually reconect the different

segments.

The cost of sequencing a whole genome, from scratch, has been dramatically reduced

over the years mostly due to parallelizing the procedue (see Figure 1.3).

Figure 1.3: Cost of the DNA sequencing by National Human Genome Research Institute. Figure
is extracted from [2].
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However, the Sanger method has some disadvantages and it is now widely belived it

will not overcome the US$1000,00 per genome barrier. First there are occasional artifacts,

likely due to contaminant fragments. Also band pile-ups can occur due to loop formation

under gel conditions, and is usually depicted as numerous bands in the same position,

or very close together on the gel. These pile-ups appear at different positions when

the priming is done in opposite directions. The method is not completely accurate and

therefore repeating the sequencing more than once, for comparing the result is important.

Finally, as stated before, to perform the DNA sequencing with the Sanger method one

needs to reproduce millions of copies of a DNA strand. That is extremaly expensive and

time consuming. Therefore there is a need for a new DNA sequencing method; one that

is fast, reliable and possibly uses only one DNA molecule.

1.4 DNA sequencing using nanopores

The growing need for cheaper and faster genome sequencing resulted in the proposal of the

technologies. The National Institutes of Health proposed the ”US$1000 genome challenge”

in 2004, which would be the target cost for sequencing one entire human genome [2]. The

technologies inspired by this challenge are expected to be a new step in modern medicine.

One of the promissing technologies is DNA sequencing using nanopore sensors. Nanopore

is a tiny hole through a membrane or film, usually, big enough to allow a single DNA

molecule to pass. It can be biological or solid state (Figure 1.4).

Figure 1.4: Solid state nanopore for DNA sequencing.The current passing along the membrane
can be used to differentiate the bases. Figure is extracted from [3].
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While passing through the nanopore, different nucleobases result in the changes to the

charge transport. There are two types of current that can be measured: ionic current

and transverse current. The idea of the ionic current measurements is that when each

nucleobase passes through the pore it blocks the movement of ions present in the solution

in a manner that reflectes both the polymer size and conformation [23]. So, in essence,

different bases give rise to different proportions of blocked ions. By measuring this ionic

current flowing through the nanopore one could differentiate the bases. Transverse current

is the current that appears in the direction perpendicular to the backbone axis [24]. This

idea is demonstrated in Figure 1.4. There the pore is not only a sieve for the DNA but

also an electronic gap. The DNA nucleobase bridges that gap allowing electrons to flow.

Either nanopore-based sensing technique is attractive for DNA sequencing applications

becaurse it is a label-free, amplification-free, single-molecule approach that can be scaled

for high-throughput DNA analysis [25]. Finally, the read length of DNA fragments is

larger than the length of DNA fragments in the Sanger method. This is an important

technological advantage. It excludes the necessity of assembling the separate reads to

determine the human genome. Furthermore, large read lengths also provide information

on insertions, deletions and gene duplicates that are sometimes difficult to determine from

assembling short reads [7].

1.4.1 Biological nanopores

The analysis of the DNA sequencing using nanopore started from the usage of biological

nanopores [26]. The idea of using nanopores for DNA sequencing was proposed more than

20 years ago [27]. In the basic experiment DNA, as a charged molecule, is driven through

a biological nanopore by an electric field (Figure 1.5). The advantages of using biological

nanopore for single-molecule DNA analysis are a follows:

• cells can produce large numbers of biological nanopores with atomic level resolution;

• X-ray crystallography has provided information about the nanopore structure at

Ångsrtom resolution;

• physical and chemical properties of the biological nanopores can be tailored by

changing the environment or the pore itself;

• remarkable heterogeneity is observed among biological nanopores in terms of size

and composition [25].

Example of the biological nanopore include polymer α-haemolysin [28]. Kasianowicz

at al. first demonstrated the electrophoretic transport through α-haemolysin [28]. The

motivation to develop translocation of DNA through α-haemolysin was the ionic current

signals, which were found to be different when comparing a homopolymer made up of 100
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Figure 1.5: Snapshorts of a ssDNA molecule passing through biological nanopore. Figure is
extracted from [4].

identical bases, with another one of different type. However, the thickness of the mem-

brane does not allow one to identify each nucleobase, because at one given moment more

than one nucleobase is located inside the pore. At the same time a great advantage of pro-

tein nanopores is that they can be chemically engineered with advanced molecular biology

techniques, that can develope a variety of α-haemolysin [4]. At the February’s Advances

in Genome Biology and Technology conference in Marco Island, Florida company Oxford

Nanopore announced that they would be able to launch a biological nanopore sequencing

device by the end of the year 20121 [29].

1.4.2 Solid-state nanopores

Biological nanopores have some disadvantages such as fixed size and limited stability .

Biological pores can become unstable if changes occur in external parameters such as pH,

salt concentration, temperature, mechanical stress, and so on. An alternative approach

to nanopore sequencing may involve solid-state nanopores. The advantages of the solid-

state pores include very high stability, control of diameter and channel length, adjustable

surface properties and the potential for integration into devices. These issues make them

preferable in comparison with their biological counter-parts. A solid-state nanopore is

typically a nanometer sized hole formed in a synthetic membrane (usually SiN or SiO2).

Solid-state nanopores are fast becoming an inexpensive alternative to biological nanopores

[4].

1That turned out to be an oversell as a comercial device is yet to become available. Nevertheless,
the company has a number of prototypes working in partner research institutes. Nature magazine has
predicted that in 2014 a portable sequencing device using nanopore technology will become available.
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1.4.3 Hybrid biological-solid-state nanopores

The main disadvantage of the solid-state nanopore technology is that it cannot reliably

differentiate between analytes of approximately the same size. This can be overcome

however, by attaching specific recognition sequences and receptors to the nanopore to

create a hybrid structure. This structure has the potential to uniquely identify nucleotides

in sequencing applications [25]. Another possibility is to reduce the length of the nanopore

channel to try to enhance the signal-to-noise ratio. Another approach is try to design

entirely new materials where sensitivity is enhanced.

1.5 Graphene: properties of suspended graphene mem-

branes

A potential candidate for nanopore sequencing is graphene [30]. Graphene is a single layer

of graphite - one atomic layer of carbon arranged in honeycomb lattice as shown in Figure

1.6(a). Since its experimental isolation on Si/SiO2 substrates in 2004 and experimental

observation of the anomalous ”half-integer” quantum Hall effect, graphene has attracted a

great deal of attention [31]. Graphene is the material of interest mostly due to its unique

band structure, which consists of ”cones” (around the Fermi level) located at the two

inequivalent Brillouin zone corners, where the conduction and valence bands touch at a

single point (Figure 1.6)

Due to this unique band structure graphene has such characteristics as high mobility,

unparalleled thermal conductivity, 98% optical transparency and extraordinary current-

carrying capacity [5]. Graphene, differently from traditional 2D electron systems based

on GaAs or Si, is truly 2D, having a thickness of one atomic layer. This cone-like band

structure results in electrons behaving as massless relativistic particles [5]. In comparison

with the Si/SiO2 substrates, graphene’s mobility increases by more than two orders of

magnitude; it is stronger than steel but more supple than a Sanger wrap; it is transparent

yet very conductive; it conducts heat better than any other material [5]. These charac-

teristics make graphene the material of interest in many areas. In what follows I will

highlight some of these properties - the ones that are of interest for this work.

1.5.1 Mechanical properties

Graphene has unique mechanical properties, it is the naturally thinnest elastic membrane.

Suspended graphene sheets act as sensitive nano-electromechanical resonators and imper-

meable membranes with extremely high elastic constant and strength [5]. Most of the

graphene membranes are not flat, but form periodic ripples, although the electronic prop-

erties of this system are robust enough to prevent them from deviating from the ideal

graphene structure. This means that, in principle, one can obtain a reliable suspended
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Figure 1.6: (a) Lattice and (b) band structure of graphene. Figure is extracted from [5].

sheet that can withstand the formation of defects (such as a small hole) without crumpling

and without loosing most of its electronic properties.

1.5.2 Electrical properties

Graphene has a bipolar field effect transistor (FET) behavior, where a nearby electrostatic

gate can be used to tune the density and polarity of charge carriers in graphene, thereby

modulating its conductance. For devices on Si substrates with 300 nm of SiO2 1 V in gate

voltage Vg induces charge densities n ∼ 7.2×1014m−2. For typical suspended devices, the

n/Vg ratio is ∼ 2× 1014− 4× 1014m−2V −1. Figure 1.7(d) displays the standard curve of

device conductivity σ vs. Vg, which is V - shaped, with a finite minimum of conductivity

value σmin at the charge neutrality point, (where graphene is undoped with nominally

zero charge) [5].
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Figure 1.7: (a,b) SEM images of singly - and dual - gate suspended graphene fabricated via acid
etching of SiO2 layer. (c) SEM imade of a graphene device fabricated using the
tithography-free technique. Scale bar: 2 µm. (d) Conductance vs gate voltage of
a suspended bilayer graphene device, with mobility ∼ 40000 cm2/V s. Figure is
extracted from [5].

1.6 Graphene nanopores for DNA sequencing

Common membrane materials currently used for nanopore device fabrication are insula-

tors such as silicon nitride SiN , aluminum oxide, and silicon oxide SiO2. In my project I

used graphene nanopores. As was shown in the previous sections, graphene is a thin,

flexible material with good electronic conductivity and robust mechanical properties.

Graphene nanopores are structurally robust and their shape is stable over time. Use

of graphene as a nanopore membrane material could permit sensing and control of the

electric potential directly at the nanopore. The first proposal of this kind of sensors was

done by Postma [18], where atomically thin graphene nanoelectrode have been considered

for DNA sequencing based on DNA’s transverse conductance [18]. Later there were sim-

ulations on 1D graphene nanoribbons containing a pore [25]. In all cases, the basic idea

is that the atomically thin membrane only interacts with one base at a time and little or

no tunneling occurs between graphene and base which are above or bellow the one in the

pore.

Figure 1.8 in [6] presents a cartoon of a typical graphene nanopore device. In the
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prototypical device, individual ssDNA polymer are electrophoretically driven through a

pore and the resulting current is measured. It is expected that ionic current varies when

each nucleobase passes through the pore due to the different sizes of the nucleobases and

different interaction of this bases with the pore. Another possibility would be to measure

the transverse current.

Graphene nanopores have been fabricated and it has been shown that one can detect

DNA passing through, albeit no bases differention has been achived (See Figure 1.9) [7].

The following two requirements for device performance must be met: (1) there must be

a sufficient difference in the conductance spectra G(ν) of individual nucleobases to allow

them to be distinguished from one another, and (2) the measured conductance for a single

nucleobase must be somewhat independent of its orientation as it passes through the pore

(or at least variations in the conductance must still allow for differentiation). Thus far,

experiments on graphene nanopores have been unable to differentiate between bases. One

has only been able to determine whether a strand was present within the pore.

Figure 1.8: Nanopore sensor consists of a graphene nanopore embedded in SiO2. Single-stranded
DNA translocate through the nanopore. Figure is extracted from [6].
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Figure 1.9: (a) TEM image of an 8nm graphene nanopore. (b) Time trace of events for nanopore
device. (c) Histogram of blocked current. (d) Scatter plot of event length. (e)
Histogram of event lengthes. Figure is extracted from [7].
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1.7 The challenges for theory and simulations

One can use theoretical models to fully understand experimental results and further still,

make usefull predictions about how to optimize new experimental setups. As we are

dealing with the nanoscale, the atomic positions are very important. As we will later

see, although the nucleotides are similar, the different atomic arrangements give rise

to significantly different electronic distributions (and transport properties). With that in

mind theoretical tools are of extreme importance. Here we want to calculate the electronic

transport. Theory for the electronic transport for calculating transverse current deals with

the electrons, so we need to use quantum mechanics. At the same time DNA must be

surrounded with water and counter ions (Na and Cl). That signifficantly incrises the

number of atoms in the system. Finally, as we are analyzing DNA translocation through

the nanopore, we have to deal with the dynamics of the system.

