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Abstract

These lectures present an introduction to AdS-CFT, and is in-
tended both for begining and more advanced graduate students,
which are familiar with quantum field theory and have a working
knowledge of their basic methods. Familiarity with supersymmetry,
general relativity and string theory is helpful, but not necessary, as
the course intends to be as self-contained as possible. I will intro-
duce the needed elements of field and gauge theory, general relativ-
ity, supersymmetry, supergravity, strings and conformal field the-
ory. Then I describe the basic AdS-CFT scenario, of N = 4 Super
Yang-Mills’s relation to string theory in AdS5×S5, and applications
that can be derived from it: 3-point functions, quark-antiquark po-
tential, finite temperature and scattering processes, the pp wave
correspondence and spin chains.
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1 Elements of quantum field theory and gauge theory

Here I will review some elements of quantum field theory and gauge theory that will be
needed in the following.

The Fenyman path integral and Feynman diagrams
Conventions: throughout this course, I will use theorist’s conventions, where � = c = 1.

To reintroduce � and c one can use dimensional analysis. In this conventions, there is only one
dimensionful unit, mass = 1/length = energy = 1/time = ... and when I speak of dimension
of a quantity I refer to mass dimension, i.e. the mass dimension of d4x, [d4x], is −4. The
Minkowski metric ημν will have signature (− + ++), thus ημν = diag(−1,+1,+1,+1).

I will use the example of the scalar field φ(x), that transforms as φ′(x′) = φ(x) under a
coordinate transformation xμ → x′μ. The action of such a field is of the type

S =

∫
d4xL(φ, ∂μφ) (1.1)

where L is the Lagrangian density.
Classically, one varies this action with respect to φ(x) to give the classical equations of

motion for φ(x)
∂L
∂φ

= ∂μ
∂L

∂(∂μφ)
(1.2)

Quantum mechanically, the field φ(x) is not observable anymore, and instead one must
use the vacuum expectation value (VEV) of the scalar field quantum operator instead, which
is given as a ”path integral”

< 0|φ̂(x1)|0 >=

∫
DφeiS[φ]φ(x1) (1.3)

Here the symbol Dφ represents a discretization of spacetime followed by integration of
the field at each discrete point:

Dφ(x) =
∏
i

∫
dφ(xi) (1.4)

A generalization of this object is the correlation function or n-point function

Gn(x1, ..., xn) =< 0|T{φ̂(x1)...φ̂(xn)}|0 > (1.5)

The generating function of the correlation functions is called the partition function,

Z[J ] =

∫
DφeiS[φ]+i

∫
d4xJ(x)φ(x) (1.6)

It turns out to be convenient to write quantum field theory in Euclidean signature, and
go between the Minkowski signature (−+ ++) and the Euclidean signature (+ + ++) via a
Wick rotation, t = −itE and iS → −SE , where tE is Euclidean time (with positive metric)
and SE is the Euclidean action.
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The partition function in Euclidean space is

ZE[J ] =

∫
Dφe−SE [φ]+

∫
d4xJ(x)φ(x) (1.7)

and the correlation functions

Gn(x1, ..., xn) =

∫
Dφe−SE [φ]φ(x1)...φ(xn) (1.8)

are given by differentiation of the partition function

Gn(x1, ..., xn) =
δ

δJ(x1)
...

δ

δJ(xn)

∫
Dφe−SE [φ]+

∫
d4xJ(x)φ(x)|J=0 (1.9)

This formula can be calculated in perturbation theory, using the so called ”Feynman
diagrams”. To exemplify it, we will use a scalar field Euclidean action

SE[φ] =

∫
d4x[

1

2
(∂μφ)2 +m2φ2 + V (φ)] (1.10)

Here I have used the notation

(∂μφ)2 = ∂μφ∂
μφ = ∂μφ∂νφη

μν = −φ̇2 + (�∇φ)2 (1.11)

Moreover, for concreteness, I will use V = λφ4.
Then, the Feynman diagram in x space is obtained as follows. One draws a diagram,

in the example in Fig.1a) it is the so-called ”setting Sun” diagram.
A line between point x and point y represent the propagator

Δ(x, y) = [−∂μ∂μ +m2]−1 =

∫
d4p

(2π)4

eip(x−y)

p2 +m2
=

1

(x− y)2
(1.12)

A 4-vertex at point x represents the vertex∫
d4x(−λ) (1.13)

And then the value of the Feynman diagram, F
(N)
D (x1, ...xn) is obtained by multiplying

all the above elements, and the value of the n-point function is obtained by summing over
diagrams, and over the number of 4-vertices N with a weight factor:

Gn(x1, ..., xn) =
∑
N≥0

1

N !

∑
diag D

F
(N)
D (x1, ..., xn) (1.14)

(Equivalently, one can use a λφ4/4! potential and construct only topologically inequivalent
diagrams and the vertices are still

∫
d4x(−λ), but we now multiply each inequivalent diagram

by a statistical weight factor).
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k1−p2−p3

x1 x2 x3 x4

a)

k1 p1

p2

p3

b)

d=2 d=4

d)

d=6

e)c)

Figure 1: a) ”Setting sun” diagram in x-space. b) ”Setting sun” diagram in momentum space.
c)anomalous diagram in 2 dimensions; d)anomalous diagram (triangle) in 4 dimensions;
e)anomalous diagram (box) in 6 dimensions.

We mentioned that the VEV of the scalar field operator is an obsevable. In fact, the
normalized VEV in the presence of a source J(x),

φ(x; J) =
J < 0|φ̂(x)|0 >J

J < 0|0 >J
=

1

Z[J ]

∫
Dφe−S[φ]+J ·φφ(x) =

δ

δJ
lnZ[J ] (1.15)

is called the classical field and satisfies an analog (quantum version) of the classical field
equation.

S matrices
For real scattering, one constructs incoming and outgoing wavefunctions, representing

actual states, in terms of the idealized states of fixed (external) momenta �k.
Then one treats the scattering of these idealized states and at the end one convolutes

with the wavefunctions. The S matrix defines the transition amplitude between the idealized
states by

< �p1, �p2, ...|S|�k1, �k2, ... > (1.16)

The value of this S matrix transition amplitude is given in terms of Feynman diagrams
in momentum space. The diagrams are of a restricted type: connected (doesn’t contain
disconnected pieces) and amputated (which means that one does not use propagators for the
external lines).

For instance, the setting sun diagram with external momenta k1 and p1 and internal
momenta p2, p3 and k1 − p2 − p3 in Fig.1b) is

δ4(k1 − p1)

∫
d4p2d

4p3λ
2 1

p2
2 +m2

1

p2
3 +m2

1

(k1 − p2 − p3)2 +m2
4

(1.17)
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The LSZ formulation relates S matrices in Minkowski space with correlation functions
as follows. The Fourier transformed n +m-point function near the physical poles P 2

I = M2

behaves as

G̃n+m(p1, ..., pn)(x1, ..., xn) ∼
(

n∏
i=1

√
Zi

p2
i −m2 + iε

)(
m∏
j+1

√
Zi

k2
j −m2 + iε

)
< p1, ..., pn|S|k1, .., km >

(1.18)
For this reason, the study of correlation functions, which is easier, is preferred, since any

physical process can be extracted from them as above.
If the external states are not states of a single field, but of a composite field O(x), e.g.

Oμν(x) = (∂μφ∂νφ)(x)(+...) (1.19)

it is useful to define Euclidean space correlation functions for these operators

< O(x1)...O(xn) >Eucl=

∫
Dφe−SEO(x1)...O(xn)

=
δn

δJ(x1)...δJ(xn)

∫
Dφe−SE+

∫
d4xO(x)J(x)|J=0 (1.20)

which can be obtained from the generating functional

ZO[J ] =

∫
Dφe−SE+

∫
d4xO(x)J(x) (1.21)

Yang-Mills theory and gauge groups
Electromagnetism
In electromagnetism we have a gauge field

Aμ(x) = (φ(�x, t), �A(�x, t)) (1.22)

with the field strength (containg the �E and �B fields)

Fμν = ∂μAν − ∂νAμ = 2∂[μAν] (1.23)

The observables like �E and �B are defined in terms of Fμν and as such the theory has a
gauge symmetry under a U(1) group, that leaves Fμν invariant

δAμ = ∂μλ; δFμν = 2∂[μ∂ν]λ = 0 (1.24)

The Minkowski space action is

SMink = −1

4

∫
d4xF 2

μν (1.25)

which becomes in Euclidean space

SE =
1

4

∫
d4x(Fμν)

2 =
1

4

∫
d4xFμνFρση

μρηνσ (1.26)
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The coupling of electromagnetism to a scalar field φ and a fermion field φ is obtained as
follows

StotalE = SE,A +

∫
d4x[ψ̄(D/+m)ψ + (Dμφ)∗Dμφ]

D/ = Dμγ
μ; Dμ = ∂μ − ieAμ (1.27)

This is known as the minimal coupling. Then there is a U(1) local symmetry that extends
the above gauge symmetry, namely

ψ′ = eieλ(x)ψ; φ′ = eieλ(x)φ (1.28)

under which Dμψ transforms as eieλDμψ, i.e transforms covariantly, as does Dμφ.
The reverse is also possible, namely we can start with the action for φ and ψ only, with

∂μ instead of Dμ. It will have the symmetry in (1.28), except with a global parameter only.
If we want to promote the global symmetry to a local one, we need to introduce a gauge
field and minimal coupling as above.

In the following, I will sometimes replace e by ie, thus Dμ = ∂μ + eAμ.
Yang-Mills fields
Yang-Mills fields Aaμ are self-interacting gauge fields, where a is an index belonging to a

nonabelian gauge group. There is thus a 3-point self-interaction of the gauge fields Aaμ, A
b
ν , A

c
ρ,

that is defined by the constants fabc.
The gauge group G has generators (T a)ij in the representation R. T a satisfy the Lie

algebra of the group,
[Ta, Tb] = fab

cTc (1.29)

The group G is usually SU(N), SO(N). The adjoint representation is defined by (T a)bc =
fabc. Then the gauge fields live in the adjoint representation and the field strength is

F a
μν = ∂μA

a
ν − ∂νA

a
μ + gfabcA

b
μA

c
ν (1.30)

One can define A = AaTa and Fμν = F a
μνTa in terms of which we have

Fμν = ∂μAν − ∂νAμ + g[Aμ, Aν ] (1.31)

(If one further defines the forms F = 1/2Fμνdx
μ ∧ dxν and A = Aμdx

ν where wedge ∧
denotes antisymmetrization, one has F = dA+ gA ∧ A).

The generators T a are taken to be antihermitian, their normalization being defined by
their trace in the fundamental representation,

trT aT b = −1

2
δab (1.32)

and here group indices are raised and lowered with δab.
The local symmetry under the group G or gauge symmetry has now the infinitesimal

form
δAaμ = (Dμε)

a (1.33)
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where
(Dμε)

a = ∂με
a + gfabcA

b
με
c (1.34)

The finite form of the transformation is

AUμ (x) = U−1(x)Aμ(x)U(x) + U−1∂μU(x); U = eλ
aTa = eλ (1.35)

and if λa = εa =small, we get the previous. This transformation leaves invariant the Eu-
clidean action

SE = −1

2

∫
d4xtr(FμνF

μν) =
1

4

∫
d4xF a

μνF
b,μνδab (1.36)

whereas the fields stregth transforms covariantly, i.e.

F ′
μν = U−1(x)FμνU(x) (1.37)

Coupling with other fields is done again by using the covariant derivative. In represen-
tation R, the covariant derivative Dμ (that also transforms covariantly) is

(Dμ)ij = δij∂μ + g(T a)ijA
a
μ(x) (1.38)

and one replaces ∂μ by Dμ, e.g. for a fermion, ψ̄∂/ψ → ψ̄D/ψ.
Symmetry currents and anomalies
The Noether theorem states that a global classical symmetry corresponds to a conserved

current (on-shell), i.e.
δsymm.L = εa∂μj

μ,a (1.39)

so that a classical symmetry corresponds to having the Noether current jμ,a conserved, i.e.
∂μj

μ,a=0. If the transformation is

δφi = εa(T a)ijφ
j (1.40)

then the Noether current is

jμ,a =
δL

δ(∂μφi)
T aijφ

j (1.41)

Quantum mechanically however, the current can have an anomaly, i.e. < ∂μj
μ,a > �= 0. In

momentum space, this will be pμ < jμ,a > �= 0.
As an example, take the Lagrangian

L = ψ̄iγμDμψi (1.42)

with δψi = εa(T a)ijψ
j . It gives the symmetry (Noether) current

jμ,a = ψ̄iγμT aijψ
j (1.43)

Some observations can be made about this example. First, jaμ is a composite operator.
Second, if ψi has also some gauge (local symmetry) indices, then jμ,a is gauge invariant, so
it can represent a physical state.
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One can use the formalism for composite operators and define the correlator

< jμ1,a1(x1), ...j
μn,an(xn) >=

δn

δAa1μ1(x1)...δAan
νn

(xn)

∫
D[fields]e−S+

∫
d4xjμ,a(x)Aa

μ(x) (1.44)

which will then be a correlator of some external physical states (observables).
We will see that this kind of correlators are obtained from AdS-CFT. The current anomaly

can manifest itself also in this correlator. jμ,a is inserted inside the quantum average, thus
in momentum space, we could a priori have the anomaly

pμ1 < jμ1,a1, ...jμn,an > �= 0 (1.45)

In general, the anomaly is 1-loop only, and is given by polygon graphs, i.e. a 1-loop contribu-
tion (a 1-loop Feynman diagram) to an n-point current correlator that looks like a n-polygon
with vertices= the x1, ..xn points. In d=2, only the 2-point correlator is anomalous by the
Feynman diagram in Fig.1c, in d=4, the 3-point, by a triangle Feynman diagram, as in
Fig.1d, in d=6 the 4-point, by a box (square) graph, as in Fig.1e, etc.

Therefore, in d=4, the anomaly is called triangle anomaly.

Important concepts to remember

• Correlation functions are given by a Feynman diagram expansion and appear as deriva-
tives of the partition function

• S matrices defining physical scatterings are obtained via the LSZ formalism from the
poles of the correlation functions

• Correlation functions of composite operators are obtained from a partition function
with sources coupling to the operators

• Coupling of fields to electromagnetism is done via minimal coupling, replacing the
derivatives d with the covariant derivatives D = d− ieA.

• Yang-Mills fields are self-coupled. Both the covariant derivative and the field strength
transform covariantly.

• Classically, the Noether theorem associates every symmetry with a conserved current.

• Quantum mechanically, global symmetries can have an anomaly, i.e the current is not
conserved, when inserted inside a quantum average.

• The anomaly comes only from 1-loop Feynman diagrams. In d=4, it comes from a
triangle, thus only affects the 3-point function.

• In a gauge theory, the current of a global symmetry is gauge invariant, thus corresponds
to some physical state.
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Exercises, Section 1

1. If we have the partition function

Z[J ] = exp{−
∫
d4x[(

∫
d4x0K(x, x0)J(x0))(−�x

2
)(

∫
d4y0K(x, y0)J(y0))

+λ(

∫
d4x0K(x, x0)(J(x0)))

3]} (1.46)

write an expression for G2(x, y) and G3(x, y).

2. If we have the Euclidean action

SE =

∫
d4x[

1

2
(∂μφ)2 +

m2φ2

2
+ λφ3] (1.47)

write down the integral for the Feynman diagram in Fig.2a.

c)

x y

z z1 2

a)

x

x x

1

2 3
b)

p

p

p

1

2

3

Figure 2: a) Setting sun diagram in x space; b) Triangle diagram in x space; c) Star diagram
in p space

3. Show that the Fourier transform of the triangle diagram in x space in Fig.2b is the
star diagram in p space in Fig.2c.

4. Derive the Hamiltonian H( �E, �B) for the electromagnetic field by putting A0 = 0, from
SM = − ∫ F 2

μν/4.

5. Show that Fμν = [Dμ, Dν ]/g. What is the infinitesimal transformation of Fμν? For
SO(d) groups, the adjoint representation is antisymmetric, (ab). Calculate f (ab)

(cd)(ef) and

write down F ab
μν .

6. Consider the action

S = −1

4

∫
F 2
μν +

1

2

∫
ψ̄(D/+m)ψ +

1

2

∫
(Dμφ)2Dμφ (1.48)

and the U(1) electromagnetic transformation. Calculate the Noether current.
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2 Basics of general relativity; Anti de Sitter space.

Curved spacetime and geometry
In special relativity, one postulates that the speed of light is constant in all inertial

reference frames, i.e. c = 1. As a result, the line element

ds2 = −dt2 + d�x2 = ηijdx
idxj (2.1)

is invariant, and is called the invariant distance. Here ηij = diag(−1, 1, ..., 1). Therefore
the symmetry group of general relativity is the group that leaves the above line element
invariant, namely SO(1,3), or in general SO(1,d-1).

This Lorentz group is a generalized rotation group: The rotation group SO(3) is the
group that leaves the 3 dimensional length d�x2 invariant. The Lorentz transformation is a
generalized rotation

x′i = Λi
jx
j ; Λi

j ∈ SO(1, 3) (2.2)

Therefore the statement of special relativity is that physics is Lorentz invariant (invariant
under the Lorentz group SO(1,3) of generalized rotations).

In general relativity, one considers a more general spacetime, specifically a curved
spacetime, defined by the distance between two points, or line element,

ds2 = gij(x)dx
idxj (2.3)

where gij(x) are arbitrary functions called the metric (sometimes one refers to ds2 as the
metric). This situation is depicted in Fig.3a.

As we can see from the definition, the metric gij(x) is a symmetric matrix.
To understand this, let us take the example of the sphere, specifically the familiar example

of a 2-sphere embedded in 3 dimensional space. Then the metric in the embedding space is
the usual Euclidean distance

ds2 = dx2
1 + dx2

2 + dx3
3 (2.4)

but if we are on a two-sphere we have the constraint

x2
1 + x2

2 + x2
3 = R2 ⇒ 2(x1dx1 + x2dx2 + x3dx3) = 0

⇒ dx3 = −x1dx1 + x2dx2

x3
= − x1√

R2 − x2
1 − x2

2

dx1 − x2√
R2 − x2

1 − x2
2

dx2 (2.5)

which therefore gives the induced metric (line element) on the sphere

ds2 = dx2
1(1 +

x2
1

R2 − x2
1 − x2

2

) + dx2
2(1 +

x2
2

R2 − x2
1 − x2

2

) + 2dx1dx2
x1x2

R2 − x2
1 − x2

2

= gijdx
idxj

(2.6)
So this is an example of a curved d-dimensional space which is obtained by emebedding it
into a flat (Euclidean or Minkowski) d+1 dimensional space. But if the metric gij(x) are
arbitrary functions, then one cannot in general embed such a space in flat d+1 dimensional
space: there are d(d+1)/2 functions gij(x) to be obtained and only one function (in the above
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d)

Xi

Xj

ds

a)

alpha

betagamma

b)
c)

alpha

beta
gamma

Figure 3: a) curved space. The functional form of the distance between 2 points depends on
local coordinates. b) A triangle on a sphere, made from two meridian lines and a seqment
of the equator has two angles of 900 (π/2). c) The same triangle, drawn for a general curved
space of positive curvature, emphasizing that the sum of the angles of the triangle exceeds
1800 (π). d) In a space of negative curvature, the sum of the angles of the triangle is below
1800 (π).
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example, the function x3(x1, x2)), together with d coordinate transformations x′i = x′i(xj)
available for the embedding. In fact, we will see that the problem is even more complicated
in general due to the signature of the metric (signs on the diagonal of the diagonalized matrix
gij). Thus, even though a 2 dimensional metric has 3 components, equal to the 3 functions
available for a 3 dimensional embedding, to embed a metric of Euclidean signature in 3d one
needs to consider both 3d Euclidean and 3d Minkowski space.

That means that a general space can be intrinsically curved, defined not by embedding
in a flat space, but by the arbitrary functions gij(x) (the metric). In a general space, we

define the geodesic as the line of shortest distance
∫ b
a
ds between two points a and b.

In a curved space, the triangle made by 3 geodesics has an unusual property: the sum of
the angles of the triangle, α+β+γ is not equal to π. For example, if we make a triangle from
geodesics on the sphere as in Fig.3b, we can easily convince ourselves that α + β + γ > π.
In fact, by taking a vertex on the North Pole and two vertices on the Equator, we get
β = γ = π/2 and α > 0. This is the situation for a space with positive curvature, R > 0:
two parallel geodesics converge to a point (Fig.3c). In the example given, the two parallel
geodesics are the lines between the North Pole and the Equator: both lines are perpendicular
to the equator, therefore are parallel by definition, yet they converge at the North Pole.

But one can have also a space with negative curvature, R < 0, for which α + β + γ < π
and two parallel geodesics diverge, as in Fig.3d. Such a space is for instance the so-called
Lobachevski space, which is a two dimensional space of Euclidean signature (like the two
dimensional sphere), i.e. the diagonalized metric has positive numbers on the diagonal.
However, this metric cannot be obtained as an embedding in a Euclidean 3d space, but
rather an embedding in a Minkowski 3 dimensional space, by

ds2 = dx2 + dy2 − dz2; x2 + y2 − z2 = −R2 (2.7)

Einstein’s theory of general relativity makes two physical assumptions

• gravity is geometry: matter follows geodesics in a curved space, and the resulting
motion appears to us as the effect of gravity. AND

• matter sources gravity: matter curves space, i.e. the source of spacetime curvature
(and thus of gravity) is a matter distribution.

We can translate these assumptions into two mathematically well defined physical prin-
ciples and an equation for the dynamics of gravity (Einstein’s equation). The physical
principles are

• Physics is invariant under general coordinate transformations

x′i = x′i(xj) ⇒ ds2 = gij(x)dx
idxj = g′ij(x

′)dx′idx′j (2.8)

• The Equivalence principle, which can be stated as ”there is no difference between
acceleration and gravity” OR ”if you are in a free falling elevator you cannot distinguish
it from being weightless (without gravity)”. This is only a local statement: for example,
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if you are falling towards a black hole, tidal forces will pull you apart before you reach
it (gravity acts slightly differently at different points). The quantitative way to write
this principle is

mi = mg where �F = mi�a (Newton′s law) and �Fg = mg�g (gravitational force)
(2.9)

In other words, both gravity and acceleration are manifestations of the curvature of space.
Before describing the dynamics of gravity (Einstein’s equation), we must define the kine-

matics (objects used to describe gravity).
As we saw, the metric gμν changes when we make a coordinate transformation, thus

different metrics can describe the same space. In fact, since the metric is symmetric, it has
d(d + 1)/2 components. But there are d coordinate transformations x′μ(xν) one can make
that leave the physics invariant, thus we have d(d − 1)/2 degrees of freedom that describe
the curvature of space (different physics).

We need other objects besides the metric that can describe the space in a more invariant
manner. The basic such object is called the Riemann tensor, Rμ

νρσ. To define it, we first
define the inverse metric, gμν = (g−1)μν (matrix inverse), i.e. gμρg

ρσ = δσμ. Then we define
an object that plays the role of ”gauge field of gravity”, the Christoffel symbol

Γμνρ =
1

2
gμσ(∂ρgνσ + ∂νgσρ − ∂σgνρ) (2.10)

Then the Riemann tensor is like the ”field strength of the gravity gauge field”, in that its
definition can be written as to mimic the definition of the field strength of an SO(n) gauge
group,

F ab
μν = ∂μA

ab
ν − ∂νA

ab
μ + Aacμ A

cb
ν −Aacν A

cb
μ (2.11)

where a, b, c are fundamental SO(n) indices, i.e. ab (antisymmetric) is an adjoint index. We
put brackets in the definition of the Riemann tensor Rμ

νρσ to emphasize the similarity with
the above:

(Rμ
ν)ρσ(Γ) = ∂ρ(Γ

μ
ν)σ − ∂σ(Γ

μ
ν)ρ + (Γμλ)ρ(Γ

λ
ν)σ − (Γμλ)σ(Γ

λ
ν)ρ (2.12)

the only difference being that here both ”gauge” and ”spacetime” indices are the same.
From the Riemann tensor we construct by contraction the Ricci tensor

Rμν = Rλ
μλν (2.13)

and the Ricci scalar R = Rμνg
μν . The Ricci scalar is coordinate invariant, so it is truly an

invariant measure of the curvature of space. The Riemann and Ricci tensors are examples
of tensors. A contravariant tensor Aμ transforms as dxμ,

A′μ =
∂x′μ

∂xν
Aν (2.14)

whereas a covariant tensor Bμ transforms as ∂/∂xμ, i.e.

