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Abstract

Graphene is a truly two dimensional material - a single carbon atom thick system. Its
exceptional electronic properties combined with its weak spin-orbit (SO) interaction
- which lead to large spin relaxation length - make it a very interesting material for
studying spin transport. Therefore, graphene is considered as a promising candidate for
spintronics applications - use of the electron spin degree of freedom instead of its charge
- where one can exploit graphene unique electronic properties. However, graphene lacks
of energy gap which is essential for the design of digital transistors. This problem can
be solved by cutting graphene into strips known as graphene nanoribbons (GNRs) since
the band gap depends on its width. Unfortunately, experimental techniques employed
to synthesize these GNRs typically include undesired metal atom as impurities which
can lead to the introduction of SO and consequently to significant spin-flip processes
in conduction electrons.

Our work concerns a first principles study of electronic structure and spin-dependent
electron transport of Ni and Ir adatoms on armchair graphene nanoribbon taking into
account the SO interaction. We have used a combination of density functional theory
(DFT) and non-equilibrium Green’s function (NEGFs) methods to carry out those
calculations. Moreover, using a recursive NEGFs we also consider a large number of
Ni impurities randomly distributed along the AGNR to study transport properties
of realistic devices. Finally, we performed the spin relaxation length calculations at
specific energy regions of the disordered system.

We found Ni and Ir adatoms prefer hollow sites close to the edges of the AGNR and
also we observed SO has induced splitting of the bands close to the Fermi energy, the
intensity of those splitting, clearly depend on the adsorption position of the adatoms.
We found that single defect and disordered structures exhibit the highest transmission
coefficients - both spin conserving (SC) and spin-flip (SF) - when the most stable
adsorption system is considered. Moreover, we observed the SC current of the Ni single
defect systems is rather higher than the Ir single defect system and conversely the SF
current is smaller. Furthermore, from our Polarization (P) results of the disordered
systems at specific energy regions, we found that some energy regions are well behaved
- P tends to zero when the device length increase - whereas the others exhibit unusual
trends where further calculations is needed to get a better understanding. Finally, we
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found small spin relaxation lengths - for those well behaved energy regions - compared
with Graphene’s spin relaxation length.
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3.2 Top view of possible adsorption sites over the hexagon. . . . . . . . . . . . 36
3.3 (a) Initial adsorption sites for Ni; (b) Initial adsorption sites for Ir. . . . . . 37
3.4 (a) Energy dispersion relation. (b) Total DOS of pristine AGNR around

Fermi energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ix



3.5 (a) Initial (triangles) Ni adsorption sites on AGNR; (b) Relaxed (circles)

Ni adsorption sites on AGNR. Red circles indicate the systems studied in

this work: the most stable (Ni@AGNR-1) and the symmetric (Ni@AGNR-4).

From now on, Ni@AGNR-4 ⇔ Ni@AGNR-s . . . . . . . . . . . . . . . . . 39
3.6 (a) The most stable structure: Ni@AGNR-1, (b) The symmetric structure:

Ni@AGNR-s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7 (a) Initial (triangles) Ir adsorption sites on AGNR; (b) Relaxed (circles) Ir ad-

sorption sites on AGNR. Red circles indicate the systems studied in this work:

the most stable (Ir@AGNR-1) and the symmetric (Ir@AGNR-13). From now

on, Ir@AGNR-13 ⇔ Ir@AGNR-s. . . . . . . . . . . . . . . . . . . . . . . 41
3.8 (a) The most stable structure: Ir@AGNR-1, (b) The symmetric structure:

Ir@AGNR-s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.9 Energy dispersion of: (a) Pristine AGNR, (b) Ni@AGNR-1, and (c) Ni@AGNR-

s without SO coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.10 Energy dispersion of: (a) Pristine AGNR, (b) Ni@AGNR-1, and (c) Ni@AGNR-

s with SO coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.11 (a) Band structure around EF for Ni@AGNR-1. (b) Band structure around

EF for Ni@AGNR-s. Blue lines correspond to SO and black lines to no-SO.

The insets show the regions between dashed lines. . . . . . . . . . . . . . 47
3.12 Total DOS around Fermi energy of: (a) Pristine AGNR, (b) Ni@AGNR-1

and (c) Ni@AGNR-s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.13 Atoms Ni, C1, C2 and/or C3 considered to obtain PDOS of each structures:

(a) Ni@AGNR-1 and (b) Ni@AGNR-s. . . . . . . . . . . . . . . . . . . . . 49
3.14 Four of the five 3d orbitals consist of four lobes arranged in a plane that

is intersected by two perpendicular nodal planes. These four orbitals have

the same shape but different orientations. The fifth 3d orbital, 3dz2, has a

distinct shape even though it is mathematically equivalent to the others. The

phase of the wave function for the different lobes is indicated by color: orange

for positive and blue for negative [2]. . . . . . . . . . . . . . . . . . . . . . 49
3.15 For Ni@AGNR-1 : (a) Total DOS. (b) PDOS of Ni, C1, C2, and C3 atoms.

(c) PDOS of 3d orbitals of Ni atom. These orbitals are: 4s (black line), 3dxy

(turquoise line), 3dyz (indigo line), 3dz2 (green line), 3dxz (orange line) and

3dx2-y2 (magenta line). . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.16 For Ni@AGNR-s : (a) Total DOS. (b) PDOS of Ni, C1, and C2 atoms. (c)

PDOS of 3d orbitals of Ni atom. These orbitals are: 4s (black line), 3dxy

(turquoise line), 3dyz (indigo line), 3dz2 (green line), 3dxz (orange line) and

3dx2-y2 (magenta line). . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.17 Scheme of a two-probe setup used for transport computations. A central

region (scattering region) is connected to two semi-infinite leads (shadow re-

gion). Scattering region is an assemble of the single defect structure sand-

wiched between two electrodes. . . . . . . . . . . . . . . . . . . . . . . . . 52

x



3.18 For Ni@AGNR-1: (a) PDOS of Ni orbitals, (b) Spin-conserved (T↑↑ = T↓↓)

and spin-flip (T↑↓ = T↓↑ = 0) transmission probabilities without SO coupling

and (c) Spin-conserved (T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑) transmission

probabilities with SO coupling. Dashed lines correspond to transport in the

pristine AGNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.19 For Ni@AGNR-s: (a) PDOS of Ni orbitals, (b) Spin-conserved (T↑↑ = T↓↓)

and spin-flip (T↑↓ = T↓↑ = 0) transmission probabilities without SO coupling

and (c) Spin-conserved (T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑) transmission

probabilities with SO coupling. Dashed lines correspond to transport in the

pristine AGNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.20 Energy dispersion of: (a) Pristine AGNR, (b) Ir@AGNR-1, and (c) Ir@AGNR-

s without SO coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.21 Energy dispersion of: (a) Pristine AGNR, (b) Ir@AGNR-1, and (c) Ir@AGNR-

s with SO coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.22 (a) Band structure around EF for Ir@AGNR-1. (b) Band structure around

EF for Ir@AGNR-s. Blue lines correspond to SO and black lines to no-SO.

The insets show the regions between dashed lines. . . . . . . . . . . . . . . 57
3.23 Total DOS around Fermi energy of: (a) Pristine AGNR, (b) Ir@AGNR-1 and

(c) Ir@AGNR-s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.24 Ir and Carbon atoms for PDOS calculations in stable (a) and symmetric (b)

systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.25 For Ir@AGNR-1 : (a) Total DOS. (b) PDOS of Ir and carbons C1 and C2.

(c-1) PDOS of 6s, 6px and 5d orbitals of Ir. (c-2) PDOS of 5d orbitals of Ir. 60
3.26 For Ir@AGNR-s : (a) Total DOS. (b) PDOS of Ir and carbons C1 and C2.

(c-1) PDOS of 6s and 5d orbitals of Ir. (c-2) PDOS of 5d orbitals of Ir. . . 62
3.27 Scheme of a two-probe setup used for transport computations. A central

region (scattering region) is connected to two semi-infinite leads (shadow re-

gion). Scattering region is an assemble of the single defect structure sand-

wiched between two electrodes. . . . . . . . . . . . . . . . . . . . . . . . . 63
3.28 For Ir@AGNR-1: (a-1) and (a-2) PDOS of Ir orbitals, (b) Spin-conserved

(T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑ = 0) transmission probabilities without

SO coupling and (c) Spin-conserved (T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑)

transmission probabilities with SO coupling. Dashed lines correspond to

transport in the pristine AGNR. . . . . . . . . . . . . . . . . . . . . . . . 64
3.29 For Ir@AGNR-s: (a-1) and (a-2) PDOS of Ir orbitals, (b) Spin-conserved

(T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑ = 0) transmission probabilities without

SO coupling and (c) Spin-conserved (T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑)

transmission probabilities with SO coupling. Dashed lines correspond to

transport in the pristine AGNR. . . . . . . . . . . . . . . . . . . . . . . . 65

xi



4.1 Schematic view of the typical setup for a disordered transport calculations.

The left and right electrodes (grey shadow) consist of two semi-infinite seg-

ments of the pristine AGNR. The one dimensional realistic disordered nanorib-

bon attached to the electrodes consists of a randomly intercalation of pristine

AGNR (blue shadow) and single defect (pink shadow) segments. . . . . . . 67
4.2 Spin-conserved transmission coefficients (T↑↑ = T↓↓) without spin-orbit cou-

pling as a function of energy of disordered ribbon based on Ni@AGNR-1

structure. (a) At fixed concentration of [Ni]1 = 0.48 %; (b) At fixed con-

centration of [Ni]2 = 0.87 %; (c) At fixed nanoribbon length of L1 = 97.425

nm and (d) At fixed nanoribbon length of L2 = 194.85 nm. Dashed lines

correspond to the transmission coefficients for a pristine AGNR. . . . . . . 69
4.3 Spin-conserved transmission coefficients (T↑↑ = T↓↓) with spin-orbit coupling

as a function of energy of disordered ribbon based on Ni@AGNR-1 structure.

(a) At fixed concentration of [Ni]1 = 0.48 %; (b) At fixed concentration of

[Ni]2 = 0.87 %; (c) At fixed nanoribbon length of L1 = 97.425 nm and (d) At

fixed nanoribbon length of L2 = 194.85 nm. Dashed lines correspond to the

transmission coefficients for a pristine AGNR. . . . . . . . . . . . . . . . . 70
4.4 Scattering process in presence of a scatter element; (a) Without influence of

SO interaction; (b) With influence of SO interaction. . . . . . . . . . . . . 71
4.5 Disordered transport of nanoribbon at fixed concentration of [Ni]1 = 0.48 %.

(a) Total conductance (T↑↑+T↓↑); (b) Spin-conserved (T↑↑ = T↓↓) transmission

probabilities without SO coupling; (c) Spin-conserved (T↑↑ = T↓↓) and spin-

flip (T↑↓ = T↓↑) transmission probabilities with SO coupling. Dashed lines

correspond to transport in the pristine AGNR. . . . . . . . . . . . . . . . 72
4.6 Spin-flip (T↑↓ = T↓↑) and spin-conserved (T↑↑ = T↓↓) transmission coeffi-

cients as a function of energy of disordered ribbon based on Ni@AGNR-1 and

Ni@AGNR-s structures at fixed concentration of [Ni]1 = 0.48 %. (a) Based

on Ni@AGNR-1 with SO; (b) Based on Ni@AGNR-s with SO; (c) Based on

Ni@AGNR-1 without SO and (d) Based on Ni@AGNR-s without SO. Dashed

lines are the transmission coefficients for pristine AGNR. . . . . . . . . . . 74
4.7 Schematic illustration of energy intervals chosen to study the trend of the

spin-conserved and spin-flip transmissions. . . . . . . . . . . . . . . . . . . 75
4.8 Spin-conserved transmission coefficients versus length of the disordered device

for the set of energy ranges of interest calculated without take into consider-

ation the SO interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.9 Transmission coefficients versus length of the disordered device for the set

of energy ranges of interest calculated considering the SO interaction. (a)

Spin-conserved transmission coefficients. (b) Spin-flip transmission coefficients. 79
4.10 (a) Total conductance versus length of the disordered device with no SO effect.

(b) Total conductance versus disordered device length with SO effect. . . . . 80

xii



4.11 Polarization versus length of the disordered device with SO effect for the set

of energy ranges of interest. . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.12 Polarization as a function of the device length for two energy regions (E0 and

E7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.13 Natural logarithm of polarization versus the length of the device showing the

data fitting curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.14 Schematic illustration of energy intervals chosen to study the trend of the

spin-conserved and spin-flip transmissions. . . . . . . . . . . . . . . . . . . 85
4.15 Spin-conserved transmission coefficients versus length of the disordered device

for the set of energy ranges of interest calculated without take into consider-

ation the SO interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.16 Transmission coefficients versus length of the disordered device for the set

of energy ranges of interest calculated considering the SO interaction. (a)

Spin-conserved transmission coefficients. (b) Spin-flip transmission coefficients. 88
4.17 (a) Total conductance versus length of the disordered device with no SO effect.

(b) Total conductance versus disordered device length with SO effect. . . . . 89
4.18 Polarization versus disordered device length with SO effect for the set of

energy ranges of interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.19 Polarization as a function of the device length for five energy regions (E0, E3,

E4, E5 and E6). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.20 Natural logarithm of polarization versus the length of the device showing the

data fitting curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

B.1 Disordered transport of nanoribbon at fixed concentration of [Ni]2 = 0.87 %.

(a) Spin-conserved (T↑↑ = T↓↓) transmission probabilities without SO cou-

pling; (b) Spin-conserved (T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑) transmission

probabilities with SO coupling. Dashed lines correspond to transport in the

pristine AGNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
B.2 Disordered transport of nanoribbon at fixed length of L1 = 97.425 nm. (a)

Spin-conserved (T↑↑ = T↓↓) transmission probabilities without SO coupling;

(b) Spin-conserved (T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑) transmission proba-

bilities with SO coupling. Dashed lines correspond to transport in the pristine

AGNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
B.3 Disordered transport of nanoribbon at fixed length of L2 = 194.85 nm. (a)

Spin-conserved (T↑↑ = T↓↓) transmission probabilities without SO coupling;

(b) Spin-conserved (T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑) transmission proba-

bilities with SO coupling. Dashed lines correspond to transport in the pristine

AGNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xiii



B.4 Spin-conserved transmission coefficients (T↑↑ = T↓↓) without spin-orbit cou-

pling as a function of energy of disordered ribbon based on Ni@AGNR-s

structure. (a) At fixed concentration of [Ni]1 = 0.48 %; (b) At fixed concen-

tration of [Ni]2 = 0.87 %; (c) At fixed nanoribbon length of L1 = 97.425 nm

and (d) At fixed nanoribbon length of L2 = 194.85 nm. Dashed lines are the

transmission coefficients for pristine AGNR. . . . . . . . . . . . . . . . . . 114
B.5 Spin-conserved transmission coefficients (T↑↑ = T↓↓) with spin-orbit coupling

as a function of energy of disordered ribbon based on Ni@AGNR-s structure.

(a) At fixed concentration of [Ni]1 = 0.48 %; (b) At fixed concentration of

[Ni]2 = 0.87 %; (c) At fixed nanoribbon length of L1 = 97.425 nm and (d) At

fixed nanoribbon length of L2 = 194.85 nm. Dashed lines are the transmission

coefficients for pristine AGNR. . . . . . . . . . . . . . . . . . . . . . . . . 115
B.6 Disordered transport of nanoribbon at fixed concentration of 0.48 %. (a)

Total conductance ; (b) Spin-conserved (T↑↑ = T↓↓) transmission probabilities

without SO coupling; (c) Spin-conserved (T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑)

transmission probabilities with SO coupling in logarithmic scale. Dashed lines

correspond to transport in the pristine AGNR. . . . . . . . . . . . . . . . 116
B.7 Disordered transport of nanoribbon at fixed concentration of 0.87 %. (a)

Spin-conserved (T↑↑ = T↓↓) transmission probabilities without SO coupling;

(b) Spin-conserved (T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑) transmission proba-

bilities with SO coupling. Dashed lines correspond to transport in the pristine

AGNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
B.8 Disordered transport of nanoribbon at fixed length of L1 = 97.425 nm. (a)

Spin-conserved (T↑↑ = T↓↓) transmission probabilities without SO coupling;

(b) Spin-conserved (T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑) transmission proba-

bilities with SO coupling. Dashed lines correspond to transport in the pristine

AGNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
B.9 Disordered transport of nanoribbon at fixed length of L2 = 194.85 nm. (a)

Spin-conserved (T↑↑ = T↓↓) transmission probabilities without SO coupling;

(b) Spin-conserved (T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑) transmission proba-

bilities with SO coupling. Dashed lines correspond to transport in the pristine

AGNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xiv



List of Tables

3.1 Ni adsorption sites, relative energies of relaxed structures and Ni adsorption

distances of relaxed structures. . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Ir adsorption sites, relative energies of relaxed structures and Ir adsorption

distances of relaxed structures. . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Values of the energy regions considered in Fig. 4.7. . . . . . . . . . . . . . 76
4.2 Spin relaxation length of the energy regions E0 and E7. . . . . . . . . . . . 83
4.3 Values of the energy regions considered in Fig. 4.14. . . . . . . . . . . . . . 86
4.4 Spin relaxation length of the energy regions E0, E3, E4, E5 and E6. . . . . . 92

A.1 Initial and relaxed structures from Ni@AGNR-1 to Ni@AGNR-8 with their

respective relative energy in eV after relaxation. . . . . . . . . . . . . . . . 102
A.2 Initial and relaxed structures from Ni@AGNR-9 to Ni@AGNR-16 with their

respective relative energy in eV after relaxation. . . . . . . . . . . . . . . . 103
A.3 Initial and relaxed structures of Ni@AGNR-17 with their respective relative

energy in eV after relaxation. . . . . . . . . . . . . . . . . . . . . . . . . 104
A.4 Initial and relaxed structures from Ir@AGNR-1 to Ir@AGNR-8 with their

respective relative energy in eV after relaxation. . . . . . . . . . . . . . . . 106
A.5 Initial and relaxed structures from Ir@AGNR-9 to Ir@AGNR-16 with their

respective relative energy in eV after relaxation. . . . . . . . . . . . . . . . 107
A.6 Initial and relaxed structures from Ir@AGNR-17 to Ir@AGNR-24 with their

respective relative energy in eV after relaxation. . . . . . . . . . . . . . . . 108
A.7 Initial and relaxed structures of Ir@AGNR-25 with their respective relative

energy in eV after relaxation. . . . . . . . . . . . . . . . . . . . . . . . . 109

xv



Chapter 1

Introduction

1.1 Nanoelectronics

For more than four decades, the Silicon industry has thrived with the rapid improve-
ment in the development of integrated circuit technology. This trend is mainly a result
of the industry’s ability to exponentially decrease the minimum feature sizes of devices
used to fabricate integrated circuits. This trend is usually expressed as Moore’s Law
[3] (that is, the number of components per chip doubles roughly every 2 years). The
most significant trend is the decreasing cost-per-function, which has led to significant
improvements in economic productivity and overall quality of life through prolifera-
tion of computers, communication, and other industrial and consumer electronics [4].
However, the increase in response of speed and the number of transistors per chip
are creating new problems for designers who have endeavoured over the past decades
in finding solutions to correct the quantum phenomena limitations that come with
miniaturization.