The challenge, thus is to calculate the electronic transport in a system containing tens

of thousands of atoms in a dynamical form - in principle - fully quantum mechanically

in a realistic fashion, i.e. with atoms positioned in their correct places. This means that

model calculations are not an option. We must do this using computer simulation which

gives accurate predictions about the electronic structure.

1.8 Objectives

In my project I examine the possibility of performing DNA sequencing using graphene

nanopores. Four different graphene nanopore are analyzed: a graphene nanopore pas-

sivated with H atoms, a graphene nanopore passivated with N atoms. In both cases

we consider nanopores with 10Å and 20Å in diameter correspondingly (Figure 1.11).

I analyze four different DNA nucleobases separately in each of this pores and calculate

the electronic transport of the system. For this purposes I use a combination of density

functional theory coupled to classical molecular dynamics (QM/MM method). The ef-

fects of the solvent and of counter-ions are included in the simulation via the classical

part of the simulation whereas the rest is simulated quantum mechanically (Figure 1.10).

From different snapshots of the simulation I use the Non-equilibrium Green’s function

methodology to calculate the electronic transport properties of this system.

Thus this text is orginized as follows: chapter 2 describes the methodology, that we

used in our simulations, chapter 3 describes results of the simulations and chapter 4 gives

conclusions and future perspectives.
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Figure 1.10: Typical system we would like to consider in our simulations of electronic transport.
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Figure 1.11: Analyzed graphene nanopore with different DNA nucleobases: Adenine (DA),
Thymine (DT), Guanine (DG) and Cytosine (DC).



Chapter 2

Methodology

As described in the previous chapter we want to simulate the translocation of a DNA

strand through a nanopore. During that translocation process we would like to calculate

the electronic transport properties. In order to do that a number of pre-requisites must

be met:

• consider the positions of the atoms;

• treat water and counter ions;

• treat the electrons quantum mechanically;

• treat the dynamical effects.

In principle, one would need to treat the system as a collection of electrons and nuclei

that interact with each other via Coulomb interactions. This is a quantum mechanical

problem that requires one to find the many-body wave function for the electrons and

nuclei ψ(−→ri ,
−→
Rj), wich is the solution of a Hamiltonian of the form (without spin):

Ĥ = T̂ + V̂ (2.1)

where T̂ is the kinetic energy operator and V̂ is the potential energy operator. The

solution follows the time-dependent Schrödinger Equation:

H|ψ
〉

= −i~
∂|ψ
〉

∂t
[32] (2.2)

The solution of this problem is extremely complicated for a large number of parti-

cles. The first approximation that can be made to simplify this is the so-called Born-

Oppenheimer approximation. The general idea is that given their significantly different

masses - electrons and nuclei evolve on different time frames. It is possible to assume that

electrons can almost instantaneously accomodate to a specific configuration of nuclei and

one need only worry about the time evolution of the nuclei.

Still, this problem requires the solution of the time evolution equation for the nuclei

as quantum objects with the effects of the electrons included. In most cases, however, one

17
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can consider them as classical objects that ”feel” a potential given by the other nuclei and

the electrons. In that case, the evolution of the system follows Newton’s laws where for

each new configuration of the nuclei a new electron density can be obtained and therefore

a new potential.

We have now two paths to follow. In the first one we calculate the electrons quantum

mechanically in what is known as ab-initio molecular dynamics. Another possibility is

to go one step further and parametrize the effects of the electrons on the different nuclei

and on its neighbors. In general, given an arrangement of atoms, an equation known as

a force field describes the potential felt by the i-th atom due to the different interactions

with the remaining atoms in the system.

We have thus two competing approaches. One is fully classical and much faster. It

allows one to easily simulate the dynamics of thousands or, perhaps, millions of atoms.

The other one is more accurate and includes the electrons explicitly, but is much more

computationally demanding. In this project we used both methods. Initially we used

them separately to describe different aspects of the problem. At the end I will describe a

methodology designed to get the best of both worlds.

2.1 Molecular dynamics

Studying the motion of atoms and molecules is important to the understanding of many

important concepts in physics, chemistry and biology. The size and complexity of a typical

molecular system, together with the timescales that must be reached, require the use of

classical molecular dynamics for the nuclear degrees of freedom. In molecular dynamics

simulations Newton’s equations of motion are solved numerically to obtain a trajectory

of the dynamics of a collection of atoms over a period of time [9].

2.1.1 Molecular mechanics force field

A force field is a mathematical expression describing the dependence of the energy of

a system on the coordinates of its particles. It consists of an analytical form of the

interatomic potential energy, U(r1, r2, ..., rN), and a set of parameters entering into this

form. The parameters are typically obtained either from ab initio or semi-emphirical

quantum mechanical calculations; or by fitting to experimental data such as neutron, X-

ray and electron difraction, Raman and neutron spectroscopy, etc. Molecules are simply

defined as a set of atoms that are held together by simple elastic (harmonic) forces and

the force field replaces the true potential with a simplified model hopefully valid in the

region being simulated [33].

Atoms basically interact with each other through van der Waals forces and electrostatic

forces. When they are covalently bonded to others, a strong force holds them together as
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a stable chemical group. A widely used mathematical model for the potential energy of a

molecular system consists of six types of interactions:

U = VLJ + VEL + VBS + VAB + VPT + VIT (2.3)

The first type, VLJ , is the Lennard-Jones potential that has an attractive part repre-

senting the van der Waals energy and a repulsive part representing the Pauli repulsion:

VLJ =
1

2

∑
i,j,i6=j

4εij

[(
σij
Rij

)12

−
(
σij
Rij

)6]
(2.4)

where Rij is the distance between the i-th and j-th atom, εij is called the van der Waals

dissociation energy, and σij is called the collision diameter. The dissociation energy is

equal to the amount of energy needed to pull a pair of atoms in the strongest van der

Waals binding state apart. The collision diameter is approximately the distance at which

a pair of atoms bounces off from each other in a normal, non-reacting condensed state.

VEL is the electrostatic potential energy according to Coulomb’s Law:

VEL =
1

2

∑
i,j,i6=j

qiqj
Rij

(2.5)

where qi is the effective charge of the i-th atom. Compared with van der Waals potential,

the electrostatic potential is a stronger, more long-range interaction.

VBS is the bond-stretching energy standing for the elastic interaction between a pair

of atoms connected by a covalent bond (see Figure 2.1(A)):

VBS =
1

2

∑
m∈bonds

klm(lm − l0m)2 (2.6)

where lm is the distance between the two atoms of the m-th bond, l0m is the equilibrium

bond length, klm is the bond strength. The values of l0m can be obtained from the X-ray

diffraction experiments, values of km - from Raman spectra.

VAB the angle-bending energy standing for the interaction among three covalently-

bonded atoms that form a stable angle (see Figure 2.1(B)):

VAB =
1

2

∑
m∈angles

kθm(θm − θ0
m)2 (2.7)

where θm is the m-th angle between the two adjacent bonds that share a common atom,

θ0
m is the equilibrium bond angle, and kθm is the strength. The values of the θ0

m and kθm

can also be obtained from experiments.

VPT and VIT are the proper and improper torsional energies standing for the inter-

actions among four covalently-bonded atoms that form a stable proper and improper

dihedral angle (see Figure 2.1(C-D)):
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Figure 2.1: Schematic illustration of the interactions that model covalent bonding: A) Bond-
stretching force, B) Angle-bending force, C) Proper torsional force, D) Improper
tortional force [8].

VPT =
1

2

∑
m∈torsions

Vm[1 + cos(nmωm − γm)] (2.8)

VIT =
1

2

∑
m∈torsions

kξm(ξm − ξ0
m)2 (2.9)

where ωm is the m-th dihedral angle between the two adjacent angles that share a common

bond, nm is the periodicity factor which determines the number of equilibrium dihedral

angles in a 3600 rotation, γm is the phase shift, Vm is the amplitude, ξm is the m-th im-

proper dihedral angle among four atoms that are not bonded successively to one another,

ξ0
m is the equilibrium improper dihedral angle, and kξm is the strength. The tortional

parameters are usually derived from the ab initio calculations [34].

The sum of equations 2.6, 2.7, 2.8 and 2.9 are called the bonded interactions, which

maintain the bond lengths, the bond angles and the dihedral angles so that chemical

groups will remain stable in an MD simulation2 [36].

2Another many-body classical potential, which is not used in this work, is the Brenner empirical
potential [35]. The Brenner potential for every atom in the system depends on the nearest neighbors of
this atom. The total potential energy of the system interacting via the Brenner potential is:

Utot =
1

2

N∑
i=1

N∑
i=1
j 6=i

Uij =
1

2

∑
i=1

∑
j 6=i

fcut(rij)[U
(R)(rij)−BijU

(A)(rij)] (2.10)

where fcut(rij) is the cut-off function, which limits the interaction of an atom to its nearest neighbors,
R1 and R2 are parameters, that determine the range of the potential, fuctions U (R)(rij) and U (A)(rij)
are the repulsive and the attractive energy terms of the potential, respectively. This way it is possible to
simulate bond breaking and thus reactions.
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The first force fields appeared in the 1960’s. Their goal was to predict molecular

structures, vibrational spectra and enthalpies of isolated molecules. Allinger’s group de-

veloped the potentials [37]: MM2, MM3, MM4 which were aimed at treating small organic

molecules.

Since then, more widly applicable force field appeared, such as Dreiding and Universal

(UFF) force fields, that contain all parameters for all the atoms in the periodic table [33].

Other popular force fields are CHARMM [38], AMBER [39], GROMOS [14], OPLS [40]

and COMPASS [41]. All of them are quite general, but the first three are often employed

in simulations of biomolecules, while OPLS and COMPASS were originally developed to

simulate condensed matter.

In our project we use AMBER force-field:

U =
1

2

∑
i,j,i6=j

4εij

[(
σij
Rij

)12

−
(
σij
Rij

)6]
+

1

2

∑
i,j,i6=j

qiqj
Rij

+
1

2

∑
m∈bonds

klm(lm − l0m)2 +

+
1

2

∑
m∈angles

kθm(θm − θ0
m)2 +

1

2

∑
m∈torsions

Vm[1 + cos(nmωm − γm)] (2.11)

2.1.2 Molecular dynamics

Once a force field has been chosen and the corresponding parameters obtained the posi-

tions, velocity and acceleration of each atom are calculated using a numerical method to

solve Newton’s equations of motion. A set of initial conditions is needed (positions and

velocities of each particle), and a good model to represent the forces acting between the

particles (either from electronic structure calculations or using the empirical force fields

presented in the previous sections), and to define the boundary conditions to be employed.

After this the classical equation of motion need to be solved:

mi
d2−→ri
dt2

= fi = − d

dr
U(−→r1 ,

−→r2 , ...,
−→rN), (2.12)

where U(R1, R2, ..., RN) is the potential energy depending on the coordinates of the

N particles. This is a system of N coupled second order non linear differential equations

that cannot be solved exactly, it has to be integrated numerically step by step using an

appropriate integration algorithm such as Verlet algorithm, Leap-frog algorithm, Velocity

Verlet and Beemans algorithm3.

Initial conditions

To define the initial positions and velocities of each particle of the system we need to

analize the system. In the case of a crystal the positions will be available in the form of a

3There are other methods to evolve a system of quantum particles such as Carr Parrinello MD [42]
and Path integral MD [43]. Since those are not going to be used they will not be discussed here.
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crystallographic file. Typically, the initial velocity of each particle is attributed randomly

and then they are adjusted in order to zero the angular momentum and the center of mass

velocity of the total system.