B′
μ =

∂xν

∂x′μ
Bν (2.15)
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and a general tensor transforms as the product of the transformations of the indices. The
metric gμν , the Riemann Rμ

νρσ and Ricci Rμν and R are tensors, but the Christoffel symbol
Γμνρ is not.

To describe physics in curved space, we replace the Lorentz metric ημν by the general
metric gμν , and Lorentz tensors with general tensors. One important observation is that ∂μ
is not a tensor! The tensor that replaces it is the curved space covariant derivative, Dμ,

DμT
ρ
ν ≡ ∂μT

ρ
ν + ΓρμσT

σ
ν − ΓσμνT

ρ
σ (2.16)

We are now ready to describe the dynamics of gravity, in the form of Einstein’s equa-
tion. It is obtained by postulating an action for gravity. The invariant volume of integra-
tion over space is not ddx anymore as in Minkowski or Euclidean space, but ddx

√−g ≡
ddx
√− det(gμν) (where the − sign comes from the Minkowski signature of the metric). The

Lagrangian has to be invariant under general coordinate transformations, thus it must be a
scalar (tensor with no indices). There would be several possible choices for such a scalar,
but the simplest possible one, the Ricci scalar, turns out to be correct (i.e. compatible with
experiment). Thus, one postulates the Einstein-Hilbert action for gravity

Sgravity = − 1

16πG

∫
ddx

√−gR (2.17)

The equations of motion of this action are

δSgrav
δgμν

= 0 : Rμν − 1

2
gμνR = 0 (2.18)

and as we mentioned, this action is not fixed, it just happens to agree well with experiments.
In fact, in quantum gravity/string theory, Sg could have quantum corrections of different
functional form.

The next step is to put matter in curved space, since one of the physical principles was
that matter sources gravity. This follows the above mentioned rules. For instance, the kinetic
term for a scalar field in Minkowski space was

Sφ =
1

2

∫
d4x(∂μφ)(∂νφ)ημν (2.19)

and it becomes now

1

2

∫
d4x

√−g(Dμφ)(Dνφ)gμν =
1

2

∫
d4x

√−g(∂μφ)(∂νφ)gμν (2.20)

where the last equality, of the partial derivative with the covariant derivative, is only valid
for a scalar field. In general, we will have covariant derivatives in the action.

The variation of the matter action gives the energy-momentum tensor (known from elec-
tromagnetism). By definition, we have

Tμν =
2√−g

δSmatter
δgμν

(2.21)
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Then the sum of the gravity and matter action give the equation of motion

Rμν − 1

2
gμνR = 8πGTμν (2.22)

known as the Einstein’s equation. For a scalar field, we have

T φμν = ∂μφ∂νφ− 1

2
gμν(∂ρφ)2 (2.23)

Global Structure: Penrose diagrams
Spaces of interest are infinite in extent, but have complicated topological and causal

structure. To make sense of them, we use the Penrose diagrams. These are diagrams that
preserve the causal and topological structure of space, and have infinity at a finite distance
on the diagram.

To construct a Penrose diagram, we note that light propagates along ds2 = 0, thus an
overall factor (”conformal factor”) in ds2 is irrelevant. So we make coordinate transforma-
tions that bring infinity to a finite distance, and drop the conformal factors. For convenience,
we usually get some type of flat space at the end of the calculation. Then, in the diagram,
light rays are at 45 degrees (δx = δt for light, in the final coordinates).

As an example, we draw the Penrose diagram of 2 dimensional Minkowski space,

ds2 = −dt2 + dx2 (2.24)

where −∞ < t, x < +∞. We first make a transformation to ”lightcone coordinates”

u± = t± x⇒ ds2 = −du+du− (2.25)

followed by a transformation of the lightcone coordinates that makes them finite,

u± = tan ũ±; ũ± =
τ ± θ

2
(2.26)

where the last transformation goes back to space-like and time-like coordinates θ and τ . Now
the metric is

ds2 =
1

4 cos2 ũ+ cos2 ũ−
(−dτ 2 + dθ2) (2.27)

and by dropping the overall (conformal) factor we get back a flat two dimensional space,
but now of finite extent. Indeed, we have that |ũ±| ≤ π/2, thus |τ ± θ| ≤ π, so the Penrose
diagram is a diamond (a rotated square), as in Fig.4a)

For 3 dimensional Minkowski space the metric is again

ds2 = −dt2 + dr2(+r2dθ2) (2.28)

and by dropping the angular dependence we get the same metric with as before, just that
r > 0 now. So everything follows in the same way, just that θ > 0 in the final form. Thus
for 3d (and higher) Minkowski space, the Penrose diagram is a triangle (the τ > 0 half of
the 2d Penrose diagram), as in Fig.4b.
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Figure 4: Penrose diagrams. a) Penrose diagram of 2 dimensional Minkowski space. b)
Penrose diagram of 3 dimensional Minkowski space. c) Penrose diagram of the Poincare
patch of Anti de Sitter space. d) Penrose diagram of global AdS2 (2 dimensional Anti de
Sitter), with the Poincare patch emphasized; x0 = 0 is part of the boundary, but x0 = ∞
is a fake boundary (horizon). e) Penrose diagram of global AdSd for d ≥ 2. It is half the
Penrose diagram of AdS2 rotated around the θ = 0 axis.
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Anti de Sitter space
Anti de Sitter space is a space of Lorentzian signature (− + +...+), but of constant

negative curvature. Thus is an analog of the Lobachevski space, which was a space of
Euclidean signature and of constant negative curvature.

The anti in Anti de Sitter is because de Sitter space is defined as the space of Lorentzian
signature and of constant positive curvature, thus an analog of the sphere (the sphere is the
space of Euclidean signature and constant positive curvature).

In d dimensions, de Sitter space is defined by a sphere-like embedding in d+1 dimensions

ds2 = −dx2
0 +

d−1∑
i=1

dx2
i + dx2

d+1

−x2
0 +

d−1∑
i=1

x2
i + x2

d+1 = R2 (2.29)

thus as mentioned, this is the Lorentzian version of the sphere, and it is clearly invariant
under the group SO(1,d) (the d dimensional sphere would be invariant under SO(d+1)
rotating the d+1 embedding coordinates).

Similarly, in d dimensions, Anti de Sitter space is defined by a Lobachevski-like embedding
in d+1 dimensions

ds2 = −dx2
0 +

d−1∑
i=1

dx2
i − dx2

d+1

−x2
0 +

d−1∑
i=1

x2
i − x2

d+1 = −R2 (2.30)

and is therefore the Lorentzian version of Lobachevski space. It is invariant under the group
SO(2,d-1) that rotates the coordinates xμ = (x0, xd+1, x1, ..., xd−1) by x′μ = Λμ

νx
ν .

The metric of this space can be written in different forms, corresponding to different
coordinate systems. In Poincare coordinates,

ds2 =
R2

x2
0

(−dt2 +
d−2∑
i=1

dx2
i + dx2

0) (2.31)

where −∞ < t, xi < +∞, but 0 < x0 < +∞. Up to a conformal factor therefore, this is just
like (flat) 3d Minkowski space, thus its Penrose diagram is the same, a triangle, as in Fig.4c.
However, one now discovers that one does not cover all of the space! In the finite coordinates
τ, θ, one finds that one can now analytically continue past the diagonal boundaries (there is
no obstruction to doing so).

In these Poincare coordinates, we can understand Anti de Sitter space as a d-1 dimen-
sional Minkowski space in (t, x1, ...xd−2) coordinates, with a ”warp factor” (gravitational
potential) that depends only on the additional coordinate x0.
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A coordinate system that does cover the whole space is called the global coordinates, and
it gives the metric

ds2
d = R2(− cosh2 ρdτ 2 + dρ2 + sinh2 ρd�Ω2

d−2) (2.32)

where d�Ω2 is the metric on the unit sphere. This metric is written in a suggestive form, since
the metric on the d-dimensional sphere can be written in a similar way,

ds2
d = R2(cos2 ρdw2 + dρ2 + sin2 ρd�Ω2

d−2) (2.33)

The change of coordinates tan θ = sinh ρ gives the metric

ds2
d =

R2

cos2 θ
(−dτ 2 + dθ2 + sin2 θd�Ω2

d−2) (2.34)

where 0 ≤ θ ≤ π/2 in all dimensions except 2, (where −π/2 ≤ θ ≤ π/2), and τ is arbitrary,
and from it we infer the Penrose diagram of global AdS2 space (Anti de Sitter space in
2 dimensions) which is an infinite strip between θ = −π/2 and θ = +π/2. The ”Poincare
patch” covered by the Poincare coordinates, is a triangle region of it, with its vertical bound-
ary being a segment of the infinite vertical boundary of the global Penrose diagram, as in
Fig.4d.

The Penrose diagram of AdSd is similar, but it is a cylinder obtained by the revolution
of the infinite strip between θ = 0 and θ = π/2 around the θ = 0 axis, as in Fig.4e. The
”circle” of the revolution represents in fact a d-2 dimensional sphere. Thefore the boundary
of AdSd (d dimensional Anti de Sitter space) is Rτ × Sd−2, the infinite vertical line of time
times a d-2 dimensional sphere. This will be important in defining AdS-CFT correctly.

Finally, let us mention that Anti de Sitter space is a solution of the Einstein equation with
a constant energy-momentum tensor, known as a cosmological constant, thus Tμν = 2Λgμν ,
coming from a constant term in the action,

∫
d4x

√−gΛ, so the Einstein equation is

Rμν − 1

2
gμR = 16πGΛgμν (2.35)

Important concepts to remember

• In general relativity, space is intrinsically curved

• In general relativity, physics is invariant under general coordinate transformations

• Gravity is the same as curvature of space, or gravity = local acceleration.

• The Christoffel symbol acts like a gauge field of gravity, giving the covariant derivative

• Its field strength is the Riemann tensor, whose scalar contraction, the Ricci scalar, is
an invariant measure of curvature

• One postulates the action for gravity as (1 − /(16πG))
∫ √−gR, giving Einstein’s

equations
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• To understand the causal and topological structure of curved spaces, we draw Penrose
diagrams, which bring infinity to a finite distance in a controlled way.

• de Sitter space is the Lorentzian signature version of the sphere; Anti de Sitter space
is the Lorentzian version of Lobachevski space, a space of negative curvature.

• Anti de Sitter space in d dimensions has SO(2, d− 1) invariance.

• The Poincare coordinates only cover part of Anti de Sitter space, despite having max-
imum possible range (over the whole real line).

• Anti de Sitter space has a cosmological constant.
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Exercises, section 2

1) Parallel the derivation in the text to find the metric on the 2-sphere in its usual form,

ds2 = R2(dθ2 + sin2 θdφ2) (2.36)

from the 3d Euclidean metric.

2) Show that on-shell, the graviton has degrees of freedom corresponding to a transverse
(d-2 indices) symmetric traceless tensor.

3) Show that the metric gμν is covariantly constant (Dμgνρ = 0) by substituting the
Christoffel symbols.

4) The Christoffel symbol Γμνρ is not a tensor, and can be put to zero at any point by
a choice of coordinates (Riemann normal coordinates, for instance), but δΓμνρ is a tensor.
Show that the variation of the Ricci scalar can be written as

δR = δρμg
νσ(∂ρδΓ

μ
νσ − ∂σδΓ

μ
νρ) +Rνσδg

νσ (2.37)

5) Parallel the calculation in 2d to show that the Penrose diagram of 3d Minkwoski space,
with an angle (0 ≤ φ ≤ 2π) supressed, is a triangle.

6) Substitute the coordinate transformation

X0 = R cosh ρ cos τ ; Xi = R sinh ρΩi; Xd+1 = R cosh ρ sin τ (2.38)

to find the global metric of AdS space from the embedding (2,d-1) signature flat space.
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3 Basics of supersymmetry

In the 1960’s people were asking what kind of symmetries are possible in particle physics?
We know the Poincare symmetry defined by the Lorentz generators Jab of the SO(1,3)

Lorentz group and the generators of 3+1 dimensional translation symmetries, Pa.
We also know there are possible internal symmetries Tr of particle physics, such as the

local U(1) of electromagnetism, the local SU(3) of QCD or the global SU(2) of isospin. These
generators will form a Lie algebra

[Tr, Ts] = frs
tTt (3.1)

So the question arose: can they be combined, i.e. [Ts, Pa] �= 0, [Ts, Jab] �= 0, such that maybe
we could embed the SU(2) of isospin together with the SU(2) of spin into a larger group?

The answer turned out to be NO, in the form of the Coleman-Mandula theorem, which
says that if the Poincare and internal symmetries were to combine, the S matrices for all
processes would be zero.

But like all theorems, it was only as strong as its assumptions, and one of them was that
the final algebra is a Lie algebra.

But people realized that one can generalize the notion of Lie algebra to a graded Lie
algebra and thus evade the theorem. A graded Lie algebra is an algebra that has some
generators Qi

α that satisfy not a commuting law, but an anticommuting law

{Qi
α, Q

j
β} = other generators (3.2)

Then the generators Pa, Jab and Tr are called ”even generators” and the Qi
α are called ”odd”

generators. The graded Lie algebra then is of the type

[even, even] = even; {odd, odd} = even; [even, odd] = odd (3.3)

So such a graded Lie algebra generalization of the Poincare + internal symmetries is
possible. But what kind of symmetry would a Qi

α generator describe?

[Qi
α, Jab] = (...)Jcd (3.4)

means that Qi
α must be in a representation of Jab (the Lorentz group). Because of the

anticommuting nature of Qi
α we choose the spinor representation. But a spinor field times

a boson field gives a spinor field. Therefore when acting with Qi
α (spinor) on a boson field,

we will get a spinor field.
Therefore Qi

α gives a symmetry between bosons and fermions, called supersymmetry!

δ boson = fermion; δ fermion = boson (3.5)

{Qα, Qβ} is called the supersymmetry algebra, and the above graded Lie algebra is called
the superalgebra.

Here Qi
α is a spinor, with α a spinor index and i a label, thus the parameter of the

transformation law, εiα is a spinor also.
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But what kind of spinor? In particle physics, Weyl spinors are used, that satisfy γ5ψ =
±ψ, but in supersymmetry one uses Majorana spinors, that satisfy the reality condition

χC ≡ χTC = χ̄ ≡ χ†iγ0 (3.6)

where C is the ”charge conjugation matrix”, that relates γm with γTm. In 4 dimensions, it
satisfies

CT = −C; CγmC−1 = −(γm)T (3.7)

And C is used to raise and lower indices, but since it is antisymmetric, one must define a
convention for contraction of indices (the order matters).

The reason we use Majorana spinors is convenience, since it is easier to prove various
supersymmetry identities, and then in the Lagrangian we can always go from a Majorana to
a Weyl spinor and viceversa.

2 dimensional Wess Zumino model
We will exemplify supersymmetry with the simplest possible models, which occur in 2

dimensions.
A general (Dirac) fermion in d dimensions has 2[d/2] complex components, therefore in

2 dimensions it has 2 complex dimensions, and thus a Majorana fermion will have 2 real
components. An on-shell Majorana fermion (that satisfies the Dirac equation, or equation
of motion) will then have a single component.

Since we have a symmetry between bosons and fermions, the number of degrees of freedom
of the bosons must match the number of degrees of freedom of the fermions (the symmetry
will map a degree of freedom to another degree of freedom). This matching can be

• on-shell, in which case we have on-shell supersymmetry OR

• off-shell, in which case we have off-shell supersymmetry

Thus, in 2d, the simplest possible model has 1 Majorana fermion ψ (which has one degree
of freedom on-shell), and 1 real scalar φ. We can then obtain on-shell supersymmetry
and get the Wess-Zumino model in 2 dimensions.

The action of a free boson and a free fermion in two dimensions is

S = −1

2

∫
d2x[(∂μφ)2 + ψ̄∂/ψ] (3.8)

and this is actually the action of the free Wess-Zumino model. From the action, the mass
dimension of the scalar is [φ] = 0, and of the fermion is [ψ] = 1/2 (the mass dimension of∫
d2x is −2 and of ∂μ is +1, and the action is dimensionless).
To write down the supersymmetry transformation between the boson and the fermion,

we start by varying the boson into fermion times ε, i.e

δφ = ε̄ψ = ε̄αψ
α = εβCβαψ

α (3.9)

From this we infer that the mass dimension of ε is [ε] = −1/2. By dimensional reasons, for
the reverse transformation we must add an object of mass dimension 1 with no free vector
indices, and the only one such object available to us is ∂/, thus

δψ = ∂/φε (3.10)
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We can check that the above free action is indeed invariant on-shell under this symmetry.
For this, we must use the Majorana spinor identities, valid both in 2d and 4d

1) ε̄χ = +χ̄ε; 2) ε̄γμχ = −χ̄γμε
3) ε̄γ5χ = +χ̄γ5ε 4) ε̄γμγ5χ = +χ̄γμγ5ε (3.11)

To prove, for instance, the first identity, we write ε̄χ = εαCαβχ
β , but Cαβ is antisymmetric

and ε and χ anticommute, being spinors, thus we get −χβCαβεα = +χβCβαε
α. Then the

variation of the action gives

δS = −
∫
d2x[−φ�δφ +

1

2
δψ̄∂/ψ +

1

2
ψ̄∂/δψ] = −

∫
d2x[−φ�δφ + ψ̄∂/δψ] (3.12)

where in the second equality we have used partial integration together with identity 2) above.
Then substituting the transformation law we get

δS =

∫
d2x[−φ�ε̄ψ + ψ̄∂/∂/ε] (3.13)

But we have

∂/∂/ = ∂μ∂νγ
μγν = ∂μ∂ν

1

2
{γμ, γν} = ∂μ∂νg

μν = � (3.14)

and by using this identity, together with two partial integrations, we obtain that δS = 0.
So the action is invariant without the need for the equations of motion, so it would seem
that this is an off-shell supersymmetry. However, the invariance of the action is not enough,
since we have not proven that the above transformation law closes on the fields, i.e. that by
acting twice on every field and forming the Lie algebra of the symmetry, we get back to the
same field, or that we have a representation of the Lie algebra on the fields. The graded Lie
algebra of supersymmetry is generically of the type

{Qi
α, Q

j
β} = 2(Cγμ)αβPμδ

ij + ... (3.15)

In the case of a single supersymmetry, for the 2d Wess-Zumino model we don’t have any
+..., the above algebra is complete. In order to realize it on the fields, we need that (since
Pμ is represented by the translation ∂μ and Qα is represented by δεα)

[δε1,α , δε2β
]

(
φ
ψ

)
= 2ε̄2γ

με1∂μ

(
φ
ψ

)
(3.16)

We get that
[δε1 , δε2]φ = 2ε̄2γ

ρε1∂ρφ (3.17)

as expected, but
[δε1 , δε2]ψ = 2(ε̄2γ

ρε1)∂ρψ − (ε̄2γ
ρε1)γρ∂/ψ (3.18)

thus we have an extra term that vanishes on-shell (∂/ψ = 0). So on-shell the algebra is
satisfied and we have on-shell supersymmetry.
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It is left as an exercise to prove these relations. One must use the previous spinor identities
together with new ones, called 2 dimensional ”Fierz identities” (or ”Fierz recoupling”),

Mχ(ψ̄Nφ) = −
∑
j

1

2
MOjNφ(ψ̄Ojχ) (3.19)

where M and N are arbitrary matrices, and the set of matrices {Oj} is = {1, γμ, γ5} (in 2
Minkowski dimensions, γμ = (iτ1, τ2) and γ5 = τ3, where τi are Dirac matrices).

Off-shell supersymmetry
In 2 dimensions, an off-shell Majorana fermion has 2 degrees of freedom, but a scalar has

only one. Thus to close the algebra of the Wess-Zumino model off-shell, we need one extra
scalar field F . But on-shell, we must get back the previous model, thus the extra scalar F
needs to be auxiliary (non-dynamical, with no propagating degree of freedom). That means
that its action is

∫
F 2/2, thus

S = −1

2

∫
d2x[(∂μφ)2 + ψ̄∂/ψ − F 2] (3.20)

From the action we see that F has mass dimension [F ] = 1, and the equation of motion
of F is F = 0. The off-shell Wess-Zumino model algebra does not close on ψ, thus we need
to add to δψ a term proportional to the equation of motion of F. By dimensional analysis,
Fε has the right dimension. Since F itself is a (bosonic) equation of motion, its variation δF
should be the fermionic equation of motion, and by dimensional analysis ε̄∂/ψ is OK. Thus
the transformations laws are

δφ = ε̄ψ; δψ = ∂/φε+ Fε; δF = ε̄∂/ψ (3.21)

We can similarly check that these transformations leave the action invariant again, and
moreover now we have

[δε1, δε2]

⎛
⎝φψ
F

⎞
⎠ = 2ε̄2γ

με1∂μ

⎛
⎝φψ
F

⎞
⎠ (3.22)

so the algebra closes off-shell, i.e. we have an off-shell representation of {Qα, Qβ} = 2(Cγμ)αβPμ.
4 dimensions
Similarly, in 4 dimensions the on-shell Wess-Zumino model has one Majorana fermion,

which however now has 2 real on-shell degrees of freedom, thus needs 2 real scalars, A and
B. The action is then

S0 = −1

2

∫
d4x[(∂μA)2 + (∂μB)2 + ψ̄∂/ψ] (3.23)

and the transformation laws are as in 2 dimensions, except now B aquires a γ5 to distinguish
it from A, thus

δA = ε̄ψ; δB = ε̄iγ5ψ; δψ = ∂/(A+ iγ5B)ε (3.24)
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And again, off-shell the Majorana fermion has 4 degrees of freedom, so one needs to introduce
one auxiliary scalar for each propagating scalar, and the action is

S = S0 +

∫
d4x[

F 2

2
+
G2

2
] (3.25)

with the transformation rules

δA = ε̄ψ; δB = ε̄iγ5ψ; δψ = ∂/(A+ iγ5B)ε+ (F + iγ5G)ε

δF = ε̄∂/ψ; δG = ε̄iγ5∂/ψ (3.26)

One can form a complex field φ = A+ iB and one complex auxiliary field M = F + iG, thus
the Wess-Zumino multiplet in 4 dimensions is (φ, ψ,M).

We have written the free Wess-Zumino model in 2d and 4d, but one can write down
interactions between them as well, that preserve the supersymmetry.

These were examples of N = 1 supersymmetry that is, there was only one supersymmetry
generator Qα. The possible on-shell multiplets of N = 1 supersymmetry that have spins ≤ 1
are

• The Wess-Zumino or chiral multiplet that we discussed, (φ, ψ).

• The vector multiplet (λA, AAμ ), where A is an adjoint index. The vector Aμ in 4
dimensions has 2 on-shell degrees of freedom: it has 4 components, minus one gauge
invariance symmetry parametrized by an arbitrary εa, δAAμ = ∂με

A giving 3 off-shell
components. In the covariant gauge ∂μAμ = 0 the equation of motion k2 = 0 is
supplemented with the constraint kμεaμ(k) = 0 (εaμ(k) =polarization), which has only
2 independent solutions. The two degrees of freedom of the gauge field match the 2
degrees of freedom of the on-shell fermion.