According to experts, the factories cannot bear the high costs that technological
progress requires, in addition to addressing the limitations of silicon technology (at
such small scales, devices begin show different behaviors). In this perspective, many
scientists have committed to new technology trends where devices at the nanoscopic
scale present new and challenging issues. At the nanoscale, systems must fundamentally
obey quantum mechanics, and as such need to be thoroughly studied.

At the same time electrons have charge and spin, recently in conventional electron-
ics, the charges are manipulated by electric fields but the spins are ignored. Another
widespread technology was the magnetization of a ferromagnet to store and read in-
formation. The discovery of the giant magnetoresitance effect in 1988 [5] has led to
an equivalent of Moore’s Law for magnetic recording. However, in the same manner
that downsizing is leading to us to the limit at silicon technology, one also envisions a
limit to GMR-based devices. Furthermore, one could like to forehead a future where
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electronics and spin electronics (spintronics) can be performed in the same chip with
new types of devices [6].

1.2 Graphene

Graphene is a promising material which open the possibility to use it in electronics
applications due to its exceptional electronic properties. It would also be possible to
use the electron spin to design new types of integrated circuits.

Graphene is a single layer of carbon atoms arranged in a honeycomb lattice. It
was first studied theoretically by P. Wallace in 1947 [7]. Although, some decades ago
Landau [8] and Peierls [9] argued that any 2D crystal was thermodynamically unstable
- hence its existence would be impossible - in 2004 Andre Geim and Kostya Novoselov
[10] from Manchester University were able to obtain an isolated graphene sheet by
using the micro-mechanical cleavage technique. They were awarded the Nobel Prize in
2010 for study electronic transport in grpahene. Two years later after being isolated,
graphene appeared in hundreds of articles because its unique properties arising from
its honeycomb arrangement (combined with the electronic distribution of carbon) that
allow us for instance to observe relativistic effects at speeds much lower than the speed
of light [11].

The carbon atom has the following distribution 1s22s22p1x2p
1
y. This structure gives

carbon the ability to bind with other atoms in many ways to form a variety of crystals.
This comes from a process known as the hybridization [12]. In particular graphene
comes of an sp2 hybridization because all p orbitals initially have the same energy
and the electrons prefer to be furthest apart due to the Pauli exclusion principle. The
atomic 2s orbital mixed with the px and py orbitals to generate three molecular orbitals
known as σ arranged in a trigonal form and are responsible for the strong bands of
graphene. The remaining pz orbital known as π is perpendicular to the σ orbitals,
and the electron that is in this orbital is delocalized and is responsible for most of the
electronic properties (see Fig. 1.1).

2



Figure 1.1: Orbital s mixed with orbitals px and py give the hybridized orbitals sp2 while
orbital pz remains invariant.

In order to understand the basic properties of graphene we can use a simple model
based on nearest neighbour Tight binding approach [13]. The graphene structure is a
triangular lattice with two atoms per unit cell as basis (see Fig.1.2). These lattice vec-
tors, reciprocal lattice vectors and nearest neighbours vectors in real space are given by

~a1 =
a

2
(3,
√

3), ~a2 =
a

2
(3,−

√
3) (1.1)

~b1 =
2π

3a
(1,
√

3), ~b2 =
2π

3a
(1,−

√
3) (1.2)

δ1 =
a

2
(1,
√

3) δ2 =
a

2
(1,−

√
3) δ3 = −a(1, 0) (1.3)

and the positions of the symmetry points in the reciprocal space K and K ′ (named
Dirac points) are given by

K =
2π

3a
(1,
√

3/3), K ′ =
2π

3a
(1,−

√
3/3) (1.4)

where a = 1.42 Å is the C-C bond length
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Figure 1.2: Left: lattice structure of graphene in the real space with two atoms, A and B,
in the unit cell as basis. Right: Brillouin zone and the high symmetry points K and K ′ [1].

Therefore after solving the Tight binding formalism for graphene structure the en-
ergy dispersion relation is given by

E(k) = ε0 ± t

√
1 + 4 cos(

3akx
2

) cos(

√
3aky
2

) + 4 cos2(

√
3aky
2

) (1.5)

and the plot of this energy dispersion is shown in Fig.1.3

Figure 1.3: Electronic dispersion in graphene. The conduction and valence bands touch each
other at six discrete points called K/K ′ points [1].

Graphene present an unusual close to linear energy dispersion (see Fig.1.3) around
the so-called Dirac points (K and K ′) where a zero gap allows unusual electronic prop-
erties, e.g. It is not a metal because it has a vanishing density of states and also it is not
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a typical semiconductor (or insulator) because it does not have a gap in the spectrum.
Moreover, due to that particular dispersion it can be mapped into the relativistic equa-
tion for massless Dirac fermions except for the fact that in graphene electrons travel as
a massless particle with a velocity of the order of 106ms−1 (approximately 300 times
smaller than the speed of light), therefore the way electrons behave in graphene is very
useful to study some fundamental physical properties [11]. Furthermore, because of the
near perfect crystal nature of graphene, it is a very clean system to pursue experiments
restricting the electrons to only two dimensions. They exhibit some interesting prop-
erties such as the anomalous quantum Hall effect and possibly Klein tunnelling [14],
topological insulator [15], Hofstadter butterfly [16] and Atomic collapse [17]. Its ther-
mal conductivity was measured at room temperature and it is much higher than the
value observed in all the other carbon structures such as carbon nanotubes, graphite
and diamond [18]. Since devices continue to shrink and circuit density increases, high
thermal conductivity is essential for dissipating heat efficiently thus study of thermal
conductivity in graphene may have important implications in graphene-based electronic
devices. Moreover, graphene exhibit weak intrinsic spin-orbit interaction which make
it interesting to spintronics applications.

1.3 Graphene nanoribbons

One of the problem facing graphene’s application in electronics is the lack of an energy
gap at the Fermi level. This is a requirement if one wishes to obtain a logical switch -
such a transistor. One possible path to circumvent this problem is to further confine
electrons in graphene. Graphene nanoribbons (GNRs) are one-dimensional structures
made of stripes of graphene. Their structures and their electronic and magnetic prop-
erties [19] have been intensively studied both experimentally and theoretically. The
confinement to one dimension (1D) introduces significant quantum confinement effects,
which give to GNRs several attractive properties [20]. Depending on the edge termina-
tion GNRs are classified as Armchair or Zigzag (see Fig.1.4). Taking into account the
standard notation, the width of an armchair GNR (AGNR) is defined by the number
of dimer lines (Na) across the ribbons. Equally, the width of a zigzag GNR (ZGNR) is
defined by the number of zigzag chains (Nz) across the ribbons.
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Figure 1.4: Left: Armchair graphene nanoribbon. Right: Zig zag graphene nanoribbon.

Calculations based on tight-binding method predict that all AGNRs are semicon-
ductors with energy gaps decreasing as a function of increasing ribbon widths [21]. On
the other hand, the high density of states of the Fermi level in ZGNR is believed to
lead to an Stoner instability and to possible magnetics edges, although no conclusive
evidence has been found for magnetism in ZGNRs [22]. The ZGNRs within this model
are always metallic, those features in the band structures are reported in Figs.1.5 and
1.6 for both GNRs.

Figure 1.5: First-principles band structures of Na − AGNRs with Na= 12,13, and 14,
respectively.
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Figure 1.6: Band structure for 8-ZGNR, the horizontal dashed line shows Fermi level for π
electrons. The highest occupied band for oppositely oriented Π-electrons are denoted with
arrows.

Currently there is development and improvement of several techniques that are tack-
ling the physical limits in fabrication of GNRs. For instance using the fully-fledged
micro-lithography technique is expected to be suited for etching GNRs. Also Oxygen
plasma [23] and electron beams have been used to etch graphene on SiO2 wafers. How-
ever, due to the limit in spacial resolution, lithographic techniques have been unable
to produce narrow GNRs with smooth edges [24]. Scanning Tunnelling Microscopy
(STM) can also be used to tailor graphene sheets into nanoribbons in a well defined
shape. Taking advantage of the atomic resolution of STM, armchair edged GNRs with
width 2.5 nm and energy gap 0.5 eV have been reported [25] but the low throughput
and low yield restrict the application of STM technique. Metallic nanoparticles can
also be used as scissors in the lithographic-etching procedure. Particularly Fe [26] and
Ni [27] nanoparticles have been thermally generated and used to cut down graphene
into GNRs. Chemical vapor deposition method can also be used to fabricate GNRs
directly where widths of 20 ∼ 300 nm and thickness as of 2 ∼ 40 layers are obtained.
In other words, there is still need to improve and develop new fabrication techniques
is still a challenge.

The potential application envisioned by using the GNRs depend on the large variety
of electronic and magnetic properties: semiconducting with a wide range of band gaps,
metallic, ferromagnetic, anti-ferromagnetic, half-metallic and half-semiconducting [28].
Those properties can be tailored by chemical modifications of the edge, as adsorb-
ing appropriate atoms, or by substituting carbons with an appropriate host are some
options to functionalize these materials. Therefore, these properties along with the
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ballistic electronic transport and the high carrier mobility associated to these quasi-1D
materials make them promising candidates for nanoelectronics and spintronics appli-
cations.

In order to achieve these potential applications it is essential to have a better
understanding of the electronic structure of GNRs and have ability to control them.
From a practical point of view, when nanoribbons are fabricated experimentally, they
will have some structural defects. Vacancies and ad-atom defects are within the most
probable ones [29]. These defects should be taken into account in practical aspects of
the electronic transport in nanodevices based on graphene nanoribbons.

These defects are typically distributed along the nanoribbon and one has no control
over their relative position. Depending on length and concentration one would, for
example, expect to see a new transport regime known as localized regime [30]. Previous
works in the group have shown that this regime gives rise to significant changes in the
transport properties of nanoribbons [31].

1.4 Spin-orbit coupling in solids

The non-relativistic quantum mechanics theory accurately describes the interaction
and motion of electrons and nuclei when the atoms treated are light (or the speed of
the particles is small). If the atoms involved in the treatment are relatively heavy,
e.g. transition metals atoms, relativistic effects become significant, especially for inner
electrons due to the intensive confinement and high kinetic energy. From a fundamental
physics point of view one such effect is know as the spin-orbit coupling (SO) and arises
from the coupling between the intrinsic magnetic moment of the electron (proportional
to its spin angular momentum) and the magnetic angular moment around the nucleus
(proportional to the electronic orbital angular momentum). This effect increase in the
valence band with order1Z2.

Spin-orbit interaction has become one important directions in current spintronics
where interesting phenomena, such as quantum spin Hall effect and quantum anoma-
lous Hall effect, were predicted in graphene just based on its SO interactions [32, 33].
However, the intrinsic SO splitting in pure graphene or carbon nanotubes was found to
be very weak (0.37 meV or smaller) [34, 35, 36]; not enough for practical applications.
Therefore, it is important to explore the mechanism of SO interactions and yield large
SO strength in those carbon systems under certain ambient environment. Also, the first
spin injection measurements based on a non-local spin valve geometry [37] surprisingly
revealed short spin relaxation times of about 100 - 200 ps. This contradiction opens
a window to study the role of the intra-atomic spin-orbit interaction in the electronic

1The so called spin-orbit correction to the schrödinger equation can be obtained by expanding
Dirac’s equation in powers of α, the hyperfine constant.
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properties of single and few layer graphene. In solids the spin-orbit effect manifests
itself in the band structure.

The Rashba-Dresselhaus effect is a momentum dependent splitting of spin bands
in two-dimensional condensed matter systems. The splitting is a combined effect of
atomic spin-orbit coupling and the braking of spacial symmetry. As a consequence, the
energy bands become splitted in the wave vector direction.

Electronic devices are based on the ability to manipulate the electrons charge by
the means of electric fields. Similarly, devices can be based on the manipulation of the
spin degree of freedom.

Graphene exhibits weak spin-orbit (SO) interaction and ideally long spin lifetimes.
As mentioned previously, experiments show spin relaxation times which are signifi-
cantly smaller than those predicted by theory [38]. Thus it very important investigate
which spin relaxation mechanism plays the major role in graphene. The Dyakonov-
Perel [39] and the Elliot-Yafet [40][41] mechanisms are usually discussed in graphene.
Experiments suggest that the main source of spin relaxation in single layer graphene
is extrinsic, lending support to the Elliot-Yafet mechanism [38]. This means that im-
purities would play a key role both in graphene and graphene nanoribbons.

1.5 Spintronics

It is well known that the silicon based electronics era is reaching its limits because
device miniaturization is facing the physical barriers where phenomena like tunnelling
effects prevent the control of charge carriers. Therefore, new ways to fabricate devices
that sort out these limitations are necessary. In this context several alternatives to build
devices have appeared. We are interested in the field of spin electronics (spintronics)
because it has promising advantages in futures electronics devices based on the fact
that one exploits the electronic spin degree of freedom instead of the electronic charge.

In the so called field of spintronics there are three main challenges one needs to
address before obtaining solid-state devices, namely: (1) the most effective way to
polarize a spin system at the source, (2) obtaining long spin coherence times (small
spin relaxation) during electronic transport, and (3) the ability to detect spin at the
drain.

Carbon based nano-structures seem to be suitable candidates for spintronics because
of the long spin relaxation time and large spin coherence of electrons. It is due to the
fact that the organic molecules are composed of light atoms with small intrinsic spin-
orbit interactions. Furthermore, the main element of organic compounds, i.e. carbon
atom, has zero nuclear spin which results in a very small intrinsic spin-orbit interaction.
Generating and injecting a spin-polarized current into graphene is of vital importance
to the development of graphene-based spintronics. GNRs are theoretically predicted
to possess a local magnetic moment at the zigzag edges, but a major limitation arises
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in the presence of edge disorder and impurities which were shown to suppress this
magnetic state. At the same time, impurities and defects might play an important role
to the coherence of these systems. In particular, the presence of metal atoms can lead
to significant spin-flip processes of conduction electrons due to the importance of the
spin orbit interaction. These impurities are usually unavoidable and could deteriorate
the spin current. So the key question that arises is how long can a spin-polarized
current travel in a graphene nanoribbon and still conserve its polarization?.

1.6 Objectives

In general, we focused on the electronic structure and spin-polarized transport proper-
ties of armchair graphene nanoribbons with adsorbed transition metal (TM) atoms as
impurities (Ni and Ir). We considered the spin-orbit effect. We have two main goals
in this work: first, to understand the influence of the SO interaction over electronic
structure and transport properties of a single adatom configuration (TM@AGNR) us-
ing a combination of density functional theory and non-equilibrium Green’s functions
(NEGFs). Second, to understand how the SO coupling affects the transport proper-
ties of a disordered system: a large number of impurities randomly distributed along
the nanoribbon. This is done based on the single configuration studied previously by
employing a recursive NEGFs method. For this last purpose we considered different
setups. Finally, we compute the spin relaxation length at some specific energy regions
of the disordered system.

The present work is organized as follow: In the first chapter a brief introduction
was given on the subject. In the second chapter we explain the methodology used (i.e
DFT and NEGFs without and with the spin-orbit coupling effects). In the third and
fourth chapter we present our results for single defect and multiple defects structures,
respectively. In the fifth chapter we give our conclusions to the project. Finally, we
present the appendices containing additional results.