Boundary conditions

In case we want to calculate bulk properties of the system, we have to set up boundary

conditions. To exclude the surface effects we need to use periodic boundary conditions

(PBC). Therefore the simulation box is surrounded by an infinite number of replicas of

itself. This is not a problem when simulating a crystal, but in the case of disordered

systems an artificial periodicity can be introduced. If the size of the box is large, the

effects are not important, but we need to be careful while considering any properties that

depends on long-range correlations. PBC are used together with the minimum image

convention (only the interactions with the nearest image are considered). But it involves

the time to compute the forces to scale as N2. The potential is not constant on the surface

of a cube around a given particle. Therefore the usual approach consists in employing a

spherical truncation, such as the only interaction between particles separated by a distance

smaller that Rc are taken into account:

Utrunc(r) =

{
ULJ(r), r ≤ Rc,

0, r > Rc.
(2.13)

The cutoff radius Rc cannot be larger than L/2.

Integration algorithms

To solve Eq.2.12 numerically we need to discretize the trajectory and use an integrator

to advance over small steps:

ri(t0)→ ri(t0 + ∆t)→ ri(t0 + 2∆t)→ ...ri(t0 + n∆t). (2.14)

The desirable properties of such an integrator are:

• minimal need to compute the forces,

• good stability if large time steps ∆t are used,

• good accuracy,

• good conservation of energy and momentum,

• time-reversibility,

• conservation of the phase space volume [44, 45, 33].
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The solution to these problem was proposed by Verlet. If one sums the Taylor expansion

of the equations of motion 2.15 by +∆t and −∆t, the terms ∆t, ∆t3, etc. cancel and

Eq.2.16 is obtained:

ri(t0 + ∆t) = −ri(t0) +
dri(t0)

dt
∆t+

d2ri(t0)

dt2
∆t2O(∆t3) (2.15)

ri(t0 + ∆t) = −ri(t0 −∆t) + 2ri(t0) + ai(t0)∆t2 +O(∆t4) (2.16)

The velocities are not used in the algorithm, but they can be obtained as:

vi(t0) =
1

2∆t
[ri(t0 + ∆t)− ri(t0 −∆t)] (2.17)

The other type of algorithms are of the predictor-corrector type. The iteration starts

with a prediction of the new positions and all the required derivatives. Then the correct

forces at t+∆t are evaluated using the new positions. The difference between the predicted

and corrected forces is used to correct the predicted values. For small time steps this

algorithm is more accurate that the Verlet integrator.

Thermodynamical ensembles

The integration of Eq.2.12 keeps constant the number of particles N, the volume of the

cell V, and the total energy of the system E. This implies that the generated trajectory

will be in the NVE ensemble (constant number of particles N, volume of the cell V and

energy E). However, the integration errors, and force fluctuations may cause slow drifts in

the total energy. It is therefore desirable to have some ways to control the temperature.

Furthermore, we are interested to set a proper assemble experimentally.

Constant temperature simulations: The temperature of the system is directly

connected with the kinetic energy, so T can be changed by modifying the velocities of the

atoms. The simplest scheme then to control the temperature is the ”velocity scaling”.

It consists of scaling all the velocities by a factor
√
TB/T (t), where TB is the desired

temperature and T (t) is the instantaneous temperature of the system before the scaling.

This method, however, doesn’t allow one to sample the true NVT ensemble. A more

physical way to control the temperature is to use a thermostat as proposed by Berendsen

[46], consisting in a weak coupling of the system to a heat bath. This is done by modifying

the equation of motion using:

ai =
Fi
mi

+
1

2τT

(
TB
T (t)

− 1

)
vi (2.18)

The additional term acts as a frictional force and the coupling constant τT determines

the strength of the coupling. This method allows us to rapidly achieve the desired tem-

perature. However, it does not allow to sample the correct canonical ensemble and it can

affect the system dynamics when small values of τT are used.
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The most rigourous method to control the temperature is to use the Nose-Hoover

thermostat. In this case the heat bath becomes an integral part of the system by adding

the artificial variable with an associated effective mass [47]. This is the method we use in

our simulations.

Constant pressure simulations: The pressure can be controlled in the same way

as the temperature. In this case the instantaneous virial takes the role of the temperature

and the pressure is controlled by scaling the system volume. One of the common used

barostats is the Parrinello-Rahman barostat. In this approach Parrinello and Rahman

suggested that the simulation box can change its volume [48].

The theory described here has been implemented in a variety of computational codes

available freely for scientific use. Our simulations were performed on Gromacs [49]. A full

description of the protocol used will be given in the next chapter.

2.2 Density-functional theory (DFT)

If one wishes to calculate the electronic wave function of a many-electron system, the

Hamiltonian

H = − ~2

2m

∑
i

∇2
i +

1

2

∑
i 6=j

e2

|−→ri −−→rj |
−
∑
i,j

Zje
2

|−→ri −
−→
Rj|

(2.19)

(where − ~2
2m

∑
i∇2

i is a kinetic energy operator, 1
2

∑
i 6=j

e2

|−→ri−−→rj | describes the electron-

electron interaction,
∑

i,j
Zje

2

|−→ri−
−→
Rj |

describes the nuclei-electron interaction) needs, in prin-

ciple, to be solved.

In 1927-1928 L.H. Thomas and E. Fermi suggested that the full electronic density

is the variable of interest in a many-body problem, and derived a differential equation

for the density. Unfortunately, the approximation they used for the kinetic energy was

unable to sustain a bound state. Newertheless, this approximation gave a basis for the

later development of Density Functional Theory (DFT), that nowadays is one of the

most popular quantum mechanical approaches. Determining the N -body wave function

|Ψ
〉

= |Ψ(−→r1 ,
−→r2 ,
−→r3 ...
−→rN)
〉

by exactly solving Eq.2.19 is a hard job even for a very small

number of electrons.

2.2.1 Thomas-Fermi theory

Thomas (1927) [50], and independently Fermi (1928) [51], gave a prescription for calcu-

lating the energy of an electronic system exclusively in terms of the electronic density. In

their original work Fermi proposed an expression for the total electronic energy, where

the kinetic, exchange, and correlation contributions were taken from the homogeneous

electron gas, for which good approximations were known. The idea was to construct the



25 2.2. DENSITY-FUNCTIONAL THEORY (DFT)

same quantities for the homogeneous system as

Eα[n] =

∫
n(r)εα[n(r)]dr (2.20)

where εα[n(r)] is the energy density of contribution α (kinetic, exchange, and correlation),

calculated locally at the value assumed by the density at every point in space. This was the

first time that the local density approximation (LDA) was proposed. For a homogeneous

electron gas the electronic density is related to the Fermi energy

n =
1

3π2

(
2m

~2

)3/2

E
3/2
F , (2.21)

and the kinetic energy is T = 3nEF/5, so that the kinetic energy density is

t[n] =
3

5

~2

2m
(3π2)2/3n2/3. (2.22)

Therefore, the LDA kinetic energy is

TTF = Ck

∫
n(r)5/3dr, (2.23)

with Ck = 3(3π2)2/3/10. Exchange can be introduced considering Slater’s expression for

the homogeneous electron gas

EX [n] = −CX
∫
n(r)4/3dn, (2.24)

with Ck = 3(3/π)1/3/4. Correlation can also be easily included by using any local approx-

imation to the homogeneous electron gas. The one proposed by Winger

EC [n] = −0.056

∫
n(r)4/3

0.079 + n(r)1/3
dr, (2.25)

By replacing the above approximations into the general expression for the energy of

an inhomogeneous electronic system, we obtain the Thomas − Fermi − Dirac (TFD)

energy expression:

ETFD[n] = Ck

∫
n(r)5/3dr+

∫
n(r)ϑext(r)dr+

1

2

∫ ∫
n(r)n(r′)

|r − r′|
drdr′−CX

∫
n(r)4/3dn+EC [n].

(2.26)

The idea of the Thomas-Fermi approach was to write the energy of the many-body

system exclusively in terms of the electronic density. Nevertheless, at the time it was seen

as an argument which didn’t necessarily need to hold everytime. In fact, it seems counter

intuitive that one could obtain the properties of a QM system by considering only the

total charge density. Later it was prooved that this is indeed the case. In 1964 Hohenberg

and Kohn formulated and proved a theorem that showed that the initial idea of Thomas

and Fermi approach is valid.
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2.2.2 The Hohenberg-Kohn theorem

At the heart of DFT is the Hohenberg-Kohn (HK) theorem. This theorem states that for

ground states the calculation of the particle density (Eq.2.27) from the wave function can

be inverted: given a ground-state density n0(r) it is possible to calculate the corresponding

ground-state wave function Ψ0(r1, r2, ..., rN), so Ψ0 is the functional of n0. This means,

that all ground-state observables are functionals of n0 too.

n(r) = N

∫
d3r2

∫
d3r3...

∫
d3rNΨ∗(r1, r2, ..., rN)Ψ(r1, r2, ..., rN) (2.27)

The ground-state wave function Ψ0 must not only reproduce the ground-state density,

but also minimize the energy

Eϑ,0 = min
Ψ→no

〈Ψ|T̂ + Û + V̂ |Ψ〉 (2.28)

where Eϑ,0 denotes the ground-state energy in potential ϑ(r)

First Hohenberg-Kohn theorem

The nondegenerate ground-state wave-function is a unique functional of the GS den-

sity:

Ψ0(r1, r2, ..., rN) = Ψ[n0(r)]. (2.29)

As a consequence, the ground-state expectation value of any observable Ô is a functional

of n0(r), too:

O0 = O[n0] = 〈Ψ[n0]|Ô|Ψ[n0]〉. (2.30)

For example energy:

Eϑ,0 = Eϑ[n0] = 〈Ψ[n0]|Ĥ|Ψ[n0]〉. (2.31)

Second Hohenberg-Kohn theorem

If energy E[n] for fixed ϑext is evaluated for a density that is not the ground-state

density of the system in potential ϑext, one never finds a result below the true ground-

state energy:

Eϑ[n0] ≤ Eϑ[n′] (2.32)

In practical terms what the two Hohenberg-Kohn theorems state is that if one knows

the energy functional there exists a variational principle on the density and upon mini-

mization, the energy obtained is that of the ground state and the corresponding density
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is the ground state density. Once the ground state density has been found any observable

can be calculated. Unfortunately, no prescription is given in the theorems about how one

goes obtaining these functional E[n].

2.2.3 The Kohn-Sham (KS) equations

This problem was partially solved by Kohn and Sham one year later [52]. The strategy is

to separate the classical electrostatic energy (so-called Hartree term) from the exchange

and correlation contributions. This strategy is useful becaurse it devides the generally

unknown electron-electron interaction energy into pieces: Hartree, exchange, and corre-

lation. More importantly, the Hartree term, which is the largest contribution, is just the

classical electrostatic energy, which is known exactly. The second largest, the exchange

term, is also well-known and can be calculated as in Hartree-Fock theory. Eventually,

all the ignorance about the electronic many-body problem is displaced to the smallest

contribution, namely the correlation term.