For N ≥ 2 supersymmetry, we have Qi
α with i = 1, ...,N . For N = 2, the possible

multiplets of spins ≤ 1 are

• The N = 2 vector multiplet, made of one N = 1 vector multiplet (Aμ, λ) and one
N = 1 chiral (Wess-Zumino) multiplet (ψ, φ).

• The N = 2 hypermultiplet, made of two N = 1 chiral multiplets (ψ1, φ1) and (ψ2, φ2).

For N = 4 supersymmetry, there is a single multiplet of spins ≤ 1, the N = 4 vector
multiplet, made of an N = 2 vector multiplet and a N = 2 hypermultiplet, or one N = 1
vector multiplet (Aμ, ψ4) and 3 N = 1 chiral multiplets (ψi, φ1), i = 1, 2, 3. They can be
rearranged into (Aaμ, ψ

ai, φ[ij]), where i = 1, .., 4 is an SU(4) = SO(6) index, [ij] is the
6 dimensional antisymmetric representation of SU(4) or the fundamental representation of
SO(6), and i is the fundamental representation of SU(4) or the spinor representation of
SO(6). The field φ[ij] has complex entries but satisfies a reality condition,

φ†
ij = φij ≡ εijklφkl (3.27)
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The action of the N = 1 vector multiplet is

SN=1SYM =

∫
d4xtr[−1

4
F 2
μν − λ̄D/λ(+

D2

2
)] (3.28)

where D/ = γμDμ and D is an auxiliary field for the off-shell action. It is just the action of
a gauge field, a spinor minimally coupled to it, and an auxiliary field. The transformation
rules are

δAaμ = ε̄γμψ
a

δψa = (−1

2
γμνF a

μν + iγ5D
a)ε

δDa = iε̄γ5D/ψ
a (3.29)

They are similar to the rules of the Wess-Zumino multiplet, except for the gamma matrix
factors introduced in order to match the index structure, and for replacing ∂μφ with Fμν .

The action of the N = 4 Super Yang-Mills multiplet is

SN=4SYM =

∫
d4xtr[−1

4
F 2
μν −

1

2
ψ̄iD/ψ

i − 1

2
DμφijD

μφij

−1

2
ψ̄i[φij, ψ

j] +
1

4
[φij , φkl][φ

ij, φkl]] (3.30)

where Dμ = ∂μ + g[Aμ, ]. This action however has no (covariant and un-constrained
auxiliary fields) off-shell formulation.

The supersymmetry rules are

δAaμ = ε̄iγμλ
ai

δφija = ε̄(iλj)a

δλai = −γ
μν

2
F a
μνε

i − 1

2
(γmn)ij∂(mφ

a,kl(γn))klε
j (3.31)

Important concepts to remember

• A graded Lie algebra can contain the Poincare algebra, internal algebra and supersym-
metry.

• The supersymmetry Qα relates bosons and fermions.

• If the on-shell number of degrees of freedom of bosons and fermions match we have on-
shell supersymmetry, if the off-shell number matches we have off-shell supersymmetry.

• For off-shell supersymmetry, the supersymmetry algebra must be realized on the fields.

• The prototype for all (linear) supersymmetry is the 2 dimensional Wess-Zumino model,
with δφ = ε̄ψ, δψ = ∂/φε.
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• The Wess-Zumino model in 4 dimensions has a fermion and a complex scalar on-shell.
Off-shell there is also an auxiliary complex scalar.

• The on-shell vector multiplet has a gauge field and a fermion

• The N = 4 supersymmetric vector multiple (N = 4 SYM) has one gauge field, 4
fermions and 6 scalars, all in the adjoint of the gauge field.
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Exercises, section 3

1) Prove that the matrix

CAB =

(
εαβ 0
0 εα̇β̇

)
; εαβ = εα̇β̇ =

(
0 1
−1 0

)
(3.32)

is a representation of the 4d C matrix, i.e. CT = −C,CγμC−1 = −(γμ)T , if γμ is represented
by

γμ =

(
0 σμ

σ̄μ 0

)
; (σμ)αα̇ = (1, �σ)αα̇; (σ̄μ)αα̇ = (1,−�σ)αα̇ (3.33)

2) Prove that if ε, χ are 4d Majorana spinors, we have

ε̄γμγ5χ = +χ̄γμγ5ε (3.34)

3) Prove that, for

S = −1

2

∫
d4x[(∂μφ)2 + ψ̄∂/ψ] (3.35)

we have

[δε1 , δε2]φ = 2ε̄2∂/ε1φ

[δε1 , δε2]ψ = 2(ε̄2γ
ρε1)∂ρψ − (ε̄2γ

ρε1)γρ∂/ψ (3.36)

4) Show that the susy variation of the 4d Wess-Zumino model is zero, paralleling the 2d
WZ model.

5) Check the invariance of the N=1 off-shell SYM action

S =

∫
d4x[−1

4
(F a

μν)
2 − 1

2
ψ̄aD/ψa +

1

2
D2
a] (3.37)

under the susy transformations

δAaμ = ε̄γμψ
a; δψa = (−1

2
σμνF a

μν + iγ5D
a)ε; δDa = iε̄γ5D/ψ

a (3.38)

6)Calculate the number of off-shell degrees of freedom of the on-shell N=4 SYM action.
Propose a set of bosonic+fermionic auxiliary fields that could make the number of degrees
of freedom match. Are they likely to give an off-shell formulation, and why?
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4 Basics of supergravity

Vielbeins and spin connections
We saw that gravity is defined by the metric gμν , which in turn defines the Christoffel

symbols Γμνρ(g), which is like a gauge field of gravity, with the Riemann tensor Rμ
νρσ(Γ)

playing the role of its field strength.
But there is a formulation that makes the gauge theory analogy more manifest, namely

in terms of the ”vielbein” eaμ and the ”spin connection” ωabμ . The word ”vielbein” comes from
the german viel= many and bein=leg. It was introduced in 4 dimensions, where it is known
as ”vierbein”, since vier=four. In various dimensions one uses einbein, zweibein, dreibein,...
(1,2,3= ein, zwei, drei), or generically vielbein, as we will do here.

Any curved space is locally flat, if we look at a scale much smaller than the scale of the
curvature. That means that locally, we have the Lorentz invariance of special relativity. The
vielbein is an object that makes that local Lorentz invariance manifest. It is a sort of square
root of the metric, i.e.

gμν(x) = eaμ(x)e
b
ν(x)ηab (4.1)

so in eaμ(x), μ is a ”curved” index, acted upon by a general coordinate transformation (so
that eaμ is a covariant vector of general coordinate transformations, like a gauge field), and a
is a newly introduced ”flat” index, acted upon by a local Lorentz gauge invariance. That is,
around each point we define a small flat neighbourhood (”tangent space”) and a is a tensor
index living in that local Minkowski space, acted upon by Lorentz transformations.

We can check that an infinitesimal general coordinate transformation (”Einstein” trans-
formation) δxμ = ξμ acting on the metric gives

δξgμν(x) = (ξρ∂ρ)gμν + (∂μξ
ρ)gρν + (∂νξ

ρ)gρν (4.2)

where the first term corresponds to a translation, but there are extra terms. Thus the
general coordinate transformations are the general relativity analog of Pμ translations in
special relativity.

On the vielbein eaμ, the infinitesimal coordinate transformation gives

δξe
a
μ(x) = (ξρ∂ρ)e

a
μ + (∂μξ

ρ)eaρ (4.3)

thus it acts only on the curved index μ. On the other hand, the local Lorentz transformation

δl.L.e
a
μ(x) = λab(x)e

b
μ(x) (4.4)

is as usual.
Thus the vielbein is like a sort of gauge field, with one covariant vector index and a gauge

group index. But there is one more ”gauge field” ωabμ , the ”spin connection”, which is defined
as the ”connection” (≡ gauge field) for the action of the Lorentz group on spinors.

Namely, the curved space covariant derivative acting on spinors acts similarly to the
gauge field covariant derivative on a spinor, by

Dμψ = ∂μψ +
1

4
ωabμ Γabψ (4.5)
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This definition means that Dμψ is the object that transforms as a tensor under general
coordinate transformations. It implies that ωabμ acts as a gauge field on any local Lorentz
index.

If there are no dynamical fermions (i.e. fermions that have a kinetic term in the action)
then ωabμ = ωabμ (e) is a fixed function, defined through the ”vielbein postulate”

T a[μν] = D[μe
a
ν] = ∂[μe

a
ν] + ωab[μe

b
ν] = 0 (4.6)

Note that we can also start with

Dμe
a
ν ≡ ∂μe

a
ν + ωabμ e

b
ν − Γρμνe

a
ρ = 0 (4.7)

ant antisymmetrize, since Γρμν is symmetric. This is also sometimes called the vielbein
postulate.

Here T a is called the ”torsion”, and as we can see it is a sort of field strength of eaμ, and
the vielbein postulate says that the torsion (field strength of vielbein) is zero.

But we can also construct an object that is a field strength of ωabμ ,

Rab
μν(ω) = ∂μω

ab
ν − ∂νω

ab
μ + ωabμ ω

bc
ν − ωacν ω

cb
μ (4.8)

and this time the definition is exactly the definition of the field strength of a gauge field of
the Lorentz group (though there still are subtleties in trying to make the identification of
ωabμ with a gauge field of the Lorentz group).

This curvature is in fact the analog of the Riemann tensor, i.e. we have

Rab
ρσ(ω(e)) = eaμe

−1,νbRμ
νρσ(Γ(e)) (4.9)

The Einstein-Hilbert action is then

SEH = − 1

16πG

∫
d4x(det e)Rab

μν(ω(e))e−1,μ
a e−1,ν |b (4.10)

since
√
detg = det e.

The formulation just described of gravity in terms of e and ω is the second order formu-
lation, so called because ω is not independent, but is a function of e.

But notice that if we make ω an independent variable in the above Einstein-Hilbert
action, the ω equation of motion gives exactly T aμν = 0, i.e. the vielbein postulate that we
needed to postulate before. Thus we might as well make ω independent without changing the
classical theory (only possibly the quantum version). This is then the first order formulation
of gravity (Palatini formalism), in terms of (eaμ, ω

ab
μ ).

Supergravity
Supergravity can be defined in two independent ways that give the same result. It is a

supersymmetric theory of gravity; and it is also a theory of local supersymmetry. Thus we
could either take Einstein gravity and supersymmetrize it, or we can take a supersymmetric
model and make the supersymmetry local. In practice we use a combination of the two.
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We want a theory of local supersymmetry, which means that we need to make the rigid
εα transformation local. We know from gauge theory that if we want to make a global
symmetry local we need to introduce a gauge field for the symmetry. The gauge field would
be ”Aαμ” (since the supersymmetry acts on the index α), which we denote in fact by ψμα and
call the gravitino.

Here μ is a curved space index (”curved”) and α is a local Lorentz spinor index (”flat”).
In flat space, ψμα would have the same kind of indices and we can then show that it forms
a spin 3/2 field, therefore the same is true in curved space.

The fact that we have a supersymmetric theory of gravity means that gravitino must be
transformed by supersymmetry into some gravity variable, thus ψα = Qα(gravity). But the
index structure tells us that the gravity variable cannot be the metric, but something with
only one curved index, namely the vielbein.

Therefore we see that supergravity needs the vielbein-spin connection formulation of
gravity. To write down the supersymmetry transformations, we start with the vielbein. In
analogy with the Wess-Zumino model where δφ = ε̄φ or the vector multiplet where the gauge
field variation is δAaμ = ε̄γμψ

a, it is easy to see that the vielbein variation has to be

δeaμ =
k

2
ε̄γaψμ (4.11)

where k is the Newton constant. Since ψ is like a gauge field of local supersymmetry, we
expect something like δAμ = Dμε. Therefore we must have

δψμ =
1

k
Dμε; Dμε = ∂με+

1

4
ωabμ γabε (4.12)

plus maybe more terms.
The action for a free spin 3/2 field in flat space is the Rarita-Schwinger action which is

SRS = −1

2

∫
d4xεμνρσψ̄μγ5γν∂ρψσ = −1

2

∫
ddxψ̄μγ

μνρ∂νψρ (4.13)

where the first form is only valid in 4 dimensions and the second is valid in all dimensions
(εμνρσγ4γν = γμρσ in 4 dimensions). In curved space, this becomes

SRS = −1

2

∫
d4xεμνρσψ̄μγ5γνDρψσ = −1

2

∫
ddx(dete)ψ̄μγ

μνρDνψρ (4.14)

N = 1 (on-shell) supergravity in 4 dimensions
We are now ready to write down N = 1 on-shell supergravity in 4 dimensions. Its action

is just the sum of the Einstein-Hilbert action and the Rarita-Schwinger action

SN=1 = SEH(ω, e) + SRS(ψμ) (4.15)

and the supersymmetry transformations rules are just the ones defined previously,

δeaμ =
k

2
ε̄γaψμ; δψμ =

1

k
Dμε (4.16)

However, this is not yet enough to specify the theory. We must specify the formalism and
various quantities:
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• second order formalism: The independent fields are eμ6a, ψμ. ω is not an independent
field. But now there is a dynamical fermion (ψμ), so the torsion T aμν is not zero anymore,
thus ω �= ω(e)! In fact,

ωabμ = ωabμ (e, ψ) = ωabμ (e) + ψψ terms (4.17)

is found by varying the action with respect to ω, as in the ψ = 0 case:

δSN=1

δωabμ
= 0 ⇒ ωabμ (e, ψ) (4.18)

• first order formalism: All fields, ψ, e, ω are independent. But now we must supplement
the action with a transformation law for ω. It is

δωabμ (first order) = −1

4
ε̄γ5γμψ̃

ab +
1

8
ε̄γ5(γ

λψ̃bλe
a
μ − γλψ̃aλe

b
μ)

ψ̃ab = εabcdψcd; ψab = e−1
a

μ
e−1
b

ν
(Dμψν −Dνψμ) (4.19)

General features of supergravity theories
4 dimensions
The N = 1 supergravity multiplet is (eaμ, ψμα) as we saw, and has spins (2,3/2).
It can also couple with other N = 1 supersymmetric multiplets of lower spin: the chiral

multiplet of spins (1/2,0) and the gauge multiplet of spins (1,1/2) that have been described,
as well as the so called gravitino multiplet, composed of a gravitino and a vector, thus spins
(3/2,1).

By adding appropriate numbers of such multiplets we obtain the N = 2, 3, 4, 8 supergrav-
ity multiplets. Here N is the number of supersymmetries, and since it acts on the graviton,
there should be exactly N gravitini in the multiplet, so that each supersymetry maps the
graviton to a different gravitino.

N = 8 supergravity is the maximal supersymmetric multiplet that has spins ≤ 2 (i.e.,
an N > 8 multiplet will contains spins > 2, which are not very well defined), so we consider
only N ≤ 8.

Coupling to supergravity of a supersymmetric multiplet is a generalization of coupling
to gravity, which means putting fields in curved space. Now we put fields in curved space
and introduce also a few more couplings.

We will denote the N = 1 supersymmetry multiplets by brackets, e.g. (1,1/2), (1/2,0),
etc. The supergravity multiplets are compose of the following fields:

N = 3 supergravity: Supergravity multiplet (2,3/2) + 2 gravitino multiplets (3/2,1) +
one vector multiplet (1,1/2). The fields are then {eaμ, ψiμ, Aiμ, λ}, i=1,2,3.

N = 4 supergravity: Supergravity multiplet (2,3/2) + 3 gravitino multiplets (3/2,1) + 3
vector multiplets (1,1/2) + one chiral multiplet (1/2,0). The fields are {eaμ, ψiμ, Akμ, Bk

μ, λ
i, φ, B},

where i=1,2,3,4; k=1,2,3, A is a vector, B is an axial vector, φ is a scalar and B is a pseu-
doscalar.

N = 8 supergravity: Supergravity multiplet (2,3/2) + 7 gravitino multiplets (3/2,1) + 21
vector multiplets (1,1/2) + 35 chiral multiplets (1/2,0). The fields are {eaμ, ψiμ, AIJμ , χijk, ν}
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which are: one graviton, 8 gravitinos ψiμ, 28 photons AIJμ , 56 spin 1/2 fermions χijk and 70
scalars in the matrix ν.

In these models, the photons are not coupled to the fermions, i.e. the gauge coupling
g = 0, thus they are ”ungauged” models. But these models have global symmetries, e.g. the
N = 8 model has SO(8) global symmetry.

One can couple the gauge fields to the fermions, thus ”gauging” (making local) some
global symmetry (e.g. SO(8)). Thus abelian fields become nonabelian (Yang-Mills), i.e.
self-coupled. Another way to obtain the gauged models is by adding a cosmological constant
and requiring invariance

δψiμ = Dμ(ω(e, ψ))εi + gγμε
i + gAμε

i (4.20)

where g is related to the cosmological constant, i.e. Λ ∝ g. Because of the cosmological
constant, it means that gauged supergravities have Anti de Sitter (AdS) backgrounds.

Higher dimensions
In D > 4, it is possible to have also antisymmetric tensor fields Aμ1,...,μn, which are just

an extension of abelian vector fields, with field strength

Fμ1,...,μn+1 = ∂[μ1
Aμ2,...,μn+1] (4.21)

and gauge invariance
δAμ1,...,μn = ∂[μ1Λμ2,..,μn] (4.22)

and action ∫
ddx(det e)F 2

μ1,...,μn+1
(4.23)

The maximal model possible that makes sense as a 4 dimensional theory is the N = 1
supergravity model in 11 dimensions, made up of a graviton eaμ, a gravitino ψμα and a 3
index antisymmetric tensor Aμνρ.

But how do we make sense of a higher dimensional theory? The answer is the so called
Kaluza-Klein (KK) dimensional reduction. The idea is that the extra dimensions
(d− 4) are curled up in a small space, like a small sphere or a small d− 4-torus.

For this to happen, we consider a background solution of the theory that looks like, e.g.
(in the simplest case) as a product space,

gΛΣ =

(
g

(0)
μν (x) 0

0 g
(0)
mn(y)

)
(4.24)

where g
(0)
μν (x) is the metric on our 4 dimensional space and g

(0)
mn(y) is the metric on the extra

dimensional space.
We then expand the fields of the higher dimensional theory around this background

solution in Fourier-like modes, called spherical harmonics. E.g., gμν(x, y) = g
(0)
μν (x) +∑

n g
(n)
μν (x)Yn(y), with Yn(y) being the spherical harmonic (like eikx for Fourier modes).
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Finally, dimensional reduction means dropping the higher modes, and keeping only the
lowest Fourier mode, the constant one, e.g.

gΛΣ =

(
g

(0)
μν (x) + hμν(x) hμm(x)

hmν(x) g
(0)
mn(y) + hmn(x)

)
(4.25)

Important concepts to remember

• Vielbeins are defined by gμν(x) = eaμ(x)e
b
ν(x)ηab, by introducing a Minkowski space in

the neighbourhood of a point x, giving local Lorentz invariance.

• The spin connection is the gauge field needed to define covariant derivatives acting on
spinors. In the absence of dynamical fermions, it is determined as ω = ω(e) by the
vielbein postulate: the torsion is zero.

• The field strength of this gauge field is related to the Riemann tensor.

• In the first order formulation (Palatini), the spin connection is independent, and is
determined from its equation of motion.

• Supergravity is a supersymmetric theory of gravity and a theory of local supersymme-
try.

• The gauge field of local supersymmetry and superpartner of the vielbein (graviton) is
the gravitino ψμ.

• Supergravity (local supersymmetry) is of the type δeaμ = (k/2)ε̄γaψμ + ..., δψμ =
(Dμε)/k + ...

• For each supersymmetry we have a gravitino. The maximal supersymmetry in d=4 is
N = 8.

• Supergravity theories in higher dimensions can contain antisymmetric tensor fields.

• The maximal dimension for a supergravity theory is d=11, with a unique model com-
posed of eaμ, ψμ, Aμνρ.

• A higher dimensional theory can be dimensionally reduced: expand in generalized
Fourier modes (spherical harmonics) around a vacuum solution that contains a compact
space for the extra dimensions (like a sphere or torus), and keep only the lowest modes.
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Exercises, section 4

1) Prove that the general coordinate transformation on gμν ,

g′μν(x
′) = gρσ(x)

∂xρ

∂x′μ
∂xσ

∂x′ν
(4.26)

reduces for infinitesimal tranformations to

∂ξgμν(x) = (ξρ∂ρ)gμν + (∂μξ
ρ)gρσ + (∂νξ

ρ)gρμ (4.27)

2) Check that

ωabμ (e) =
1

2
eaν(∂μe

b
ν − ∂νe

b
μ) −

1

2
ebν(∂μe

a
ν − ∂νe

a
μ) −

1

2
eaρebσ(∂ρecσ − ∂σecρ)e

c
μ (4.28)

satisfies the no-torsion (vielbein) constraint, T aμν = D[μe
a
ν] = 0.

3) Check that the equation of motion for ωabμ in the first order formulation of gravity
(Palatini formalism) gives T aμν = 0.

4) Write down the free gravitino equation of motion in curved space.

5) Find ωabμ (e, ψ) − ωabμ (e) in the second order formalism for N=1 supergravity.

6) Calculate the number of off-shell bosonic and fermionic degrees of freedom of N=8
on-shell supergravity.

7) Consider the Kaluza Klein dimensional reduction ansatz from 5d to 4d

gΛΠ = φ−1/3

(
ημν + hμν + φAμAν φAμ

φAν φ

)
(4.29)

Show that the action for the linearized perturbation hμν contains no factors of φ. (Hint: first
show that for small hμν , where gμν = f(ημν + hμν), Rμν(g) is independent of f).
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5 Black holes and p-branes

The Schwarzschild solution (1916)
The Schwarzschild solution is a solution to the Einstein’s equation without matter (Tμν =

0), namely

Rμν − 1

2
gμνR = 0 (5.1)

It is in fact the most general solution of Einstein’s equation with Tμν = 0 and spherical sym-
metry (Birkhoff’s theorem, 1923). That means that by general coordinate transformations
we can always bring the metric to this form.

The 4 dimensional solution is

ds2 = −(1 − 2MG

r
)dt2 +

dr2

1 − 2MG
r

+R2dΩ2
2 (5.2)

It is remarkable that Schwarzschild derived this solution while fighting in World War I,
(literally, in the trenches: in fact, he even got ill there and died shortly after the end of
WWI).

The Newtonian approximation of general relativity is one of weak fields, i.e. gμν − ημν ≡
hμν � 1 and nonrelativistic, i.e. v � 1. In this limit, one can prove that the metric can be
written in the general form

ds2 � −(1 + 2U)dt2 + (1 − 2U)d�x2 = −(1 + 2U)dt2 + (1 − 2U)(dr2 + r2dΩ2
2) (5.3)

where U =Newtonian potential for gravity. In this way we recover Newton’s gravity theory.
We can check that, with a O(ε) redefinition of r, the Newtonian approximation metric
matches the Schwarzschild metric if

U(r) = −2MG

r
(5.4)

without any additional coordinate transformations, so at least its Newtonian limit is correct.
Observation: Of course, this metric has a source at r = 0, which we can verify in the

Newtonian approximation: the solution is given by a point mass situated at r = 0. But the
point is that if the space is empty at r ≥ r0, with r0 some arbitrary value, and is spherically
symmetric, Birkhoff’s theorem says that we should obtain the Schwarzschild metric for r ≥ r0
(and maybe a modified solution at r ≤ r0).

But the solution becomes apparently singular at rH = 2MG > 0, so it would seem that
it cannot reach its source at r = 0? This would be a paradoxical situation, since then what
would be the role of the source? It would seem as if we don’t really need a point mass to
create this metric.

If the Schwarzschild solution is valid all the way to r = rH (not just to some r0 > rH
which is the case for, let’s say, the gravitational field of the Earth, in which case r0 is the
Earth’s radius), then we call that solution a Schwarzschild black hole.