10



Chapter 2

Methodology

2.1 Density Functional Theory

2.1.1 The many body problem

Quantum mechanics is a theory for determining the processes occurring in atoms,
molecules or nanoscale devices with dimensions from few Angstroms to hundreds of
nanometers. Hence, in order to describe the behaviour of any many-electron system
one must usually find an approximate solution of the non-relativistic time-independent
Schrödinger Equation (SE)1 [42]

ĤΨ = EΨ, (2.1)

where Ĥ is the Hamiltonian operator of any system with M nuclei and N electrons
given in atomic units 2 by

Ĥ = −1

2

∑
i

∇2
i −

1

2

∑
α

1

mα
∇2
α +

∑
i

∑
i>j

1

rij
−
∑
i

∑
α

Zα
rαi

+
∑
α

∑
β>α

ZαZβ
Rαβ

, (2.2)

or

Ĥ = T̂e + T̂n + V̂ee + V̂en + V̂nn, (2.3)

1As we will later see, relativistic effects are, in many cases important. Although not the topic of
this dissertation so might be time dependent effects.

2~ = me = e = 1/4ε0 = 1
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where the first, second, third, fourth and fifth terms of the right-hand side of equations
2.2 and 2.3 correspond to the operators for electronic and nuclear kinetic energy, the
electron-electron interaction potential, electron-nuclei potential and nuclear repulsion
potential respectively. As well as, ri/j, rα/β, Zα/β and mα are the electron and nuclear
coordinates, the nuclear charge and the nuclear mass respectively. The aim is to find
the total energy levels εi as well as the wave function ψi({~rj} , {Rα}) for electrons and
nuclei.

2.1.2 The Born-Oppenheimer approximation

Finding a solution for this Hamiltonian is a difficult task but the key to achieve it is to
rely on simplifications. One of these simplifications is known as the Born-Oppenheimer
approximation (BO)[43] which is based on the fact that the electron speed is much
higher than the nuclear speed, so nuclear motion can be almost static (from the elec-
tronic point of view) because the electrons can quickly adjust their state in response to
any slower nuclear movement. A direct result of this approximation allow us to neglect
the nuclear kinetic operator in the molecular Hamiltonian and split the total molecular
wavefunction Ψ in two terms: one electronic and other nuclear. The electronic wave-
function will depend on the electronic coordinates ri and parametrically on nuclear
coordinates rα while the nuclear wavefunction will be a function of nuclear coordinates
only

Ψ = Ψe(~ri;~rα)Φnucl(~rα), (2.4)

In this way, we will separate the equation for the electronic and nuclear particles.
Since we are interested in the electronic formulation of the problem, we only write the
electronic equation as

ĤeΨe = EeΨe, (2.5)

and the electronic Hamiltonian as

Ĥe = T̂e + V̂ee + V̂en, (2.6)

where V̂nn is nothing but a constant and Ĥ becomes Ĥe after applying the BO ap-
proach.3 There is still a huge problem: although we have somewhat eliminated the

3From now on we simply call our electronic Hamiltonian as Ĥ unless we state the contrary.
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nuclear degrees of freedom, one still needs to deal with a large number of electrons4.

2.1.3 The Hohenberg-Kohn theorems

In 1964, Hohenberg and Kohn (HK)[44] proved a couple of theorems that state the
following:

Theorem I: The external potential vext, and hence the total energy, is a unique
functional of the electron density ρ(~r).

It legitimizes the use of the electron density, instead of the wavefunction, as a basic
variable, which for molecules with non-degenerated ground states, means that the
wavefunction, the energy and the rest of the electronic properties can be determined
uniquely by the electronic density ρ(x, y, z). For this reason we can consider the energy
E as a functional of the electronic density, E[ρ].

Lets see more carefully this statement, considering as a starting point the electronic
Hamiltonian of equation 2.6 which was obtained after applying the BO approach

Ĥ = T̂e + V̂en + V̂ee, (2.7)

also for practical purposes we rewrite V̂en as

V̂en = V̂ext =
∑
i

vext(ri), (2.8)

where vext(ri) = −
∑
α

Zα/riα is the external potential operator that acts over the i-th

electron, as it has an external origin respect to the electron system. Hohenberg and
Kohn demonstrated the electron density determines the external potential for a fixed
number of electrons, so we assert the electron density contains all the necessary infor-
mation to describe the system. Writing equation 2.7 in terms of expectation values
and considering the HK theorem we have it in terms of the electronic density

E[ρ] = T [ρ] + Vext[ρ] + Vee[ρ], (2.9)

with

4For this problem even a handful of electrons would be considered ”large”.
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Vext =

∫
ρ0(r)vext(r)dr, (2.10)

then we have

E[ρ] = T [ρ] +

∫
ρ(r)vext(r)dr + Vee[ρ], (2.11)

from this equation we only know the first term. Therefore now we have to call the
second HK theorem :

Theorem II: The ground state energy can be obtained variationally, hence the den-
sity that minimises the total energy is the exact ground state density.
It means we can find the energy using the variational principle

E0 6
∫
ρ(r)v(extr)dr + T [ρ] + Vee[ρ] = E[ρ], (2.12)

In other words for any trial electron density ρ(r), which satisfies the necessary boundary
conditions such as ρ(r) ≥ 0 and

∫
ρ(r)dr = N then E[ρ] represents an upper bound to

the true ground state energy E0. However, these theorems do not tell us the recipe for
calculating E0 from ρ0 since we do not know the functional expression of E[ρ].

2.1.4 The Kohn-Sham equations

Kohn and Sham (KS), in 1965[45], proposed that it is possible to reduce the many-
body quantum problem to an exactly equivalent set of one-electron equations, solved
self-consistently. They proposed a method that in principle allows us to obtain exact
results.

The KS ansatz considers a fictitious reference system of N non-interacting electrons
(referred to by the letter ”s”) that feel the same external potential vext(ri) and generates
the same density as the interacting system

ρs = ρ0, (2.13)

therefore, by solving the set of equations for the system s it is possible (at least in
principle) to obtain the exact density of the interacting system. This reference system
has the Hamiltonian

Ĥs =
N∑
i=1

[
−1

2
∇2
i + vKSext (ri)

]
=

N∑
i=1

hKSi , (2.14)
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where hksi is the one electron KS Hamiltonian.
Due to the nature of the system s and taking into account the Pauli exclusion

principle it is possible to use a ground state wavefunction for the reference system ψs,0
which can be described by the Slater Determinant (SD)[46] of the KS spin-orbitals
ϕKSi , where the spatial part φKSi (ri) of each spin-orbital is an eigenfunction of the
one-electron KS Hamiltonian hKSi .Thus we have ϕKSi = φKSi (ri)σi where σi is the spin
function (↑ or ↓), finally leading us to the eigenvalue equation

hKSi φKSi = εKSi φKSi , (2.15)

where εksi is the KS energy.
Considering the reference system s it is possible to define the difference in kinetic

energy between the real and fictitious system as

∆T [ρ] = T [ρ]− Ts[ρ] (2.16)

where ∆T is the kinetic energy difference between the real and reference systems with
the same electronic density. Similarly, we have the next difference

∆Vee[ρ] = Vee[ρ]− 1

2

∫ ∫
ρ(r1)ρ(r2)

r12
dr1dr2, (2.17)

where r12 is the distance between the positions r1(x1, y1, z1) and r2(x2, y2, z2). The term
1
2

∫ ∫ ρ(r1)ρ(r2)
r12

dr1dr2 is the classical expression for the electronic repulsion potential
energy assuming they are immersed in a continuous electronic charge distribution ρ.

Replacing equations 2.16 and 2.17 in equation 2.11, we have

E[ρ] =

∫
ρ(r)vext(r)dr + Ts[ρ] +

1

2

∫ ∫
ρ(r1)ρ(r2)

r12
dr1dr2 + ∆T [ρ] + ∆Vee[ρ], (2.18)

in this equation the functionals ∆T and ∆Vee are unknown. From now on we define
the exchange and correlation functional energy Exc as follow

Exc[ρ] = ∆T [ρ] + ∆Vee[ρ], (2.19)
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here Exc contains the kinetic correlation energy, the exchange energy (originated by
the asymmetry requirement) and the Coulomb correlation energy, rewriting equation
2.18 as

E[ρ] =

∫
ρ(r)vext(r)dr + Ts[ρ] +

1

2

∫ ∫
ρ(r1)ρ(r2)

r12
dr1dr2 + Exc[ρ], (2.20)

we note that except for the fourth term5, Exc, in equation 2.20 the other three terms
can be evaluated from the electronic density.

In order to solve equation 2.20 it is necessary to calculate the ground state density.
At this point remember we defined ρs(~r) as ρ0(~r). The electronic density of a system
of N particles is calculated from the single SD of spin-orbitals as

ρ = ρs =
N∑
i=1

|φksi |2. (2.21)

Now we have to rewrite each term of E[ρ] as an explicit one-particle function of ρ
thus we have

∫
ρ(r)vext(r)dr = −

∑
α

Zα

∫
ρ(r1)

r1α
dr1, (2.22)

which is easy to calculate if we know ρ(r1). The kinetic energy of our reference system
can be expressed using the spatial part of the orthonormal KS spin-orbitals as

Ts[ρ] = −1

2

∑
i

〈
φksi (1)

∣∣∇2|φksi (1)〉, (2.23)

Therefore equation 2.20 becomes

E0 = −
∑
α

Zα

∫
ρ(r1)

r1α
dr1−

1

2

∑
i

〈
φksi (1)

∣∣∇2|φksi (1)〉+
∫ ∫

ρ(r1)ρ(r2)

r12
dr1dr2+Exc[ρ].

(2.24)

5Although Exc is functional of ρ, the expression to calculate it is unknown.
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One more time we observe that it is possible to determine E0 from the one-particle
electronic density as long as one knows both the Kohn-Sham orbitals φKSi and the
exchange-correlation energy functional Exc. The KS orbitals φKSi are the orbitals for
the reference system (fictitious system of non-interacting electrons) which do not have
any physical meaning; its utility is to allow me to calculate the real density from
equation 2.21.

The Kohn-Sham orbitals are obtained following the second HK theorem which state
that we can find the ground state energy from the variational principle, namely, chang-
ing the density to minimize E[ρ] or equivalently varying the orbitals φKSi to find the
density that satisfies the KS equation[47]

hKSφKSi (1) = εKSi φKS(1), (2.25)

[
−1

2
∇2 + vs(1)

]
φKSi (1) = εKSi φKS(1), (2.26)

[
−1

2
∇2
i −

∑ Zα
r1α

+

∫
ρ(r2)

r12
dr2 + Vxc

]
φKSi (1) = εKSi φKS(1), (2.27)

This exchange-correlation potential Vxc is the functional derivative of the exchange-
correlation energy Exc with respect to the density as is shown below

Vxc(r) =
δExc[ρ(r)]

δρ(r)
. (2.28)

This vxc term contains all the remaining contributions to the potential that we do not
know exactly.

In brief, the Kohn-Sham picture leads the quantum many-electron problem into a
single electron problem, and dumps all the unknown part into the exchange-correlation
term. Hence, it is necessary to find an approximate Exc functional of high quality for
our calculation. Some kinds of widely used Exc functionals are presented in the next
section.

2.1.5 Exchange-Correlations functionals

In order to have a formulation to describe the Exc[ρ] functional, three approximations
generally used have been developed. The Local Density Approximation (LDA) [45],
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the Local Spin Density Approximation (LSDA) and the Generalized Gradient Approx-
imation (GGA) [48].

In the LDA formulation, the exchange-correlation energy per electron at each point
~r in space is assumed to be the exchange-correlation energy per electron in a homo-
geneous electron gas (Jellium [49]) which has the same density as the electron gas
considered at the same point in space. Its analytic expression is given by

ELDA
xc [ρ] =

∫
ρ(r)εxc[ρ(r)]dr, (2.29)

considering the functional derivative of ELDA
xc we have

V LDA
xc =

δELDA
xc

δρ
= εxc[ρ] + ρ

∂εxc[ρ]

∂ρ
, (2.30)

within this approximation it is possible to split Exc into exchange εx and correlation
εc parts

εxc[ρ] = εx[ρ] + εc[ρ], (2.31)

the εx(ρ) in the uniform electron gas model was given by Dirac, defined as

εx[ρ] = −3

4

(
3

π

)1/3

[ρ(r)]1/3, (2.32)

whereas the correlation part εc(ρ) was computed by Ceperly and Alder[50] using the
Quantum Monte Carlo method. Therefore, it is possible to calculate the approximate
value of Exc and subsequently Vxc[ρ].

In the LSDA formulation the electrons with different spin orientations are described
by two different spatial orbitals φksi↑ and φksi↓ . In this way we separate the total electronic
density in a sum of spin-up and down electronic densities

ρ(r) = ρ↑(r) + ρ↓(r). (2.33)

as a consequence, Exc becomes a functional of both densities (or of the total density
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and the magnetic moment ρm(r) = ρ↑(r)− ρ↓(r))

ELSDA
xc [ρ↑, ρ↓] =

∫
ρ(r)εxc[ρ

↑(r), ρ↓(r)]dr, (2.34)

the procedure to obtain the LSDA is analogous to the LDA procedure. In fact, LDA is
a special case of LSD for spin-compensated cases. The way we calculate the Exc energy
in LDA/LSD means we assume that the exchange-correlation potentials depend only
on the local values of density. But the density in real systems, atoms and molecules,
often varies drastically with r. Hence the next step is to supply information about how
density changes with r.

In the GGA one tries to correct the LDA/LSDA approximation by introducing a
dependence on the gradient of the density, in order to take into account the possible
inhomogeneity of the electron gas. Thus the Exc is given by

EGGA
xc [ρ↑, ρ↓] =

∫
f [ρ↑(r), ρ↓(r),∇ρ↑(r),∇ρ↓(r)]dr. (2.35)

where f is a functional of spin density and its gradient. As usual, it is possible to
split EGGA

xc in exchange and correlation parts: EGGA
xc = EGGA

x + EGGA
c and follow a

procedure analogous to the LDA.

A note on the Kohn-Sham orbitals and eigenvalues

As we noted in the derivation of the Kohn-Sham scheme, the KS orbitals as well
as the eigenvalues are not the real quasi-particle spectrum. This means that calculat-
ing any single-particle property (such as the bad structure) is in principle not allowed.
It has been noted, however that the KS eigenvalues do resemble the quasi-particle
eigenstates thus it has become common practice to use them as such in electronic
structure calculation. In particular in our transport calculations, the KS Hamiltonian
will be considered a single particle Hamiltonian.

2.2 Spin-Orbit Density Functional Theory approach

In the previous section we reviewed a non-relativistic quantum mechanical prescription
to solve the many-body problem. In particular we derived the density functional theory
approach. This approach is useful to study systems of light atoms where the relativistic
effects are negligible. In the case of systems composed of heavy atoms where the
spin-orbit interaction becomes significant, it is necessary to include this effect in the
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prescription in order to accurately describe the electronic structure. More accurately
because in semiconductors the spin-orbit interaction is of paramount importance and
responsible for splitting the edges of valence and conduction bands, the spin-relaxation
time of electrons, the spin-flip processes and the spin relaxation length. Hereafter,
we will describe the most important concepts that allow us to include the spin-orbit
coupling in the DFT approach. These concepts are based in the original paper by L.
Fernández-Seivane et al.[51].