The main problem here is with kinetic energy T = 〈Ψ|T̂ |Ψ〉 because its explicit expres-

sion in terms of the electronic density is not known. In 1965 Kohn and Sham suggested

the approach that starts from the observation, that a system of non-interacting electrons

is exactly described by an antisymmetric wave function of the Slater determinant type,

made of one-electron orbitals. For example, for a two particle system with opposite spins

Ψ(x1, x2) =
1√
2

(χ(x1)χ(x2)− χ(x2)χ(x1))α(x1)α(x2) (2.33)

As in Hartree-Fock theory, for such a wave function the kinetic energy can be easily

obtained in terms of the one-electron orbitals. In this case the ground state density

matrix n1(r, r′) is given by

n1(r, r′) =
∞∑
i=1

fiφi(r)φ
∗
i (r
′), (2.34)

where φi(r) are the one-electron orbitals and fi are the occupation numbers corresponding

to these orbitals. Then the exact expression for the kinetic energy of non-interacting

electrons is

T = − ~2

2m

∞∑
i=1

fi〈φi|∇2|φi〉. (2.35)

Kohn and Sham’s idea was, if one can find the system of non-interacting electrons that

produces the same electronic density of the interacting system, then the kinetic energy of

the non-interacting system can be calculated exactly via Eq.2.35. This is not the exact

kinetic energy of the interacting system. The missing fraction is due to the fact that the

true many-body wave function is not a Slater determinant. There is then a correlation
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contribution to the kinetic energy that is not taken into account, which must be included

in the correlation energy term.

We assume that the equivalent non-interacting system (a system of non-interacting

electrons whose ground state density coincides with that of the interacting system) does

exist. This system will be called the non-interacting reference system of density n(r), and

described by the Hamiltonian

ĤR =
N∑
i=1

[
− ~2

2m
∇2
i + ϑR(ri)

]
, (2.36)

with N the number of electrons. Here, the potential ϑR(r), or reference potental, is

such that the ground state density of ĤR equals to n(r).

This Hamiltonian has no electron-electron interactions. Therefore, its eigenstates can

be expressed in the form of Slater determinants

Φ(r) =
1√
Ns!

SD[φ1(r1)φ2(r2)...φNs(rNs)], (2.37)

where we have chosen the closed shell situation, so the occupation numbers are 2 for

i ≤ Ns and 0 for i > Ns, with Ns = N/2 the number of doubly occupied orbitals. For

simplicity we ignored a possible spin dependence.

Within this assumption, the density becomes

n(r) = 2
Ns∑
i=1

|φi(r)|2, (2.38)

while the kinetic term is

TR[n] = − ~2

2m

Ns∑
i=1

〈φi|∇2|φi〉. (2.39)

The single-particle orbitals φi(r) are the Ns lowest-energy eigenfunctions of the one

-electron Hamiltonian

ĤKS = − ~2

2m
∇2 + ϑR(r), (2.40)

which are obtained by solving a set of one-electron Schrödinger equations

ĤKSφi(r) = εiφi(r). (2.41)

Using TR[n], the universal density functional can be re-written in the following form:

F [n] = TR[n] +
1

2

∫ ∫
n(r)n(r′)

|r − r′|
drdr′ + EXC [n], (2.42)

where EXC is the exchange-correlation energy.
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By substituting this expression for F into the total energy functional Fϑ[n] = F [n] +∫
n(r)ϑext(r)dr, the Kohn-Sham (KS) functional is obtained:

F [n] = TR[n] +

∫
n(r)ϑext(r)dr +

1

2

∫ ∫
n(r)n(r′)

|r − r′|
drdr′ + ẼXC [n], (2.43)

The energy is expressed in terms of the Ns orbitals that minimize the non-interacting

electronic kinetic energy under the fixed density constrain. The one-electron orbitals are

called Kohn-Sham orbitals.

The Knoh-Sham orbitals satisfy the one-electron Kohn-Sham equations 2.41, but it

is still not known what the reference potential ϑR is. What is known is that ϑR is a

potential that ensures that the density of the non-interecting reference system is the same

as the true density of the interecting density. It should be then possible to detemine it by

minimizing the KS functional 2.43 with respect to the density , under the constrain that

this density integrates to N particles.

δ

δn(r)

(
EKS[n]− µ

∫
n(r)dr

)
= 0, (2.44)

Using the rules of functional derivation, the equation for minimizing ground state

density is obtained:

δTR[n]

δn(r)
+ ϑext(r) +

∫
n(r′)

|r − r′|
dr′ +

δẼXC [n]

δn(r)
= EKS[µ]. (2.45)

The functional derivative δTR[n]/δn(r) is obtained by considering the non-interacting

Hamiltonian ĤR of Eq.2.36. The particles in the reference system do not interact between

themselves, they interact with the potential, so this Hamiltonian corresponds to the energy

functional

EϑR [ñ] = TR[ñ] +

∫
[ñ]ϑR(r)dr, (2.46)

with the same ground state energy of the interacting system. Therefore, in general

EϑR [ñ] ≥ E0. Hence, the functional derivative of EϑR [ñ] must vanish for the ground-state

density. Applying Eq.2.44 - 2.46, we obtain

δTR[n]

δn(r)
+ ϑR(r) = µR, (2.47)

where µR is the potential of the non-interacting system.

By comparing 2.45 and 2.47 the following expression for the reference potential is

obtained:

ϑR(r) = ϑext(r) +

∫
n(r′)

|r − r′|
dr′ + µXC [n](r), (2.48)
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where

µXC [n](r) =
δẼXC [n]

δn(r)
. (2.49)

2.2.4 Approximations

The many-body electronic problem can be solved by deviding the total energy into a

number of different contributions, equation E[n] = TR + ϑext + EH + EX + ẼC . These

are the non-interecting energy TR, the classical electron-electron interaction or Hartree

term EH , the interaction of the electrons with external fields ϑext, the exchange energy

EX , and the correlation term EC . ϑext and EH are known as explicit functionals of the

electronic density. TR and EX are known as the functionals of the non-interacting orbitals,

which are in turn functionals of the density4. EC is the big unknown. To express this

term we have to use some approximations. Two the most widely used approaches to

the exchange-correlation potential, named local-density (LDA) and generalized gradient

approximations (GGA), will be described in the following section.

Local functional: local-density approximation (LDA)

The first approximation to the exchange-correlation (XC) energy is the LDA. The way

density-functional theory, in the local-density approximation, deals with the inhomoge-

neous many-body problem is by decomposing it into two simpler problems: the solution

of a spatially homogeneous interacting problem (the homogeneous electron liquid) gives

the uniform XC energy ehomxc (n), and the solution of a spatially inhomogeneous nonin-

teracting problem (the inhomogeneous electron gas described by the KS equations) gives

the particle density. Both steps are connected by the local-density potential (Eq.2.50)

[53]. The exchange-correlation energy can be written as the average of an energy density

εLDAXC [n]:

ELDA
XC [n] =

∫
n(r)ε̃LDAXC [n(r)]dr, (2.50)

In practice, the exchange-correlation energy within the LDA is calculated via Eq.2.50

using ε̃LDAXC [n(r)] = εLDAX [n(r)] + ε̃LDAC [n(r)], where εLDAX [n(r)] is the exchange energy

density, given by Dirac’s expression:

εDX [n] = −3

4

(
3

π

)1/3

n1/3 = −3

4

(
9

4π2

)1/3
1

rs
= −0.458

rs
a.u., (2.51)

where rs = (3/4πn)1/3 is the mean interelectronic distance expressed in atomic units.

4Althoug EX is known exactly it is an explicit function of the KS orbital instead of the density, thus
we will also provide an approximation for EX [n].
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For the correlation energy ehomc (n) is not known exactly. The modern approximate

expressions for ehomc (n) are based on adjusted curves obtained from Quantum Monte Carlo

calculations for the electron liquid by Ceperley and Alder [54].

Semilocal functional: generalized-gradient approximation (GGA)

In the LDA one uses knowledge of the density at point −→r , but any real system is spatially

inhomogeneous (it has a spatially varying density n(r)), and it would be useful also to

include information on the rate of this variation in the function.

In GGA the functional is written as

EGGA
xc [n] =

∫
d3f(n(r),∇n(r)), (2.52)

For many cases GGA’s seem to give reliable results for all main types of chemical bonds

(covalent, ionic, metallic and hydrogen bridge). For van der Waals interactions, however,

common GGA’s and LDA’s fail, specially for total energy calculations and relaxations.

Interestingly, if the positions of the atoms are known a priori it doesn’t influence the

electronic structure. To describe these very weak interactions several more specialized

approaches have been developed. Information about these approaches can be found in

[55, 56].

More detailed explanations of DFT can be found in the [57, 53, 58].

A number of implementations of DFT exist with various levels of approximations. In

my simulations we used SIESTA package [59] since it uses a localized basis set which is

particulary suited for treating the electronic transport.

2.3 Hybrid quantum mechanics/molecular mechan-

ics approach (QM/MM)

In previous section I described the first-principles5 methods for simulating reactions and

electronic processes to high accuracy. These are however limited by their computational

cost to relatively small systems. When the system of chemical interest consists of many

thousands of atoms, the hybrid QM/MM schemes can be used. Scientists, Martin Karplus,

Harvard University, USA (also at the University of Strasbourg, France), Michael Levitt,

Stanford University, USA and Arieh Warshel, University of Southern California, USA,

have been awarded the 2013 Nobel Prize in Chemistry for the development of multiscale

models for complex chemical systems - QM/MM scheme [60]. QM/MM scheme is obtained

by embedding a quantum mechanics calculation in a classical molecular mechanics model

of environment. It is probably both of the worlds as it enables to treat a specific region

5These are called first principles because they do not introduce any parameters into a calculation
except the fundamental constants.
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quantum mechanically, but evolve it under the influence of external environment. It was

originally developed for dealing with reactions in biological systems.

The first step in QM/MM scheme is to divide the entire system into inner and outer

regions. The main concept of QM/MM approach is shown in Figure 2.2.

Figure 2.2: Illustration of the QM/MM concept. A small region, in which a chemical reaction
occurs, is treated at level of QM theory. The remainder of the system is modelled
at the MM level. Figure is extracted from [9].

The objective then is to use QM calculations to model processes in the inner region

and to use MM to model the outer region. Therefore, some form of treatment of the

boundary is required. To do this several approaches were proposed. This approaches can

be divided in two categories: subtractive and additive coupling schemes [9].

2.3.1 Subtractive QM/MM Coupling

In this scheme the QM/MM energy of the system is obtained in three steps. First, the

energy of the total system is evaluated at the MM level. Second, QM energy of the inner

region is added. Third, the MM energy of the inner system is computed and subtracted.

The last step is to correct the inclusion of the interactions within the inner system twice:

VQM/MM = VMM(MM +QM) + VQM − VMM(QM), (2.53)

The main advantage of this scheme is that no communication is required between the

QM and MM. The disadvantage of the method is that the force-field is required for the

inner system, that sometimes is not available.

2.3.2 Additive QM/MM Coupling

In the additive scheme the potential energy is the sum of the QM inner system term, MM

outer system term and coupling QM/MM terms.

VQM/MM = VQM + VMM(MM) + VQM+MM(QM +MM), (2.54)



33
2.3. HYBRID QUANTUM MECHANICS/MOLECULAR MECHANICS APPROACH
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Figure 2.3: Subtractive QM/MM coupling. Figure is extracted from [9].

There are three basic approaches in additive scheme: mechanical embedding, electro-

static embedding and polarization embedding [9].

Mechanical Embedding

In mechanical embedding approach all forces between inner and outter system are de-

scribed in force-field level. Chemical bonds between atom from inner system and atom

from outer system described by harmonic potential Vbonds, angles between one atom of

inner system and two atoms of outer system are described by harmonic potential Vangles,

torsion involving two atoms of inner atoms - by Vtors. Non-bonded interactions are de-

scribed in force-field as well. Van der Waals interactions are described by Lennard-Jones

potential VLG, electrostatic interactions - by Coulomb potential VCoul.

Electrostatic Embedding

Electrostatic embedding approach is an improvement of the Mechanical embedding ap-

proach. In this approach the polarization effects are included. The charged MM atoms

are presented in QM Hamiltonian as one-electron operators:

hQM−MM
i = hQMi −

M∑
J

e2QJ

4πε0|ri −RJ |
, (2.55)

where ri and RJ are the positions of electron i and MM atom j, hQM−MM
i is original

one-electron operator for the kinetic and nuclear attraction energy of electron i, M is the

number of MM atoms that have a particle charge QJ .