So what does happen at rH = 2MG? We will try to understand it in the following.
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First, let’s investigate the propagation of light (the fastest possible signal). If light
propagates radially (dθ = dφ = 0), ds2 = 0 (light propagation) implies

dt =
dr

1 − 2MG
r

(5.5)

That means that near rH we have

dt � 2MG
dr

r − 2MG
⇒ t � 2MG ln(r − 2MG) → ∞ (5.6)

In other words, from the point of view of an asymptotic observer, that measures coor-
dinates r, t (since at large r ds2 � −dt2 + dr2 + r2dΩ2

2), it takes an infinite time for light
to reach rH . And reversely, it takes an infinite time for a light signal from r = rH to reach
the observer at large r. That means that r = rH is cut-off from causal communication with
r = rH . For this reason, r = rH is called an ”event horizon”. Nothing can reach, nor escape
from the event horizon.

Observation: However, quantum mechanically, Hawking proved that black holes radiate
thermally, thus thermal radiation does escape the event horizon of the black hole.

But is the event horizon of the black hole singular or not?
The answer is actually NO. In gravity, the metric is not gauge invariant, it changes under

coordinate transformations. The appropriate gauge invariant (general coordinate transfor-
mations invariant) quantity that measures the curvature of space is the Ricci scalar R. One
can calculate it for the Schwarzschild solution and one obtains that at the event horizon

R ∼ 1

r2
H

=
1

(2MG)2
= finite! (5.7)

Since the curvature of space at the horizon is finite, an observer falling into a black hole
doesn’t feel anything special at r = rH , other than a finite curvature of space creating some
tidal force.

So for an observer at large r, the event horizon looks singular, but for an observer
falling into the black hole it doesn’t seem remarkable at all. This shows that in general
relativity, more than in special relativity, different observers see apparently different events:
For instance, in special relativity, synchronicity of two events is relative.

An observer at fixed r close to the horizon sees an apparently singular behaviour: If
dr = 0, dΩ = 0, then

ds2 = − dt2

1 − 2MG
r

= −dτ 2 ⇒ dτ =
√−g00dt =

dt√
1 − 2MG

r

(5.8)

thus the time measured by that observer becomes infinite as r → rH , and we get an infinite
time dilation: an observer fixed at the horizon is ”frozen in time” from the point of view of
the observer at infinity.

Since there is no singularity at the event horizon, it means that there must exist coordi-
nates that continue inside the horizon, and there are indeed. The first such coordinates were
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found by Eddington (around 1924!) and Finkelstein (in 1958! He rediscovered it, whithout
being aware of Eddington’s work, which shows that the subject of black holes was not so
popular back then...). The Eddington-Finkelstein coordinates however don’t cover all the
geometry.

The first set of coordinates that cover all the geometry was found by Kruskal and Szekeres
in 1960, and they give maximum insight into the physics, so we will describe them here.

One first introduces the ”tortoise” coordinates r∗ by imposing

dr

1 − 2MG
r

= dr∗ ⇒ r∗ = r + 2mG ln(
r

2MG
− 1) (5.9)

which gives the metric

ds2 = (1 − 2MG

r
)(−dt2 + dr2

∗) + r2(r∗)dΩ2
2 (5.10)

Next one introduces null (lightcone) coordinates

u = t− r∗; v = t+ r∗ (5.11)

such that light (ds2 = 0) travels at u=constant or v=constant. Finally, one introduces
Kruskal coordinates,

ū = −4MGe−
u

4MG ; v̄ = +4MGe
v

4MG (5.12)

Then the region r ≥ 2MG becomes −∞ < r∗ < +∞, thus −∞ < ū ≤ 0, 0 ≤ v̄ < +∞. But
the metric in Kruskal coordinates is

ds2 = −2MG

r
e−

r
2MGdūdv̄ + r2dΩ2

2 (5.13)

where r stands for the implicit r(ū, v̄). This metric is non-singular at the horizon r = 2MG,
thus can be analytically continued for general values of ū, v̄, covering all the real line, having
4 quadrants instead of one!

The resulting Kruskal diagram (diagram in Kruskal coordinate) in given in Fig.5a and
the Penrose diagram (which can be obtained from (5.13) as a subset of the flat 2 dimensional
space ds2 = dūdv̄ Penrose diagram) is given in Fig.5b. The Penrose diagram of a physical
black hole, obtained from a collapsing star, is given in Fig.5c.

Solutions with charge
The Reissner-Nordstrom black hole is obtained by adding a charge Q at r = 0, giving

the solution

ds2 = −(1 − 2MG

r2
+
Q2G

r2
)dt2 +

dr2

1 − 2MG
r

+ Q2G
r2

+ r2dΩ2
2 (5.14)

together with the electric field given by

Frt =
Q

r2
⇒ At = −Q

r
(5.15)
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Figure 5: a) Kruskal diagram of the Schwarzschild black hole. b) Penrose diagram of the
eternal Schwarzschild black hole (time independent solution). The dotted line gives the
completion to the Penrose diagram of flat 2 dimensional (Minkowski) space. c) Penrose
diagram of a physical black hole, obtained from a collapsing star (the curved line). The dotted
line gives the completion to the Penrose diagram of flat d > 2 dimensional (Minkowski) space.
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that is, the electric field of a point charge. The event horizon is now where 1 − 2MG/r +
Q2G/r2 = 0. In the following we will put G = 1 for simplicity, and G can be reintroduced
by dimensional analysis. The event horizon is at

r = r± = M ±
√
M2 −Q2 (5.16)

thus we have now 2 horizons, instead of one, and the metric can be rewritten as

ds2 = −Δdt2 +
dr2

Δ
+ r2dΩ2

2; Δ = (1 − r+
r

)(1 − r−
r

) (5.17)

However, if M < Q, there is no horizon at all, just a ”naked singularity” at r = 0
(not covered by a horizon), which is believed to be excluded on physics grounds: there are
a number of theorems saying that naked singularities should not occur under certain very
reasonable assumptions. Therefore we must have M ≥ Q.

The case M = Q is special and is called the ”extremal black hole”. Its metric is

ds2 = −(1 − M

r
)2dt2 +

(
dr

1 − M
r

)2

+ r2dΩ2
2 (5.18)

and by a change of coordinates r = M + r̄ we get

ds2 = − 1

(1 + M
r̄

)2
dt2 + (1 +

M

r̄
)2(dr̄2 + r̄2dΩ2

2) (5.19)

Here

H = 1 +
M

r̄
(5.20)

is a harmonic function, i.e. it satisfies

Δ(3)H = (a)Mδ3(r) (5.21)

So we see that the extremal solutions are defined by a harmonic function in 3 dimensions.
One can put this Reissner-Nordstrom black hole inside an Anti de Sitter space as well as

follows. The Anti de Sitter metric can be written (by a coordinate transformation) as

ds2 = −(1 − Λr2

3
)dt2 +

dr2

1 − Λr2

3

+ r2dΩ2
2 (5.22)

Then the Anti de Sitter charged black hole metric is

ds2 = −Δdt2 +
dr2

Δ
+ r2dΩ2

2; Δ ≡ 1 − 2M

r
+
Q

r2
− Λr2

3
(5.23)

The only other parameter one can add to a black hole is the angular momentum J , in
which case however the metric is quite complicated. There are so called ”no hair theorems”
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stating that black holes are characterized only by Q,M and J (any other charge or parameter
would be called hair of the black hole).

P-branes
Black holes that extend in p spatial dimensions are called p-branes (the terminology

comes from the word mem-brane which is now called a 2-brane, that is, extends in 2 spatial
dimensions).

In 4 dimensions, the only localized p-branes are the black holes. An extended object can
be either a cosmic string (one spatial extension) or a domain wall (two spatial extensions).
However, we will shortly see that the p-branes are defined by harmonic functions in D-p-
1 dimensions (the black hole, with p=0, in d=4 is defined by a harmonic function in 3
dimensions). Thus for a cosmic string, the harmonic function would be in 2 dimensions,
which is H = ln |z| (z = x1 + ix2), whereas for a domain wall, the harmonic function would
be in one dimension, which is H = 1 + a|x|. In both cases, the harmonic function increases
away from its source, so both the cosmic string and the domain wall p-brane solutions would
affect the whole space. They are therefore quite unlike black holes, and not quite physical.

But in dimensions higher than 4, we can have black-hole like objects extended in p
spatial dimensions that are localized in space (don’t grow at infinity). These are the ”black
p-branes”, and have complicated metrics.

We will focus on the case of D=10, which is the case relevant for string theory, as we
will see in the next section. We will also focus on extremal objects (with Q=M), which are
very special: in fact, they are very relevant for string theory. The solution of the D=10
supergravity theory that approximates string theory at moderate energies is of the general
type

ds2
string = H−1/2

p (−dt2 + d�x2
p) +H1/2

p (dr2 + r2dΩ2
8−p = H−1/2

p (−dt2 + d�x2
p) +H1/2

p d�x2
9−p)

e−2φ = H
p−3
2

p

A01...p = −1

2
(H−1

p − 1) (5.24)

where Hp is a harmonic function of �x9−p, i.e.

Δ(9−p)Hp = (a)Qδ(9−p)(xi); ⇒ Hp = 1 +
(...)Q

r7−p (5.25)

Here ds2
string is known as the ”string metric” and is related to the usual ”Einstein metric”

defined until now by
ds2

Einstein = e−φ/2ds2
string (5.26)

and A01...p is some antisymmetric tensor (”gauge”) field present in the 10 dimensional super-
gravity theory (there are several), and φ is the ”dilaton” field, which is a scalar field that is
related to the string theory coupling constant by gs = e−φ.

We noted that a black hole carries electric (or magnetic!) charge Q, with respect to the
electromagnetic potential Aμ. Specifically, for a static electric charge, only A0 is nonzero.
That means that there is a source coupling in the action, of the type∫

d4xjμAμ =

∫
j0A0 (5.27)
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and if j0 is taken to be the current of a static charge, j0 = Qδ3(x), the source term gives
rise by the Aμ equation of motion to the solution of nonzero A0.

Similarly, we find that a p-brane carries electric charge Q with respect to the p+1-form
field Aμ1...μp+1. By analogy with the above means that there should be a source coupling∫

ddxjμ1...μp+1Aμ1...μp+1 →
∫
j01...pA01...p (5.28)

It therefore follows that a source for the A01...p field will be of the type j01...p = Qδ(d−p−1)(x),
which is therefore an object extended in p spatial dimensions plus time. The solution of the
source coupling is an object with nonzero A01..p, and indeed the p-brane has such a nonzero
field.

Important concepts to remember

• The Schwarzschild solution is the most general solution with spherical symmetry and
no sources. Its source is localed behind the event horizon.

• If the solution is valid down to the horizon, it is called a black hole.

• Light takes an infinite time to reach the horizon, from the point of view of the far away
observer, and one has an infinite time dilation at the horizon (”frozen in time”).

• Classically, nothing escaper the horizon. (quantum mechanically, Hawking radiation)

• The horizon is not singular, and one can analytically continue inside it via the Kruskal
coordinates.

• Black hole solutions with charge have Q ≥ M . The Q = M solutions (extremal) are
defined by a harmonic function and have a collapsed horizon.

• P-brane solutions are (extremal) black hole solutions that extend in p spatial dimen-
sions. They also carry charge under an antisymmetric tensor field Aμ1...μp+1, and are
determined by a harmonic function.
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Exercises, section 5

1) Check the transformation from Schwarzschild coordinates to Kruskal coordinates.

2) Find the equation for the r=0 singularity in Kruskal coordinates (the singularity
curve on the Kruskal diagram). Hint: calculate the equation at r = r0=arbitrary and then
extrapolate the final result to r = 0.

3) Check that the transformation of coordinates r/R = sinh ρ takes the AdS metric
between the global coordinates

ds2 = R2(−dt2 cosh2 ρ+ dρ2 + sinh2 ρdΩ2) (5.29)

and the coordinates (here R =
√−Λ/3)

ds2 = −(1 − Λ

3
r2)dt2 +

dr2

1 − Λ
3
r2

+ r2dΩ2 (5.30)

4) Check that H = 1 + a/r7−p is a good harmonic function for a p-brane. Check that
r=0 is an event horizon (it traps light).

5) The electric current of a point charge is jμ = Qdxμ

dτ
δd−1(xμ(τ)). Write an expression

for the p+1-form current of a p-brane, jμ1...μp+1.
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6 String theory actions and spectra

The Nambu-Goto action
String theory is the theory of relativistic strings. That is, not strings like the violin

strings, but strings that move at the speed of light. They don’t have a compression mode
(the energy density along a string is not a Lorentz invariant, so cannot appear as a physical
variable in a relativistic theory). They only have a vibration mode, unlike, e.g. a massive
cosmic string or a violin string.

However, they can have tension, which resists against pulling the string apart (energy
per unit length). The point is that if one stretches the string the energy density stays the
same, just the length increases, thus energy = tension × length.

Because they have tension, the only possible action for a string is the one that minimizes
the area traversed by the string, i.e. the ”worldsheet”. The coordinates for the position of
the string are Xμ(σ, τ), where σ =worldsheet length and τ = worldsheet time, i.e. (σ, τ) are
intrinsic coordinates on the surfacem drawn by the moving string (worldsheet), as in Fig.6a.
The string action, due to Nambu and Goto, is

SNG = − 1

2πα′

∫
dτdσ

√
det(hab) (6.1)

where 1/(2πα′) = T is the string tension. The metric hab is the metric induced on the
worldsheet by the motion through spacetime, or ”pull-back” of the spacetime metric,

hab(σ, τ) = ∂aX
μ∂bX

νgμν(X) (6.2)

and dτdσ
√

det h is the ”volume element” (infinitesimal area) on the worldsheet. This is
similar to the case of the metric on a 2-sphere in 3 dimensional Euclidean space given as an
example at the begining of the General Relativity section. As there, the metric is obtained
by the fact that the metric on the worldsheet is expressed in two ways

ds2|on M = dξadξbhab(ξ) = gμν(X)dXμdXν ; ξa = (σ, τ) (6.3)

What does the Nambu-Goto action calculate though? It calculates Xμ(σ, τ), the string
trajectory through spacetime.

So, an analog of the string action is the particle action in flat space

S = −m
∫
ds = −m

∫
dτ

√
−ẊμẊνημν = −m

∫
dt
√

1 − �v2 (6.4)

By varying it with respect to Xμ we get the equation of motion

−m
2

d

dτ
[
Ẋνημν√
(Ẋμ)2

] = −m
2

d

dτ
[Ẋνημν ] = 0 ⇒ d2

dτ
Ẋμ = 0 (6.5)

Here Ẋ = dX/dτ and we have used (Ẋμ)2 = ds2/dτ 2 ≡ 1.
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Figure 6: a)String moving in spacetime parametrized by Xμ spans a worldsheet M spanned
by σ (coordinate along the string) and τ (worldsheet time). b)Feynman diagram in x space:
from x to y we have the particle propagator. c)String loop diagram. The vertices are not
pointlike, but are spread out, and have a coupling gs. d)By comparison, a particle loop
diagram. e) Basic string interaction: ”pair of pants”= vertex for a string to split in two
strings.
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This of course looks a little trivial, we obtain just the free motion in a straight line.
However, if the write the same action in curved space instead, replacing ημν → gμν , we will
get the free motion along a geodesic in spacetime. The geodesic equation is then nontrivial,
and can be understood as the interaction of the particle with the gravitational field. In more
general terms, we can say that background fields (like the metric) appearing in the particle
or string actions will give interaction effects.

But what is the usefulness of the particle action for quantum field theory?
Let us suppose that we don’t know how to do quantum field theory and/or the precise

theory we have. We can then still construct Feynman diagrams, considered as describing
actual particles propagating in spacetime, for instance as in Fig.6b.

To construct such a Feynman diagram, we need

• the propagator from x to y

• the vertex factor at x and y: this contains the coupling g, thus it defines a particular
theory.

• rules about how to integrate (in this case,
∫
d4x

∫
d4y). For particles, this is obvious,

but for strings, we need to carefully define a path integral construction. There are
subtleties due to the possibility of overcounting if we use naive integration.

The propagator from x to y for a massless particle is (here, �= kinetic operator)

< x|�−1|y >=

∫ ∞

0

dτ < y|e−τ�|x > (6.6)

But now we can use a trick: A massive nonrelativistic particle has the Hamiltonian H =
p2/(2m) = �/(2m) (in Euclidean x space). Using m = 1/2 we get H = � and therefore
we can use quantum mechanics to write a path integral representation of the transition
amplitude

< y|e−τH|x >=

∫ y

x

Dx(t)e− 1
4

∫ τ
0 dtẋ2

(6.7)

Since H = �, we use this representation to express the propagator of a massless relativistic
particle in (6.6) as

< x|�−1|y >=

∫ τ

0

∫ y

x

Dx(t)e− 1
4
Sp (6.8)

where Sp =
∫ τ
0
dtẋ2 is the massless particle action (in fact, we have not quite seen that yet,

we just looked at the massive particle action, but we will see soon that it is as we said).
So the particle action defines the propagator, and to complete the perturbative definition

of the quantum field theory by Feynman diagrams we need to add the vertex rules (specifying
the interactions of the theory: for instance, in the V = λφ4 example in section 1 we had a
vertex −λ), as well as the integration rules (trivial, in the case of the particle).

We will do the same for string theory: we will define perturbative string theory by defining
Feynman diagrams. We will write a worldsheet action that will give the propagator, and
then interaction rules and integration rules.
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Before that however, we need to understand better the possible particle actions.
Specifically, we can write down a first order action for the massive particle that is more
fundamental than the one we wrote. First order means that we introduce an independent
”worldline metric” field, γττ (τ), not defined by embedding in the spacetime metric. Rather,
we will use the vielbein, or rather einbein in this case, e(τ) =

√−γττ (τ).
Then we can write the first order particle action

S̃p =
1

2

∫
dτ(e−1(τ)

dXμ

dτ

dXν

dτ
ημν − em2) (6.9)

Then the e(τ) equation of motion gives

− 1

e2
Ẋ2 −m2 = 0 ⇒ e2(τ) = −Ẋ

μẊμ

m2
(6.10)

Substituting in S̃p we get

S̃p =
1

2

∫
dτ

[
m√
−Ẋ2

Ẋ2 −
√

−Ẋ2

m
m2

]
= −m

∫
dτ

√
−ẊμẊμ = Sp (6.11)

so we do indeed get the previous (second order) action by solving the e(τ) equation of motion
and substituting.

Note that now we can take the m→ 0 limit of the first order action S̃p, unlike the second
order action Sp which is proportional to m. The first order action has a gauge invariance,
which is the reparametrization invariance, τ → τ ′(τ) that gives e → edτ/dτ ′. Therefore by
a reparametrization τ ′(τ) I can set e to whatever value. In particular it is convenient to
choose the gauge e = 1. Then the massless particle action in this gauge is

S̃m=0,e=1 =

∫
dτ
dXμ

dτ

dXν

dτ
ημν (6.12)

which is the result we used above, in the calculation of the massless particle propagator.
Note that now the equation of motion for Xμ(τ) is

d

dτ
(
dXμ

dτ
) = 0 (6.13)

Note also that, since we work in the gauge e = 1, we must impose the e(τ) equation of
motion as a constraint on the solutions. It gives

ds2

dτ 2
=
dXμ

dτ

dXν

dτ
ημν = 0 (6.14)

which is just the statement that the particle is massless.
We now go back to strings and mimic what we did for particles, to write down a first

order action. It is called the Polyakov action. In flat spacetime (gμν = ημν), it is

SP [X, γ] = − 1

4πα′

∫
dσdτ

√−γγab∂aXμ∂bX
νημν (6.15)
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Here γab is an independent metric on the worldsheet. Its equation of motion gives

hab − 1

2
γab(γ

cdhcd) = 0 (6.16)

where
hab = ∂μa ∂bX

νημν (6.17)

as before. We then obtain

hab√−h =
γab√−γ ⇒ SP = − 1

2πα′

∫
dτdσ

√−h = SNG (6.18)

thus indeed, the Polyakov action is the first order form of the Nambu-Goto action.
The Polyakov action has the following invariances:

• Spacetime Poincare invariance

• Worldsheet diffeomorphism invariance, defined by two transformations (σ′(σ, τ), τ ′(σ, τ)),
that give X ′μ(σ′, τ ′) = Xμ(σ, τ)

• Worldsheet Weyl invariance: for any ω(σ, τ), we have

X ′μ(σ, τ) = Xμ(σ, τ); γ′ab(σ, τ) = e2ω(σ,τ)γab(σ, τ) (6.19)

The Weyl invariance is very important in the following, and is not present in the Nambu-
Goto action. Therefore the Polyakov form is more fundamental. Classically, the two actions
are equivalent, as we saw. But quantum mechanically, they are not.

Strings have spatial extension, but that means we also need boundary conditions for
them. They can be open, in which case the endpoints of the string are different (and can
have either Neumann or Dirichlet boundary conditions) or closed. We will study closed
strings in the following.

Closed string spectrum.
The Polyakov action has 3 worldsheet invariances (defined by arbitrary functions): 2

diffeomorphisms (σ′(σ, τ) and τ ′(σ, τ)) and one Weyl invariance (ω(σ, τ)). That means that
we can choose the 3 independent elements of the symmetric matrix hαβ(σ, τ) (the worldsheet
metric) to be anything we want. We will choose the gauge

hαβ = ηαβ =

(−1 0
0 1

)
(6.20)

called the conformal gauge. Then, the Polyakov action becomes

S = −T
2

∫
d2σηαβ∂αX

μ∂βX
νημν (6.21)

The Xμ equation of motion gives the 2 dimensional wave equation

�Xμ =

(
∂2

∂σ2
− ∂2

∂τ 2

)
Xμ = −∂+∂−Xμ = 0 (6.22)
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We define

σ± = τ ± σ; ∂± =
1

2
(∂τ ± ∂σ) (6.23)

Then the general solution of the 2 dimensional wave equation is

Xμ(σ, τ) = Xμ
R(σ−) +Xμ

L(σ+) (6.24)

For a closed string, that is everything, since we don’t need to impose a boundary condi-
tion, and we can expand this general solution in Fourier modes:

Xμ
R =

1

2
xμ +

l2

2
pμ(τ − σ) +

il

2

∑
n �=0

1

n
αμne

−2in(τ−σ)

Xμ
L =

1

2
xμ +

l2

2
pμ(τ + σ) +

il

2

∑
n �=0

1

n
α̃μne

−2in(τ+σ) (6.25)

Note that the zero mode has been written in a particular way: The zero mode is Xμ =
xμ + l2pμτ but has been split into a Xμ

L part and a Xμ
R part.

As in the case of the particle action, because we work in a gauge for 2 dimensional
invariance, we need to impose the equation of motion of the worldsheet metric γab as a
constraint

1√
γ

δS

δγαβ
≡ Tαβ = 0 (6.26)

So the constraint is that the worldsheet energy-momentum tensor must be equal to zero.
We expand also this constraint in Fourier modes and define

Lm =
T

2

∫ π

0

e−2imσT−−dσ

L̃m =
T

2

∫ π

0

e2imσT++dσ (6.27)

The zero modes of the constraints give

L0 + L̃0 = − ⇒ pμpμ ≡ M2 =
2

α′
∑
n≥1

(αμ−nα
μ
n + α̃μ−nα̃

μ
n) (6.28)

We are still left with L0 − L̃0 to impose.
But there is in fact a quantum correction, that one can calculate, giving in fact L0 + L̃0 =

2, and modifying the mass relation (see below). One quantizes these oscillation modes (as
is familiar from, let’s say, the phonon quantization or the quantization of sounds modes in a
cavity) by setting, for m > 0,

αμm =
√
maμm; αμ−m =

√
ma†m

μ
; [aμm, a

†
n

ν
] = δmnδ

μν (6.29)

Then one obtains the mass spectrum

α′M2 = −4 + 2
∑
m,μ

m(Nμ
m + Ñμ

m); Nμ
m = a†m

μ
aμm = number operator (6.30)

49



where the constant actually depends on dimension. Quantum consistency requires D=26,
and then the constant is −4 as above.