The starting point of the so-called On-site approximation method is based on the
extraction of the pseudo-potential 6(in the DFT approach), Vj from the solution of a
single atom self-consistent all-electron Dirac equation is given by

V̂ =
∑
j,mj

|j,mj〉Vj〈j,mj|, (2.36)

where j = l ± 1
2

is the total angular momentum (includes both scalar and spin-orbit
relativistic corrections) and 〈j,mj| are the total angular momentum states. In order
to rewrite equation 2.35 in a fashion useful for non-relativistic pseudoptentials we can
express it in terms of 〈l,m| and eigenstates of z component of the Pauli spin matrices.
In that way equation 2.35 becomes

V̂ = V̂ sc + V̂ so =
∑
l,m

[V̄lIσ + V̄ so
l
~L · ~S]|l,m〉〈l,m|, (2.37)

where Iσ is the 2x2 unit operator in the spin space, ~L · ~S is

~L · ~S =
1

2

(
L̂z L̂−
L̂+ −L̂z

)
, (2.38)

and

V̄l = 1
2l+1

[(l + 1)Vl+ 1
2

+ lVl− 1
2
],

V̄ so
l = 2

2l+1
[Vl+ 1

2
− Vl− 1

2
],

(2.39)

in this way the scalar part of pseudo-potential contains the non-relativistic and the

6The simulation takes into account only valence electrons leaving the core electrons contribution
treated in the pseudo-potentials which can be constructed from DFT.
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scalar relativistic corrections. The latter is already commonly included in pseudo-
potentials. Because the Hamiltonian is a real matrix, the complex spherical harmon-
ics vectors |l,m〉 are replaced by real spherical harmonics |l,M〉. Then, the pseudo-
potential operator V̂ expressed in these new real representation becomes

V̂ = V̂ sc + V̂ so =
∑
l,m

[V̄l qσ +V̄ so
l
~L · ~S]|l,M〉〈l,M |, (2.40)

where the unitary change of basis is given by

|l,M〉 = 1√
2
(|l,m〉+ (−1)m|l,−m〉)

|l, M̄〉 = 1√
2i

(|l,m〉 − (−1)m|l,−m〉) ,
(2.41)

This way, by including this term in the Hamiltonian it is possible to calculate the
matrix elements for V̂ so by calculating terms of the form 〈liMi|L±z|ljMj〉, the Clebsch-
Gordan coefficients for the real spherical harmonics.
The Kohn-Sham Hamiltonian containing the spin-orbit pseudo-potential is

Ĥ = T̂ + V̂ sc + V̂ so + V̂ H + V̂ xc, (2.42)

where all the operators are 2x2 matrices in the spin space have the form

Ĥ =

[
Ĥ↑↑ Ĥ↑↓

Ĥ↓↑ Ĥ↓↓

]
, (2.43)

The next step, in order to obtain a set of equations that let us implement a code
based on this Kohn-Sham Hamiltonian (which includes the relativistic spin-orbit inter-
action term), is to use a suitable basis set following the LCAO 7 method. Therefore,
we consider the expansion of the non-collinear Kohn-Sham Hamiltonian wavefunction
|ψn〉 in terms of localized orbitals |φi〉 as

|ψn〉 =
∑
i

(
C↑n,i
C↓n,i

)
|φi〉, (2.44)

7Linear Combination of Atomic Orbitals.
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where |φi〉 is written as a product of radial and angular states centred at position ~di
φi(~r − ~di) = 〈~r|φi〉 as follows

|φi〉 = |Rni,li〉 ⊗ |li,Mi〉, (2.45)

In particular the spin-orbit matrix is given by

V so
ij = 〈φi|V̂ so|φj〉 =

∑
k,lk,Mk

〈φi|V̄ so
lk
~L · ~S|lk,Mk〉〈lk,Mk|φj〉, (2.46)

where V̄ so
lk

= V̄ so
l (~r− ~dk) and |lk,Mk〉 are centred at the same position ~dk. At this point,

equation 2.46 can be implemented as part of the KS Hamiltonian to treat systems that
exhibit spin-orbit effects. Since it includes a great number of three central integrals,
its calculation would be computationally expensive. For that reason, the ansatz of
the On-site approximation is to simplify the matrix elements of equation 2.46 to one
center integrals (on the same atom) based on the fact that V̄ so has a very short-ranged
radial part. This allows matrix elements to decay quickly with distance. Therefore,
the on-site approximate version of equation 2.46 is

V so
ij =

∑
k,lk,Mk

〈Rni,li |V̄ so
lk
|Rnj ,lj〉〈li,Mi|~L · ~S|lk,Mk〉〈lk,Mk|lj,Mj〉 (2.47)

≈ 〈Rni,li |V̄ so
li
|Rnj ,li〉〈li,Mi|~L · ~S|li,Mj〉δli,lj , (2.48)

where the angular art of the on-site matrix elements can be obtained analytically[51].
Then, projecting the KS equation Ĥ|ψn〉 = En|ψn〉 on such orbitals we obtain

[
H↑↑ij − EnSij H↑↓ij
H↓↑ij H↓↓ij − EnSij

] [
C↑n,i
C↓n,i

]
= 0, (2.49)

where Hσσ
ij and Sij are the matrix elements8 of the Hamiltonian and overlap matrix,

respectively.

8Hσσ
ij = 〈φi|Hσσ|φj〉 and Sij = 〈φi|φj〉
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Finally, the electronic density expressed in the LCAO basis is

ρ(~r) =
∑
n

fnψn(~r)ψn(~r)† =
∑
i,j

φi(~r − ~di)φ
∗
j(~r − ~dj)ρij, (2.50)

where fn is a KS eigenstate distribution and ρij is given by

ρσσ
′

ij =
∑
n

fnC
σ
n,iC

σ′,∗
n,j , (2.51)

and electronic contribution to the total energy expressed as a sum of band structure
(BS) contribution and double-counting corrections given by

EBS
e =

∑
n

fn〈ψn|Ĥ|ψn〉 =
∑
i,j,σ,σ′

Hσσ′

ij ρσ
′σ
ji (2.52)

and the spin-orbit contribution to the total energy is therefore

Eso = Tr
∑
i,j

V so
ij ρji (2.53)

Finally, we would also have to express the spin-orbit contribution to the force but in
the on-site approach it does not give rise to an explicit contribution to forces.

Thus we have presented a framework for calculating the electronic structure of
many-electron system including the effect of spin-orbit. Although such an effect is no-
ticeable in the electronic structure (bands) of the systems under consideration, correc-
tions to the total energy are extremely small (less than 1 meV) and are thus unreliable
for pseudo-potential codes, this means we will ignore such effects when obtaining the
relaxed structures.

2.3 Electronic transport: Non-equilibrium Green’s

function (NEGF) method

2.3.1 Single defect

In order to obtain the transmission coefficients in terms of the retarded Green’s func-
tions for our system of interest, which is the main goal of this section, we use a typical
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configuration for atomic scale scattering problems [52] shown in figure 2.1. It is a
central region (scattering region called extended molecule, EM) sandwiched by two
electrodes (left and right leads). The leads are defect-free periodic structures in one
direction (semi-infinite leads). It is also built in such a way that each unit cell interacts
only with its nearest neighbours. Finally, we assume that the transport problem will
be formulated in terms of a linear combination of atomic orbitals (LCAO).

Figure 2.1: Schematic representation for transport problem at nanoscale. The central scat-
tering region is described by the Hamiltonian HM , HRM (HLM ) correspond to coupling
between EM and right (left) leads, H0 correspond to unit cell of lead and H1 correspond to
coupling between two adjacent unit cells of the lead.

From a quantum mechanical point of view we can describe the total Hamiltonian
H 9 for the scattering configuration in terms of their constituent Hamiltonian elements
expressed as

H =



. . .
...

...
...

...
...

...
...

...
... . .

.

· · · 0 H−1 H0 H1 0 · · · · · · ·
· · · · 0 H−1 H0 HLM 0 · · · · · ·
· · · · · 0 HML HM HMR 0 · · · · ·
· · · · · · 0 HRM H0 H1 0 · · · ·
· · · · · · · 0 H−1 H0 H1 0 · · ·

. .
. ...

...
...

...
...

...
...

...
...

. . .


, (2.54)

9Calligraphic letter refer to infinite matrix and capital letter for finite one.
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where HM describes the EM, HRM (HLM) corresponds to coupling between EM and
right (left) lead, H0 correspond to unit cell of lead and H1

10 corresponds to coupling
between two adjacent unit cells of the lead.

We can write H as a set of infinite Hamiltonians that comprise the EM and its
interaction with the right (left) leads as

H =

 HL HLM 0
HML HM HMR

0 HRM HR

 , (2.55)

where

HL =

 . . .
...

...
...

· · · H−1 H0 H1

· · · 0 H−1 H0

 ; HR =

 H0 H1 0 · · ·
H−1 H0 H1 · · ·
...

...
...

. . .

 , (2.56)

and

HLM =

 ...
0

HLM

 HRM =

 HRM

0
...

 . (2.57)

We are facing an infinite-dimensional problem which is impossible to solve by tradi-
tional diagonalization methods. Therefore, the problem can be solved if one calculates
the retarded Green’s function for the total system by solving the Green’s function[53]
equation

[ε+S −H]GR(E) = I, (2.58)

where E is the energy, I is the infinite identity matrix and ε+ = limδ−→0+ E + iδ.

10If the time-reversal symmetry is preserved then H1 = H†
1 , HML = H†

LM and HMR = H†
RM .
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Using the block-diagonal structure of H (2.54) and the overlap matrix11 we have
equation 2.57 in the form

 ε+SL −HL ε+SLM −HLM 0
ε+SML −HML ε+SM −HM ε+SMR −HMR

0 ε+SRM −HRM ε+SR −HR

 GRL GRLM GRRL
GRML GR

M GRMR

GRLR GRRM GRR



=

 I 0 0
0 IM 0
0 0 I

 , (2.59)

where the retarded Green’s function GR(E) has been expressed in terms of infinite
blocks describing the left GRL (right GRR) lead, the left GRLM (right GRRM) coupling with
the EM, the interaction between left (right) leads GRLR and for the extended molecule
the finite GR

M .
Considering there are no changes to the electronic structure of the charge reservoirs

coming from neither the coupling to the EM nor through the external bias, we can treat
the leads as effective interactions (self energies ΣR

L and ΣR
R). Therefore GR

M is formally
the Green’s function associated to an effective Hamiltonian Heff = HM + ΣR

L + ΣR
R.

Thus, the final expression for GR
M is

GR
M(E) =

[
ε+SM −HM − ΣR

L(E)− ΣR
R(E)

]−1
, (2.60)

and the expression for the self energies [53] are given by

ΣR
L(E) = (ε+SML −HML)G0R

L (E)(ε+SLM −HLM), (2.61)

ΣR
R(E) = (ε+SMR −HMR)G0R

R (E)(ε+SRM −HRM), (2.62)

where G0R
L and G0R

R are the retarded surface Green’s functions of the left (right) semi-
infinite leads corresponding to the unit cell adjacent to the EM.

11The overlap matrix S has the same structure of H therefore we use the notation S0, S1, SLM ,
SRM , SL, SR and SM .
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Because the information that comprises the electronic structure of a central region
attached to left and right leads are contained in the retarded Green’s functions GR

M ,
now we can define the total transmission coefficient T (E) using the Buttiker-Landauer-
like formula [54]

T (E) = Tr[ΓLG
R†

M ΓRG
R
M ], (2.63)

where

ΓL(E) = i[ΣR
L(E)− ΣR

L(E)†], (2.64)

ΓR(E) = i[ΣR
R(E)− ΣR

R(E)†], (2.65)

ΓL/R(E) are the coupling matrices. This transmission coefficient can be related to the
conduction by the Fisher-Lee [55] formula

G = lim
V→0

2e2

~
T (EF ), (2.66)

where the factor 2 comes from the spin degeneracy and we can define a quantum of
conductance G0 = 2e2

h
which depends only on fundamental quantities [55]

Spin polarized scheme

In order to generalize the Green’s functions method described previously for prob-
lems where non-collinear spins are important (in particular the spin-orbit interaction)
we need to extend the matrices in the spin space, namely each matrix element from
the non-spin formalism becomes a two-by-two matrix that specifies the spin-up, spin-
down and the coupling between them. 12For example any operator A will have the form

Aσσ
′

ij −→
(
A↑↑ij A↑↓ij
A↓↑ij A↓↓ij

)
, (2.67)

12Except for the overlap matrix where the coupling between spin-up and spin-down vanishes.
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Therefore the Green’s functions in spin space is given by

G =

(
G↑↑ G↑↓

G↓↑ G↓↓

)
, (2.68)

where13

G↑↑ =

 ES↑↑L −H
↑↑
L − Σ↑↑L ES↑↑LM −H

↑↑
LM 0

ES↑↑ML −H
↑↑
ML ES↑↑M −H

↑↑
M ES↑↑MR −H

↑↑
MR

0 ES↑↑RM −H
↑↑
RM ES↑↑R −H

↑↑
R − Σ↑↑R

 , (2.69)

G↑↓ =

 −H↑↓L − Σ↑↓L −H↑↓LM 0

−H↑↓ML −H↑↓M −H↑↓MR

0 −H↑↓RM −H↑↓R − Σ↑↓R

 , (2.70)

G↓↑ =

 −H↓↑L − Σ↓↑L −H↓↑LM 0

−H↓↑ML −H↓↑M −H↓↑MR

0 −H↓↑RM −H↓↑R − Σ↓↑R

 , (2.71)

G↓↓ =

 ES↓↓L −H
↓↓
L − Σ↓↓L ES↓↓LM −H

↓↓
LM 0

ES↓↓ML −H
↓↓
ML ES↓↓M −H

↓↓
M ES↓↓MR −H

↓↓
MR

0 ES↓↓RM −H
↓↓
RM ES↓↓R −H

↓↓
R − Σ↓↓R

 . (2.72)

This way if we consider that there is no SO interaction in the electrodes then we
can use Σ↑↓L = Σ↓↑L = Σ↑↓R = Σ↓↑R = 0 from the self energies, ΓL, ΓR and the Green’s
functions described before in the spin-space we also can write the transmission coeffi-
cients in the same spin-space by using the analogous formalism for the spin-degenerate
case and define the total transmission coefficients as

13We assume the basis is the same so S↑↑
L = S↓↓

L .
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T (E) = T ↑↑(E) + T ↑↓(E) + T ↓↑(E) + T ↓↓(E), (2.73)

where

T ↑↑(E) = Tr[Γ↑↑L (G↑↑M)†Γ↑↑RG
↑↑
M ],

T ↑↓(E) = Tr[Γ↑↑L (G↑↓M)†Γ↑↑RG
↑↓
M ],

T ↓↑(E) = Tr[Γ↓↓L (G↓↑M)†Γ↓↓RG
↓↑
M ],

T ↓↓(E) = Tr[Γ↓↓L (G↓↓M)†Γ↓↓RG
↓↓
M ].

(2.74)

We can note that each of these terms can be associated by a type of scattering process.
The terms T ↑↑ and T ↓↓ are spin conserving and T ↑↓ and T ↓↑ are spin-flip probabilities.

2.3.2 Multiple defects

The treatment for the problem of a disordered system[56] is similar to the previous
one (single defect). In principle we can use the same equations to obtain the electronic
transport properties of any 1-D device if we know its Hamiltonian HM . However, our
disordered problem entails the inversion of a Hamiltonian with 100’s of thousands of
degrees of freedom. Brute force inversion would simply impossible.

The alternative to tackle a disordered problem is to assume that the large 1-D device
(disordered system) is comprised of a large number of different blocks as is depicted
in the figure 2.2 14 where the on-site Hamiltonian Hi correspond to the i-th block and
the terms Vi,j correspond to the coupling between the two adjacent blocks15. Also, as
usual, our huge scattering region HM is attached to two electrodes represented by the
left (right) self energies ΣL and ΣR.

Due to the use of a large numbers of blocks randomly distributed and the tridi-
agonal nature of HM (equation 2.74)it is possible to apply a procedure known as
Decimation[57] which is similar to the Gaussian elimination.

In order to visualize the procedure we write down the Hamiltonian for the central
region

14We assume that the disordered system is assembled by using different box size and colors.
15In our particular case, these blocks are a set of single defect scattering regions (Fig.2.1) and

pristine units.
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Figure 2.2: Schematic representation for a multiple defects transport problem at nano-scale.
We assumed that the device was built by using different blocks (red and green) and each
block is described by Hi and by the coupling Vij .

HM =



H1 V1,2 0 0 0 · · · 0
V2,1 H2 V2,3 · · · 0 · · · 0

0 V3,2
. . . Vj−1,j 0 · · · 0

...
... Vj,j−1 Hj Vj,j+1 · · ·

...

0 0 0 Vj+1,j

. . .
. . . 0

...
...

...
...

. . . Hm−1 Vm−1,m
0 0 0 0 0 Vm,m−1 Hm


. (2.75)

While the Hamiltonian HM is clearly block-tridiagonal the same can not be said about
the Green’s function which is generally a dense matrix. Therefore, the complete Green’s
function equation for our disordered system is given by16

16To simplify we redefine H̄i = [ESi −Hi] and V̄i,j = [ESi,j −Hi,j ].
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H̄1 − ΣL V̄1,2 0 · · · 0 · · · 0 0
V̄2,1 H̄2 V̄2,3 · · · 0 · · · 0 0

0 V̄3,2 H̄3

. . .
... 0 · · · 0

...
...

. . .
. . . V̄j−1,j 0

...
...

0 0 · · · V̄j,j−1 H̄j V̄j,j+1 · · · 0
...

... 0 0 V̄j+1,j

. . .
. . .

...

0 0 0 · · ·
...

. . . H̄m−1 V̄m−1,m
0 0 0 · · · 0 · · · V̄m,m−1 H̄m − ΣR


×



G1 G1,2 G1,3 · · · G1,j · · · G1,m−1 G1,m
G2,1 G2 G2,3 · · · G2,j · · · G2,m−1 G2,m
G3,1 G3,2 G3

. . .
... G3,j · · · G3,m

...
...

. . .
. . . Gj−1,j Gj−1,j+1

...
...

Gj,1 Gj,2 · · · Gj,j−1 Gj Gj,j+1 · · · Gj,m
...

... Gj+1,3 Gj+1,j−1 Gj+1,j

. . .
. . .

...

Gm−1,1 Gm−1,2 Gm−1,3 · · ·
...

. . . Gm−1 Gm−1,m
Gm,1 Gm,2 Gm,3 · · · Gm,j · · · Gm,m−1 Gm



=



I 0 0 · · · 0 · · · 0 0
0 I 0 · · · 0 · · · 0 0

0 0 I
. . .

... 0 · · · 0
...

...
. . .

. . . 0 0
...

...
0 0 · · · 0 I 0 · · · 0
...

... 0 0 0
. . .

. . .
...

0 0 0 · · ·
...