Polarization Embedding

Including polarization of the MM atoms is the next approach, that make an improvement

of the previous approaches. It is possible that both regions can mutually polarize each

other. The most popular methods in this approach are charge-on-a-spring model, the

induced dipole model and the fluctuating charge model [61].
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2.3.3 Capping Bonds at the QM/MM Boundary

The choice between what is classical and what is quantum is somewhat orbitrary and is

usually a balance between the minimum size of the quantum region, that is required to

capture an effect and the computational effort required for a calculation.

While choosing the QM and MM region the cut through the QM/MM bond creates

artificially one or more unpaired electrons in the QM region. There are exist a number

of approaches to solve this problem. Two main approaches are: link atom and localized

orbitals [9].

Link Atoms

One of the solutions is to add a monovalent link atom along the bond between the QM

and MM regions. The type of the link atom can be chosen, but usually it is a hydrogen.

In practice, the link atom is placed at a fixed position along the bong on each step of the

simulation, and in the corresponding charge distribution is corrected to account for this.

Localized Orbitals

An alternative method for the link atom is to replace the chemical bond between QM

and MM regions by a double-occupied molecular orbital. Two most used approaches are:

localized hybrid orbital method, which introduces the molecular orbital in QM part, and

generalized hybrid approach, which introduces the molecular orbital in the MM part.

In the localized hybrid orbital method the atomic orbitals on QM atom of the broken

bond are localized and hybridized. The hybrid orbital pointing towards the MM atom is

occupied by two electrons. The other orbitals are occupied by one electron.During the

optimization of the QM wave function, the double-occupied orbital is kept frozen, while

other orbitals are optimized with all orbitals in the QM region. In the generalized hybrid

approach hybrid orbitals are placed on the MM atom of the broken bond. The orbital

pointing to the QM atom is optimized while others kept frozen.

2.4 Electronic transport calculations

As a pictorical view of transport and DNA sequencing we start from a scattering problem

for a very simple one dimentional system with an infinite number of identical atoms with

the same on-site potential ε and state |j
〉

as shown in Figure 2.4. This simple problem

can be solved exactly if we assume that only first nearest neighbor interactions exist and

that all the couplings are the same. We thus write a Hamiltonian for this system:

H =
∞∑

j=−∞

ε|j
〉〈
j|+

∞∑
j=−∞

γ|j
〉〈
j + 1|+ γ∗|j

〉〈
j − 1| (2.56)
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By proposing a solution of the form:

|Ψk

〉
=

1√
N

∑
j′

eij
′k|j′

〉
(2.57)

with E = ε + 2γ cos k it is possible to show that |Ψ
〉

is an eigenstate. We will make an

approximation that each atom only interacts with its neighbor. The coupling term is γ.

Now we note that the state |0
〉

have a different on site potential ε0 and the coupling

term between this atom and it’s neighbors is γ1 (see Figure 2.4).

Figure 2.4: Pictorical representation of the electronic transport problem. We consider a single
level per site and first - nearest neighbor interaction only.

The total Hamiltonian of this system can now be written as:

H =
∑
j 6=0

ε|j
〉〈
j|+ ε|0

〉〈
0|+

∑
j 6=0,j 6=−1

γ|j
〉〈
j + 1|+

+
∑

j 6=0,j 6=−1

γ|j + 1
〉〈
j|+ γ1| − 1

〉〈
0|+ γ1|0

〉〈
− 1|+ γ1|0

〉〈
1|+ γ1|1

〉〈
0| (2.58)

Let’s now imagine one electron e entering the system (say from the left). There

exists a probability that, meeting the potential barrier, the electron can be reflected or

transmitted. We call the reflection term r and transmission term t.

The proposed solution of this problem is then an liniar combination of the wave func-

tion of the incoming electron, wave function of the reflected electron (multiplied by re-

flection coefficient r), wave fuction of the scattering region (multiplied by the coefficient

a) and wave function of the transmitted electron (multiplied by transmission coefficient

t):

|Ψ
〉

=
1√
N

−1∑
j′=−∞

eij
′k|j′

〉
+

r√
N

−1∑
j′=−∞

e−ij
′k|j′

〉
+ a|0

〉
+

t√
N

∞∑
j′=1

eij
′k|j′

〉
(2.59)
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By solving Schrödinger Equation (Eq.2.60) we can find the transmission and reflection

coefficients.

H|ψ
〉

= E|ψ
〉

(2.60)

We do this by projecting basis | − 1
〉
, |0
〉

and |1
〉

onto the Schrödinger Equation to

obtain the system of three equations with three unknowns. Reorganizing the system we

build the following linear system: (ε+ γeik − E)eik γ1 0
γ1e

ik ε0 − E γ1e
ik

0 γ1 (ε+ γeik − E)eik

 ra
t

 =

=

(E − ε− γe−ik)e−ik
−γ1e

−ik

0

 (2.61)

From this the probability of the electron to be reflected R and transmitted T will be:

R = |r|2

T = |t|2 (2.62)

The solution of the matrix is presented in the Figure 2.5. For an appropriate choice

of parameters (see table 2.1) we can note that the transmission is low for a wide range of

energies except for narrow region around −0, 5eV . The width of the peak of the curves

depends on the γ1 value (here we choose γ1 << γ).

Table 2.1: Values of the parameters of the linear system of equations 2.61

Parmeter Value

γ 1
γ1 0.3
ε 0
ε0 -0.5

Basically, the smaller the coupling γ1 between the two electrodes and the central state,

the sharper the resonance. Furthermore, the position of the resonance is −0, 5eV = ε0.

This can be understood by the following picture: electrons came in ”freely” from the

left electrode, but reach a region where there is low probability of hopping (γ1). In fact

the solution presented in Eq.2.57 is what is known as a Bloch state a propagating state,

the equivalent in a solid, to a free electron. However, when the energy is approximately

equal to ε0, there will be a resonance and the electron will tunnel to the other side. The

width of this pick is related to γ1. Thus, if we have a ”molecule” in the middle of two
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electrodes it is possible to obtain information about its electronic structure and coupling

to the electrodes.

As mentioned, the electrons require a quantum mechanical description. In 1987 Lan-

dauer proposed [62] that the problem of electronic transport could be thought of as a

scattering problem. In other words, the propogation of electrons in a material could be

described by the same formalism used for free electrons being scattered by some potential

barrier [63].

From this perspective, the idea of conductance can be associated to the probability

that an incoming electron might be transmitted across the barrier in the same.

We will map this simple system to the more complicated one. We can compare ε with

the potential of the carbon atoms of graphene, ε0 with the potential of the base, γ with

the coupling term of the carbons in graphene and γ1 with coupling term between base

and pore.

In principle, the methodology presented above can be generalized for a more real-

istic Hamiltonian (one obtained from DFT, for example). The proposed wavefunction

(Eq.2.59) would have the same form but would have a much larger number of available

”channels”.

Figure 2.5: Probability of the electron to be reflected and transmitted. Blue curve R - reflection.
Red curve T - transmission
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2.5 Non equilibrium Green’s Functions (NEGF)

The alternative way is to solve Schrödinger’s Equation using a Green’s function instead a

wave function. Non equlibrium Green’s function method is used to calculate transmission

and charge densities in nanoscale devices, mainly for ballistic transport calculations [64],

[65]. To define the Green’s functions let’s write the Schrödinger Equation:

H|n
〉

= E|n
〉

(2.63)

We devide the Hamiltonian and wavefunction of the system into contact (HL,R, |ψL,R
〉
)

and device ((HM , |ψM
〉
): HL τL 0
τ ᵀL HM τ ᵀR
0 τR HR

  |ψL〉|ψM
〉

|ψR
〉
 = E

 |ψL〉|ψM
〉

|ψR
〉
 (2.64)

where τL,R is interaction between device and contacts (we assume, that the contacts

are independent and there is no cross term τ between the different contacts)6.

We now can define the Green’s function:

(E −H)G(E) = I (2.65)

where I is the identity matrix.

For the infinite system it is easier to calculate the Green’s function than to solve the

whole eigenvalue problem. Most of the properties of the system can be obtained from the

Green’s function. For example, the wavefunction of the contact |ψR
〉

can be calculated if

we know the wavefunction on the device |ψM
〉

(from the equation 2.64):

HR|ψR
〉

+ τR|ψM
〉

= E|ψR
〉
→ (2.66)

(E −HR)|ψR
〉

= τR|ψM
〉
→ (2.67)

|ψR
〉

= gR(E)τR|ψM
〉

(2.68)

where gR is the Green function of the isolated contact R ((E −HR)gR = I).

To include the effects of the contacts on the device we have to introduce the idea of

self-energies. From the definition of the Green’s function we have:

 E −HL τL 0
−τ ᵀL E −HM −τ ᵀR

0 τR E −HR

  GL GLM GLM

GML GM GMR

GRL GRM GR

 =

 I 0 0
0 I 0
0 0 I

 (2.69)

Selecting the three equations in the second column:

6We note here that the contacts represent a system with a very large (→ ∞) number of degrees of
freedom. The dence on the other hand is finite.
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(E −HL)GLM − τLGg = 0 (2.70)

−τ ᵀLGLM + (E −HM)GM − τ ᵀRGRM = I (2.71)

(E −HR)GRM − τRGM = 0 (2.72)

.

We solve Eq. 2.70 and 2.72 for GLM and GRM and substituting GLM and GRM in the

equation 2.71 obtain expression for the Green’s function of the device Eq. 2.76:

GLM = gLτLGM (2.73)

GRM = gRτRGM (2.74)

−τ ᵀLgLτLGM + (E −HM)GM − τ ᵀRgRτRGM = I (2.75)

,

Gg = (E −HM − ΣL − ΣR)−1, (2.76)

where ΣL = τ ᵀLgLτL and ΣR = τ ᵀRgRτR are the so called self-energies.

Basically, to include the effects of the contacts on the device we need to add self-

energies to the device Hamiltonian. This way it is possible to focus on the device region

while factoring out the degrees of freedom in the contacts. When we calculate Green’s

functions for the device we calculate them only for the effective Hamiltonian Heffective =

HM + ΣL + ΣR [66].

Schematic representation of the scattering problem at nanoscale of the studied system

is shown in the Figure 2.6. It is a central region, called scattering region, sandwiched

by electrodes, called left (right) lead. The leads are defect-free periodic structures. We

assume that each lead cell interacts only with it neighbour. The central scattering region

is described by Hamiltonian HM , coupling between scattering region and leads is described

by the Hamiltonian HRM (HLM). The unit cell of the lead is descibed by Hamiltonian H0

and coupling between two lead cells - by Hamiltonian H1.

As we are dealing with an infinite-dimensional non-periodic Hermitial problem7, the

problem can be written in terms of retarded8 Green’s function GR for the system by

solving the Green’s function equation [64]:

7The Hamiltonian matrix is Hermitian, it is a square matrix with complex entries that is equal to its
own conjugate transpose - that is, the element in the i-th row and j-th column is equal to the complex
conjugate of the element in the j-th row and i-th column, for all indices i and j

8Since we have infinite system, we obtain two types of solutions for the Green’s functions, the retarded
and the advanced, corresponding to outgoing and incoming waves in contacts.
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Figure 2.6: Schematic representation for transport problem at nanoscale. The central scattering
region is descibed by the Hamiltonian HM , coupling between scattering region and
leads is described by HRM (HLM ). H0 corresponds to unit cell of lead and H1 - to
coupling between two lead cells.

[ε+S −H]GR(E) = I, (2.77)

where I is an infinitely-dimensional identity matrix, ε+ = limδ→0+ E + iδ and E is the

energy.