So this string theory makes sense at the quantum level only if it is defined in 26 di-
mensions, so in order to get a 4 dimensional theory we must use the Kaluza-Klein idea of
dimensional reduction.

There is now an extra condition for physical states. It can be understood in two ways.
We can say that is the invariance of translations along the closed string, σ → σ + s, which
means that Pσ, the translation generator along σ, should act trivially on states, and it turns
out that we must impose

Pσ = −2π

l

∑
m,μ

m(Nμ
m − Ñμ

m) = 0 (6.31)

Another way of saying this is that Pσ is proportional to L0 − L̃0, which was still left to be
imposed on states. In any case, that means that

N ≡
∑
m,μ

mNμ
m =

∑
m,μ

mÑμ
m ≡ Ñ (6.32)

Then, the closed string spectrum starts with a tachyon of α′M2 = −4. It is denoted
by |0, 0; k >, that is, vacuum for αm oscillators, vacuum for α̃m oscillators, and with zero-
mode momentum p = k. At the next level, we have 1 excitation on the level m=1. But
then Nμ

m = Ñμ
m = 1 and we must have both a α−1 and a α̃−1 excitation. We get that this

excitation has α′M2 = −4 + 2 · 2 = 0, so these are massless states. These states will be of
the type

αμ−1α̃
ν
−1|0, 0; k > (6.33)

This will then be a tensor state Aμν (with two spacetime indices). It decomposes into a
symmetric traceless tensor part gμν , an antisymmetric tensor part Bμν and a trace part
φ. These massless modes of the string correspond to the graviton gμν , a field called the
antisymmetric tensor field (or B field) Bμν and the dilaton field φ.

This was for the simplest string action, the bosonic string, and we saw that the ground
state is tachyonic, thus unstable (M2 < 0 means that we are perturbing a potential V (Φ),
where Φ is the tachyon field, around a maximum, V (Φ) � V0 +M2(δΦ)2; M2 < 0) instead
of a minimum. It then means that this vacuum will decay to the true vacuum. The bosonic
string thus is not very well undestood.

Instead, one defines the superstring, which is a supersymmetric string. One extends the
Polyakov action to a supersymmetric action. Then the spectrum of the supersymmetric
closed string is in part obtained by projecting out some of the bosonic string states. The
tachyon ground state is projected out, but the massless states remain.

So the superstring has a ground state composed of the massless states (gμν , Bμν , φ),
together with some supersymmetric partners. Quantum consistency of the superstring now
requires D=10. Thus we still need to use the Kaluza-Klein idea of dimensional reduction in
order to get to a 4 dimensional theory.

Above this ground state, the string modes have increasing mass. Each string mode
corresponds to a spacetime field of a given mass. But since the mass scale of the modes is
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set by 1/α′, in the limit of α′ → 0 only the massless fields remain. The massless fields then
aquire VEVs that correspond to classical backgrounds (with quantum corrections).

By self-consistency, we write down the propagation of the string in backgrounds generated
by the massless string modes, i.e. gμν , Bμν , φ. The action is

S = − 1

4πα′

∫
d2σ[

√
hhαβ∂αX

μ∂βX
νgμν(X

ρ) + εαβ∂αX
μ∂βX

νBμν(X
ρ) − α′√hR(2)Φ(Xρ)]

(6.34)
where R(2) is the 2 dimensional Ricci scalar and the quantity

1

4π

∫
d2σ

√
hR(2) = χ (6.35)

is a topological invariant, i.e. a negative integer that counts the number of holes the topology
of the 2 dimensional surface has (times −2, specifically, χ = 2(1 − g)). But e−S contains
then e−χΦ ∼ (eΦ)2g. Therefore, the addition of a hole to a whorldsheet, which is interpreted
as an extra loop in the quantum interaction of a string, as in Fig.6c, gives a factor of e2Φ,
prompting the identification of eΦ with the string coupling constant, gs.

This procedure, of putting the string in a background (”condensate”) of its own ground
state modes, needs a self-consistency condition: the procedure must preserve the original
invariances of the action, specifically Weyl invariance (or conformal invariance, see next
section). Imposing Weyl invariance of the action in fact turns out to give the equations of
motion for gμν , Bμν , φ.

When using this self-consistency on the full superstring, the background will be a su-
persymmetric theory of gravity = supergravity! It will contain the fields gμν , Bμν , φ among
others. That means that the α′ → 0 (low energy limit) of string theory, which is the theory
of the massless backgrounds of string theory, will be supergravity in 10 dimensions.

Now, to construct string theory perturbatively, as for the particle case, we construct
S matrices through Feynman diagrams, as in Fig.6c. The basic interaction that gives the
Feynman digrams is the ”pants diagram” in Fig.6e. The Polyakov action will define the
propagator, the vertices are defined such that we reproduce supergravity vertices in the low
energy limit α′ → 0, and as noted, one needs to define integration carefully at each loop
order, since as we can see the vertex is ”smoothed out”.

Important concepts to remember

• String theory is the theory of relativistic strings, with tension = energy/ length.

• The string action is the area spanned by the moving string, and its minimization is
due to its tension

• For the Feynman diagram construction of quantum field theory, we need the particle
action to define the propagator, the vertex factors to define the theory, and integration
rules.
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• The first order particle action is more fundamental: it contains the massless case. The
Polyakov string action is also more fundamental: it has more symmetries.

• By fixing a gauge, the closed string action reduces to free 2 dimensional bosons, which
contain left and right moving wave modes.

• By quantizing these modes, we get the particle spectrum. The massless particles are
the graviton, an antisymmetric tensor and a scalar.

• The bosonic string is unstable. The superstring is stable and lives in 10 dimensions,
thus we need to use Kaluza-Klein dimensional reduction.

• Self-consistent backgrounds for the string are given by the theory of the massless modes
of the superstring, namely supergravity.

• Thus the low energy limit (α′ → 0) of string theory is supergravity.

• One knows how to construct string theory S matrices from Feynman diagrams by
defining the propagator, vertices and integration rules.
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Exercises, section 6

1) Write down the worldline reparametrization invariance for the particle, both the finite
and infinitesimal versions.

2) Calculate Lm, L̃m and L0 + L̃0.

3) Derive Pσ.

4) Write down the states of the first massive closed string level.

5) Show that the coupling to Bμν is of the type of p-brane sources, thus a string is a
1-brane source for the field Bμν .
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7 Elements of conformal field theory; D-branes

Conformal transformations and the conformal group
Consider flat space (either Euclidean or Minkowski), and quantum field theory in it.

Conformal transformations are then generalizations of the scale transformations

x′μ = αxμ ⇒ ds2 = d�x′2 = α2d�x2 (7.1)

Before we define conformal transformations, let’s understand scale transformations in
field theory.

The procedure of renormalization involves a cut-off ε and bare coupling λ0 and mass
m0. For example, dimensional regularization of scalar field theory for V (φ) = m2φ2/2 + λφ4

gives

λ0 = με(λ+

∞∑
k=1

ak(λ)

εk
); m2

0 = m2(1 +

∞∑
k=1

bk(λ)

εk
) (7.2)

where μ is the renormalization scale, out of which we extract the renormalized coupling
λ = λ(μ, ε;λ0, m0), which in general depends on scale.

This running of the coupling constant with the scale is characterized by the β function,

β(λ, ε) = μ
dλ

dμ
|m0,λ0,ε (7.3)

A scale invariant theory (i.e. a theory independent of α in (7.1)) must then be μ-
independent, thus have a zero β function. There are two ways in which this can happen:

• β = 0 everywhere, which means a cancellation of Feynman diagrams that gives no
infinities. OR

• a nontrivial interacting theory: the β function is nontrivial, but has a zero (fixed point)
away from λ = 0, at which a nontrivial (nonperturbative) theory emerges: a conformal
field theory. For the case in Fig.7c, ΛF is called an IR stable point. Indeed, if λ > λF ,
β(λ) > 0, thus λ decreases if μ decreases (thus in the IR). And f λ < λF , β(λ) < 0,
thus λ increases if μ again decreases (in the IR). That means that if we go to the IR,
wherever we start, we are driven to λ = λF , that has β(λF ) = 0.

If we have a theory with classical scale invariance, it must be respected in the quantum
theory. But a priori there could be a quantum anomaly (that is, there are Feynman diagrams
that could potentially break scale invariance of the quantum averaged theory). So one must
require as a consistency of the theory the absence of quantum anomalies to Weyl (scale)
invariance, which will give constraints on the theory.

Most theories that are quantum mechanically scale invariant (thus have β = 0), have a
larger invariance, called conformal invariance.

In flat d dimensions, i.e. on R1,d−1, conformal transformations are defined by xμ → x′μ(x)
such that

dx′μdx
′
μ = [Ω(x)]−2dxμdxμ (7.4)
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p+1 dim.

open string

a)

N

|i> |j>

b)

lambda

beta

lambda F

(lambda)

Figure 7: a)Open string between two D-p-branes (p+1 dimensional ”walls”). b)The end-
points of the open string are labelled by the D-brane they end on (out of N D-branes), here
|i > and |j >. c)β(λ) for the case of an IR stable point.
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Note that conformal invariance is NOT the same as general coordinate invariance, since
the metric is modified, from flat ds2 = dx′μdx

′
μ to ”conformally flat” ds2 = [Ω(x)]−2dxμdxμ.

This is a statement of the fact that conformal transformations are generalizations of scale
transformations (7.1) that change the distance between points.

The infinitesimal conformal transformation is then

x′μ = xμ + vμ(x); Ω(x) = 1 − σv(x)

⇒ ∂μvν + ∂νvμ = 2σvδμν ⇒ σv =
1

d
∂ · v (7.5)

D=2 is special, and will be analyzed separately. But except for d=2, the most general
solution to this equation is

vμ(x) = aμ + ωμνxν + λxμ + bμx
2 (7.6)

with ωμν = −ωνμ (antisymmetric) and σv(x) = λ − 2b · x. Thus the parameters of confor-
mal transformations are λ, aμ, bμ, ωμν , corresponding respectively to scale transformations,
translations, a new type of transformations, and rotations. The new type of transforma-
tions parametrized by bμ is called ”special conformal transformations”. Together there are
1 + d + d + d(d − 1)/2 = (d + 1)(d + 2)/2 components for the parameters of conformal
transformatios.

These transformations form together a symmetry group. Its generators are: Pμ for aμ
and Jμν for ωμν forming together the Poincare group, as expected. For them, we have
the particular case of Ω(x) = 1. The new generators are Kμ for the special conformal
transformations bμ and dilatation generator D for λ. Counting shows that we can assemble
these generators in a group defined by an antisymmetric (d+ 2) × (d+ 2) matrix,

J̄MN =

⎛
⎝ Jμν J̄μ,d+1 J̄μ,d+2

−J̄ν,d+1 0 D
−J̄ν,d+2 −D 0

⎞
⎠ (7.7)

where

J̄μ,d+1 =
Kμ − Pμ

2
; J̄μ,d+2 =

Kμ + Pμ
2

; J̄d+1,d+2 = D (7.8)

By looking at the Lie algebra of J̄MN we find that the metric in the d + 2 direction is
negative, thus the symmetry group is SO(2, d). So conformal invariance in flat (1, d − 1)
dimensions (d > 2) corresponds to the symmetry group SO(2, d), the same as the symmetry
group of d+ 1-dimensional Anti de Sitter space, AdSd+1.

This is in fact the first hint of a relation between d-dimensional conformal field theory,
i.e. a field theory on d-dimensional Minkwoski space that is invariant under the conformal
group, and a gravity theory in d+1 dimensional Anti de Sitter space. The precise relation
between the two will be AdS-CFT, defined in the next section.

A comment is in order here. Strictly speaking, SO(2,d) is a group that only contains
elements continously connected to the identity, however the conformal group is an extension
that also contains the inversion

I : x′μ =
xμ
x2

⇒ Ω(x) = x2 (7.9)
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In fact, all conformal transformations can be generated by combining the inversion with
the rotations and translations. The finite version of the special conformal transformation is

xμ → xμ + bμx2

1 + 2xνbν + b2x2
(7.10)

and the finite version of the scale transformation is xμ → λxμ.
Since we will be defining AdS-CFT in Euclidean space, we should note that the conformal

group on Rd (Euclidean space) is SO(1, d+ 1).
Conformal fields in 2 dimensions
As noted, d=2 is special. In d=2, the conformal group is much larger: in fact, it has an

infinite set of generators.
To describe conformal fields in Euclidean d=2, we will use complex coordinates (z, z̄),

ds2 = dzdz̄ (7.11)

It is easy then to see that the most general solution of the conformal transformation condition
(7.5) is a general holomorphic transformation, i.e. z′ = f(z) (but not a function of z̄). Then,

ds′2 = dz′dz̄′ =
∂z′

∂z

∂z̄′

∂z̄
dzdz̄ = Ω−2(z, z̄)dzdz̄ (7.12)

The simplest example of a euclidean d=2 conformal field theory is just a set of free scalar
fields, with action

S =
1

4πα′

∫
d2σ[∂1X

μ∂1Xμ + ∂2X
μ∂2Xμ] (7.13)

As we can see, this is nothing but the Polyakov string action in conformal gauge. In
fact, the choice of conformal gauge was actually related to Weyl (scale) invariance, which is
a part of conformal invariance. We can check in fact that the string action before imposing
conformal gauge is conformally invariant.

Using complex coordinates

z = σ1 + iσ2; z̄ = σ1 − iσ2; ∂z =
∂1 − i∂2

2
; ∂z̄ =

∂1 + i∂2

2
(7.14)

we get the action

S =
1

2πα′

∫
d2z∂Xμ∂̄Xμ (7.15)

giving the equation of motion
∂∂̄Xμ(z, z̄) = 0 (7.16)

with the general solution
Xμ = Xμ(z) +Xμ(z̄) (7.17)

The continuation to Minkowski space is done by σ2 = iσ0 = iτ , and under it a holomorphic
function (function of z only) becomes a function of −(τ − σ), i.e. left-moving, and an anti-
holomorphic function (function of z̄ only) becomes a function of z̄ = τ+σ, i.e. right-moving.
We thus recover the Minkwoski space treatment of the string in the previous section.
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There we had defined

Lm =
T

2

∫ π

0

e−2imσT−−dσ

L̃m =
T

2

∫ π

0

e2imσT++dσ (7.18)

In complex coordinates, Lm and L̃m are defined (equivalently) as Laurent coefficients of Tzz
and T̃z̄z̄, namely

Tzz(z) =
∑
m∈Z

Lm
zm+2

; T̃z̄z̄(z̄) =
∑
m∈Z

L̃m
z̄m+2

(7.19)

By commuting the Lm’s one finds the Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm,−n (7.20)

and similarly for the L̃m’s. The algebra at c = 0 is the classical part, and the term with c is
a quantum correction. Here c = ”central charge” is a parameter of the theory in general. In
string theory it can be fixed.

The Virasoro algebra defines the ”conformal group” in 2 dimensions, which means Lm’s
are conserved charges, corresponding to symmetry operators. But it is not really a usual
group, since it has an infinite number of generators and more importantly the algebra con-
tains a constant term (proportional to c), therefore the algebra does not close in the usual
sense. However, L0, L1 and L−1 for a closed algebra without central charge:

[L1, L−1 = 2L0; [L0, L1] = −L1; [L0, L−1] = L−1 (7.21)

which is the algebra of the group Sl(2, C), whose finite transformations act on z as

z → az + b

cz + d
(7.22)

This is then a subalgebra of the Virasoro algebra that sometimes is called (by an abuse of
notation) the conformal algebra in 2 dimensions.

In 2 dimensions, we define tensors of general relativity as objects that under a general
coordinate transformation (z1, z2) → (z′1, z

′
2) transform as

Ti1...in(z1, z2) = T ′
j1...jn

∂z′j1
∂zi1

...
∂′jn
∂zin

(7.23)

Under a conformal transformation, in z, z̄ notation, i.e. z′ = z′(z), z̄′ = z̄′(z̄), we obtain

Tz...zz̄...z̄(z, z̄) = T ′
z...zz̄...z̄(z

′z̄′)(
dz′

dz
)h(

dz̄′

dz̄
)h̄ (7.24)

where there are h indices of type z and h̄ indices of type z̄.
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In two dimensions there are no distinctions between fields and composite operators as
there are in 4 dimensions (where the two have different properties). Then either a field
φ(z, z̄) or an operator O(z, z̄) is called a tensor operator or a primary field of dimensions
(h, h̄) id it transforms as Tz...zz̄...z̄ above under a conformal transformation. But unlike in the
example above that used GR tensors, in general h and h̄ need not be integers!

Under a scale transformation z → λz, z̄ → λz̄, Tz...zz̄...z̄ transforms as

Tz...zz̄...z̄ → Tz...zz̄...z̄(λ)h+h̄, (7.25)

so Δ = h + h̄ is called the scaling dimension.
Back to d > 2
We now define primary operators in d > 2 also, but in a slightly different manner.
Representations of the conformal group are defined by eigenfunctions of the scaling op-

erator D with eigenvalue −iΔ, where Δ is the scaling dimension, i.e. under x → λx, we
get

φ(x) → φ′(x) = λΔφ(λx) (7.26)

Then Δ is increased by Pμ, since

[D,Pμ] = −iPμ ⇒ D(Pμφ) = Pμ(Dφ) − iPμφ = −i(Δ + 1)(Pμφ) (7.27)

and decreased by Kμ, since
[D,Kμ] = iKμ (7.28)

thus we can think of Kμ as an annihilation operator a and Pμ as a creation operator a†.
Since Pμ and Kμ are symmetry operators, by succesive action of them we get other states in
the theory. The representation then is built as if using creation/ annihilation operators.

There will be an operator of lowest dimension, Φ0, in the representation of the conformal
group. Then, it follows that KμΦ0 = 0, and Φ0 is called the primary operator. The repre-
sentation is obtained from Φ0 and operators obtained by acting succesively with Pμ (∼ a†)
on Φ0 (∼ |0 >).

In d=4, N = 4 Super Yang-Mills theory is such a representation of the conformal group.
N = 4 Super Yang-Mills theory with SU(N) gauge group has the fields {Aaμ, ψaiα , φa(ij)}.
Here we have used SU(4) notation (i ∈ SU(4)) and a ∈ SU(N). Indeed, one can calculate
the β function of the theory and obtain that it is zero, thus the theory has quantum scale
invariance. It is in fact, quantum mechanically invariant under the full conformal group.

Observation: The quantum conformal dimension (scaling dimension) Δ need not be
the same as the free (at coupling g = 0) scaling dimension for an operator in N = 4 Super
Yang-Mills, since β = 0 just means that there are no infinities, but there still can be finite
renormalizations giving nontrivial quantum effects (so that Δ = Δ0 + o(g)).

Classically, the fundamental fields have dimensions [Aaμ] = 1, [ψaiα ] = 3/2, [φa(ij)] = 1, and

we form operators out of them, for instance trF 2
μν which will have classical dimension 4. For

some of these, the classical dimension will be exact, for some it will get quantum corrections.
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D-branes
Closed strings are free to move arbitrarily through space. Open strings however need to

have boundary conditions defined on the endpoints. By varying the Polyakov string action,
we get the an extra boundary term for an open string,

δSP,boundary = − 1

2πα′

∫
dτ

√−γδXμ × ∂σXμ|σ=l
σ=0 (7.29)

which must vanish independently. This means that the possible boundary conditions are

• Neumann boundary condition: ∂σXμ = 0 at σ = 0 and l. It implies that the endpoints
must move at the speed of light.

• Dirichlet boundary condition: δXμ = 0 at σ = 0 and l, thus Xμ = constant at σ = 0
and l. Thus in this case the endpoints of the string are fixed in space.

But, we can choose p + 1 Neumann boundary conditions for p spatial dimensions and
time, and d − p − 1 Dirichlet boundary conditions. This means that the endpoints of the
string are constrained to live on a p + 1-dimensional wall in spacetime. But different string
endpoints could be on a different wall, as in Fig.7a.

Dai, Leigh and Polchinski, in 1989, proved that in fact this wall is dynamical, i.e. it can
fluctuate and respond to external interactions, and that it has degrees of freedom living on
it.

The wall was then called a D-brane, from Dirichlet-brane (as in Dirichlet boundary
conditions). For p=2, we would have a Dirichlet mem-brane. By extension, we have a
Dirichlet p-brane, or D p-brane.

The endpoints of strings can have a label |i >, called ”Chan-Patton factor”, that corre-
sponds to a label of the D-brane on which the string ends, as in Fig.7b.

An open string state then will have labels of the type |i > |j > λaij, which means they are
N ×N matrices if there are N D-branes. One can prove it is a U(N) matrix, and the open
string state lives in the adjoint of U(N). So we have a theory of open strings in the adjoint of
U(N) living on the D-branes. One can prove that in fact, the low energy limit of this theory
is a SU(N) Yang-Mills theory. Since it also has N = 4 supersymmetry in 4 dimensions,
the theory on the 4 dimensional world-volume of N D3-branes (D-branes for p=3) is N = 4
Super Yang-Mills theory with gauge group SU(N) (the U(1) = U(N)/SU(N) corresponds
to the ”center of mass” D-brane and decouples for most questions).

Important concepts to remember

• Conformal transformations act on flat space and give a space-dependent scale factor
[Ω(x)]−2, thus conformal invariance is not part of general coordinate invariance.

• A scale invariant theory (with zero beta function) is generally conformal invariant. The
absence of anomalies requires consistency conditions on the theory.

60



• In d > 2 Minkowski dimensions, the conformal group is SO(d, 2), the same as the
invariance group of AdSd+1.

• In 2 dimensions, conformal invariance is an infinite algebra, the Virasoro algebra, of a
more general type (with a constant term). A normal subgroup is Sl(2, C).

• Primary fields of dimensions (h, h̄) in 2 dimensions scale under z → λz, z̄ → λz̄ as
φ→ (λ)h+h̄, and in 4 dimensions primary fields of dimension Δ scale as φ→ φ(λ)Δ.

• In d=4, a representation of the conformal algebra is obtained by acting with Pμ on the
primary field.

• D-branes are (p+ 1)−dimensional endpoints of strings, that act as dynamical walls.

• N coincident D-branes give an U(N) gauge group, and the theory on the D3-branes (in
4 dimensions) is N = 4 Super Yang-Mills.
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Exercises, section 7

1) Check that

vμ = aμ + ωμνxν + λxμ + bμx
2 − 2xμb · x

∂μvν + ∂νvμ = 2σvδμν ; σv =
1

d
∂ · v (7.30)

and that if x′μ = xμ + vμ, then the conformal factor is Ω(x) = 1 − σv(x).

2) Derive the conformal algebra in terms of Pμ, Jμν , Kμ, D from the SO(d,2) algebra,
given that Jμ,d+1 = (Kμ − Pμ)/2, Jμ,d+2 = (Kμ + Pμ)/2, Jd+1,d+2 = D.

3) Prove that the special conformal transformation

xμ → xμ + bμx2

1 + 2xνbν + b2x2
(7.31)

can be obtained by an inversion, followed by a translation, and another inversion.

4) Prove that a circle (xμ − cμ)
2 = R2 remains a circle after a general finite conformal

transformation.

5) The action for the U(1) gauge field on a D-brane is

S = Tp

∫
dp+1ξ

√
det(gμν + α′Fμν) (7.32)

Show that as α′ → 0, the action becomes the action for electromagnetism.
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8 The AdS-CFT correspondence: motivation, defini-

tion and spectra

The AdS-CFT correspondence is a relation between a conformal field theory (CFT) in d
dimensions and a gravity theory in d+1-dimensional Anti de Sitter space (AdS). We already
saw the first hint that this should be possible: Both such theories will have the same sym-
metry group, SO(2, d). Specifically, the case of interest for us in the following will be d=4,
in which case the CFT will be N = 4 Supersymmetric Yang-Mills theory with gauge group
SU(N) and the gravitational theory will be string theory.