. . . I 0
0 0 0 · · · 0 · · · 0 I


, (2.76)

The decimation procedure comprises the Gaussian elimination starting from the
second line all the way to the (m-1)-th line recursively. After applying the procedure
[57] (m-2) times, the reduced Green’s function becomes
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(
Heff

1,1 − ΣL Heff
1,m

Heff
m,1 Heff

m,m − ΣR

)(
G1,1 G1,m
Gm,1 Gm,m

)
=

(
I 0
0 I

)
, (2.77)

where

Heff
1,1 = H̄m−2

1 = H̄1 −
∑m−2

i=1 V̄ i−1
1,i+1

[
H̄ i−1
i+1

]−1
V̄ i−1
i+1,1,

Heff
m,m = H̄m−2

m = H̄m − V̄ 0
m,m−1

[
H̄m−3
m−1

]−1
V̄ 0
m−1,m,

Heff
1,m = V̄ m−2

1,m = −V̄ m−3
1,m−1

[
Hm−3
m−1

]−1
V̄ 0
m−1,m,

(2.78)

In summary, we can notice that the blocks of interest to calculate transport prop-
erties are those that effectively couple both electrodes. Thus, in terms of Green’s
function we only need to calculate the element G1,m for a complete description of trans-
port properties. Hence, The transmission coefficient for a disordered system is given by

T (E) = Tr[ΓLG†1,mΓRG1,m], (2.79)

Furthermore, for the case of non-collinear spin systems a similar expansion of ma-
trices in the spin-space has been applied17.

Finally, we will define some additional equations used in this work. The concentra-
tion of Ni adatoms on the disordered device were calculated using

[Ni] =
ND.ANi

ND.(AC .nDC + AH .nDH) + (NT −ND)(AC .nPC + AH .nPH)
, (2.80)

where:
ND: total number of defects,
NT : total number of blocks,
nDC : number of carbon atoms in the defect block,

17For simplicity we avoid to include all the equations in spin-space for a disordered system which is
implemented in the SMEAGOL[53] package.
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nDH : number of hydrogen atoms in the defect block,
nPC : number of carbon atoms in the pristine block (electrode block),
nPH : number of hydrogen atoms in the pristine block, and
AE: atomic mass of atom E (E: C, H, Ni).

In figure 2.3 we can see a typical arrangement of the disordered system used in our
calculations. The number of atoms in the systems considered here range from 3255 to
35130. The length of the disordered device was obtained from

L = ND.LD + (NT −ND)(LP ), (2.81)

where LD and LP are the length of defect and pristine blocks, respectively.

Figure 2.3: Disordered system scheme where the single defects are randomly separated by
pristine segments. L is the total length of the device, LD is the defect length and LP is the
pristine segment length.

The Total conductance is obtained by using

TTotal(E,L) = T ↑↑ + T ↑↓ + T ↓↓ + T ↓↑ , (2.82)

where T ↑↑ is the spin-conserved transmission probability and T ↑↓ is the spin-flip trans-
mission probability.

Finally, the polarization P is defined by the equation

P (E,L) =
T ↑↑(E) − T ↑↓(E)

T ↑↑(E) + T ↑↓(E)
, (2.83)
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As we can notice, the polarization gives an indication of the degree of coherence as
one increases the device length a larger number of scattering events should yield

lim
L→∞

P (E,L) = 0, (2.84)
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Chapter 3

Results and discussions I : Single
defect

In this chapter we will describe and discuss the effect of the relativistic spin-orbit inter-
action on the electronic structure and spin-polarized electron transport calculations of
individual metal transition atoms adsorbed on armchair graphene nanoribbons (called
hereafter single defect system). In particular, we used Nickel and Iridium atoms.

We will start this chapter describing and discussing the structural relaxation results
for the pristine and single defect systems. Then, we will select the most stable and
symmetric single defect system - after relaxation in both cases, and we will present
and discuss the electronic structure results, namely, band structures, DOS and PDOS.
Finally, the transport results of those arrangements will be presented and discussed.

3.1 Geometry relaxation

The chosen pristine AGNR is the 11-AGNR1 [58]. For the sake of simplicity, we will
use the simple notation AGNR throughout this work. It is composed of three unit
cells where the periodicity is along the Z direction, as shown in figure 3.1. The unit
cell is the shadow box with lattice vector ~a, lattice constant of 4.33 Å and 1.238 nm
wide. Each unit cell was passivated with 2 Hydrogen atoms at the edges, consequently
it contains 22 Carbon and 4 Hydrogen atoms.

1In agreement with standard notation, it has 11 carbon atoms in width.
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Figure 3.1: 11-AGNR type of ribbon with 1.238 nm of width and composed by three unit
cells with lattice vector ~a and lattice constant 4.33 Å.

Relative to each hexagon the adsorbed atoms were placed in three possible adsorp-
tion sites on the pristine AGNR, namely: the Hollow (H), Top (T) and Bridge (B)
sites which are in positions above the center of the hexagon, the carbon atom and the
carbon-carbon bond, respectively (as we can see in figure 3.2). The notation used in
this work is Ni@AGNR-n (Ir@AGNR-n) which means n − th configuration of Ni (Ir)
atom adsorbed on the pristine AGNR.

Figure 3.2: Top view of possible adsorption sites over the hexagon.

We considered adsorption sites in different hexagons of AGNR in such a manner
that we generated 17 initial configurations to be relaxed for Ni and 25 for Ir, as shown
simultaneously all adatoms in figures 3.3(a) for Ni and 3.3(b) for Ir. For the purpose of
avoiding misunderstandings, keep in mind that every single defect system is composed
by one adatom and the AGNR. Moreover, we imposed the periodic boundary conditions
and performed the transport calculations along the Z axis.
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(a) (b)

Figure 3.3: (a) Initial adsorption sites for Ni; (b) Initial adsorption sites for Ir.

All single defect systems were relaxed by means of the density functional the-
ory (DFT) [47] using a localized atomic orbital basis set (LCAO) implemented in
the SIESTA2 package [59]. The local density approximation (LDA)3 parametrized by
Ceperley-Alder was used for the exchange and correlation energy (Exc) and the atomic-
ion core described by Troullier-Martins pseudopotentials [60]. We employed a localized
double zeta polarized basis set (DZP) and a density matrix and force convergence cri-
terion of 10−6 eV and 0.02 eV/Å , respectively. The energy cut-off for the real space
grid was 350 Ry, a 200 Monkhorst-Pack k-grid was used along the Z direction and we
considered spin polarized calculations throughout this work.

3.1.1 Pristine AGNR

The geometry relaxation, the band structure and the total density of states of pristine
AGNR were obtained according to the parameters described above. Figure 3.4 (left
panel) shows the energy dispersion between high symmetry points along the path Z -
Γ - Z. The total DOS (shown in figure 3.4 (b)), as mentioned previously, exhibits a
gap which ultimately is achieved by cutting a graphene sheet in nanoribbons for nano-

2Spanish Initiative for Electronic Simulations with Thousands of Atoms.
3Even though GGA is typically used for calculations three main reasons support our choice of

exchange and correlation approximation: 1) For adsorbed systems, due to a cancellation of errors, it
gives a good description of the relaxed structures (even though the adsorption energies are underesti-
mated). 2) Typically, LDA gives a good description of bulk transition metals, specially of the magnetic
properties. 3) Most important a good non-collinear GGA (and SO interaction) is not available in any
code to the best of our knowledge.
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electronic and spintronic device applications. We also note the Van Hove singularities
at the bond edges.

Figure 3.4: (a) Energy dispersion relation. (b) Total DOS of pristine AGNR around Fermi
energy.
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3.1.2 Nickel impurities

The initial 17 configurations formed by each individual Ni atom adsorbed on the AGNR
are simultaneously shown in figure 3.5(a) and the relaxed structures are depicted in
figure 3.5(b). We observed that Ni atom initially positioned on site 4 (Top site) relaxed
to a hollow site on final configuration. This means (in agreement with our notation)
that structures Ni@AGNR-4 and Ni@AGNR-3 are the same. For the sake of simplicity,
we will call the structure Ni@AGNR-4 as the symmetric (s) and it will be renamed as
Ni@AGNR-s from now on.

The most stable (Ni@AGNR-1) and the symmetric (Ni@AGNR-s) structures are
represented schematically in figure 3.5(b) as red circles. Moreover, we found that those
two structures have zero magnetic moment making it a perfect non-magnetic system
to observe spin-flip scattering owing purely to the SO effect. A full table containing
pictures of the initial and relaxed structures can be found in Appendix A.

(a) (b)

Figure 3.5: (a) Initial (triangles) Ni adsorption sites on AGNR; (b) Relaxed (circles) Ni
adsorption sites on AGNR. Red circles indicate the systems studied in this work: the most
stable (Ni@AGNR-1) and the symmetric (Ni@AGNR-4). From now on, Ni@AGNR-4 ⇔
Ni@AGNR-s

All the relaxed structure arranged in ascending order with respect to the relative energy,
the Ni adsorption distances of relaxed systems and the type of relaxed adsorption sites
are listed in table 3.1. It is evident from these results that Ni adatoms prefer hollow
sites particularly at the edge of the AGNR. Figure 3.6 shows the top view of the most
stable and symmetric structures relaxed. These structures are the starting point of
this project to later study the single defect spin-polarized electronic transport.
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(a) (b)

Figure 3.6: (a) The most stable structure: Ni@AGNR-1, (b) The symmetric structure:
Ni@AGNR-s.

Ni adsorption site Relaxed structure Relative energy [eV] D [Å]

H Ni@AGNR-1 0.000 1.5998
H Ni@AGNR-2 0.152 1.4415
H Ni@AGNR-3 0.176 1.3865
H Ni@AGNR-4(s) 0.177 1.4295
H Ni@AGNR-5 0.308 1.3344
H Ni@AGNR-6 0.319 1.3773
T Ni@AGNR-7 0.388 1.7509
B Ni@AGNR-8 0.453 1.8039
B Ni@AGNR-9 0.487 1.7189
T Ni@AGNR-10 0.558 1.7621
T Ni@AGNR-11 0.647 1.7623
B Ni@AGNR-12 0.660 1.7627
B Ni@AGNR-13 0.747 1.7761
T Ni@AGNR-14 0.759 1.7527
B Ni@AGNR-15 0.763 1.7617
T Ni@AGNR-16 0.774 1.6816
T Ni@AGNR-17 0.775 1.7303

Table 3.1: Ni adsorption sites, relative energies of relaxed structures and Ni adsorption
distances of relaxed structures.
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3.1.3 Iridium impurities

Similar to the Ni case, we consider 25 initial configurations composed of each individual
Ir atom adsorbed on the AGNR. As shown in figure 3.7(a-b) for initial and relaxed
structures, respectively. In this case we observed that structures Ir@AGNR-12 and
Ir@AGNR-13 relax to the same hollow site, structures Ir@AGNR-15 and Ir@AGNR-17
relax to the same bridge site, the structures Ir@AGNR-2, Ir@AGNR-3 and Ir@AGNR-4
relax to the same top site and the structures Ir@AGNR-5, Ir@AGNR-6 and Ir@AGNR-
7 relax to the same quasi-hollow site. In figure 3.5(b) we show in red circles the most
stable (Ir@AGNR-1) and the symmetric (Ir@AGNR-13 or Ir@AGNR-s) structures.

In addition, we point out that Ir adatoms give us two different type of systems
with respect to the observation of magnetic moment. While the most stable structure
(Ir@AGNR-1) has a zero magnetic moment, the symmetric structure (Ir@AGNR-s)
exhibit a non-zero magnetic moment. Similarly to the Ni impurity case a table including
a complete representation for the initial and relaxed structures is presented in Appendix
A.

(a) (b)

Figure 3.7: (a) Initial (triangles) Ir adsorption sites on AGNR; (b) Relaxed (circles) Ir
adsorption sites on AGNR. Red circles indicate the systems studied in this work: the most
stable (Ir@AGNR-1) and the symmetric (Ir@AGNR-13). From now on, Ir@AGNR-13 ⇔
Ir@AGNR-s.
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In table 3.2 we list all the relaxed structures (in ascending order with respect to
the relative energy) the Ir adsorption distances to the graphene plane of the systems
relaxed, and the type of relaxed adsorption site. Figure 3.8 shows the top view of the
most stable and symmetric structures separately after relaxation. We notice that the
Ir adatom in the most stable system prefers a hollow site and rest at the very edge
of the AGNR. As usual, these structures are also the starting point to later perform
single defect spin-polarized electron transport.

(a) (b)

Figure 3.8: (a) The most stable structure: Ir@AGNR-1, (b) The symmetric structure:
Ir@AGNR-s.
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Ir ad-site Relaxed
structure

Relative
energy [eV]

D [Å] Magnetic
moment [µB]

H Ir@AGNR-1 0.000 1.3739 0.0000
T Ir@AGNR-2 0.009 1.7249 0.4770
T Ir@AGNR-3 0.024 1.8145 0.6198
T Ir@AGNR-4 0.038 1.8216 0.7142
H Ir@AGNR-5 0.041 1.5438 0.0000
H Ir@AGNR-6 0.042 1.5450 0.0000
H Ir@AGNR-7 0.043 1.5449 0.0000
B Ir@AGNR-8 0.102 1.8932 0.9994
H Ir@AGNR-9 0.264 1.7388 0.9771
H Ir@AGNR-10 0.513 1.6460 0.3770
H Ir@AGNR-11 0.515 1.6450 0.0000
H Ir@AGNR-12 0.516 1.6483 0.3845
H Ir@AGNR-13(s) 0.516 1.6483 0.3845
H Ir@AGNR-14 0.525 1.6446 0.3774
B Ir@AGNR-15 0.640 1.9024 0.6930
T Ir@AGNR-16 0.655 1.9220 0.6300
B Ir@AGNR-17 0.692 1.9941 0.9927
B Ir@AGNR-18 0.710 1.9993 0.9095
B Ir@AGNR-19 0.758 1.9958 0.9813
B Ir@AGNR-20 0.767 1.9981 0.8032
B Ir@AGNR-21 0.784 1.9949 0.8011
T Ir@AGNR-22 0.813 1.8138 0.0000
B Ir@AGNR-23 0.822 1.9984 0.9585
B Ir@AGNR-24 0.834 1.9968 0.7544
B Ir@AGNR-25 0.838 1.9919 0.9735

Table 3.2: Ir adsorption sites, relative energies of relaxed structures and Ir adsorption dis-
tances of relaxed structures.

The next two sections are devoted to the discussion of the electronic structure re-
sults, such as band structures, total DOS and PDOS, subsequently we focus on the
spin-polarized electron transport, in the first place for Ni single defect systems followed
by Ir single defect systems. In both cases we considered for the most stable and sym-
metric cases, reminding that Spin-Orbit interaction was included in the computations.
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3.2 Electronic structure and spin-polarized trans-

port - Ni

3.2.1 Band structures

We start describing the energy dispersion results for the Ni adatom. As pointed
out before, we performed calculations of our selected structures (Ni@AGNR-1 and
Ni@AGNR-s) to observe the effect of the SO interaction in the dispersion relation. The
band structure from high symmetry points follows the path - Z - Γ - Z. Those are pre-
sented in figure 3.9(a-c) for the no-SO interaction case fo pristine AGNR, Ni@AGNR-1
and Ni@AGNR-s, respectively.

The energy dispersion relation for those structures of interest exhibits a direct band
gap nature. Furthermore, additional bandlines are observed only below the Fermi en-
ergy for both Ni@AGNR-1 and Ni@AGNR-s systems (Figs.3.9(b) and (c)) whereas
remain unchanged for energies above the Fermi level. On the other hand, those extra
bandlines in Ni@AGNR-s structure are broader and somewhat shifted to negative en-
ergy values than in the Ni@AGNR-1 structure. As we will show later, these bands are
associated with Ni d states4.

4Here we would like to caution the reader as to the gaps formed upon adsorption of Ni. While the
gap at EF is a true gap, the moving associated to the impure states are formed solely due to periodic
nature of the calculation. On the true system - a single Ni atom on a nanoribbon - such gaps will not
be present. In this sense, the gaps are only used to highlight the effect of the SO interaction [61].
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Figure 3.9: Energy dispersion of: (a) Pristine AGNR, (b) Ni@AGNR-1, and (c) Ni@AGNR-s
without SO coupling.

The band structures for calculations considering SO for the same structures are
shown in figures 3.10(a-c). Clearly, the splitting of bands below the Fermi level in
Ni@AGNR-1 structure (Fig.3.10 (b)) is more pronounced than the splitting in the
Ni@AGNR-s (Fig.3.10 (c)) structure while above the Fermi level the splitting is more
or less the same. The splitting observed is a Rashba type which is a direct consequence
of the lack of inversion symmetry of the structures [62] and manifested as a splitting
of bands along the wave vector axis. In our structures of interest the Ni adatom
break the inversion symmetry. Li et al. studied the Rashba splitting of graphene on
Ni(111) substrate by using DFT [63] and Yu et al. used angle-resolved photo-emission
spectroscopy technique (ARPES) [64]. Our results are in agreement with them in the
sense that the SO interaction causes - Rashba - type splitting on the bands.
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Figure 3.10: Energy dispersion of: (a) Pristine AGNR, (b) Ni@AGNR-1, and (c) Ni@AGNR-
s with SO coupling.