The same equation can be written in matrix form:

 ε+SL −HL ε+SLM −HLM 0
ε+SML −HML ε+SM −HM ε+SMR −HMR

0 ε+SRM −HRM ε+SR −HR

  GR
L GR

LM GR
LR

GR
ML GR

M GR
MR

GR
RL GR

RM GR
R

 =

 I 0 0
0 IM 0
0 0 I


(2.78)

where GR
L and GR

R describe left lead and right lead respectively, GR
LM and GR

RM de-

scribes interaction between the molecule and the leads, GR
LR describes the direct scattering

between the leads and GR
M describes a molecule.

HM is an MXM matrix and IM is the MXM unit matrix. The infinite matrices HL

and HR have the following block-diagonal form:
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HL =


. . .

...
...

...
...

0 H−1 H0 H1 0
. . . 0 H−1 H0 H1

. . . . . . 0 H−1 H0

 (2.79)

HR =


H0 H1 0 . . . . . .
H−1 H0 H1 0 . . .

0 H−1 H0 H1 0
...

...
...

...
. . .

 (2.80)

Overlap matrix S has the same expression. Infinite coupling matrix HLM (HRM), that

describes the interaction between the molecule and the closest unit cell of the lead, is the

matrix whose elements are all zero except for a rectangular block coupling of the unit cell

of the lead and molecule:

HLM =


...
0
0

HLM

 (2.81)

HRM =


HRM

0
0
...

 (2.82)

In our calculations we obtain Hamiltonian matrices HLM , HRM and HM from the DFT

calculations.

Considering that there is no change in electronic structure of the leads we can treat

the effect of the electrodes in terms of an effective interaction. The final expression for

GR
M associated to the effective Hamiltonian matrix Heff = HM + ΣR

L(E) + ΣR
R(E) can be

than obtained:9

GR
M(E) = [ε+SM −HM − ΣR

L(E)− ΣR
R(E)]−1, (2.83)

where ΣR
L(E) and ΣR

L(E) are self-energies for the left and right lead, respectively

(Eq.2.84, 2.85). GR
M is the retarded Green’s function

ΣR
L(E) = (ε+SML −HML)g0R

L (E)(ε+SLM −HLM), (2.84)

ΣR
R(E) = (ε+SMR −HMR)g0R

L (E)(ε+SRM −HRM), (2.85)

9The degrees of freedom of the electrodes are eliminated one by one from deep into the leads all the
way to the interface with a molecule.
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where g0R
L and g0R

R (Eq.2.86, 2.87) are the Green’s functions for the isolated leads,

while gRL and gRR - for the leads attached to the molecule.

gORL (E) = [ε+SL −HL]−1, (2.86)

gORR (E) = [ε+SR −HR]−1. (2.87)

Knowing GR
M we can find the total transmission coefficient T (E) using the Buttiker-

Landauer formula [62]:

T (E) = Tr[ΓLG
Rᵀ

M ΓRG
R
M ], (2.88)

where ΓL and ΓR are the coupling matrices.

ΓL(E) = i[ΣR
L(E)− ΣR

L(E)ᵀ], (2.89)

ΓR(E) = i[ΣR
R(E)− ΣR

R(E)ᵀ], (2.90)

2.6 Returning to the simple problem

The methodology presented above is very general, but we can return to our simple prob-

lem.

Let’s first calculate the self-energies for each of the electrodes. In that case the Hamil-

tonian can be writen as:

H =



. . .
...

...
...

...
...

. . . ε γ 0 0 0 . . .

. . . γ ε γ1 0 0 . . .

. . . 0 γ1 ε0 γ1 0 . . .

. . . 0 0 γ1 ε γ . . .

. . . 0 0 0 γ ε . . .
...

...
...

...
...

. . .


(2.91)

Overlap matrix has expression:

S =



. . .
...

...
...

...
...

. . . 1 0 0 0 0 . . .

. . . 0 1 0 0 0 . . .

. . . 0 0 1 0 0 . . .

. . . 0 0 0 1 0 . . .

. . . 0 0 0 0 1 . . .
...

...
...

...
...

. . .


(2.92)

Thus
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HLM = HML = γ1, (2.93)

SLM = SML = 0. (2.94)

Consequently

ΣL/R(E) = γ2
1g

0
L/R(E). (2.95)

If we consider that the Gaussian-substitution procedure presented from Eq.2.70 Eq.2.73

can be performed recursively also in the contacts, we can take

ESL −HL =



. . .
...

...
...

...
. . . E − ε γ 0 0
. . . γ E − ε γ 0
. . . 0 γ E − ε γ
. . . 0 0 γ E − ε
,


(2.96)

gL0 = (ESL −HL)−1. (2.97)

But adding an extra layer will not change the surface. Then using the Green’s function

equation we find expression for the self-energy ΣL/R:(
(gL0 )−1 γ
γ E − ε

) (
gL g12

g21 gL

)
=

(
I 0
0 I

)
(2.98)

(gL0 )−1g12 + γgL = 0 (2.99)

γg12 + (E − ε)gL = I (2.100)

gL =
(E − ε)±

√
(E − ε)2 − 4γ2

2γ2
(2.101)

Keeping in mind that E = ε+ 2γ cos k we obtain:

2γ cos k ± 2γ
√

cos2 k − 1

2γ2
=

cos k ± ı sin k
γ

=
e±ık

γ
(2.102)

ΣL/R = γ2
1

eık

γ
(2.103)

and

ΓL/R =
γ2

1

γ
(eık − e−ık) = −2γ2

1

γ
sin k (2.104)
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Using equations above, we can find the total transmission coefficient:

T (E) =
4γ4

1

γ2
sin2 k

1(
E − ε0 − γ21e

ık

γ
− γ21e

ık

γ

)2
(2.105)

Comparing Figure 2.5 with Figure 2.7 we can see that both of the models show the

same results.

Figure 2.7: Probability of the electron to be transmitted obtained by Non equlibrium Green’s
function method.

As mentioned previously we are interested in simulating a sequencing device. In order

to do that we want to simulate the electronic transport through a graphene nanopore

containing DNA molecule (such as the one depicted in Figure 2.8). By applying a

potential difference between the left and right extremes of the graphene sheet, electrons

will flow across the pore and through the molecular levels.
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Figure 2.8: Model of the sequencing device to simulate the electronic transport through a
graphene nanopore containing DNA molecule.
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Chapter 3

Results

3.1 Simulation protocol

In this dissertation we did not simulate the actual translocation of a DNA molecule

through the nano pore. The time scale of experiment and simulation is quite different.

We studied an isolated bases inside the pore but allowed to move inside in order to probe

as many configurations as possible.

The studied system consists of the graphene nanopore (either a large nanopore with

H on edge of 22Å in diameter, a large nanopore with N on edge of 25Å in diameter, small

pore with H on edge of 15Å in diameter or small pore with N on edge of 17Å in diameter)

as shown in Figure 3.5, DNA nucleobase: Adenine, Guanine, Thymine or Cytosine (see

Figure 3.2), inserted one by one inside the pore, counter ions Na and Cl to compensate the

negative charges from the DNA bases and also to have a salt concentration commensurate

with physyological conditions, and water molecules. In all cases the graphene sheet onto

which the nanopore was drilled was 51.9Å in length and 42.6Å wide.

In our simulations we use classical molecule dynamics first to analyze the behaviour

of different nucleobases inside the different nanopores. The system was simulated using

periodic boundary conditions (PBC) with a box size 50X42.6X51.9Å. All simulations

were carried out using GROMACS package. To describe the interatomic potentials we

are using the AMBER99fb force-field.

The classical simulations were performed in three steps: equilibration, thermalization

and production. Thermalization procedure was initially performed for 500ps at 300K

using an NVT ensemble. The equilibration was done for 1000ps using NPT ensemble at

300K and 1bar with Nose-Hoover thermostat and Parrinello-Rahman barostat. During

the thermalization and equilibration procedures the movement of bases and graphene

nanopore were restricted. In the NPT ensemble the size of the box is allowed to change.

Given that the graphene sheet has its position fixed the box size only changes in the

perpendicular direction. In the production step the MD calculations were performed for

2000ps at a temperature 300K using NVT ensemble. Charges of hidrogen and nitrogen

of the pore were chosen from organic molecules that were analogue to the N and H pores.

47
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Finally, during the production step the base was allowed to move in the pore, only one

atom of the base was fixed in the YZ plane of the pore. 6 snapshots from each trajectory

were randomly selected to perform the QM calculations10.

To determine the electronic structure of the system the QM calculations were per-

formed, using first-principle calculations based on density functional theory (DFT) as

implemented in the SIESTA package. For the exchange-correlation potential generalized

gradient approximation (GGA) was used in its PBE form. Few different simulations

were performed: pure graphene, isolated graphene nanopores, graphene nanopores with

inserted nucleobases without water and graphene nanopore with inserted nucleobases

surrounded with one layer of water (see Figure 3.1). Core electrons were replaced by

norm-conserving pseudopotentials. The Kohn-Sham wave-functions were expanded to a

double-ζ polarized for edge atoms of the pore and nucleobase atoms, and a double-ζ basis

set for the graphene.

Figure 3.1: Examples of the systems for DFT calculations.

Finally, to include the effect of all the water and ions in our system the QM/MM

calculations were performed in the SIESTA package. For the QM region it was chosen the

10In the true QM/MM approach one would perform a coupled classical/quantum evolution of the
system. Since we are not interested in reaction paths we assume that a classical molecular dynamics
simulation will yield proper structural information.
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pore and base, for the MM region it was chosen water and ions. The inner cutoff radius

for the electrostatic and LJ QM-MM interaction (the potential is truncated for distances

lower than this cutoff) was chosen 1.10−6Å. The external cutoff radius for the electrostatic

and LJ QM-MM interaction (the potential equal zero for distances longer than this cutoff)

was chosen as 25Å. The cutoff radius for the electrostatic and LJ interaction between MM

atoms was chosen as 25Å. The external radius where the MM atoms beyond which the

total force is equal to zero (the MM atoms outside this cutoff are fixed in the calculation)

was chosen as 10Å. Here a link atom was not included, because there were no bonds that

require cutting between QM and MM region.

Finally, once the Hamiltonian for each snapshot is obtained, zero-bias transmission

coefficients were calculated using non-equilibrium Green’s functions as implemented in

SMEAGOL package. For the electrode it was taken 120 atoms of carbon from the left

and from the right of the graphene sheet.
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3.2 Electronic structure of the isolated bases

The nucleotide consists of sugar, phosphate and nucleobase. The difference in them is only

in the nucleobases. There exist four types of nucleobases: Adenine (DA), Guanine (DG),

Cytosine (DC) and Thymine (DT). Adenine from one DNA strand bonds with Guanine

on other strand, forming compound Purine. The same way Cytosine bonds only with

Thymine, forming Pyrimidine. The chemical composition of the nucleobases is presented

in Figure 3.2

Figure 3.2: Chemical composition of the nucleobases. a) Adenine (DA), b) Guanine (DG), c)
Cytosine (DC), d) Thymine (DT). Color code: nitrogen - blue, carbon - light-blue,
hydrogen - white, oxigen - red, phosphorus - gold.

We performed DFT calculations of the isolated bases (see Figure 3.3). For all the

bases we can see that the largest single-atom contribution to the HOMO states comes from

oxigen from the backbone11 whereas the LUMO - is mostly carbon from the nucleobase.

We also note that all of them show a very similar HOMO - LUMO gap.