D-branes =p-branes
The first step towards finding such an equivalence is to prove that D-branes are the same

as p-branes. A D-brane is a dynamical wall on which strings can end. Then a string state
will contain a factor λaij |i > ⊗|j > from the D-branes i and j on which the two endpoints lie.
Although we have not proved this here, the massless state of an open string can be shown
to be a vector, thus the massless open string state will be

|μ > ⊗|i > ⊗|j > (8.1)

which is a gauge field Aaμ in an SU(N) gauge group (if there are N branes, i.e. i, j = 1, ..., N).
Here λaij are generators of the adjoint representation. In the α′ → 0 only the massless string
states remain, therefore the low energy theory living on the N D-branes is Supersymmetric
Yang-Mills with SU(N) gauge group. But string theory has 32 supercharges (32 components
Qi
α), which form a 11-dimensional spinor or 8 4-dimensional spinors, thus N = 8 super-

symmetry in d=4. But a D-brane background breaks 1/2 of the supersymmetry, thus for
p=3 the 4 dimensional worldvolume of the D3-branes will contain N = 4 Supersymmetric
Yang-Mills with SU(N) gauge group, a conformal field theory.

On the other hand, extremal p-branes are solutions of supergravity, which is the low
energy limit (α′ → 0) of string theory. Therefore the extremal p-branes discussed in section 6
are solutions of string string theory, of a solitonic-like character (although not quite solitonic).
The extremal p-branes, as we saw, have Q = M , saturating the bound |Q| ≤M , which bound
can be derived in two ways

• In gravity, it comes from the fact that singularities must be hidden behind a horizon,
as we saw. As mentioned, there are ”no naked singularity” theorems, and for Q > M ,
we would obtain a naked singularity.

• On the other hand, in a supersymmetric theory, this bound comes from the super-
symmetry algebra and is known as the ”BPS bound”. When the bound is saturated,
the solution preserves the maximum amount of supersymmetry, which is 1/2, i.e. the
solution is left invariant by a half of the supersymmetry generators.

Therefore the extremal p-branes also have N = 4 supersymmetry in d=4, and are solu-
tions of supergravity with horizons at r = 0 (singularity=horizon).

Polchinski, in 1995, has proven that in fact D-branes and extremal p=branes are one and
the same, thus the dynamical endpoints of open strings correspond to extremal solutions of
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supergravity. The proof involves computing p-brane charges and tensions of the endpoints
of open strings, and matching with the supergravity solutions.

Thus D-branes curve space and N D3-branes (p=3) correspond to the supergravity solu-
tion (here wedge ∧ means antisymmetrization and F5 = Fμ1...μ5dx

μ1 ∧ ... ∧ dxμ5)

ds2 = H−1/2(r)d�x2
|| +H1/2(r)(dr2 + r2dΩ2

5)

F5 = (1 + ∗)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧ (df−1)

H(r) = 1 +
R4

r4
; R = 4πgsNα

′2; Q = gsN (8.2)

But if we go a bit from the extremal limit Q = M by adding a small mass δM , this
solution will develop an event horizon at a small r0 > 0, and like the Schwarzschild black
hole, it will emit ”Hawking radiation” (thermal radiation produced by the event horizon).

But if this supergravity solution represents a D-brane also, one can derive this Hawking
radiation in the D-brane picture from a unitary quantum process: Two open strings living on
a D-brane collide to form a closed string, which then is not bound to the D-brane anymore
and can peel off the D-brane and move away as Hawking radiation, as in Fig.8a.

This then also means that there should be a relation between the theory of open strings
living on the D3-brane, i.e. N = 4 Super Yang-Mills, and the gravity theory of fields living
in the space curved by the D3-brane (8.2) (the ”Hawking radiation”).

Motivation
We will now motivate (heuristically derive) this relation by studying string theory in the

presence of D3-branes from two points of view.
Point of view nr.1
Consider the D-branes viewed as endpoints of open strings. Then string theory with

D3-branes has 3 ingredients

• the open strings living on the D3-branes, giving a theory that reduces to N = 4 Super
Yang-Mills in the low energy limit.

• the closed strings living in the bulk (the whole) of spacetime, giving a theory that is
supergravity coupled to the massive modes of the string. In the low energy limit, only
supergravity remains.

• the interactions between the two, giving for instance Hawking radiation through the
process I just described.

Thus the action of these strings will be something like

S = Sbulk + Sbrane + Sinteractions (8.3)

In the low energy limit α′ → 0, the massive string modes drop out, and Sbulk →
Ssupergravity, also Sbrane → SN=4SYM . Moreover, since

Sint ∝ k ∼ gsα
′2 (8.4)
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Figure 8: a)Two open strings living on a D-brane collide and form a closed string, that can
then peel off and go away from the brane. b) Two open string splitting interactions can be
glued on the edges to give a closed string interaction (”pair of pants”), therefore g2

YM = gs.

65



where k =
√
Newton constant and α′ → 0, whereas gs is the string coupling and stays

fixed. Then we see that Sint → 0 and moreover, since the Newton constant k2 → 0, gravity
(thus supergravity also) becomes free. Thus in this limit we get two decoupled systems
(non-interacting)

• free gravity in the bulk of spacetime

• 4 dimensional N = 4 gauge theory on the D3-branes.

Point of view nr.2.
We now replace the D3 brane by the supergravity solution (p-brane).
Then the energy Ep measured at a point r and the energy E measured at infinity are

related by

Ep ∼ d

dτ
=

1√−g00

d

dt
∼ 1√−g00

E ⇒ E = H−1/4Ep ∼ rEp (8.5)

Therefore for fixed Ep, as r → 0, the energy observed at infinity, E, goes to zero, i.e. we
are in the low energy regime.

Thus from this point of view, we also have two decoupled low energy systems of excitations

• At large distances (δr → ∞), therefore at low energies (energy ∼ 1/length), gravity
becomes free (the gravitational coupling has dimensions, therefore the effective dimen-
sionless coupling is GE2 → 0 as E → 0). Thus again we have free gravity at large
distances.

• At small distances r → 0, we have also low energy excitations, as we saw.

The fact that these two systems are decoupled can be seen in a couple of ways. One can
calculate that waves of large r have vanishing absorbtion cross section on D-branes. One can
also show that reversely, the waves at r = 0 can’t climb out of the gravitational potential
and escape at infinity.

Thus in the second point of view we again have two decoupled low energy systems, one
of which is free gravity at large distances. Therefore, we can identify the other low energy
system in the two point of view and obtain that

The 4 dimensional gauge theory on the D3-branes, i.e.
N = 4 Super Yang-Mills with gauge group SU(N), at large N is =
= gravity theory at r → 0 in the D-brane background, if we take α′ → 0.
This is called AdS-CFT, but at this moment it is just a vague statement.
Definition: limit, state map, validity
Let us therefore define better what we mean. If we take r → 0, then the harmonic

function H � R4/r4, and we obtain the supergravity background solution

ds2 � r2

R2
(−dt2 + d�x2

3) +
R2

r2
dr2 +R2dΩ2

5 (8.6)
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By changing the coordinates r/R ≡ R/x0, we get

ds2 = R2−dt2 + d�x2
3 + dx2

0

x2
0

+R2dΩ2
5 (8.7)

which is the metric of AdS5 ×S5, i.e. 5 dimensional Anti de Sitter space times a 5-sphere of
the same radius R, where AdS5 is in Poincare coordinates.

From the point of view of the supergravity background solution, the gauge theory lives
in the original metric (before taking the r → 0 limit). Therefore in the new AdS5 ×S5 space
we can say that the gauge theory lives at r → ∞, or x0 → 0, which as we have proven when
analyzing AdS space, is part of the real boundary of global AdS space, and in Poincare
coordinates x0 → 0 is a Minkowski space.

Therefore the gravity theory lives in AdS5 × S5, whereas the Super Yang-Mills theory
lives on the 4 dimensional Minkowski boundary of AdS5.

We still need to understand the α′ → 0 limit. We want to keep arbitrary excited string
states at position r as we take r → 0 to find the low energy limit. Therefore the energy at
point p in string units, Ep

√
α′ needs to be fixed. Since H � R4/r4 ∝ α′2/r4, the energy

measured at infinity is
E = EpH

−1/4 ∝ Epr/
√
α′ (8.8)

But at infinity we have the gauge theory, therefore the energy measured at infinity (in the
gauge theory) must also stay fixed. Then since Ep

√
α′ ∼ Eα′/r must be fixed, it follows

that
U ≡ r

α′ (8.9)

is fixed as α′ → 0 and r → 0 and can be thought of as an energy scale in the gauge theory
(since we said that E/U was fixed). The metric is then (R4 = α′24πgsN)

ds2 = α′
[

U2

√
4πgsN

(−dt2 + d�x2
3) +

√
4πgsN(

dU2

U2
+ dΩ2

5)

]
(8.10)

where α′ → 0 but everything inside the brackets is finite.
Here in the gravity theory N is the number of D3-branes and gs is the string coupling. In

the Super Yang-Mills gauge theory, N is the rank of the SU(N) gauge group, (which is the
low energy gauge group on the N D3-branes). And gs is related to the Yang-Mills coupling
by

gs = g2
YM (8.11)

since gYM is the coupling of the gauge field Aaμ, which we argued that is the massless mode
of the open string living on the D3-branes. But out of two open strings we can make a
closed string, therefore out of two open string splitting interactions, governed by the gYM
open string coupling, we can make one closed string splitting interaction, governed by the
gs coupling, as in Fig.8b.

The last observation that one needs to make is that in the limit α′ → 0, string theory
becomes its low energy limit, supergravity.

67



Therefore AdS-CFT relates string theory, in its supergravity limit, in the background
(8.10), with N = 4 Super Yang-Mills with gauge group SU(N) living in d=4, at the boundary
of AdS5.

Now it remains to define the limits of validity of this identification.
As it was stated, the supergravity approximation of string theory means that

• the curvature of the background (8.10) must be large compared to the string length,
i.e. R =

√
α′(gsN)1/4 � √

α′ = ls. That means that we are in the limit gsN � 1, or
g2
YMN � 1.

• string corrections, governed by gs, are small, thus gs → 0.

Therefore, for supergravity to be valid, we need to have gs → 0, N → ∞, but λ = gsN =
g2
YMN must be fixed and large (� 1).

On the other hand, in an SU(N) gauge theory, as ’t Hooft showed, at large N , the
effective coupling is the ’t Hooft coupling λ ≡ g2

YMN , therefore if perturbation theory is
valid, λ� 1, which is the opposite case of the supergravity approximation of AdS-CFT.

That is the reason why AdS-CFT is called a duality, since the two descriptions (gauge
theory perturbation theory and supergravity in AdS5 × S5) are valid in opposite regimes
(λ � 1 and λ � 1, respectively). That means that such a duality will be hard to check,
since in one regime we can use a description to calculate, but not the other.

So finally, we have come to the definition of AdS-CFT as a duality between supergravity
on AdS5 × S5 as in (8.10) and 4 dimensional N = 4 Super Yang-Mills with SU(N) gauge
group, living at the AdS5 boundary, with gs → 0, N → ∞ and gsN fixed and large.

But AdS-CFT can have then several possible versions:

• The weakest version is the one that was just described: AdS-CFT is valid only at
large gsN , when we have just the supergravity approximation of string theory in the
background (8.10). If we go to the full string theory (away from large gsN), we might
find dissagreements.

• A stronger version would be that the AdS-CFT duality is valid at any finite gsN , but
only ifN → ∞ and gs → 0, which means that α′ corrections, given by α′/R2 = 1/

√
gsN

agree, but gs corrections might not.

• The strongest version would be that the duality is valid at any gs and N , even if we
can only make calculations in certain limits. This is what is believed to be true, since
many examples were found of α′ and gs corrections that agree between AdS and CFT
theories.

Next we will turn to the relation between various observables in the two theories.
State map
Let us take an operator O in the N = 4 Super Yang-Mills CFT. It will be character-

ized by a certain conformal dimensions Δ (since we are in a conformal field theory) and a
representation index In for the SO(6) = SU(4) symmetry.
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In the gravity theory (string theory) in AdS5 × S5 it will correspond to a field.
In this discussion we will restrict to the supergravity limit. Then we have supergravity

on AdS5×S5, where S5 is a compact space, thus we can apply the Kaluza-Klein procedure of
compactification: We expand the supergravity fields in ”spherical harmonics” (Fourier-like
modes) on the sphere. For instance, a scalar field would be expanded as

φ(x, y) =
∑
n

∑
In

φIn(n)(x)Y
In
(n)(y) (8.12)

where n is the level, the analog of the n in einx/R for a Fourier mode around a circle of radius
R. In is an index in a representation of the symmetry group, x is a coordinate on AdS5 and
y a coordinate on S5, and the spherical harmonic Y In

(n)(y) is the analog of einx/R for a Fourier
mode.

Then the field φIn(n) living in AdS5, of mass m, corresponds to an operator OIn
(n) in 4

dimensional N = 4 Super Yang-Mills, of dimension Δ. The relation between m and Δ is

Δ =
d

2
+

√
d2

4
+m2R2 (8.13)

The dimensional reduction on S5, i.e. keeping only the lowest mode in the Fourier-like
expansion, should give a supergravity theory in AdS5. But as we mentioned in section 4,
supergravity theories that admit Anti de Sitter backgrounds (with a cosmological constant)
are actually gauged supergravity theories, so we obtain maximal 5 dimensional gauged su-
pergravity.

The symmetry group of the reduction, under which φ(n) has representation index In,
is SO(2, 4) × SO(6), with SO(2, 4) being the symmetry group of AdS5 and the conformal
group of the N = 4 Super Yang-Mills, and SO(6) being the symmetry group of S5 and the
”R-symmetry group” of N = 4 Super Yang-Mills, the global symmetry rotating the SYM
fields.

The level n indicates fields φ(n) of increasing mass m, and by the above relation, SYM
fields of increasing conformal dimension Δ.

”Experimental evidence”
One can now analyze the set of fields φ(n) obtained by the spherical harmonic expansion

of 10 dimensional supergravity around the background solution AdS5×S5 and match against
the set of operators in the conformal field theory that belong to definite representations of
the symmetry groups. One then matches In’s and Δ’s versus m’s.

However, this is not as simple as it sounds, since we mentioned that even though N = 4
Super Yang-Mills has zero beta function, there are still quantum corrections to the conformal
dimensions Δ of operators. Since we are working in the deeply nonperturbative gauge theory
regime, od effective coupling λ � 1, it would seem that we have no control over the result
for the quantum value of Δ of a given operator.

But we are saved by the large amount of symmetry available. Supersymmetry together
with the conformal group SO(2, 4) give the superconformal group SU(2, 2|4).

Representations of the conformal group are given as we said by a primary operator O
and their ”descendants,” obtained by acting with Pμ on them like a creation operator on the
vacuum (Pμ1 ...PμnO).
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Representations of the superconformal group are correspondingly larger (there are more
symmetries, which must relate more fields), so they will include many primary operators of
the conformal group (there are 216 primaries for a generic representation of N = 4 in d=4,
since there are 16 supercharges).

However, there are special, short representations of the superconformal group, that are
generated by chiral primary operators, which are primary operators that are annihilated
by some combination of Q’s (thus they preserve some supersymmetry by themselves), i.e.
[Q comb.]Och.pr = 0. The conformal dimension Δ of chiral primary operators is uniquely
determined by the R-symmetry, thus it does not receive quantum corrections, i.e. the λ� 1
value is the same as the λ = 0 value, and we can check it using AdS-CFT!

The representations In of the symmetry groups are in fact such small representations for
supergravity fields (non-supergravity string fields will in general belong to large representa-
tions), thus Kaluza-Klein supergravity modes in AdS5 correspond to chiral primary fields in
Super Yang-Mills, with dimensions protected against quantum corrections.

KK scalar fields in AdS5 belong to 5 families, and correspondingly we find 5 families of
chiral primary representations. For simplicity, we analyze three of these 5, which are

• tr(φ(I1...φIn)) (in the symmetric representation), plus its fermionic partners, which
therefore has dimension Δ = n (there are n fields of dimension 1), and by the above
we expect to correspond to a KK field of mass m2 = n(n− 4), n ≥ 2

• tr(εαβλαAλ
βBφI1...φIn−1) of dimension Δ = n + 2 (λ has dimension 3/2), therefore

corresponding to a KK field of mass m2 = (n+ 2)(n− 2), n ≥ 0.

• tr(FμνF
μνφn) where φ is a complex scalar, of dimension Δ = n+ 4 (Aμ has dimension

1), corresponding to m2 = n(n+ 4).

We find that indeed 3 of the KK families have such masses, therefore we have ”experi-
mental evidence” for AdS-CFT.

Global AdS-CFT
We obtained AdS-CFT in the Poincare patch, but AdS space is larger, therefore AdS-

CFT must relate global AdS5 space to the N = 4 Super Yang-Mills theory in 4 dimensions.
But the twist is that then one must make a conformal transformation in Euclidean space.

String theory in the Poincare patch of AdS space is related to N = 4 Super Yang-Mills
living the 4d dimensional Minkowski space at the boundary. The boundary of global AdS5

space is, as we saw, an Rt × S3, therefore string theory in global AdS5 is related to gauge
theory on the Rt × S3 space at its boundary.

The metric of global AdS5 (times S5) is

ds2 =
R2

cos2 θ
(−dτ 2 + dθ2 + sin2 θdΩ2

3)(+R
2dΩ2

5) (8.14)

If we put θ = π/2 in it, we obtain the boundary

ds2 =
R2

cos2 θ
(−dτ 2 + dΩ2

3) (8.15)
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where 1/ cos2 θ → ∞, whereas in Poincare coordinates

ds2 = R2d�x
2 + dx2

0 + x2
0dΩ

2
5

x2
0

= R2d�x
2

x2
0

(8.16)

with x0 → 0.
Then indeed, the Euclidean versions of the two metrics, d�x2 and dτ 2 + dΩ2

3 are related
by a conformal transformation.

ds2 = d�x2 = dx2 + x2dΩ2
3 = x2((d lnx)2 + dΩ2

3) = x2(dτ 2 + dΩ2
3) (8.17)

Thus string theory in global AdS5 × S5 is related to N = 4 Super Yang-Mills on Rt× S3

(conformally related to R4).

Important concepts to remember

• D-branes are the same as (extremal) p-branes, and we have N = 4 Super Yang-Mills
with gauge group SU(N) on the worldvolume of N D3-branes.

• AdS-CFT states that the N = 4 Super Yang-Mills with gauge group SU(N) at large
N equals string theory in the α′ → limit, in the r → 0 of the D3-brane metric, which
is AdS5 × S5.

• The most conservative statement of AdS-CFT relates supergravity in AdS5 × S5 with
N = 4 Super Yang-Mills with gauge group SU(N) and g2

YM = gs at gs → 0, N → ∞
and λ = gsN fixed and large (� 1).

• The strongest version of AdS-CFT is believed to hold: string theory in AdS5 × S5 is
related to N = 4 Super Yang-Mills with gauge group SU(N) at any g2

YM = gs and N .,
but away from the above limit it is hard to calculate anything

• AdS-CFT is a duality, since weak coupling calculations in string theory α′ → 0, gs → 0
are strong coupling (large λ = g2

YMN) in N = 4 Super Yang-Mills, and vice versa.

• Supergravity fields in AdS5×S5, Kaluza-Klein dimensionally reduced on S5, correspond
to operators in N = 4 Super Yang-Mills, and the conformal dimension of operators is
related to the mass of supergravity fields.

• Chiral primary operators are primary operators that preserve some supersymmetry,
and belong to special (short) representations of the superconformal group. The dimen-
sion of chiral primary operators matches with what is expected from the mass of the
corresponding AdS5 fields.

• AdS-CFT is actually defined in global AdS space, which has a S3 ×Rt boundary. The
N = 4 Super Yang-Mills theory lives at this boundary, which is conformally related to
R4.
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Exercises, section 8

1) The metric for an ”M2 brane” solution of d=11 supergravity (and of so called ”M
theory,” related to string theory, by extension) is given by

ds2 = H−2/3(d�x3)
2 +H+1/3(dr2 + r2dΩ2

7); H = 1 +
25π2l6P
r6

(8.18)

Check that the same limit taken for D3 branes gives M theory on AdS4 × S7 if lP → 0,
U ≡ r2/l3P fixed.

2) Let Y A be 6 cartesian coordinates for the 5-sphere S5. Then Y A are vector spherical
harmonics and Y A1...An = Y (A1 ...Y An)−traces is a totally symmetric traceless spherical har-
monic (i.e. Y A1...AnδAmAp = 0, ∀ 1 ≤ m, p ≤ n). Check that, as polynomials in 6d, Y A1...An

satisfy �6dY
A1...An = 0. Expressing �6d in terms of �S5 amd ∂r (where Y AY A ≡ r2), check

that Y A1...An are eigenfunctions with eigenvalues −k(k + 6 − 1)/r2.

3) Check that the r → 0 limit of the Dp-brane metric gives AdSp+2 × S8−p only for p=3.

4) String corrections to the gravity action come about as gs corrections to terms already
present and α′ corrections appear generally as (α′R)n, with R the Ricci scalar, or some par-
ticular contraction of Riemann tensors. What then do α′ and gs string corrections correspond
to in SYM via AdS-CFT (in the N → ∞, λ = g2

YMN fixed and large limit)?

5) Show that the time it takes a light ray to travel from a finite point in AdS to the
real boundary of space and back is finite, but the times it takes to reach the center of AdS
(x0 = ∞, or r = 0, or ρ = 0) is infinite. Try this in both Poincare and global coordinates.
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9 Witten prescription and 3-point function calculation

Witten prescription
A precise correspondence between the fundamental observables, the correlators of the

CFT and the correlators of Supergravity, was proposed by Witten. This prescription relates
the Euclidean version of AdS5 (Lobachevski space) with the CFT on Euclidean R4. The
physical case of Minkowski space is harder. One needs to analytically continue the Euclidean
space final results to Minkowski space.

An operator O in N = 4 SYM of dimension Δ is related to a field φ of mass m in
AdS5 × S5 supergravity where the relation between Δ and m is (8.13). A massless field
m = 0 corresponds to a field φ of Δ = d living at the boundary of space.

The boundary of AdS5×S5, S5 shrinks to zero size, and the boundary is either Rt×S3 in
global coordinates, or the conformally equivalent R4 in the Poincare patch, and is identified
with the space where N = 4 SYM lives. But the massless field φ will have a value φ0 on
the boundary of AdS5, which therefore should have a corresponding meaning in the gauge
theory.

The natural interpretation is that φ0 is a source for O, i.e. that it couples to it. Since
φ0 has no gauge indices (there is no ”gauge group” in gravity), O has none, so it must be a
gauge invariant operator, therefore composite (since fundamental fields have gauge indices).

One is then led to consider the partition function with sources for the composite operator
O, ZO[φ0], which is a generating functional of correlation functions of O, as we discussed in
section 1.

In Euclidean space, we have

ZO[φ0] =

∫
D[SYM fields] exp(−SN=4 SYM +

∫
d4xO(x)φ0(x))

⇒< O(x1)...O(xn) >=
δn

δφ0(x1)...δφ0(xn)
ZO[φ0] (9.1)

We now need to understand how to compute ZO[φ0] in AdS5. It should be a partition
function of string theory in AdS5 for the field φ, with the source φ0 on its boundary, i.e. the
field φ approaches φ0 on its boundary.