In figures 3.11(a-b) a comparison between structures with and without SO interac-
tion for Ni@AGNR-1 and Ni@AGNR-s, respectively, shows the splitting of bands due
to the SO effect, as described previously. The two center panels show the dispersion
energy from -1 to 1 eV where the splitting is observed in both structures (stable and
symmetric). For the purpose of seeing the splitting in the region close to the Fermi
level a magnification of the bands (dashed red line boxes) is placed on the side of the
central panels. We should note that the splitting on the valence band is greater than
the conductance band. Also, a magnification of the inner bands (dashed green line
boxes) is shown. Finally, as discussed before, the splitting of the bands below the
Fermi level is greater for the most stable structure compare to the symmetric one.
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(a)

(b)

Figure 3.11: (a) Band structure around EF for Ni@AGNR-1. (b) Band structure around
EF for Ni@AGNR-s. Blue lines correspond to SO and black lines to no-SO. The insets show
the regions between dashed lines.
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3.2.2 Total DOS and PDOS

The total DOS and PDOS were obtained from calculations using the Green’s function
formalism in order to avoid problems arising from the periodic boundary conditions5.
As we have seen from the band structure, the effect of the SO interaction only causes
a shift in the wave vector direction. Such an effect will be integrated out in the
DOS. Figures 3.12(a-c) show the total DOS for pristine AGNR, Ni@AGNR-1 and the
Ni@AGNR-s are shown, respectively. We can clearly notice that upon addition of Ni,
the Van Hove singularities at the top of the valence band and bottom of conduction
band are washed away. Furthermore, states below the Fermi level appears, which are
apparently broad in the Ni@AGNR-s case and more localized in the Ni@AGNR-a case.
This effect is caused by Ni the adatom on pristine AGNR.

Figure 3.12: Total DOS around Fermi energy of: (a) Pristine AGNR, (b) Ni@AGNR-1 and
(c) Ni@AGNR-s.

In order to determine the character of these states we project the DOS onto specific
orbitals/atoms. In figure 3.13 we show the carbon atoms selected to plot the PDOS as
well as the Ni atom. The carbon atoms that were selected were the non commensurate
ones - for symmetric reasons - closest to Ni atom.

5Here we will show only the PDOS of the non-SO system
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(a) (b)

Figure 3.13: Atoms Ni, C1, C2 and/or C3 considered to obtain PDOS of each structures:
(a) Ni@AGNR-1 and (b) Ni@AGNR-s.

The total DOS, the PDOS of Ni, C(1-3) atoms and the PDOS of the different d
orbitals of Ni atom for structure Ni@AGNR-1 are shown in figures 3.15(a-c), respec-
tively. As we can see the additional states observed in total DOS of Ni@AGNR-1 come
from Ni atom states. Particularly, we notice that the contribution due to carbon is
much smaller (and broader) in the energy window being considered.

Figure 3.14: Four of the five 3d orbitals consist of four lobes arranged in a plane that is
intersected by two perpendicular nodal planes. These four orbitals have the same shape
but different orientations. The fifth 3d orbital, 3dz2, has a distinct shape even though it is
mathematically equivalent to the others. The phase of the wave function for the different
lobes is indicated by color: orange for positive and blue for negative [2].
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More interestingly, if one looks at PDOS of different 3d orbitals of Ni (Fig. 3.15(c))
it is possible to identify which ones correspond to each peak in the total PDOS of Ni.
It is observed that only the 4s orbital of Ni has a significant contribution to the total
DOS for energies greater than 1.5 eV (above the Fermi level) whereas 3d orbitals give
a larger contribution for energies below the Fermi level. In our case, the z-direction is
the direction of transport.

Figure 3.15: For Ni@AGNR-1 : (a) Total DOS. (b) PDOS of Ni, C1, C2, and C3 atoms. (c)
PDOS of 3d orbitals of Ni atom. These orbitals are: 4s (black line), 3dxy (turquoise line),
3dyz (indigo line), 3dz2 (green line), 3dxz (orange line) and 3dx2-y2 (magenta line).

In a similar manner for the symmetric structure Ni@AGNR-s, the total DOS, the
PDOS of Ni, carbon C1 and C2 and the PDOS of each 3d orbital of Ni are shown in
figure 3.16(a-c). Similarly, additional states observed in the total DOS of Ni@AGNR-s
(symmetric) come from nickel (see Fig.3.12). If we look at the PDOS of Ni (black
line) compared with the PDOS of carbon atoms C1 (blue line) and C2 (red line) in
figure 3.16(b) we can clearly distinguish that the contribution of Ni is much larger than
carbon for energies below the Fermi level and for energies greater than 1.5 eV. Again,
by looking only at the PDOS of Ni-3d orbitals (figure 3.16(c)) we can identify which
orbitals correspond to each peak observed in the PDOS. Against, only the orbital 4s
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of Ni contributes highly at energies above 1.5 eV whereas 3d orbitals contribute at
energies below the Fermi level.

Figure 3.16: For Ni@AGNR-s : (a) Total DOS. (b) PDOS of Ni, C1, and C2 atoms. (c)
PDOS of 3d orbitals of Ni atom. These orbitals are: 4s (black line), 3dxy (turquoise line),
3dyz (indigo line), 3dz2 (green line), 3dxz (orange line) and 3dx2-y2 (magenta line).

Comparing both structures (stable and symmetric), we should note that orbitals
3dxy and 3dxz are close to EF , the 3dxy is narrower and higher in structure Ni@AGNR-
1 compared to Ni@AGNR-s. Also the 3dxz state is very similar to the 3dxy state in
Ni@AGNR-1 which is not the case in Ni@AGNR-s. Moreover, we can observe that
3dyz state are quite similar in both structures and 3dx2-y2 state has 2 narrow peaks
in Ni@AGNR-s while in Ni@AGNR-1 it has only one.

Finally, we can conclude that the nature of the bonds are slightly similar in both
structures except with those bonds around the EF and -1 eV, as it was described above.
This difference in nature of d states, as we can see, comes from the adsorption site of
the Ni adatom on the pristine AGNR system.
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3.2.3 Single defect transport - Ni

The two-probe device used in this work to perform transport calculations (as it was
pointed out in section 2.3) is represented in figure 3.17. It comprises a central region
attached to two semi-infinite leads. The adatom adsorption sites for both single defect
structures (Ni@AGNR-1 and Ni@AGNR-s) are shown in figure 3.17 simultaneously.

Figure 3.17: Scheme of a two-probe setup used for transport computations. A central region
(scattering region) is connected to two semi-infinite leads (shadow region). Scattering region
is an assemble of the single defect structure sandwiched between two electrodes.

The PDOS of orbitals of Ni, the transmission probabilities without SO and the
transmission probabilities with SO are presented in figure 3.18(a-c), respectively. The
curves of the transmission coefficients show us the probability for different incoming
and outgoing electron spin states. The dashed lines correspond to transport in the
pristine AGNR (it counts the number of available bands).

In the graphs spin-conserved (T↑↑ = T↓↓; blue line) corresponds to the probabilities
of incoming electrons with spin up (spin down) being transmitted with spin up (spin
down) while spin-flip (T↑↓ = T↓↑; red line) corresponds to the probability of electrons
with spin up (spin down) being transmitted with spin down (spin up).

First analyse the case without SO, in figures 3.18(b) one observes that the spin-
conserved transmissions decrease only in certain energy regions, namely: a region
slightly below Fermi energy, a region between -2 and -1 eV, a sharp region close to
-1 eV and a region above 1.5 eV. In particular, close to the Fermi level we observe a
complete suppression of the transmission. From the PDOS in figure 3.18(a) we can
associate these dips to Fano resonances [65] due to the Ni-d orbitals. Definitely, the
orbitals of Ni atom have a strong influence in the transmission, decreasing the spin-
conserved current. Interestingly, when the SO interaction is turned on we notice the
appearance of spin-flip processes in the energy regions associated with the Ni-d states.
More interesting still, these effects prevent the transmission from going to zero at the
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Fano resonances. In essence regions where perfect backscattering was observe have
non-vanishing transmission probability assisted by spin-flip process.

Figure 3.18: For Ni@AGNR-1: (a) PDOS of Ni orbitals, (b) Spin-conserved (T↑↑ = T↓↓)
and spin-flip (T↑↓ = T↓↑ = 0) transmission probabilities without SO coupling and (c) Spin-
conserved (T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑) transmission probabilities with SO coupling.
Dashed lines correspond to transport in the pristine AGNR.

In case of the symmetric adsorption configuration (Ni@AGNR-s), we show that
spin-conserved transmission probabilities decreased even more than in the stable case
(Ni@AGNR-1) principally at energies below the Fermi level as indicated in figure
3.19(b) and (c). This large decrease can be associated to the non-localized nature
of orbitals 3dxy and 3dyz. Although the state is broader it also leads to complete
suppression of the transmission. The appearance of additional dips in the energy con-
ductance can be ascribed to the orbitals 3dz2 and 3dx2-y2 at energies around -1 eV and
3dxz at energy close to the EF . One thing to note regards orbital 3dxz : although it is
very small notice that the SO effect does not come from the broad. The case without
SO is qualitatively similar.
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Figure 3.19: For Ni@AGNR-s: (a) PDOS of Ni orbitals, (b) Spin-conserved (T↑↑ = T↓↓)
and spin-flip (T↑↓ = T↓↑ = 0) transmission probabilities without SO coupling and (c) Spin-
conserved (T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑) transmission probabilities with SO coupling.
Dashed lines correspond to transport in the pristine AGNR.
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3.3 Electronic structure and spin-polarized trans-

port - Ir

3.3.1 Band structures

We performed band structures calculations for the Ir@AGNR-1 (most stable) and
Ir@AGNR-s (symmetric) adsorption configurations to observe the effect of the SO
interaction in the energy band dispersion. The band structure following high symme-
try lines along the path Z - Γ - Z, are presented in figure 3.20(a-c) for the pristine
AGNR, Ir@AGNR-1 and Ir@AGNR-s, respectively. As before, these results do not
include the SO interaction. The energy dispersion exhibits additional bandlines below
and above the Fermi level for both Ir@AGNR-1 and Ir@AGNR-s systems (Figs.3.20(b)
and (c)). Furthermore, the Ir@AGNR-s system shows splitting in the bands owing
to the resultant magnetic moment (0.3845 µB) of the system. We also note that the
symmetric case has two localized states close to the Fermi level.

Figure 3.20: Energy dispersion of: (a) Pristine AGNR, (b) Ir@AGNR-1, and (c) Ir@AGNR-s
without SO coupling.

55



Band structure calculations considering SO interaction are shown in figures 3.21(a-c).
In both configurations the splitting occurs mostly at energies below EF and to smaller
extent at energies above Fermi level. The magnitude of splitting is comparable in those
structures exhibiting wave vector displacement to a structure Ir@AGNR-1(Fig.3.21
(b)) whereas structure Ir@AGNR-s shows both wave vector and energy displacements
(Fig.3.21 (c)). The level of splitting is a direct consequence of the lack of inversion
symmetry of the structures (Rashba SO interaction) in both cases and additionally a
Zeman type splitting is observed in Ir@AGNR-s due to the non-zero magnetic moment.

Figure 3.21: Energy dispersion of: (a) Pristine AGNR, (b) Ir@AGNR-1, and (c) Ir@AGNR-s
with SO coupling.

For comparison, figures 3.22(a-b) present the energy bands with and without SO in-
teraction for systems Ir@AGNR-1 and Ir@AGNR-s, respectively. The two central-most
panels show the dispersion energy from -1 to 1 eV where a large splitting is observed in
structure Ir@AGNR-1 whereas the splitting is significantly reduced in the symmetric
structure. Moreover, the insets show a magnified region. Finally, we should note that
the splitting is high in valence and conduction bands for stable the structure compared
with Ni stable case (Ni@AGNR-1). So, while the SO interactionseems like a small
perturbation in the case of Ni, the same can not be said about Ir where the SO effect
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plays a major role in the electronic structure.

(a)

(b)

Figure 3.22: (a) Band structure around EF for Ir@AGNR-1. (b) Band structure around EF
for Ir@AGNR-s. Blue lines correspond to SO and black lines to no-SO. The insets show the
regions between dashed lines.
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3.3.2 Total DOS and PDOS

Figures 3.23(a-c) shows the total DOS of pristine AGNR, Ir@AGNR-1 and Ir@AGNR-
s, respectively. We can infer that states from Ir contribute to the total DOS at specific
regions. In case of Ir@AGNR-s a very small spin polarization of 0.3845 µB was found
(Fig. 3.23(c)).

Figure 3.23: Total DOS around Fermi energy of: (a) Pristine AGNR, (b) Ir@AGNR-1 and
(c) Ir@AGNR-s.
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(a) (b)

Figure 3.24: Ir and Carbon atoms for PDOS calculations in stable (a) and symmetric (b)
systems.

The total DOS, the PDOS of Ir and C atoms and the PDOS of 5d and s orbitals of
Ir for structure Ir@AGNR-1 are shown in figures 3.25(a), (b) and (c-1(2)), respectively.
The calculations of the PDOS for both structures are based on the Ir and Carbon
atoms as depicted in figure 3.24. The criteria to select them was the same used in the
Ni case. The states of the Ir atom contribute to the total DOS as can be observed
clearly in the PDOS of the Ir atom (dotted black line) in figure 3.25(b) at energies
between -1 and 1 eV showing mostly a localized nature. With the exception of 5dxy
and 5dxz orbitals the remaining ones are highly localized and make a large contribution
to the Ir PDOS (even the 6s orbital, which, in the case of Ni adatom was delocalized
at energies above 1.5 eV (Fig.3.25(c-1))). In addition, the polarization orbital 6px has
a height comparable with 5dxy and 5dxz orbitals at different energies (Fig.3.25(c-2)).
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Figure 3.25: For Ir@AGNR-1 : (a) Total DOS. (b) PDOS of Ir and carbons C1 and C2.
(c-1) PDOS of 6s, 6px and 5d orbitals of Ir. (c-2) PDOS of 5d orbitals of Ir.
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The behaviour in case of the symmetric adsorption configuration (Ir@AGNR-s) is
completely different in the sense that the Ir states become delocalized, and the presence
of spin polarization of few Ir states. For instance, by looking PDOS of Ir and carbon
atoms (See Fig. 3.26(b)) we realized that the spin polarization observed in total DOS
comes only from Ir states. If we turn to the orbital-separated PDOS results for Ir
states we can identify which states are spin-polarized. For example, 6s (Fig.3.26(c-1))
and 5dz2(Fig.3.26(c-2)) display spin-polarized behaviour mainly owing to the resultant
magnetic moment found for this symmetric structure.

In summary the nature of the bond is significantly different in each structure. In
one case - for stable system - it leads to localized orbitals with two peaks for 5dx2-y2

and dz2 and one peak for 5dyz states and in the other case (symmetric system) the
localized orbitals are also 5dx2-y2 and dz2 but exhibit only one peak each.
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Figure 3.26: For Ir@AGNR-s : (a) Total DOS. (b) PDOS of Ir and carbons C1 and C2.
(c-1) PDOS of 6s and 5d orbitals of Ir. (c-2) PDOS of 5d orbitals of Ir.
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3.3.3 Single defect transport - Ir

The transport setup for Ir is similar to the one used for nickel with the two possible
positions for the adatom shown in figure 3.27. The calculations of spin-polarized trans-
port for both structures - stable (Ir@AGNR-1) and symmetric (Ir@AGNR-s) - shows
a substantial reduction of the spin-conserved transmission probabilities in both cases
(with and without SO interaction). Without SO, these reductions of spin-conserved
transmission - in the case of Ir@AGNR-1 - occur at energies below and above the
Fermi level (see Figs.3.28(b)), conversely to reductions in system Ir@AGNR-s where
spin-conserved current was affected mostly at energies below EF (see Figs.3.29(b)).
This difference can be understood in terms of a state approximately 0.5 eV above EF

which leads to a Fano resonance in the case of Ir@AGNR-1. This state is pretty much
uncoupled in the symmetric case (if it is so sharp it gives no contribution to transport).

Figure 3.27: Scheme of a two-probe setup used for transport computations. A central region
(scattering region) is connected to two semi-infinite leads (shadow region). Scattering region
is an assemble of the single defect structure sandwiched between two electrodes.

In case of transport with SO, the reduction of the spin-conserved current follow sim-
ilar tendencies with particular exceptions at energies close to the Fermi level where the
spin-conserved transmission increases as illustrated in figures 3.28(c) and Figs.3.29(c).
In the case of Ir@AGNR-1 we also notice the strong suppression of the Fano resonance.

The spin-flip transmission probabilities shows similar tendencies to the spin-conserved
case. For instance, we can observe spin-flip current at energies below and above the
Fermi level in structure Ir@AGNR-1 (see Figs.3.28(c)), while in structure Ir@AGNR-s
the spin-flip current is mostly below and also nearby the Fermi energy (see Figs.3.29(c)).

Finally, we notice that the introduction of the SO interaction significantly changes
the conduction in the single channel. There we notice that the introduction of the SO
interaction actually enhances the transmission.
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Figure 3.28: For Ir@AGNR-1: (a-1) and (a-2) PDOS of Ir orbitals, (b) Spin-conserved
(T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑ = 0) transmission probabilities without SO coupling and
(c) Spin-conserved (T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑) transmission probabilities with SO
coupling. Dashed lines correspond to transport in the pristine AGNR.