11We also note a strong contribution from the base itself. In otherwords as seen in Figure 3.3, the
HOMO is mostly delocalized over the entire molecule.
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Figure 3.3: Projected Density of States on each atom (PDOS) and Total Density of State (DOS)
of the nucleobases: 1a) DA base, 2a) DC base, 3a) DG base, 4a) DT base. Electronic
Density, HOMO and LUMO, of the nucleobases: 1b) DA base, 2b) DC base, 3b)
DG base, 4b) DT base. Color code: nitrogen - blue, carbon - light-blue, hydrogen -
white, oxigen - red, phosphorus - gold. Value of the isosurface used: 0.0016.
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3.3 Electronic structure of graphene

We performed DFT calculations for the graphene sheet without a nanopore. The size

of graphene sheet was 51.9Å in length and 42.6Å wide, box size 50X42.6X51.9Å. The

number of κ-points chosen 4. We plot total DOS of pure graphene sheet (see Figure 3.4).

We can see that the graph shows the V-shape feature expected for graphene [5].

Figure 3.4: Electronic structure of the pure graphene sheet Total Density of States (DOS).

3.4 Electronic structure of the pores

We consider nanopores in isolated graphene sheet 51.9X42.6Å in size with different ter-

minations: hydrogen or nitrogen. In both cases we consider zigzag edge as those are the

lowest energy edge terminations in graphene structures. The nanopores that we used for

our simulations are shown in the Figure 3.5. In experiments the typical nanopore is

approx. 20Å due to the specificity of the nanopore fabrication (one particular fabrication

method is described in [7]). There graphene is grown by chemical vapor deposition of

methane over polished copper foils. The copper foils are etched in solution so that bare
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graphene sheets, approximately 1-5 nm thick, float on the surface of the liquid. Suitable

sized graphene is then scooped onto prepatterned silicon nitride membranes. Nanopores

are then drilled through the suspended graphene membranes by transmission electron

beam ablation lithography [7].

Figure 3.5: Types of pores, used for calculations. Color code: nitrogen - blue, carbon - light-blue,
hydrogen - white.

Figure 3.6 shows the DOS resulting from our DFT calculations. We see that the

system shows the V-shape features of graphene DOS. At the same time there are a number

of resonances coming from defect states (both the absence of C atoms and the presence

of either N or H). The hydrogen states are far from the Fermi level. Nitrogen states on

the other hand are close to the Fermi level. It can be explained by the fact that in case

of H-pore main contributaion to the Fermi level comes from the p-orbitals of the carbon

(contribution from hidrogen is due to the s-orbitals, that is weaker). While in case of



Results 54

N-pore p-orbitals of nitrogen interact with p-orbitals of carbon both contributing to the

Fermi level. Hence, we might infer that when we put bases in the pore, they should

interfere more with nitrogen than with hydrogen.

Figure 3.6: Electronic structure of the nanopores (Projected Density of States (PDOS)). a) large
pore with H termination, b) large pore with N termination, c) small pore with H
termination, d) small pore with N termination.
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MOLECULAR DYNAMICS AND ELECTRONIC STRUCTURE

3.5 Pore + base:

molecular dynamics and electronic structure

Following this initial study we placed bases inside pores and, using our simulation protocol,

performed molecular dynamics calculations. The first thing we wanted to adress was

wether the different pore terminations and different pore sizes might have some effect on

the dynamics of the base. Most importantly wether one of them might help stabilize the

base. Typical system for molecular dynamic simulations is shown in the Figure 3.7.

Figure 3.7: Typical system for molecular dynamics simulations.
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3.5.1 Bases behaviour in the different types of pore

To analyze the bases behaviour inside the pores the angle between the base and pore plane

were measured (Figure 3.8). Results for each base and different pores are presented in

the Figure 3.9.

Figure 3.8: Angle between the base and pore plane. Color code: nitrogen - blue, carbon -
light-blue, hydrogen - white, oxigen - red, phosphorus - gold.

Figure 3.9: Angle between the base and pore plane for different pores and bases. Blue line -
large pore H, red line - large pore N, green line - small pore H, purple - small pore
N
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From Figure 3.9 we can come to the conclusion that, in the large pores, bases have a

tendency towards stronger angular movements while in the small pores the bases behaviour

is more stable. That is expected as the interaction with the edges is smaller the bases have

more freedom of movement within the pore. Even though nitrogen has a larger charge,

the pore don’t seems to improve the stabilization of the base. It must be noted that if

we had the backbone of the DNA in our simulations, the freedom of the different bases

would be smaller.
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3.6 Electronic structure of the system: pore and base

In order to understand the effects of the dynamics on the electronic structure of the system

we selected at random six snapshots from the classical dynamics. Those snapshots are

shown in the Figures 3.10, 3.11, 3.12, 3.13 for each of our choices of pore termination

and pore size.

DG	
   DT	
  DA	
   DC	
  

Figure 3.10: Bases orientation correspondes to the randomly chosen snapshorts for the system
with large pore, hydrogen termination. Color code: nitrogen - blue, carbon - light-
blue, hydrogen - white, oxigen - red, phosphorus - gold.
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DG	
   DT	
  DA	
   DC	
  

Figure 3.11: Bases orientation correspondes to the randomly chosen snapshorts for the system
with small pore, hydrogen termination. Color code: nitrogen - blue, carbon -
light-blue, hydrogen - white, oxigen - red, phosphorus - gold.
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DG	
   DT	
  DA	
   DC	
  

Figure 3.12: Bases orientation correspondes to the randomly chosen snapshorts for the system
with large pore, nitrogen termination. Color code: nitrogen - blue, carbon - light-
blue, hydrogen - white, oxigen - red, phosphorus - gold.
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DG	
   DT	
  DA	
   DC	
  

Figure 3.13: Bases orientation correspondes to the randomly chosen snapshorts for the system
with small pore, nitrogen termination. Color code: nitrogen - blue, carbon - light-
blue, hydrogen - white, oxigen - red, phosphorus - gold.
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We have performed the DFT calculations for the system not including water. This

was done by taking the classical dynamics structures and removing all water molecules

and counter-ions, but retaining the structure of the base. Figures 3.14, 3.15, 3.16, 3.17

show density of states of the bases in the large pore with hydrogen termination, small

pore with hydrogen termination, large pore with nitrogen termination and small pore

with nitrogen termination.

PDOS for all the systems for the bases show the smaller energy gap (≈ 1eV difference)

in comparison with the isolated bases.

Let’s first compare large pores with the small pores. Figures 3.14 and 3.15 for the

pores with H terminations show us that the energy gap is the same for the large pore

with H termination and small pore with H termination. While the energy states are more

splitted and spread for the system with small pore. The same picture is observed for the

systems with pores with N termination (Figures 3.16 and 3.17).

Now let’s compare pores with H termination to the pores with N terminaions. For all

the systems we can see that the energy gap is smaller for the pores with H termination.

HOMO remains the same, while LUMO is shifted. Energy states for the pores with H

termination are splitted more than for the pores with N termination.
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Figure 3.14: Electronic structure of the bases in the system (H, large pore, bases) comparing to
the electronic structure of the isolated bases. 1) DA, 2) DC, 3) DG, 4) DT. a) Total
Density of States of the isolated bases, b) Projected Density of States to each atom
of the isolated bases, c) Projected density of states of the system to the bases.
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Figure 3.15: Electronic structure of the bases in the system (H, small pore, bases) comparing
to the electronic structure of the isolated bases. 1) DA, 2) DC, 3) DG, 4) DT.
a) Total Density of States of the isolated bases, b) Projected Density of States to
each atom of the isolated bases, c) Projected density of states of the system to the
bases.
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Figure 3.16: Electronic structure of the bases in the system (N, large pore, bases) comparing to
the electronic structure of the isolated bases. 1) DA, 2) DC, 3) DG, 4) DT. a) Total
Density of States of the isolated bases, b) Projected Density of States to each atom
of the isolated bases, c) Projected density of states of the system to the bases.
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Figure 3.17: Electronic structure of the bases in the system (N, small pore, bases) comparing
to the electronic structure of the isolated bases. 1) DA, 2) DC, 3) DG, 4) DT.
a) Total Density of States of the isolated bases, b) Projected Density of States to
each atom of the isolated bases, c) Projected density of states of the system to the
bases.
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We also plot the charges of the bases for this systems. Comparing Figures 3.18(1a)

with 3.18(2a) and Figures 3.18(1b) and 3.18(2b) we can clearly see that the charges of

the bases in the pores with H termination are larger than the charges of the bases in the

pores with N termination.

Summarize this section, for the systems without the water and ions the bases inter-

act more with the pores with H termination than with the pores with N termination.

However, there are no significant differences for large and small pores.

Figure 3.18: Charges on bases in the different systems for two types of pores for six snapshots.
1) Pores with H termination, 2) Pores with N termination. a) Small pores, b)
Large pores.
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3.7 Electronic structure of the system: small pore,

base, one layer of water

Having noticed that there are no significant differences for large or small pores we analyzed

the electronic structure of some of the system including one layer of QM water around the

base for the small pores for six snapshots (see Figure 3.11 - 3.13). Here we chose ≈ 30

molecules of water around the base, choosing the molecules of water within 5Å around

bases. The DFT calculations of thes systems were done and are shown in Figures 3.19

and 3.20. We plot the PDOS of the base in the system without water and compare it to

the PDOS of the base in the system including one layer of water.

Analyzing Figures 3.19 we see that presence of one layer of water around the base

markedly affects the electronic structure of the base in the pore with hydrogen on the

boarder. The states of the base in system including one layer of water are more spread

than the states of the base in the system without water. The same time states are shifted

in case of the system with water and the energy gap is bigger for each snapshots except

of the first snapshot. In the first snapshots (see black curve in the Figure 3.19) the

states stay close to the Fermi level and the energy gap decreases. The first snapshot can

be different from others because during the molecular dynamics calculations we let the

base move in the pore only on the last production step. On the previous steps bases

are not allowed to move. First snapshot in our calculations is the very early step of the

productions phase. As on the previous step we freeze the base, but allow water to move,

the forces between base and atoms of water around the base can be artificially high. We

will see further that the charges of the bases for the first snapshots are very different from

the rest snapshots (see Figure 3.21). For this reason the results for the latest snapshots

must be closer to the realistic bases behaviour.

Analyzing Figures 3.19 we see that presence of one layer of water around the base

affects the electronic structure of the bases in the pore with nitrogen on the border. The

states are more spread, but the energy gap does not change in contrast with the case of

the pore with hydrogen on the border (see Figure 3.19).

In our calculation we notice that the presence of water leads to a significant decrease

in the gap for the case of the hydrogen but only minor changes in the gap for nitrogen.

On the other hand, the wider dispession of states, specially for occupied ones, indicates

that the base hybridizes much more strongly for the N-pore that the case of hydrogen.
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LAYER OF WATER

Figure 3.19: Electronic structure of the bases in the system (H small pore, bases, one layer of
water) comparing to the electronic structure of the bases in the system (H small
pore, bases, no water) and electronic structure of the one layer of water in the
system (H small pore, one layer of water). 1) DA, 2) DC, 3) DG, 4) DT. a)
Projected Density of States to the bases in the system (H small pore, no water),
b) Projected Density of States to the bases in the system (H small pore, bases, one
layer of water), c) Projected density of states to the water in the system (H small
pore, bases, one layer of water.
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Figure 3.20: Electronic structure of the bases in the system (N small pore, bases, one layer of
water) comparing to the electronic structure of the bases in the system (N small
pore, bases, no water) and electronic structure of the one layer of water in the
system (N small pore, one layer of water). 1) DA, 2) DC, 3) DG, 4) DT. a)
Projected Density of States to the bases in the system (N small pore, no water),
b) Projected Density of States to the bases in the system (N small pore, bases, one
layer of water), c) Projected density of states to the water in the system (N small
pore, bases, one layer of water.
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INCLUDING EFFECT OF WATER AND IONS (QM/MM APPROACH)

We also plot the charges of the bases for this two systems. Figure 3.21 shows that

the charge of the bases does not change when we include one layer of water for pore with

nitrogen on the border (see Figure 3.21 (2a, 2b)). The nitrogen terminated pore does not

favour charge transfer whereas the hydrogen terminated one does. This can be explained

by the fact that the base tends to be negatively charged, and hydrogen atoms can easily

donate charges to the base. On the other hand nitrogen is very electronegative, so it

hinders the transfer of electrons to the base. In case of the pore with hydrogen on the

border including one layer of the water decreases the charges of the base (see Figure 3.21

(1a, 1b)). Due to the higher electronegativity nitrogen has a tendency to do not releaze

a charge to the water.