But if we are in the supergravity limit, g2 → 0, α′ → 0, R4/α′2 = gsN � 1, we have no
quantum corrections, therefore the classical supergravity is a good approximation. Then the
partition function Z[φ0] of the field φ in classical supergravity, for φ→ φ0 on the boundary,
becomes

Z[φ0] = exp[−Ssugra[φ[φ0]]] (9.2)

i.e., one finds the classical solution φ[φ0] and replaces it in Ssugra.
Therefore, Witten’s prescription for the correlation functions of massless fields in AdS-

CFT is

ZO[φ0]CFT =

∫
D[]e−S+

∫
d4xO(x)φ0(x) = Zclass[φ0]AdS = e−Ssugra[φ[φ0]] (9.3)

One can define a classical AdS5 Green’s function (for instance, in the Poincare patch).
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The bulk-to boundary propagator KB is defined by

”��x,x0”KB(�x, x0; �x
′) = δ4(�x− �x′) (9.4)

where ”��x,x0” is the kinetic operator and the delta function is a source on the flat 4 dimen-
sional boundary of AdS5. Then the field φ is written as

φ(�x, x0) =

∫
d4�x′KB(�x, x0; �x

′)φ0(�x
′) (9.5)

and one replaces this in Ssugra[φ].
The simplest example is a CFT 2-point function of the operator O corresponding to φ,

< O(x1)O(x2) >=
δ2

δφ0[x1]δφ0[x2]
e−Ssugra[φ[φ0]]|φ0=0 (9.6)

But since

Ssugra[φ[φ0]] ∼
∫

(d5x
√
g)

∫
d4�x′

∫
d4�y′”∂μ”KB(�x, x0; �x

′)φ0(�x
′)”∂μ”KB(�x, x0; �y

′)φ0(�y
′)+O(φ3

0)

(9.7)
where ”∂μ · ∂μ” = ”�” = kinetic operator, we get that

Ssugra[φ[φ0]]|φ0=0 = 0;
δS

δφ0
[φ[φ0]]|φ0=0 = 0 (9.8)

and only second derivatives and higher give a nonzero result. Then

< O(x1)O(x2) >=
δ

δφ0[x1]
(−δSsugra
δφ0[x2]

e−Ssugra)|φ0=0 = − δ2Ssugra[φ[φ0]]

δφ0(x1)δφ0(x2)
|φ0=0

= − δ2

δφ0[x1]δφ0[x2]

∫
d5x

√
g

∫
d4�x′

∫
d4�y′”∂μ�x,x0

”KB(�x, x0; �x
′)φ0(�x

′) ×

×”∂μ�x,x0
”KB(�x, x0; �y

′)φ0(�y
′) =

∫
d5x

√
g”∂μ�x,x0

”KB(�x, x0; �x
′)”∂μ�x,x0

”KB(�x, x0; �y
′)(9.9)

This is the general approach one can use for any n-point function, but in the particular case
of the 2-point function the problem simplifies, and the integral that needs to be done is
simpler. We are working in Euclidean AdSd+1 (Lobachevski space) in the Poincare patch,
with metric

ds2 = R2d�x
2 + dx2

0

x2
0

(9.10)

As we just saw, because we take two φ0 derivatives and afterwards put φ0 to zero, the
interacting terms in the supergravity action can be neglected for the calculation of the two
point function. Therefore we are considering only a free scalar field, satisfying �φ = 0, and
with action

S =

∫
d5x

√
g(∂μφ)∂μφ = −

∫
d5x

√
gφ�φ+

∫
d5x

√
g∂μ(φ∂

μφ) =

∫
boundary

d4x
√
h(φ�n · �∇φ)

(9.11)
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where h is the metric on the boundary. From the bulk-to-boundary propagator equation
(9.4) one finds that

KB(�x, x0; �x
′) =

Cxd0
(x2

0 + |�x− �x′|2)d (9.12)

and we have
√
h = x−d0 ; �n · �∇ = x0∂/∂x0. We also have φ(�x, x0) → φ0(�x) as x0 → 0 and

x0
∂

∂x0
φ(�x, x0) = x0

∂

∂x0

∫
dd�x′KB(�x, x0; �x

′)φ0(�x
′) → cdxd0

∫
dd�x

φ0(�x
′)

|�x− �x′|2 (9.13)

thus we obtain

Ssugra[φ] = lim
x0→0

∫
dd�xx−d0 φ(�x, x0)x0

∂

∂x0
φ(�x, x0) =

Cd

2

∫
dd�xdd�x′

φ0(�x)φ0(�x
′)

|�x− �x′|2d (9.14)

and therefore

< O(x1)O(x2) >= − Cd/2

|�x− �x′|2d (9.15)

which is the correct behaviour for a field of conformal dimension Δ = d. As we said, the
massless scalar field should indeed correspond to an operator of protected dimension Δ = d,
so we have our first check of AdS-CFT!

But a real test comes at the level of interactions. The two-point function behaviour is
kinematically fixed (by conformal invariance), and the numerical factor −Cd/2 is only a
normalization constant. Not so for a 3-point function. Even though the functional form will
be dictated by conformal invariance (plus the conformal dimensions, tested in the two-point
functions), the actual numerical coefficient could provide a test of the dynamics. But, as
for the conformal dimension, the numerical coefficient of a 3-point function will in general
receive quantum corrections. So we need to find quantitites that are not renormalized.

R current anomaly
Luckily, the first such example is easy to find. There is an SU(4) = SO(6) R-symmetry

in the N = 4 SYM theory, which in principle can be broken by quantum anomalies, as
described in section 1. And as we said there, these anomalies appear only at 1-loop, so they
can be calculated exactly. Also, in 4 dimensions, the only one-loop diagram that gives a
quantum anomaly is the triangle graph, which has 3 external points, therefore contributes
to the 3-point function.

The SU(4) R-symmetry currents Jaμ are gauge invariant, composite operators of the type
of O, which by Witten’s AdS-CFT prescription couple to fields Aaμ in AdS5, that have
boundary values aaμ. Here a is a SU(4)=SO(6) index, and in gravity SO(6) is the symmetry
of the sphere S5. From this one can infer that the fields Aaμ are the gauge fields of the gauged
supergravity that is the Kaluza-Klein dimensional reduction of 10 dimensional supergravity
compactified on the S5. The Witten prescription gives

Z =

∫
D[fields]e−S+

∫
d4xJa

μa
a
μ = e−Ssugra[A[a]] (9.16)

75



The R symmetry currents are obtained as follows. The N = 4 SYM action in Euclidean
space is

SN=4 SYM = Tr

∫
d4x[

1

4
F 2
μν −

i

2
ψ̄iD/ψ

i − 1

2
DμφijD

μφij

− i

2
ψ̄i[φ

ij, ψj ] +
1

4
[φiij, φkl][φ

ij , φkl]] (9.17)

and the SU(4) R symmetry transformations are

δψi = εa(Ta)
i
j

1 + γ5

2
ψj ; δφij = εa(Ta)ij

klφkl (9.18)

and then the Noether current (1.41) is

Jμa (x) =
1

2
φ(x)T φa (

↔
∂
μ

+ 2Aμ(x))φ(x) − i

2
ψ̄(x)Tψa γ

μ1 + γ5

2
ψ(x) (9.19)

The conventions we use here are that

TaTb =
1

2
(fab

c − idab
c)Tc ⇒ [Ta, Tb] = fab

cTc; {Ta, Tb} = −idabcTc (9.20)

and that
TrR(TaTb) = −CRδAB (9.21)

where CR is the Casimir in the corresponding representation (Cf = 1/2). We note that the
R-symmetry is carried in particular by the chiral fermions 1

2
(1 + γ5)ψ. The d=4 anomaly

is given by a triangle diagram as in Fig.9a), where the loop (triangle) is formed by chiral
fermions. Anomaly means that

∂

∂xμ
< Jaμ(x)J

b
ν(y)J

c
ρ(z) > �= 0 (9.22)

The quantum anomaly has in general the properties

• is one-loop exact, so we expect to find the same result from AdS-CFT

• is proportional to dabc = Tr(Ta{Tb, Tc}), which is totally symmetric under the inter-
change of a, b, c indices, therefore the anomaly (9.22) will be totally symmetric under
the interchange of a, b, c.

• is antisymmetric in the indices μ, ν, ρ.

In a similar manner to the 2-point function calculation in (9.9) we get

< Jaμ(x)J
b
ν(y)J

c
ρ(z) >=

δ3e−Ssugra[Aa
μ[ab

ν ]]

δaaμ(x)δa
b
ν(y)δa

c
ρ(z)

|a=0 = − δ3Ssugra[A
a
μ[a

b
ν ]]

δaaμ(x)δa
b
ν(y)δa

c
ρ(z)

|a=0 (9.23)
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Figure 9: a)Triangle diagram contributing to the < Jaμ(x)J
b
ν(y)J

c
ρ(z) > correlator. Chiral

fermions run in the loop. b) Tree level ”Witten diagram” for the 3-point function in AdS
space. c)Tree level Witten diagrams for the 4-point function in AdS space.
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Since Aaμ ∝ aaμ, to get a nonzero result we look for the term with 3 Aaμ’s in Ssugra.
Moreover, since we are interested in the anomaly, which is antisymmetric in μ, ν, ρ, we
look for a term in the 5 dimensional gauged supergravity (since Aaμ belongs to it) that is
antisymmetric in μ, ν, ρ. This is the so-called Chern-Simons term. It can be written as

SCS(A) =
iN2

16π2
Tr

∫
B5=∂M6

εμνρστ (Aμ(∂νAρ)∂σAτ + A4 terms + A5 terms)

=
iN2

16π2
Tr

∫
M6

εμνρστFμνFρσFτε (9.24)

and we can see that it is symmetric under the interchange of the 3 F’s. The term is 5-
dimensional, but when written in 5 dimensions it looks complicated, an A3 term that we
are interested in for the calculation of the 3-point function and A4, A5 terms. But it looks
simple when written in 6 dimensions as a boundary term, since

εεμνρστ∂ε(Aμ(∂νAρ)∂σAτ + A4 terms + A5 terms) = εεμνρστFεμFνρFστ (9.25)

The Chern-Simons term is easily seen to be proportional (upon performing the trace) to
dabc = Tr(Ta{Tb, Tc}), thus it indeed gives a contribution to the quantum anomaly.

The supergravity action for Aaμ is of the type

S[A] =

∫
(Aμ)

2 term +

∫
(AaμA

b
νA

c
ρ term) + ... (9.26)

and the quadratic term gives a propagator, whereas the cubic term gives a 3-point vertex, out
of which we construct so-called ”Witten diagrams” (a particular type of Feynman diagrams,
really) as in Fig.9b,c. In Fig.9b) we have the unique tree diagram contributing to the sought
after 3-point function, a 3-point vertex in the middle of AdS space, with 3 bulk-to-boundary
propagators connecting it to 3 points on the boundary. In Fig.9c) we similarly have the
only tree diagrams contributing to the 4-point function: a 4-point vertex united with the
4 boundary points, and two diagrams with two internal 3-vertices each, connected to each
other and to the boundary. We can draw similar tree diagrams for any n-point function.
Since we use the classical supergravity action (we are in the classical supergravity limit),
we will only get tree diagrams. Loop diagrams would correspond to quantum corrections,
therefore will only appear in the full string theory, and are suppressed in this limit.

Coming back to our case, the Chern-Simons term contains the only dabc 3-point vertex,
therefore gives the only anomalous contribution to the 3-point correlator:

< Jμa(x)Jνb(y)Jρc(z) >CFT, dabc part= −δ
3S3−pnt vertex

CS,sugra [Aaμ[a
d
σ]]

δaaμ(x)δa
b
ν(y)δa

c
ρ(z)

(9.27)

We could continue by substituting Aaμ[a
d
σ] and doing the intergrals and differentiations,

but there is a simpler way in the case of the anomaly.
The gauge variation

δAaμ = (DμΛ)a = ∂μλ
a + gfabcA

b
μλ

c (9.28)

78



of the Chern-Simons term gives

δΛSCS =
iN2

16π2
Tr

∫
B5

d5xεμνρστ (δAμFνρFστ )

=
iN2

16π2
dabc

∫
B5

d5xεμνρστ (DμΛ)aF b
νρF

c
στ

= − iN2

16π2
dabc

∫
B5

d5xεμνρστ∂τ (Λ
a∂μ(A

b
ν∂ρA

c
σ +

1

4
f cdeA

b
νA

d
ρA

e
σ))

= − iN2

16π2
dabc

∫
boundary

d4xεμνρσΛa∂μ(A
b
ν∂ρA

c
σ +

1

4
f cdeA

b
νA

d
ρA

e
σ) (9.29)

where in the third line we have used partial integration and D[μFνρ] = 0 and in the last
expression we can substitute Aaμ’s with their boundary values aaμ.

But the AdS-CFT prescription (9.16) implies that

δΛSclass[a
a
μ] = δΛ(− lnZ[aaμ]) =

∫
d4xδaμa(x)Jaμ(x) =

∫
d4x(DμΛ)aJaμ(x) = −

∫
d4xΛa[DμJμ]

a

(9.30)
Substituting δΛSCS we get (at leading order in N)

(DμJμ)
a(x) ≡ ∂

∂xμ
Jaμ + fabca

μbJcμ =
iN2

16π2
dabcε

μνρσ∂μ(a
b
ν∂ρa

c
σ +

1

4
f cdea

b
νa

d
ρa
e
σ) (9.31)

which is exactly the operator equation for the R-current anomaly in the CFT (coming from
the 1-loop CFT computation). At a=0, the 1-loop result for the anomaly of the 3-point
function is

∂

∂zρ
< Jaμ(x)J

b
ν(y)J

c
ρ(z) >CFT,dabc

= −(N2 − 1)idabc
16π2

εμνρσ
∂

∂xρ

∂

∂yσ
δ(x− y)δ(y − z) (9.32)

which indeed matches with the above at leading order in N (and a careful analysis matches
also at subleading order).

We want now to calculate the full 3-point function, not only the anomalous part. Since
the dabc part is anomalous, the other group invariant that appears in the 3-point vertex is
fabc, which will thus give the non-anomalous part of the 3-point function. This calculation
could in principle be done in x space and in p space. The p space calculation is more familiar
in field theory, but in gravity is somewhat more involved, so we will describe the x-space
calculation.

In x-space we can use conformal invariance to simplify the calculations. It dictates that
the 3-point function of currents should have the general form

< Jaμ(x)J
b
ν(y)J

c
ρ(z) >fabc

= fabc(k1D
sym
μνρ (x, y, z) + k2C

sym
μνρ (x, y, z)) (9.33)

where k1, k2 are arbitrary coefficients and Csym
μνρ and Dsym

μνρ stand for the symmetrized version
of the objects

Dμνρ(x, y, z) =
1

(x− y)2(z − y)2(x− z)2

∂

∂xμ
∂

∂yν
log(x− y)2 ∂

∂zρ
log

(
(x− z)2

(y − z)2

)

Cμνρ(x, y, z) =
1

(x− z)4

∂

∂xμ
∂

∂zσ
log(x− z)2 ∂

∂yν
∂

∂zσ
log(y − z)2 ∂

∂zρ
log

(
(x− z)2

(y − z)2

)
(9.34)
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By conformal invariance we can fix one point, e.g. z = 0, and another, e.g. y → ∞.
Then the form of the two structures becomes

Dμνρ(x, y, 0)
y→∞→ 4

y6x4
Iνσ(y){δμρxσ − δμσxρ − δσρxμ − 2

xμxρxσ
x2

}

Cμνρ(x, y, 0)
y→∞→ 8

y6x4
Iνσ(y){δμρxσ − δμσxρ − δσρxμ + 4

xμxρxσ
x2

}

Iμν(x) ≡ δμν − 2
xμxν
x2

(9.35)

On the other hand, the AdS calculation comes from the 3-point vertex proportional to
fabc, which is

1

2g2
SG

∫
ddwdw0

wd+1
0

ifabc∂[μA
a
ν]w

4
0A

b
μ(w)Acν(w) (9.36)

The bulk to boundary propagator now has a vector index and depends on the gauge for
A in which we work

Aaμ(z) =

∫
d4�xGμα(z, �x)a

a
α(�x) (9.37)

where α and �x denote boundary values. The gauge symmetry of A implies the gauge trans-
formation of the bulk to boundary propagator

Gμα(z, �x) → Gμα(z, �x) +
∂

∂zμ
Λα(z, �x) (9.38)

We can choose the propagator that is conformally invariant on the boundary, in order
to be able to take advantage of the conformal invariance properties. In principle we can do
the calculation with any other propagator, but it will be longer. The conformally invariant
propagator is

Gμα(z, �x) = Cd

(
z0

(z − x)2

)d−2

∂μ

(
(z − �x)α
(z − �x)2

)
(9.39)

where Cd is a constant. Then one finds

< Jaα(x)J
b
β(y)J

c
γ(z) >fabc

= − ifabc
2g2

SG

2F symm
αβγ (�x, �y, �z)

Fαβγ(�x, �y, �z) ≡
∫

ddwdw0

wd+1
0

∂[μGν]α(w, �x)w
4
0Gμβ(w, �y)Gνγ(w, �z) (9.40)

After some algebra, one finds

Fαβγ(�x, �y, �z) = −C̃d Jβδ(�y − �x)

|�y − �x|2(d−1)

Jγε(�z − �x)

|�z − �x|2(d−1)

1

|�t|d (δδεtα + (d− 1)δαδtε + (d− 1)δαεtδ − d
tαtεtδ

|�t|2 )

(9.41)
where

�t ≡ (�y − �x)′ − (�z − �x)′ and (�w)′ ≡ �w

�w2
(9.42)
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We can now put �z = 0 and |�y| → ∞ in this result and compare with the CFT result
(9.33) and (9.35) and we can then find that

F symm
αβγ (�x, �y, �z) =

1

π4
(Dsym

αβγ (�x, �y, �z) −
Csym
αβγ (�x, �y, �z)

8
) (9.43)

One can in fact check that this matches the 1-loop result of CFT, even though we are at
strong coupling (λ ≡ g2N � 1). That implies that there should exist some nonrenormaliza-
tion theorem at work, similar to the one for the quantum anomaly. In fact, such a theorem
was subsequently proved for 3-point functions, using superconformal symmetry. Thus in
fact, in N = 4 SYM the 3-point functions of currents are 1-loop exact and match with the
AdS space calculation!

Important concepts to remember

• The Witten prescription states that the exponential of (minus) the supergravity ac-
tion for fields φ with boundary values φ0 is the partition function for operators O
corresponding to φ, and with sources φ0.

• The bulk to boundary propagator, together with the AdS supergravity (gauged super-
gravity) vertices, define ”Witten diagrams” from which we calculate the boundary (2-,
3-, 4-,...-point) correlators.

• The 2-point functions match, but they are kinematic. Dynamics is encoded in 3-point
functions and higher

• To compare both sides of the duality, we need correlators that do not get renormalized.
The R-current anomaly is such an object

• The R-current anomaly in field theory is given by a one-loop triangle Feynman diagram
contribution to the 3-point function of R-currents, and comes from the AdS (gauged)
supergravity Chern-Simons term. It matches.

• Even the full 3-point function of R-currents matches with the AdS space calculation of
gauge field 3-point function. It was later understood to come from non-renormalization
theorems.
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Exercises, section 9

1) Knowing that parts of the gauge terms trF 2
μν and SCS used for the AdS-CFT calcula-

tion of the 3-point function of R-currents come from the 10d Einstein term ∼ 1
g2s

∫
d10x

√
G(10)R

(here R= 10d Ricci scalar), prove that the overall factor in Ssugra[Aμ(aρ)], and thus in the
3-point function of R-currents, isN2 (no gYM factors). Use that RAdS5 = RS5 =

√
α′(gsN)1/4.

2) Consider the equation (� −m2)φ = 0 in the Poincare patch of AdSd+1. Check that

near the boundary x0 = 0, the two independent solutions go like x
2h±
0 , with

2h± =
d

2
±
√
d2

4
+m2R2 (9.44)

(so that 2h+ = Δ, the conformal dimension of the operator dual to φ).

3) Check that near x0 = 0, the massless scalar field φ =
∫
KBφ0, with

KB(�x, x0; �x
′) = c

(
x0

x2
0 + |�x− �x′|2

)d
(9.45)

goes to a constant, φ0. Then check that for the massive scalar case, replacing in KB the
power d by 2h+, we have φ→ x

2h−
0 φ0 near the boundary.

4) Check that the (1-loop) anomaly of R-currents is proportional to N2 at leading order,
by doing the trace over indices in the diagram.

5) Write down the classical equations of motion for the 5d Chern-Simons action for Aaμ.

6) Consider a scalar field φ in AdS5 supergravity, with action

S =

∫
1

2
(∂μφ)2 +

1

2
m2φ2 + λ

φ3

3
(9.46)

Is the 4-point function of operators O sourced by φ, < O(x1)...O(x4) >, zero or nonzero,
and why?
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10 Quarks and the Wilson loop

External quarks in QCD
Quarks in QCD can be introduced as

• fundamental: light quarks, appearing in the action

• external probes: (infinitely) heavy quarks, external (not in the action).

QCD is confining, which means light quarks are not free in the vacuum, they appear in
pairs with an antiquark. Thus even if we put external quarks (not in the theory), we don’t
expect to be able to put a single quark in the vacuum, we need at least two: a quark and
an antiquark.

Since the external quarks are very heavy, they will stay fixed, i.e. the distance between
q and q̄ will stay fixed in time, as in Fig.10a. The question is then how do we measure
the interaction potential between two such quarks, Vqq̄(L)? We need to define physical
observables that can measure it. One such physical, gauge invariant object is called the
Wilson loop.

We first define the path ordered exponential

Φ(y, x;P ) = P exp{i
∫ y

x

Aμ(ξ)dξ
μ} ≡ lim

n→∞

∏
n

eiAμ(ξμ
n−ξμ

n−1) (10.1)

where Aμ ≡ AaμTa.
Consider first an U(1) gauge field Aμ. Under a gauge transformation δAμ = ∂μχ

eiAμdξμ → eiAμdξμ+i∂μχdξμ

= eiAμdξμ

eiχ(x+dx)−iχ(x) (10.2)

which implies

Φ(y, x;P ) =
∏

eiAμdξμ →
∏

(eiAμdξμ

eiχ(x+dx)−iχ(x))

= eiχ(y)(
∏

eiAμdξμ

)e−iχ(x) = eiχ(y)Φ(y, x;P )e−iχ(x) (10.3)

If we have a complex field φ charged under this U(1), i.e. transforming as

φ(x) → eiχ(x)φ(x) (10.4)

then the multiplication by Φ(y, x;P ) gives

Φ(y, x;P )φ(x) → eiχ(y)Φ(y, x;P )e−iχ(x)eiχ(x)φ(x) = eiχ(y)(Φ(y, x;P )φ(x)) (10.5)

thus it defines parallel transport, i.e. the field φ(x) was parallel transported to the point y.
On the other hand, for a closed curve, i.e. for y=x, we have

Φ(x, x;P ) → eiχ(x)Φ(x, x;P )e−iχ(x) = Φ(x, x;P ) (10.6)
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Figure 10: a)Heavy quark and antiquark staying at fixed distance L. b)Wilson loop contour
C for the calculation of the quark-antiquark potential. c) Between a quark and an antiquark
in QCD, flux lines are confined: they live in a flux tube. d)One D-brane separated from the
rest (N) D-branes acts as a probe on which the Wilson loop is located. e) The Wilson loop
contour C is located at U = ∞ and the string worldsheet ends on it and stretches down to
U = U0. f) In flat space, the string worldsheet would form a flat surface ending on C, but
in AdS space 5 dimensional gravity pulls the string inside AdS. g) The free ”W bosons” are
strings that would stretch in all of the AdS space, from U = ∞ to U = 0, straight down,
forming an area proportional to the perimeter of the contour C.
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i.e. it is a gauge invariant object.
For a nonabelian gauge field, the gauge transformation is

Aμ → Ω(x)AμΩ
−1(x) − i(∂μΩ)Ω−1 (10.7)

An infinitesimal transformation Ω(x) = eiχ(x) for small χ(x) = χaTa gives

δAμ = Dμχ = ∂μχ− i[Aμ, χ] (10.8)

which implies

eiAμdξμ � (1 + iAμdξ
μ) → 1 + Ω(Aμdξ

μ)Ω−1 + dξμ(∂μΩ)Ω−1

= [eiχ(x)(1 + iAμdξ
μ) + dξμ∂μe

iχ(x)]e−iχ(x)

� eiχ(x+dx)(1 + iAμdξ
μ)e−iχ(x) � eiχ(x+dx)eiAμdξμ

e−iχ(x) (10.9)

where we have neglected terms of order o(dx2).
By taking products, we get again

Φ(y, x;P ) → eiχ(y)Φ(y, x;P )e−iχ(x) (10.10)

but unlike for the U(1) gauge field, the order of the terms matters now. So again, Φ(y, x;P )
defines parallel transport, for the same reason.