64



Figure 3.29: For Ir@AGNR-s: (a-1) and (a-2) PDOS of Ir orbitals, (b) Spin-conserved
(T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑ = 0) transmission probabilities without SO coupling and
(c) Spin-conserved (T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑) transmission probabilities with SO
coupling. Dashed lines correspond to transport in the pristine AGNR.
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It is clear that the stronger SO interaction in Ir has a larger effect. While in Ni
we notice only a perturbation compared to the non-SO case. Definitely the reduction
or increment of the spin-conserved and spin-flip currents can be ascribed directly to
the Ni or Ir orbitals, and their intensity depends on their localized nature. It is also
related to the adsorption site of Ni or Ir atom on the AGNR structure. In particular,
we point out that 3d orbitals of Ni and 5d of Ir result in strong dependences on the
spin-conserved and spin-flip transmission probabilities. Moreover, It is clearly observed
that the lack of inversion symmetry owing to the adsorption impurity led to different
SO coupling intensities.
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Chapter 4

Results and discussions II :
Multiple defects

Figure 4.1: Schematic view of the typical setup for a disordered transport calculations. The
left and right electrodes (grey shadow) consist of two semi-infinite segments of the pristine
AGNR. The one dimensional realistic disordered nanoribbon attached to the electrodes con-
sists of a randomly intercalation of pristine AGNR (blue shadow) and single defect (pink
shadow) segments.

We now turn to a more realistic setup where a number of impurities are randomly
distributed along a nanoribbon. This chapter is focused on the particular cases of
Ni adsorption configurations, the most stable and the symmetric ones. The typical
device used to calculate disordered transport is depicted in figure 4.1, where it was
assembled using a few single defects segments, Ni@AGNR-1 or Ni@AGNR-s1 (pink
shadow boxes), separated by a random number of pristine AGNR (blue shadow boxes)
segments. We established two types of calculations described as follow: a) first, given
a fixed concentrations we varied the length of the device. For this setup we have fixed
two concentrations [Ni]1 = 0.48 % and [Ni]2 = 0.87 % and varied the device length2.

1Figure 4.1 shows the most stable and symmetric Ni adsorption sites simultaneously.
2As a reference, a concentration of 0.48 % corresponds to approximately 29700 Carbon atoms and

5400 Hydrogen atoms.
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(b) second, given a fixed length of the device we varied the concentrations. For this
setup we have fixed two lengths L1 = 97.425 nm and L2 = 194.85 nm. The number of
atoms contained in the disordered systems range from 3255 to 35130 atoms. A typical
calculation goes as follow: (1) We select the types of segments that will be present; the
pristine segment and segments containing the impurity. (2) We then fixed the total
number of segments (and consequently fix the concentration and length). The device
is then assembled by randomly arranging the building blocks.

Given the disordered nature of the system the results presented here are an average
of up to 100 such calculations. We organized this chapter starting with the presen-
tation and discussions of the disordered transport results based on the Ni@AGNR-1
structure, followed by the Ni@AGNR-s structure. Finally, results and discussions of
transport at certain energies of interest based on the Ni@AGNR-1 system, followed by
the Ni@AGNR-s system are presented.

4.1 Disordered transport based on Ni@AGNR-1

An overview of transmission calculations performed for the two setups described before
are presented in figures 4.2 (without SO) and 4.3 (with SO). Let us start by analysing
figure 4.2. It shows a set of plots of transmission coefficients as a function of energy
for fixed concentrations of [Ni]1 = 0.48 % (column a), [Ni]2 = 0.87 % (column b) and
fixed device lengths of L1 = 97.425 nm (column c) and L2 = 194.85 nm (column d).
The spin-conserved transmission coefficients (T↑↑ = T↓↓) compared by columns display
similarities except for the two last plots (see Figs.4.2 (c-3) and (c-4)) belonging to the
L1 setup where a very high and sharp peak of spin-conserved transmission appears
slightly bellow the Fermi level in Fig. 4.2 (c-3), whereas Fig. 4.2 (c-4) exhibit two
peaks below EF

3. If we analyse each column according to the increase of concentration
or length we can observe that the spin-conserved transmission probabilities decrease
slightly in each setup, which is a tendency expected since the number of Ni impurities
in the ribbon increases, resulting in smaller transmission probabilities due to the large
numbers of scattering events. Finally, we notice a transmission for energies close to
-1 eV and above the Fermi level in all plots. This means that the conduction band is
close to transparent. As it happened in the single impurity case, this can be associated
with the lack of Ni-d states in this energy region.

Let us now turn our attention to figure 4.3 where the SO effect was taken into
consideration for all calculations. It shows the spin-conserved (T↑↑ = T↓↓) and spin-
flip (T↑↓ = T↓↑) transmission probabilities curves as a function of energy for fixed
concentrations of [Ni]1 = 0.48 % (column a), [Ni]2 = 0.87 % (column b) and fixed
device lengths; L1 = 97.425 nm (column c) and L2 = 194.85 nm (column d). For all

3We believe, that in these case, the density of defects is so large that there is very little room for
randomly organize the defects. If this gives rise to a mini-band.
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setups (columns a, b and c) both transmission curves are rather similar except for
the last column (L2 = 194.85 nm) which displays significantly reduced transmission
intensities. Once again, transmission curves are slightly different in Fig. 4.2 (c-3) and
Fig. 4.2 (c-4) since those plots exhibit sharp peaks at energies slightly below the Fermi
level. Moreover, we observe that spin-conserved curves between energies -1 and 1 eV
decline with the increase of concentration or length of the device while spin-flip curves
become greater in the same energy range for all plots, in particular, a larger tendency
can be seen in Fig. 4.2 (c-3) and Fig. 4.2 (c-4).

Figure 4.2: Spin-conserved transmission coefficients (T↑↑ = T↓↓) without spin-orbit coupling
as a function of energy of disordered ribbon based on Ni@AGNR-1 structure. (a) At fixed
concentration of [Ni]1 = 0.48 %; (b) At fixed concentration of [Ni]2 = 0.87 %; (c) At fixed
nanoribbon length of L1 = 97.425 nm and (d) At fixed nanoribbon length of L2 = 194.85 nm.
Dashed lines correspond to the transmission coefficients for a pristine AGNR.
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Figure 4.3: Spin-conserved transmission coefficients (T↑↑ = T↓↓) with spin-orbit coupling
as a function of energy of disordered ribbon based on Ni@AGNR-1 structure. (a) At fixed
concentration of [Ni]1 = 0.48 %; (b) At fixed concentration of [Ni]2 = 0.87 %; (c) At fixed
nanoribbon length of L1 = 97.425 nm and (d) At fixed nanoribbon length of L2 = 194.85 nm.
Dashed lines correspond to the transmission coefficients for a pristine AGNR.

Thusfor we have discussed superficially transport results to observe general ten-
dencies of transmission curves for calculations with and without SO effect. We found
that the behaviour of transmission curves are almost non-dependent on the setups used
except for a few particular cases. In order to make a better comprehension of the effect
of SO coupling over the transmission curves we have chosen a representative setup to
be analysed in the next subsection, at fixed concentration of [Ni]1 = 0.48 % , leaving
the other setups to be seen in the Appendix.
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4.1.1 Transmission versus Length at fixed concentration of
0.48 %

Figure 4.5 shows the transmission coefficients for [Ni]1 = 0.48 %, comparing the cases
with (column a and c) and without (column b) SO. Overall, what can be noticed from
the picture is that the total conduction is approximately the same with or without SO.
This means that the SO interaction does not introduce a new source of backscatter-
ing (at least not significantly), except at those energies where Fano resonances were
observed (approximately between 0 and -1 eV). A pictorial view of this effect can be
considered as shown in Fig.4.4. In the case of no-SO interaction (Fig.4.4(a)) electrons
incoming (say with spin up) can either be transmitted or reflected without having its
spin flipped. In the case of SO interaction (Fig.4.4(b)), during the scattering process,
the electron can be elastically scattered conserving its spin or it smoothly precesses
to flip its spin (either transmitted or reflected). In that sense total up (down) trans-
mission at the drain has a contribution from in-coming down (up) spin electrons. At
the same time, by analysing the spin-conserved and spin-flip transmission coefficients
separately there are significant changes.

(a)

(b)

Figure 4.4: Scattering process in presence of a scatter element; (a) Without influence of SO
interaction; (b) With influence of SO interaction.

In summary, we observed that the trend of reduction of the spin-conserved trans-
mission probabilities without SO takes place when the device length increases, this
behaviour is expected as the number of impurities and thus the number of scattering
events has been increased. Moreover, it is observed that at -1 eV and between 1 to
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0 eV the spin-conserved rather constant. On the other hand, it has been observed
that spin-flip curve with SO increases above the Fermi level when the device length
was increased while at energies below the Fermi level the spin-flip either increases or
reduces its intensity.

Figure 4.5: Disordered transport of nanoribbon at fixed concentration of [Ni]1 = 0.48 %.
(a) Total conductance (T↑↑ + T↓↑); (b) Spin-conserved (T↑↑ = T↓↓) transmission probabilities
without SO coupling; (c) Spin-conserved (T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑) transmission
probabilities with SO coupling. Dashed lines correspond to transport in the pristine AGNR.
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We will close this section with a comparison of transmission probabilities based
on the most stable and symmetric single defect blocks. For this purpose we plotted
the setup at fixed concentration of 0.48 % and also we considered the cases with and
without SO interaction as is depicted in figure 4.6. The column a and b illustrate
transmissions with SO for the stable and symmetric cases, respectively. On the other
hand column c and d display transmissions without SO for the stable and symmetric
cases, respectively.

We conclude that the type of defect, which the disordered device is based, lead to
strong influence in the total transmission coefficients. Furthermore, if the SO effect
is considered it is observed that spin-conserved curve in columns b and c (based on
symmetric blocks) tends to be zero at energies between -1.5 and 0 eV which is not the
case in columns a and c (based on stable blocks). This means there is a complete sup-
pression of the conduction channel (localized regime), a feature that has been observed
before by Lewenkopf [66]. The inclusion of SO interaction does not alter this trend.

The total transmission is significantly smaller and it can be explained from the
single impurity case where the d state is strongly hybridized with the AGNR and
causes significant decrease of the conductance over the wider energy range.

Finally, according to the results discussed recently it is interesting to study which
tendency would be followed by the spin-flip transmission curve at specific intervals of
energy since as we have seen it has distinct behaviours.
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Figure 4.6: Spin-flip (T↑↓ = T↓↑) and spin-conserved (T↑↑ = T↓↓) transmission coefficients as
a function of energy of disordered ribbon based on Ni@AGNR-1 and Ni@AGNR-s structures
at fixed concentration of [Ni]1 = 0.48 %. (a) Based on Ni@AGNR-1 with SO; (b) Based on
Ni@AGNR-s with SO; (c) Based on Ni@AGNR-1 without SO and (d) Based on Ni@AGNR-s
without SO. Dashed lines are the transmission coefficients for pristine AGNR.
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4.2 Transport at energies of interest - Ni@AGNR-1

The aim of this section is to divide the total energy spectrum in representative in-
tervals of energy to study the trend of the spin-conserved and spin-flip transmission
coefficients at those specific energy regions when the device length is increased, as usual
we considered the SO effect in those calculations.

In figure 4.7 we show eight regions of energy, one above the Fermi level (E0) and
the others below the Fermi energy (E1, .., E7). Table 4.1 shows the minimum and
maximum values in eV of every energy interval illustrated in figure 4.7

Figure 4.7: Schematic illustration of energy intervals chosen to study the trend of the spin-
conserved and spin-flip transmissions.
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Energy region [Emin, Emax] [eV]

E0 [0.1485, 0.4639]

E1 [-0.1459, -0.0758]

E2 [-0.5104, -0.4122]

E3 [-0.9309, -0.5805]

E4 [-1.0506, -0.9309]

E5 [-1.4075, -1.1622]

E6 [-1.7159, -1.4075]

E7 [-2.4169, -1.8001]

Table 4.1: Values of the energy regions considered in Fig. 4.7.

As we pointed out in the previous section, the transmission curves mostly followed
the same trend for each setup described at the beginning of this chapter, so in this
section we chose as a sample one of them: the case at fixed concentration of 0.48 % - in
order to perform the transport calculations at those specific energy ranges of interest
and including the SO interaction too.

In figure 4.8 we can see the spin-conserved transmission coefficients without SO
effect as a function of the device length for the set of energy intervals. By a rough
inspection we found that all of them tended to decrease in intensity when the device
length was increased. These results were expected because in our setup the fact that
the device grows in size means that the number of impurities also has increased so
we have a large number of scattering events and as a consequence the reduction of
transmission probabilities.

Clearly, we identified that transmission in E7 (green circle) and E6 (black triangle
right) decreased equally between each other and faster than the other intervals of
energy. Moreover, we can observe that in E2 (brown diamond), E5 (red triangle left)
and E1 (orange square) transmission were practically suppressed when the device length
is the maximum one considers (∼ 600 nm). Another interesting observation is that in
E3 (green triangle up) and E6 (black triangle right) the spin-conserved converged to
almost the same transmission intensity.
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Figure 4.8: Spin-conserved transmission coefficients versus length of the disordered device
for the set of energy ranges of interest calculated without take into consideration the SO
interaction.

In figure 4.9 (a) and (b) we can see the spin-conserved and spin-flip transmission
coefficients with SO interaction, respectively, as function of the device length for the
set of energy ranges. In case of spin-conserved we found that all energy ranges follow
almost the same trend compared with case without SO but with a little bit changes
except in E6 which now behaves more like in E4 and not like in E7 as the no SO case.
By looking more carefully we can notice that in E6, E5, E4 and E3 spin-conserved
converged to around a point which is lower and slightly faster than without SO case
while in E2 and E1 the transmission practically disappeared when the device length is
∼ 600 nm. Also, in E7 it decreased until lower levels compared with case where the
SO is not considered while in E1 it is almost zero at each device length.

In case of the spin-flip transmission coefficients (see Fig.4.9 (b)) we observe that
the energy intervals in E0, E3, E4 and E7 it increased and in E1 and E6 it decreased
when the device length grew in size. A particular tendency is observed in E2 and E5

in which it began at different transmission coefficients then increased at ∼ 200 nm
and finally decreased at the same transmission intensity at ∼ 600 nm. In E0 and E3

it started at the same point then increased with almost the same rates but different
transmission intensity and converged to approximately the same transmission point.
In E2 and E4 it started also at the same transmission level but tended to different
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transmission intensities where in E2 it converged to values similar to the ones in E5

whereas in E4 it converged to the same transmission intensity as in E7. Also, in E7

and E1 it went from the same transmission level but while in E7 it increased to the
same transmission coefficient as in E4 at ∼ 600 nm, in E1 it decreased fast to zero
transmission. Finally, E6 is the unique energy range where it began at higher level and
decreased fast until the same transmission coefficient as in E3 at device length of ∼
600 nm.
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Figure 4.9: Transmission coefficients versus length of the disordered device for the set of
energy ranges of interest calculated considering the SO interaction. (a) Spin-conserved trans-
mission coefficients. (b) Spin-flip transmission coefficients.
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Figure 4.10: (a) Total conductance versus length of the disordered device with no SO effect.
(b) Total conductance versus disordered device length with SO effect.
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In figures 4.10 (a) and (b) we show the total conductance as function of the device
length for cases without and with SO interaction, respectively. Both cases are very
similar except in interval E6 where the total conductance was slightly shifted to a
high transmission coefficients at ∼ 400 nm and ∼ 600 nm as well as in interval E5.
Furthermore, we should note that total conductance where the SO effect was not
considered is equal to the spin-conserved transmission without taking into account the
SO, shown early (see Fig. 4.8).

In figure 4.11 we presented the polarization (P) as a function of the disordered
system length. This property serve as a reference to observe simultaneously the be-
haviour of the spin-conserved and spin-flip transmission probabilities of each energy
ranges since it was defined as the normalized differences between both transmissions.
For instance, P = 0 means that spin-conserved and spin-flip transmission coefficients
are the same, P > 0 means spin-conserved is greater than spin-flip taking P = 1 as the
upper limit where there is no spin-flip transmission coefficients and conversely P < 0
means spin-flip is greater than spin-conserved taking P = −1 as the lower limit where
there is no spin-conserved transmission coefficients.

P in interval E0 began at ∼ 400 nm practically without spin-flip (∼ pure spin-
conserved) transmission then it increased at low growth rates until becomes the third
part of the spin-conserved at ∼ 600 nm. In E7, P has shown a similar behaviour. In
E3 spin-flip transmission began with almost zero then it grew at higher rates than in
E7 to becomes greater than the spin-conserved transmission at ∼ 600 nm. Also, in
interval E4 has shown a very similar trend. A particular behaviour was observed in
E2 in which spin-flip transmission began with small intensity then it increased at very
high rates until becomes almost purely spin-flip at ∼ 400 nm then it decreased until the
same level of transmission as in E4 at ∼ 600 nm. Another peculiar trend was observed
in energy ranges E5 and E6 in which spin-flip began with high transmission but at ∼
200 nm both transmissions (spin-flip and spin-conserved) become equivalent and keep
that level until the end. Finally, contrary to all cases seen before E1 is the only one
energy range where there is an opposite behaviour which means that spin-flip began
with higher intensity than spin-conserved then the spin-flip decreased until becomes
less than the spin-conserved transmission coefficients.
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Figure 4.11: Polarization versus length of the disordered device with SO effect for the set of
energy ranges of interest.