Figure 3.21: Charges of the bases in the different systems for two types of pores for six snapshots.
1) H small pore, 2) N small pore. a) Pore, base, no water, b) Pore, base, one layer
of water around the base.

3.8 Electronic structure of the system: small pore,

base, including effect of water and ions (QM/MM

approach)

The final configuration that was considered was the effect of water and ions on the system

using the QM/MM approach. DFT calculations were done for the systems with the small

pores for six different snapshots and presented in the Figures 3.22, 3.23. We plot PDOS

for the base (DA, DC, DG and DT) for the system without the water (see Figures 3.22a,

3.23a) and for the system including effect of water and ions (see Figures 3.22b, 3.23b).
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For all the bases presence of the water and ions in calculations decreases the energy gap

for the pore with hydrogen termination. While for the pore with nitrogen termination the

energy gap remains the same. This is similar to the results considering a single layer of

quantum mechanical water. For cases considered energy states are more spread in energy,

including the effect of water and ions.

Figure 3.22: Electronic structure of the bases in the system (H, small pore, bases, including Vext
from atoms of water and ions) comparing to the electronic structure of the bases in
the system (H, small pore, bases, not including Vext from atoms of water and ions).
1) DA, 2) DC, 3) DG, 4) DT. a) Projected Density of States to the bases in the
system (H small pore, including Vext from atoms of water and ions), b) Projected
Density of States to the bases in the system (H small pore, not including Vext from
atoms of water and ions).

We plot the charge on the bases for the system including effect of water and ions

as well. Comparison of the charges in the system without water, including one layer of

water and including effect of water and ions using the QM/MM approach is presented

in the Figure 3.24. Values of the charges are presented in the Figure 3.25. Analyzing
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INCLUDING EFFECT OF WATER AND IONS (QM/MM APPROACH)

Figure 3.23: Electronic structure of the bases in the system (N small pore, bases, including Vext
from atoms of water and ions) comparing to the electronic structure of the bases in
the system (N small pore, bases, not including Vext from atoms of water and ions).
1) DA, 2) DC, 3) DG, 4) DT. a) Projected Density of States to the bases in the
system (H small pore, including Vext from atoms of water and ions), b) Projected
Density of States to the bases in the system (N small pore, not including Vext from
atoms of water and ions).

Figures 3.24 and 3.25 we can come to conclusion, that including one layer of water

treated quantum mechanically the same as including the effect of the water and ions

using QM/MM approach makes significant change in describing electronic structure of

the system. Therefore the future steps would be calculating the system: nanopore, base

+ one layer of water described quantum mechanically, while the rest of the water and

ions included via QM/MM approach.



Results 74

Figure 3.24: Charges of the bases in the different systems for two types of pores. 1) H small
pore, 2) N small pore for six snapshots. a) Pore, base, no water, b) Pore, base, one
layer of water around the base, c) Pore, base, including Vext from atoms of water
and ions (QM/MM approach).

Figure 3.25: Charges of the bases DA, DC, DG, DT in the different systems (Pore, base, no
water; pore, base, one layer of water around the base; pore, base, including Vext
from atoms of water and ions (QM/MM approach)for two types of pores: H small
pore and N small pore.
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3.9 Electronic transport

Following our simulation protocol we performed calculations of the zero-bias transmission

coefficients using the non-equilibrium Green’s function. Figure 3.26 illustrates the con-

ductance of the electrode (pristine graphene). For the electrode it was taken 120 atoms

of carbon from the left and from the right of the graphene sheet. The number of κ-points

was chosen 10.

Figure 3.26: Conductance as a function of energy for the electrode (pristine graphene).

Figure 3.27 illustrates the conductance of the dry empty pore with different termi-

nations a) hydrogen, b) nitrogen comparing them to the conductance of the electrode

(pristine graphene). We can clearly see that the conductance for the electrode shows the

V-shape feature expected for graphene. Introducing the pore to the graphene sheet signif-

icantly changes the conductance. Futhermore, the sharp features near 0.5 eV are present

in the curve for the empty hydrogen terminated pore corresponding to the localized states

due to the carbon of the pore.
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Figure 3.27: Conductance as a function of energy for the dry pore ( a) with hydrogen termina-
tion, b) with nitrogen termination) comparing to the conductance of the electrode
(pristine graphene).
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Figures 3.28 and 3.29 show the averaged conductance of the system with bases a)

DA, b) DC, c) DG, d) DT inside compared to the electrode conductance (red curve),

including the effects of water and ions. The average was taken over the six snapshots

that were considered in the previous section. We notice that the curves for each of the

DNA bases are rather similar for the hydrogen pore, as well as for the nitrogen pore.

Analyzing the standart deviation for the average conductance (yellow area aroung the

average conductance curve) we see only small variations in the transmission with respect

to the different snapshots for different bases, when considering the range around the Fermi

level. The greatest changes are exactly located (in energy) around the dips in conductance

associated with the edge states. This indicates that the interaction between the base and

the hydrogen pore leads to fluctuations in the conductance.

Figure 3.28: The black curve shows the averaged conductance as a function of energy of the pore
with hydrogen termination and four different types of bases a) DA, b) DC, c) DG,
d) DT inside containing water and counter-ions including via QM/MM approach.
The yellow area enveloping the black curve corresponds to one standard deviation.
Reg curve shows the conductance of the electrode.
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Figure 3.29: The black curve shows the averaged conductance as a function of energy of the pore
with nitrogen termination and four different types of bases a) DA, b) DC, c) DG,
d) DT inside containing water and counter-ions including via QM/MM approach.
The yellow area enveloping the black curve corresponds to one standard deviation.
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To compare the conductance of the different bases we plot the averaged conductance of

each base in the Figure 3.30a and 3.31a for hydrogen terminated and nitrogen terminated

pores respectively. We can see that the localized states of the empty hydrogen pore are

softened when we introduce the bases, water and counter ions effects. The same time this

peaks are shifted in energy. Figure 3.30b shows the averaged difference in conductance of

the dry empty pore and the conductance of the different bases for the pore with hydrogen

termination including water and counter-ions via QM/MM approach. We can see that

the difference is rather similar for all the ranges of energy. We can distinguish the bases

close to the energy 0.75 eV above the Fermi level. While for the nitrogen terminated

pore (Figure 3.31b) the difference between the conductances of each of the bases is

more significant for high energies. We notice, from the conductance curves that these

differences are associated to energy shifts on the slope of the conductance curves (see

Figure 3.31a). This is an indication that the main effect of the base is to change the local

charge environment of the pore in a slightly different way for each base. This, in turn

changes the local chemical potential, shifting the conductance curve. It seems nitrogen

gives us better hopes for DNA sequencing compared to hydrogen. The same shift can be

observed in hydrogen, but all the bases seem to have a similar effect. We can come to

conclusion that the bases are more likely to be diffirenciated in the pore with nitrogen

termination.
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Figure 3.30: a) Comparison of the averaged conductance of the different bases as the function
of energy for the H-pore including water and counter-ions including via QM/MM
approach to the dry pore and electrode (pure graphene). b) Averaged difference in
conductance of the dry empty pore and the conductance of the different bases for
the H-pore including water and counter-ions including via QM/MM approach.
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Figure 3.31: Comparison of the averaged conductance of the different bases as the function of
energy for the N-pore including water and counter-ions including via QM/MM
approach to the dry pore and electrode (pure graphene). b) Averaged difference in
conductance of the dry empty pore and the conductance of the different bases for
the N-pore including water and counter-ions including via QM/MM approach.
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Conclusions

In conclusion, we used the classical molecular dynamics calculations to study dynamical

effects of a graphene membrane containing a nanopore and a nucleobase surrounded by

water and counter-ions. We chose six random snapshots from the trajectory of the system

to calculate electronic structure using DFT. Besides, to analyze the influence of the water

we did DFT calculations including one layer of QM water around each of the bases and

DFT calculations including effect of all the water and ions, using QM/MM approach for

the small pores (containing either H- or N-termination).

For the system with dry pore and bases we can clearly see that the charges of the bases

in the pores with H termination are larger than the charges of the bases in the pores with

N termination (when comparing with the neutral system). The bases interact more with

the pores with H termination than with the pores with N termination. However, there

are no significant differences for large and small pores.

The presence of one layer of QM water around the base markedly affects the electronic

structure of the base for both types of pores. We also notice that the presence of water

leads to a significant decrease in the HOMO-LUMO gap of the nucleobase for the case

of the hydrogen but only minor changes in the gap for nitrogen. On the other hand, the

wider dispession of states, specially for occupied ones, indicates that the base hybridizes

with water much more strongly for the N-pore than the case of hydrogen. The nitrogen

terminated pore does not favour charge transfer whereas the hydrogen terminated one

does. This can be explained by the fact that the base tends to be negatively charged,

and hydrogen atoms can easily donate charges to the base. On the other hand nitrogen

is very electronegative, so it hinders the transfer of electrons to the base.

Presence of the water and ions (included via QM/MM approach) in calculations de-

creases the energy gap for the pore with hydrogen termination. While for the pore with

nitrogen termination the energy gap remains the same. This is similar to the results con-

sidering a single layer of quantum mechanical water. For cases considered energy states

are more spread in energy, including the effect of water and ions.

Comparing three different types of systems we can come to the conclusion that includ-

ing one layer of water treated quantum mechanically is similar to including the effect of

the water and ions using QM/MM approach; both make significant changes to the descrip-

tion of the electronic structure of the system and should thus be included in electronic

83
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transport calculations.

From the point of view of transport we have found only small variations in the trans-

mission with respect to the different snapshots but significant differences for the different

terminations. In particular, the N-terminated pore suppresses the resonances observed

in the H-terminated one. Although, this indicates that sequencing might be hard in this

system it also shows that different terminations might be employed to achive this goal.

Thus, although we haven’t simulated a full device, we have setup a procedure to do

so and we have understood a few key ingredients in the search for a graphene-based third

generation sequencing device.

Therefore the future steps would be calculating the system: nanopore, base + one layer

of water described quantum mechanically, while the rest of the water and ions included via

QM/MM approach. This will give us a better understanding of the effects of the solvent

onto the electronic properties of the system. Using this information we can help setup

the ideal configuration for the electronic transport studing different pore terminations. In

addition, to have a better description of the electronic structure of the system the number

of the snapshots must be increased in order to obtain statistically significant results.
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[62] M Büttiker, Y Imry, R Landauer, and S Pinhas. Generalized many-channel conduc-

tance formula with application to small rings. Phys. Rev. B, 31:6207, 1985.

[63] Robert Eisberg and Robert Resnick. Quantum physics of atoms, molecules, solids,

nuclei, and particles, volume 864. Wiley, 2-d edition, 1985.

[64] Stefano Sanvito Alexandre Reily Rocha. Electronic transport at the nanoscale, volume

212. Lambert Academic Publishing, 2010.

[65] S. Datta. Electronic Transport in Mesoscopic Systems, volume 390. Cambridge

University Press, 1995.

[66] Magnus Paulsson. Non Equilibrium Green ’ s Functions for Dummies : Introduction

to the One Particle NEGF equations. pages 1–9, 2008.