Spin relaxation length

In Fig.4.11 we observed different polarization trends of specific energy regions, some
of them with expected tendencies - those which tend to zero when the device length
increase - and others not expected. To compute the spin relaxation length we used
the polarization for specific intervals of energy where the polarization follow expected
tendencies, as depicted in Fig. 4.12. We should mention that further calculations where
the device length have to be increased even more is necessary for those remaining energy
regions where the polarization seems to oscillates before tend to zero.
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Figure 4.12: Polarization as a function of the device length for two energy regions (E0 and
E7).

The transport regime of our disordered system is the Anderson localization regime
because of the adatoms impurities. We calculated the spin relaxation length by fitting
the data showed in Fig. 4.13 which show the natural logarithm of polarization as
a function of the device length. In table 4.2 we showed the spin relaxation length
obtained from Fig. 4.13.

Energy region Spin relaxation length [nm]

E0 588

E7 333.3

Table 4.2: Spin relaxation length of the energy regions E0 and E7.
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Figure 4.13: Natural logarithm of polarization versus the length of the device showing the
data fitting curve.
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4.3 Transport at energies of interest - Ni@AGNR-s

Now let us analyse the specific energy ranges for the disordered device based on the sym-
metric structure (Ni@AGNR-s). In figure 4.14 we have shown seven regions of energy
for this case which is analogous but not identical to the case based on Ni@AGNR-1.

Table 4.3 shows the minimum and maximum values in eV of every energy interval
as depicted in figure 4.7

Figure 4.14: Schematic illustration of energy intervals chosen to study the trend of the
spin-conserved and spin-flip transmissions.

85



Energy region [Emin, Emax] [eV]

E0 [0.1345, 1.4172]

E1 [-0.2440, -0.0688]

E2 [-0.9710, -0.7837]

E3 [-1.2533, -1.0641]

E4 [-1.8000, -1.5267]

E5 [-2.0325, -1.8912]

E6 [-2.3327, -2.0303]

Table 4.3: Values of the energy regions considered in Fig. 4.14.

In figure 4.15 we observe the spin-conserved transmission coefficients without SO
effect versus the device length for every energy regions. As expected, all of them tend
to decrease in more or less intensity when the device grow in size. For example, in E1

and E2 it began with small transmission coefficients then were practically suppressed
at ∼ 400 and ∼ 600 nm. In E0 it experienced a very small reduction of transmission
and can be considered constant. In E6, E4 and E3 it have approximately the same
trend and decreased more quickly than in E1 and E2. The differences of spin-conserved
in those energy regions were in the initial and final transmission coefficient, to wit, in
E6 it ended at higher transmission than in E4 and E3.

In E5 it decreased quickly from ∼ 100 nm to ∼ 200 nm then decreased like in E6

even though at different transmission coefficients. Also, It is interesting observe that
besides in E1, E2, E3 and E5 it began at different transmission it converged to almost
the same very small transmission (∼ 0) at ∼ 600 nm in those energy regions. Finally,
beside in E0 and E4 it began at same transmission it diverged at the end in these energy
intervals.
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Figure 4.15: Spin-conserved transmission coefficients versus length of the disordered device
for the set of energy ranges of interest calculated without take into consideration the SO
interaction.

In figures 4.16 (a) and (b) we can see, for each energy intervals, the spin-conserved
and spin-flip transmission coefficients as a function of the device length, respectively,
obtained considering the SO coupling. In case of the spin-conserved transmission all
energy ranges are very similar to the case with no SO.

In case of the spin-flip transmission coefficients in ranges E0, E4, and E6 it tends to
increase. In E3 it tends to decrease and in E1, E2, and E5 it exhibited mixed trends.
Let us describe this in more details:s in E0 it began with no spin-flip transmission then
it increased quickly until almost reach same transmission coefficients as in E4 and E5

at ∼ 600 nm. In E1 and E2 it began at similar transmission then in these intervals
it increased a little bit at ∼ 200 nm and finally it decreased slowly until practically
disappear at ∼ 600 nm. In E3 it experienced quickly reduction of transmission. In E4

it increased slowly until reach similar transmission level as in E5 at ∼ 600 nm. In E5 it
began at similar transmission like in E3 then it increased at ∼ 200 nm and at the end
it decreased slowly to the same transmission as in E4. Lastly, in E6 it exhibited the
fastest increasing beginning from equal transmission as in E2 and reaching the highest
transmission at ∼ 600 nm.
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Figure 4.16: Transmission coefficients versus length of the disordered device for the set
of energy ranges of interest calculated considering the SO interaction. (a) Spin-conserved
transmission coefficients. (b) Spin-flip transmission coefficients.
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Figure 4.17: (a) Total conductance versus length of the disordered device with no SO effect.
(b) Total conductance versus disordered device length with SO effect.
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In figures 4.17 (a) and (b) the total conductance as a function of the disordered
device length for cases without and with SO effect are shown, respectively. Both plots
for the total conductance are very similar to each other.

In figure 4.18 is presented the polarization (P) versus the device length. We found
that except for E5 in the others P began with very small spin-flip transmission (in E1,
E2, E4 and E5) and almost zero spin-flip transmission (in E0 and E6). In E0 and E6

the spin-flip increased slowly and reached small transmission. A similar behaviour was
experienced by E4 but with a bit more transmission intensity at the end (∼ 600 nm).
In E5 we observe that it increased quickly until transmission level close to E3. In E1

was displayed a very interesting behaviour starting from almost nothing spin-flip and
reaching almost purely spin-flip at ∼ 600 nm. E2 exhibit a peculiar trend where it
began with small spin-flip then it increased quickly until high spin-flip (∼ 400 nm) and
at the end decreased fast to spin-flip transmission close to E3. Finally, E3 is the only
which began with higher spin-flip transmission than others then it increased slowly
until be comparable to the spin-conserved at ∼ 400 nm and ∼ 600 nm.

Figure 4.18: Polarization versus disordered device length with SO effect for the set of energy
ranges of interest.
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Spin relaxation length

In this case, we also observed in Fig.4.18 different polarization trends of the specific
energy regions. To compute the spin relaxation length we used the polarization for spe-
cific intervals of energy where the polarization follow expected tendencies, as depicted
in Fig. 4.19, in this case we identified 5 intervals of energy.

Figure 4.19: Polarization as a function of the device length for five energy regions (E0, E3,
E4, E5 and E6).

We calculated the spin relaxation length by fitting the data showed in Fig. 4.20
which show the natural logarithm of polarization as a function of the device length. In
table 4.4 we showed the spin relaxation length obtained from Fig. 4.20.
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Energy region Spin relaxation length [nm]

E0 3333.3

E3 163.9

E4 909

E5 263.2

E6 2500

Table 4.4: Spin relaxation length of the energy regions E0, E3, E4, E5 and E6.

Figure 4.20: Natural logarithm of polarization versus the length of the device showing the
data fitting curve.
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Chapter 5

Conclusions

In this dissertation we studied the electronic and spin-dependent transport properties of
graphene nanoribbons of type armchair with single adsorbed transition metal atoms as
defects, as well as, spin-dependent transport of realistic graphene nanoribbons devices
built based on the single adatom structure by means of a combination of DFT and
NEGFs methods. We focused on nickel and iridium as adatoms for the single defect
case and only nickel adatom for the disordered case. We have demonstrated that it is
possible to study fro first-principles the electronic transport properties of disordered
systems in the presence of SO interaction.

At the equilibrium geometry we have shown that Ni and Ir adatoms prefer hollow
sites closed to the edge of AGNR. The band structure results showed (for both Ni and
Ir single defect systems) that the splitting in the stable structure are greater than in
the symmetric structure which are in agreement with the fact of the band splitting is
a direct consequence of the lack of inversion symmetry of the structures (Rashba SO
interaction) and manifested itself by a displacement of the bands along the wave vector
axis.

The intensity of the spin-conserved (SC) and spin-flip (SF) transmission coefficients
are a direct consequence of the relaxed adsorption sites of the adatoms which in turn
causes the orbitals to change their localized nature. In particular, we point out that d
orbitals of Ni and Ir result in strong dependences on the spin-conserved and spin-flip
transmission probabilities specially around the valence energy region. Moreover, the
lack of inversion symmetry owing to the adatom led to different SO coupling inten-
sities observed as spin-flip transmission. Thus, in this work we conclude that it is
worth studying Ni adatom as single defect on AGNR since even the reduction in spin-
conserved transmission probabilities it is still greater than the exhibited by Ir adatom
structures.

In case of disordered systems the transmission coefficients (SC and SF) for different
setups - fixed concentration and device length varying length and concentration, re-
spectively - have trends very close to each other. From transmission at specific energy
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regions of interest even though in both cases (based on stable and symmetric single
defect systems) the energy intervals are not the same we found similar tendencies.

Furthermore, from the Polarization (P) results we found that some energy regions
are well behaved - P tends to zero when the device length increase - whereas the
others exhibit unusual trends. We have shown that the spin relaxation lengths for
those energy regions with well behaved polarization are very small compared with
Graphene’s spin relaxation length which is around 4500 nm. In case of the remaining
intervals of energy where the polarization exhibit do not expected trends we need to
address future works in order to get a better comprehension of the physics involved. We
suggest further calculations where the device length have to be increased even more for
those remaining energy regions where the polarization seems to oscillates before tend
to zero.

Finally, we can conclude that even thought disordered systems with Nickel as impu-
rities exhibit large transmission coefficients compared with Iridium we still need very
small concentrations of Ni impurities in a real device to get useful transmittance and
large spin relaxation lengths, as well as, further study to understand the real transport
regime in those disordered materials.
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Appendix A

Geometry relaxation

A.1 Nickel relaxation

In this section we present a full table of initial and relaxed structures for Ni adatoms
in graphene nanoribbon.
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Ni@AGNR-1 Ni@AGNR-2 Ni@AGNR-3 Ni@AGNR-4

Initial
structure

Relaxed
structure

Relative
energy [eV]

0.000 0.152 0.176 0.177

Ni@AGNR-5 Ni@AGNR-6 Ni@AGNR-7 Ni@AGNR-8

Initial
structure

Relaxed
structure

Relative en-
ergy [eV]

0.308 0.314 0.388 0.458

Table A.1: Initial and relaxed structures from Ni@AGNR-1 to Ni@AGNR-8 with their
respective relative energy in eV after relaxation.
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Ni@AGNR-9 Ni@AGNR-10 Ni@AGNR-11 Ni@AGNR-12

Initial
structure

Relaxed
structure

Relative
energy [eV]

0.487 0.558 0.647 0.660

Ni@AGNR-13 Ni@AGNR-14 Ni@AGNR-15 Ni@AGNR-16

Initial
structure

Relaxed
structure

Relative
energy [eV]

0.747 0.759 0.763 0.774

Table A.2: Initial and relaxed structures from Ni@AGNR-9 to Ni@AGNR-16 with their
respective relative energy in eV after relaxation.
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Ni@AGNR-17

Initial
structure

Relaxed
structure

Relative
energy [eV]

0.775

Table A.3: Initial and relaxed structures of Ni@AGNR-17 with their respective relative
energy in eV after relaxation.
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A.2 Iridium relaxation

In this section we present a full table of initial and relaxed structures for Ir adatoms
in graphene nanoribbon.
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Ir@AGNR-1 Ir@AGNR-2 Ir@AGNR-3 Ir@AGNR-4

Initial
structure

Relaxed
structure

Relative
energy [eV]

0.000 0.009 0.024 0.038

Ir@AGNR-5 Ir@AGNR-6 Ir@AGNR-7 Ir@AGNR-8

Initial
structure

Relaxed
structure

Relative
energy [eV]

0.041 0.042 0.043 0.102

Table A.4: Initial and relaxed structures from Ir@AGNR-1 to Ir@AGNR-8 with their re-
spective relative energy in eV after relaxation.
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Ir@AGNR-9 Ir@AGNR-10 Ir@AGNR-11 Ir@AGNR-12

Initial
structure

Relaxed
structure

Relative
energy [eV]

0.264 0.513 0.515 0.516

Ir@AGNR-13 Ir@AGNR-14 Ir@AGNR-15 Ir@AGNR-16

Initial
structure

Relaxed
structure

Relative
energy [eV]

0.516 0.525 0.640 0.655

Table A.5: Initial and relaxed structures from Ir@AGNR-9 to Ir@AGNR-16 with their
respective relative energy in eV after relaxation.
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Ir@AGNR-17 Ir@AGNR-18 Ir@AGNR-19 Ir@AGNR-20

Initial
structure

Relaxed
structure

Relative
energy [eV]

0.692 0.710 0.758 0.767

Ir@AGNR-21 Ir@AGNR-22 Ir@AGNR-23 Ir@AGNR-24

Initial
structure

Relaxed
structure

Relative
energy [eV]

0.784 0.813 0.822 0.834

Table A.6: Initial and relaxed structures from Ir@AGNR-17 to Ir@AGNR-24 with their
respective relative energy in eV after relaxation.
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Ir@AGNR-25

Initial
structure

Relaxed
structure

Relative
energy [eV]

0.838

Table A.7: Initial and relaxed structures of Ir@AGNR-25 with their respective relative energy
in eV after relaxation.
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Appendix B

Multiple defects spin-polarized
transport
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B.1 Transmission as a function of Length based on

Ni@AGNR-1

B.1.1 At fixed concentration of 0.87 %

Figure B.1: Disordered transport of nanoribbon at fixed concentration of [Ni]2 = 0.87 %.
(a) Spin-conserved (T↑↑ = T↓↓) transmission probabilities without SO coupling; (b) Spin-
conserved (T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑) transmission probabilities with SO coupling.
Dashed lines correspond to transport in the pristine AGNR.
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B.1.2 At fixed length of 97.425 nm

Figure B.2: Disordered transport of nanoribbon at fixed length of L1 = 97.425 nm. (a) Spin-
conserved (T↑↑ = T↓↓) transmission probabilities without SO coupling; (b) Spin-conserved
(T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑) transmission probabilities with SO coupling. Dashed
lines correspond to transport in the pristine AGNR.
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B.1.3 At fixed length of 194.85 nm

Figure B.3: Disordered transport of nanoribbon at fixed length of L2 = 194.85 nm. (a) Spin-
conserved (T↑↑ = T↓↓) transmission probabilities without SO coupling; (b) Spin-conserved
(T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑) transmission probabilities with SO coupling. Dashed
lines correspond to transport in the pristine AGNR.
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B.2 Disordered transport based on Ni@AGNR-s

Figure B.4: Spin-conserved transmission coefficients (T↑↑ = T↓↓) without spin-orbit coupling
as a function of energy of disordered ribbon based on Ni@AGNR-s structure. (a) At fixed
concentration of [Ni]1 = 0.48 %; (b) At fixed concentration of [Ni]2 = 0.87 %; (c) At fixed
nanoribbon length of L1 = 97.425 nm and (d) At fixed nanoribbon length of L2 = 194.85 nm.
Dashed lines are the transmission coefficients for pristine AGNR.
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Figure B.5: Spin-conserved transmission coefficients (T↑↑ = T↓↓) with spin-orbit coupling
as a function of energy of disordered ribbon based on Ni@AGNR-s structure. (a) At fixed
concentration of [Ni]1 = 0.48 %; (b) At fixed concentration of [Ni]2 = 0.87 %; (c) At fixed
nanoribbon length of L1 = 97.425 nm and (d) At fixed nanoribbon length of L2 = 194.85 nm.
Dashed lines are the transmission coefficients for pristine AGNR.
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B.2.1 At fixed concentration of 0.48 %

Figure B.6: Disordered transport of nanoribbon at fixed concentration of 0.48 %. (a) Total
conductance ; (b) Spin-conserved (T↑↑ = T↓↓) transmission probabilities without SO coupling;
(c) Spin-conserved (T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑) transmission probabilities with SO
coupling in logarithmic scale. Dashed lines correspond to transport in the pristine AGNR.

116



B.2.2 At fixed concentration of 0.87 %

Figure B.7: Disordered transport of nanoribbon at fixed concentration of 0.87 %. (a) Spin-
conserved (T↑↑ = T↓↓) transmission probabilities without SO coupling; (b) Spin-conserved
(T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑) transmission probabilities with SO coupling. Dashed
lines correspond to transport in the pristine AGNR.
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B.2.3 At fixed length of 97.425 nm

Figure B.8: Disordered transport of nanoribbon at fixed length of L1 = 97.425 nm. (a) Spin-
conserved (T↑↑ = T↓↓) transmission probabilities without SO coupling; (b) Spin-conserved
(T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑) transmission probabilities with SO coupling. Dashed
lines correspond to transport in the pristine AGNR.
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B.2.4 At fixed length of 194.85 nm

Figure B.9: Disordered transport of nanoribbon at fixed length of L2 = 194.85 nm. (a) Spin-
conserved (T↑↑ = T↓↓) transmission probabilities without SO coupling; (b) Spin-conserved
(T↑↑ = T↓↓) and spin-flip (T↑↓ = T↓↑) transmission probabilities with SO coupling. Dashed
lines correspond to transport in the pristine AGNR.
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