However, now for a closed path (y=x), Φ is not gauge invariant anymore, but rather
gauge covariant:

Φ(y, x;P ) → eiχ(x)Φ(x, x;P )e−iχ(x) �= Φ(x, x;P ) (10.11)

But now the trace of this object is gauge invariant (since it is cyclic). Thus we define the
Wilson loop

W (C) = trΦ(x, x;C) (10.12)

which is gauge invariant and independent of the particular point x on the closed curve C,
since

tr[eiχ(x)Φe−iχ(x)] = Tr[Φ] (10.13)

In the abelian case, for x=y we can use the Stokes theorem to put Φ in an explicitly
gauge invariant form

ΦC = ei
∫
C=∂A Aμdξμ

= ei
∫

A Fμνdσμν

(10.14)

In the nonabelian case, we can do something similar, but we have corrections. If we take
a small square of side a in the plane defined by directions μ and ν, we get

Φ�μν = eia
2Fμν + o(a4) (10.15)

Since Fμν transforms covariantly:

Fμν → Ω(x)FμνΩ
−1(x) (10.16)
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then the Wilson loop, defined for convenience with a 1/N since there are N terms in the
trace for a SU(N) gauge field, becomes

W�μν =
1

N
tr{Φ�μν} = 1 − a4

2N
Tr{FμνFμν} +O(a6) (10.17)

where we don’t have a sum over the indices μ, ν. Here Tr{FμνFμν} is a gauge invariant
operator (even if it is not summed over μ, ν, thus to first nontrivial order this is explicitly
gauge invariant, and moreover we obtain the kinetic term in the action.

The object of interest is therefore

W [C] = trP exp[

∫
iAμdξ

μ] (10.18)

and for the calculation of the static quark-antiquark potential we are interested in a loop as
in Fig.10b, a rectangle with length T in the time direction and R in the spatial direction,
with T � R.

The statement of confinement is that there is a constant force that resists when pulling
the quark and the antiquark away, therefore that

Vqq̄(R) ∼ σR (10.19)

i.e. a linear potential, with σ called the (QCD) string tension. The ”QCD string” is a
confined flux tube for the QCD color electric flux, as in Fig.10c. It is not a fundamental
object, but an effective description due to the confinement which forces the flux lines to stay
(be confined) in a tube.

On the other hand, for QED with infinitely massive (external) quarks, we have the
Coulomb static potential

Vqq̄(R) ∼ α

R
(10.20)

and this model is in fact conformal, since it is scale invariant. This is the kind of potential
we therefore expect in a conformally invariant theory.

One can prove that the VEV of the Wilson loop in Fig.9b behaves as

< W (C) >0∝ e−Vqq̄(R)T (10.21)

if T → ∞.
Therefore in a confining theory like QCD we get

< W (C) >0∝ e−σT ·R = e−σA (10.22)

where A = area, thus this behaviour is known as the area law. In fact, since

W (C1 ∪ C2) = W (C1)W (C2) (10.23)

we can extend the area law to any smooth curve C, not just to the infinitely thin rectangle
analyzed here, since we can approximate any area by such infinitely thin rectangles, as in
Fig.11.
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Figure 11: Approximation of a curve C by infinitely thin rectangles.

Therefore, confinement means that for any smooth curve C,

< W (C) >0∝ e−σA(C) (10.24)

On the other hand, in conformally invariant cases like QED with external quarks we find
the scale invariant result for the infintely thin curve

< W (C) >0∝ e−α
T
R (10.25)

and for more complicated curves we don’t have an answer, but we just know that the answer
must be scale invariant (independent on the overall size of the curve).

Finally, although here we have only shown how to extract the quark antiquark potential
from Wilson loop VEVs, they are actually very important objects. We can in principle
extract all the dynamics of the theory if we know the (complete operator) Wilson loop.

Defining the (VEV of the) N = 4 SYM Wilson loop via AdS-CFT
AdS-CFT obtains a U(N) gauge group from a large number (N → ∞) of D-branes

situated at the same point. Strings with two ends on different branes are massless, since
there is no physical separation between the D-branes, and correspond to gauge fields, Aaμ =
(λa)ij |i > ⊗|j > ⊗|μ >.

If we consider N + 1 D-branes, giving a U(N + 1) gauge group, and take one of the
D-branes and separate it from the rest, as in Fig.10d), it means that we are breaking the
gauge group, via a Higgs-like mechanism, to U(N) × U(1) (where U(N) corresponds to the
N D-branes that are still at the same point).

The strings that have one end on one of the N D-branes and one end on the extra D-
brane will be massive, with mass = string tension × D-brane separation. These strings have
a state

|i0 > ⊗|i >= |N + 1 > ⊗|i > (10.26)

which is therefore in the fundamental representation of the remaining U(N) (i is a funda-
mental index). Its mass is

M =
1

2πα′ r =
U

2π
(10.27)

87



This string behaves as a ”W boson,” since as the Standard Model particle, it is a vector
field (gauge field) made massive by a Higgs mechanism, that in our case breaks U(N +1) →
U(N) × U(1). The string state (or rather, its |i > endpoint) acts in the U(N) gauge theory
as a source for the U(N) gauge fields, or as a quark, and as a quark, is in the fundamental
representation of U(N).

From (10.27), to get an infinite mass we need to take U → ∞. Therefore the introduction
of infinitely massive external quark is obtained by having a string stretched in AdS space,
in the metric (8.10), between infinity in U and a finite point.

Since infinity in (8.10) is also where the N = 4 SYM gauge theory lives, we put the Wilson
loop contour C at infinity, as a boundary condition for the string. So the string worldsheet
stretches between the contour C at infinity down to a finite point in AdS, forming a smooth
surface, as in Fig.10e.

But there is a subtlety. Strings must also extend on the S5, parametrized by coordinates
θI (since the dual of N = 4 SYM is AdS5 × S5, not just AdS5). And θI correspond to the
scalars XI of N = 4 SYM, which transform in the SO(6) symmetry group (R symmetry of
N = 4SYM and invariance symmetry of S5). Because of that, one finds that supersymmetry
dictates that the strng worldsheet described above is not a source for the usual Wilson loop,
but for the supersymmetric generalized Wilson loop

W [C] =
1

N
Tr P exp[

∮
(iAμẋ

μ + θIXI(xμ)
√
ẋ2)dτ ] + fermions (10.28)

where xμ(τ) parametrizes the loop and θI is a unit vector that gives the position on S5

where the string is sitting. The fermions in that expression give quantum fluctuations that
are suppressed in the supergravity limit, so we will not be bothered by them. We will also
consider the case of θI =constant.

Then the prescription for calculating < W [c] > is as a partition function for the string
with boundary on C. In the supergravity limit (gs → 0, gsN fixed and large) we obtain

< W [C] >= Zstring[C] = e−Sstring[C] (10.29)

where Sstring=string worldsheet action= 1/(2πα′)× area of worldsheet (area in AdS5×S5, not
area of 4 dimensional projection!). That however doesn’t necessarily give the (4 dimensional)
area law for C, since the worldsheet has an area bigger than the 4 dimensional area enclosed
by C.

The string has tension, and it wants to have a minimum area. In flat space, that would
mean that it would span just the flat surface enclosed by C, giving the area law (see Fig.10f).
However, in AdS space, we have a gravitational field

ds2 = α′U
2

R2
(−dt2 + d�x2) + ... (10.30)

To understand the physics, we compare with the Newtonian approximation (though it is not
a good approximation now, but we do get the correct qualitative picture)

ds2 = (1 + 2V )(−dt2 + ...) (10.31)

88



where V is the Newton potential. Newtonian gravity means that the string would go to the
minimum V . In our case, that would mean the minimum U . Therefore the string worldsheet
with boundary at U = ∞ ”drops” down to U = U0 as in Fig.10f) and is stopped (held back)
by its tension.

But the prescription is not done, since the area of the worldsheet stretching from U = ∞
to U = U0 is divergent, so we would get < W [C] >= 0. In fact, we must remember that we
said the string stretched between the |i > and |N + 1 > D-branes, and therefore between
U = ∞ and U = U0 also represents an infinitely massive ”W boson,” whose mass φ we
must now subtract. The ”free W boson” would stretch along all of AdS5, thus from U = ∞
to U = 0, in a straight line, parallel with C, as in Fig.10g. Thus the action that we must
subtract is φl, where l = length of loop C and φ = free W boson (free string) mass, U/(2π).
Then

< W [C] >= e−(Sφ−lφ) (10.32)

Calculation of the quark-antiquark potential
We take the contour C to be the infinitely thin rectangle, with T → ∞, and a quark q

at x = −L/2 and an antiquark q̄ at x = +L/2. The metric is

ds2 = α′[
U2

R2
(dt2 + d�x2) +R2dU

2

U2
+R2dΩ2

5]; R2 =
√

4πgsN (10.33)

and the Nambu-Goto action for the string is

Sstring =
1

2πα′

∫
dτdσ

√
detGMN∂αXM∂βXN (10.34)

We choose a gauge where the worldsheet coordinates equal 2 spacetime coordinates,
specifically τ = t and σ = x. This choice is known as a static gauge, and it is consistent
to take it since we are looking for a static solution. Then we approximate the worldhseet
to be translationally invariant in the time direction, which is only a good approximation if
T/L→ ∞ (otherwise the curvature of the worldsheet near the corners becomes important).
Since we also are looking at a static configuration, we have a single variable for the worldsheet,
U = U(σ) which becomes U = U(x).

We calculate hαβ = GMN∂αX
M∂βX

N and obtain

h11 = α′U
2

R2
(
dt

dτ
)2 = α′U

2

R2
; h22 = α′U

2

R2
(
dx

dσ
)2 + α′R

2

U2
(
dU

dσ
)2 = α′(

U2

R2
+
R2

U2
U ′2); h12 = 0

(10.35)
thus

Sstring =
1

2π
T

∫
dx

√
(∂xU)2 +

U4

R4
(10.36)

and we have reduced the problem to a 1 dimensional mechanics problem.
We define U0 as the minimum of U(x) and y = U/U0. Then we can check that the

solution is defined by

x =
R2

U0

∫ U/U0

1

dy

y2
√
y4 − 1

(10.37)

89



which gives x(U,U0) and inverted gives U(x, U0). To find U0 we note that at U = ∞ we have
x = L/2, therefore

L

2
=
R2

U0

∫ ∞

1

dy

y2
√
y4 − 1

=
R2

U0

√
2π3/2

Γ(1/4)2
(10.38)

Then from the Wilson loop prescription

Sφ − lφ = TVqq̄(L) (10.39)

and we regularize this formula by integrating only up to Umax. Then l � 2T and the mass
of the string,

φ =
Umax − U0

2π
+
U0

2π
=
U0

2π

∫ ymax

1

dy +
U0

2π
(10.40)

therefore (there is a factor of 2 since we integrate from Umax to U0 and then from U0 to Umax)

TVqq̄(L) = T
2U0

2π
[

∫ ∞

1

dy(
y2√
y4 − 1

− 1) − 1] (10.41)

Finally, by substituting U0 and R2, we get

Vqq̄(L) = − 4π2

Γ(1/4)4

√
2g2

YMN

L
(10.42)

So we do get Vqq̄(L) ∝ 1/L as expected for a conformally invariant theory (therefore no

area law). However, we also get that Vqq̄(L) ∝√g2
YMN which is a nonpolynomial, therefore

nonperturbative result. That means that this cannot be obtained by a finite loop order
calculation. For example, the 1-loop result would be proportional to g2

YMN .

Important concepts to remember

• Introducing external quarks in the theory, we can measure the quark-antiquark poten-
tial between heavy sources.

• The Wilson loop, W [C] = tr P exp
∫
iAμdx

μ is gauge invariant.

• By choosing the contour C as a rectangle with 2 sides in the time direction, of length
T, and two sides in a space direction, of length R � T , we have a contour C from
which we can extract Vqq̄(R) by < W (C) >0= exp(−Vqq̄(R)).

• In a confining theory like QCD, Vqq̄(R) ∼ σR, thus we have the area law: < W (C) >0∝
exp(−σA(C)) for any smooth curve C, and reversely, if we find the area law the theory
is confining.

• In a conformally invariant theory like QED with external quarks, Vqq̄(R) = α/R and
the Wilson loop is conformally (scale) invariant. For the above C, < W (C) >0∝
exp(−αT/R).
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• In AdS-CFT, the Wilson loop one finds has also coupling to scalars (and fermions),
and is defined by < W (C) >0= exp(−Sstring(C)), where the string worldsheet ends at
U = ∞ on the curve C and drops inside AdS space. One needs to subtract the mass
of the free strings extending straight down over the whole space.

• The result or the calculation is nonperturbative (proportional to
√
λ), but has the

expected conformal (Coulomb) behaviour.
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Exercises, section 10

1) Check that in the nonabelian case, for a closed square contour of side a, in a plane
defined by μν, we have

Φ�μν = eia
2Fμν + o(a4) (10.43)

2) Check that if a free relativistic string in 4 flat dimensions is stretched between q and
q̄ and we use the AdS-CFT prescription for the Wilson loop, W [C] = e−Sstring[C], we get the
area law.

3) Consider a circular Wilson loop C, of radius R. Give an argument to show that W[C] in
N=4 SYM, obtained from AdS-CFT as in the rectangular case, is also conformally invariant,
i.e. independent of R.

4) Check that if AdS5 terminates at a fixed U = U1 and strings are allowed to reach
U1 and get stuck there, then we get the area law for < W [C] >. (This is similar to what
happens in the case of finite temperature AdS-CFT).

5) Finish the steps left out in the calculation of the quark antiquark potential to get the
final result for Vqq̄(L).
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11 Finite temperature and scattering processes

We now turn to phenomena that seem to have relevance for QCD, at least in terms of
qualitative behaviour. We will examine two important examples, finite temperature field
theory and scattering processes.

Finite temperature in field theory; periodic time
In quantum mechanics, we write down a transition amplitude between points q, t and

q′, t′ as

< q′, t′|q, t > = < q′|e−iĤ(t′−t)|q >=
∑
nm

< q′|n >< n|e−iĤ(t′−t)|m >< m|q >

=
∑
n

ψn(q
′)ψ∗

n(q)e
−iEn(t′−t) (11.1)

On the other hand it can also be written as a path integral

< q′, t′|q, t >=

∫
Dq(t)eiS[q(t)] (11.2)

If we perform a Wick rotation to Euclidean space by t→ −itE , t′ − t→ −iβ, iS → −SE
and look at closed paths q′ = q(tE + β) = q = q(tE), we obtain

< q, t′|q, t >= Tr(e−βĤ) =

∫
q(tE+β)=q(tE)

Dq(tE)e−SE [q(tE)] (11.3)

That means that the Euclidean path integral on a closed path equals the statistical mechanics
partition function at temperature T = 1/β (Boltzmann constant k = 1).

Similarly in field theory we obtain for the euclidean partition function

ZE[β] =

∫
φ(�x,tE+β)=φ(�x,tE)

Dφe−SE [φ] = Tr(e−βĤ) (11.4)

Therefore the partition function at finite temperature T is expressed again as a euclidean
path integral over periodic euclidean time paths. One can then extend this formula by
adding sources and calculating propagators and correlators, exactly as for zero temperature
field theory.

Thus the finite temperature field theory, for static quantities only (time-independent!),
is obtained by considering periodic imaginary time, with period β = 1/T .

Black hole temperature
We can use this approach to deduce that black holes radiate thermally at a given tem-

perature T , a process known as Hawking radiation.
We want to describe quantum field theory in the black hole background. As always,

it is best described by performing a Wick rotation to Euclidean time. The Wick-rotated
Schwarzschild black hole is

ds2 = +(1 − 2M

r
)dτ 2 +

dr2

1 − 2M
r

+ r2dΩ2
2 (11.5)
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Having now Euclidean signature, it doesn’t make sense to go inside the horizon, at
r < 2M , since then the signature will not be euclidean anymore (unlike for Lorentz signature,
when the only thing that happens is that the time t and radial space r change roles), but
will be (−− ++).

Therefore, if the Wick rotated Schwarzschild solution represents a Schwarzschild black
hole, the horizon must not be singular, yet there must not be a continuation inside it, i.e. it
must be smoothed out somehow. This is possible since in Euclidean signature one can have
a conical singularity if

ds2 = dρ2 + ρ2dθ2 (11.6)

but θ ∈ [0, 2π − Δ]. If Δ �= 0, then ρ = 0 is a singular point, and the metric describes a
cone, as in Fig.12b, therefore ρ = 0 is known as a conical singularity. However, if Δ = 0 we
don’t have a cone, thus no singularity, and we have a (smooth) euclidean space.

2pi−delta

M

T(M)

dM/dT<0
(unstable)

M

T
min

min

T1

M
1

C=dM/dT>0

a)

identify

b)

Figure 12: a) T (M) for the AdS black hole. The lower M branch is unstable, having
∂M/∂T < 0. The higher M branch has ∂M/∂T > 0, and above T1 it is stable. b) A flat cone
is obtained by cutting out an angle from flat space, so that θ ∈ [0, 2π − Δ] and identifying
the cut.

A similar situation applies to the Wick rotated Schwarzschild black hole. Near r = 2M ,
we have

ds2 � r̃

2M
dτ 2 + 2M

dr̃2

r̃
+ (2M)2dΩ2

2 (11.7)

where r − 2M ≡ r̃. By defining ρ ≡ √
r̃ we get

ds2 � 8M(dρ2 +
ρ2dτ 2

(4M)2
) + (2M)2dΩ2

2 (11.8)

so near the horizon the metric looks like a cone. If τ has no restrictions, the metric doesn’t
make much sense. It must be periodic for it to make sense, but for a general period we get a
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cone, with ρ = 0(r = 2M) a singularity. Only if τ/(4M) has period 2π we avoid the conical
singularity and we have a smooth space, that cannot be continued inside r = 2M .

Therefore we have periodic euclidean time, with period βτ = 8πM . By the previous
analysis, this corresponds to finite temperature quantum field theory at temperature

TBH =
1

βτ
=

1

8πM
(11.9)

We can therefore say that quantum field theory in the presence of a black hole has a
temperature TBH or that black holes radiate thermally at temperature TBH .

Does that mean that we can put a quantum field theory at finite temperature by adding
a black hole? Not quite, since the specific heat of the black hole is

C =
∂M

∂T
= − 1

8πT 2
< 0 (11.10)

therefore the black hole is thermodynamically unstable, and it does not represent an equi-
librium situation.

But we will see that in Anti de Sitter space we have a different situation. Adding a
black hole does provide a thermodynamically stable system, which therefore does represent
an equilibrium situation.

Before anlyzing that however, we will try to understand better the Schwarzschild solution
in Euclidean space.

At r → ∞, the solution is R3 × S1 (since τ is periodic, but the metric is flat), which is a
Kaluza-Klein vacuum. That is, it is a background solution around which we can expand the
fields in Fourier modes (in general, we have spherical harmonics, but for compactification on
a circle we have actual Fourier modes) and perform a dimensional reduction by keeping only
the lowest modes.

In particular, fermions can in principle acquire a phase eiα when going around the S1
τ

circle at infinity:
ψ → eiαψ (11.11)

These are known as ”spin structures”, and α = 0 and α = π are always OK, since the
Lagrangian has always terms with an even number of fermions, thus such a phase would still
leave it invariant. If L has additional symmetries, there could be other values of α allowed.

At r → 2M (the horizon), the solution is R2×S2, with R2 being dρ2+ρ2dθ2 (θ = τ/(4M))
and S2 from dΩ2

2. But R2×S2 is simply connected, which means that there are no nontrivial
cycles, or that any loop on R2 × S2 can be smoothly shrunk to zero. That means that there
cannot be nontrivial fermion phases as you go in around any loop on R2 × S2, or that there
is a unique spin structure.

We must therefore find to what does this unique spin structure correspond at infinity?
The relevant loop at infinity is τ → τ + βτ , which near the horizon is θ → θ + 2π, i.e a
rotation in the 2d plane R2. Under such a rotation a fermion picks up a minus sign.

Indeed, a fermion can be defined as an object that gives a minus sign under a complete
spatial rotation, i.e. an object that is periodic under 4π rotations instead of 2π. In 4d, the
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way to see that is that the spatial rotation ψ → Sψ around the axis defined by �ν is given by

S(�ν, 0) = cos
θ

2
I + i�ν · �Σ sin

θ

2
; �Σ =

(
�σ 0
0 �σ

)
(11.12)

where �σ are Pauli matrices. We can see that under a 2π rotation, S = −1.
Therefore the unique spin strucure in the Euclidean Schwarzschild black hole background

is one that makes the fermions antiperiodic at infinity, around the Euclidean time direction.
That can only happen if they have some Euclidean time dependence, ψ = ψ(θ). That in
turns means that the fermions at infinity get a nontrivial mass under dimensional reductions,
since the 4 dimensional free flat space equation (valid at r → ∞) gives (� = ∂/2)

0 = �4d = (�3d +
∂2

∂θ2
)ψ = (�3d +m2)ψ (11.13)

where m2 �= 0 is a 3 dimensional spinor mass squared.
Bosons on the other hand have no such restrictions on them, and we can have bosons

that are periodic at infinity under θ → θ+2π, thus also the simplest case of bosons that are
independent of θ. Then at infinity

0 = �4dφ = (�3d +
∂2

∂θ2
)φ = �3dφ (11.14)

and therefore they can be massless in 3 dimensions.
But if one would have supersymmetry in flat 3 dimensional euclidean space, we would

need that mscalar = mfermion. That is not the case in the presence of the black hole, since
we can have mfermion �= 0, but mboson = 0, therefore the presence of the black hole breaks
supersymmetry.

In fact, one can prove that finite temperature always breaks supersymmetry, in any field
theory.

Therefore, one of the ways to break the unwelcome N = 4 supersymmetry in AdS-CFT
and get to more realistic field theories is by having finite temperature, specifically by putting
a black hole in AdS space. We will discuss this prescrition in the following. Of course, in
the way shown above we obtain a non-supersymmetric 3 dimensional field theory, but there
are ways (that we will not explain) to obtain a 4 dimensional nonsupersymmetric theory in
a similar manner.

Witten prescription
Witten gave a prescription about how to put AdS-CFT at finite temperature by intro-

ducing a black hole in AdS5.
As we have seen, the metric of global Anti de Sitter space can be written as

ds2 = −(
r2

R2
+ 1)dt2 +

dr2

r2

R2 + 1
+ r2dΩ2 (11.15)

where in relation to the previous form in (5.22) (which was for AdS4) we have renamed
1/R2 ≡ −Λ/3 (the cosmological constant Λ is < 0.
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Then the black hole in (n+1)-dimensional Anti de Sitter space is

ds2 = −(
r2

R2
+ 1 − wnM

rn−2
)dt2 +

dr2

r2

R2 + 1 − wnM
rn−2

+ r2dΩ2
n−2 (11.16)

which solves Einstein’s equation with a cosmological constant

Rμν = − n

R2
gμν ≡ Λgμν (11.17)

Here

wn =
16πGN

(n− 1)Ωn−1
(11.18)

and Ωn−1 is the volume of the unit sphere in n − 1 dimensions. For n=3 (AdS4), Ω2 = 4π
and w3 = 2GN .

Repeating the above analysis for the horizon of the Wick rotated AdS black hole, we find
that the temperature of the black hole is

T =
nr2

+ + (n− 1)R2

4πR2r+
(11.19)

where r+ is the largest solution of

r2

R2
+ 1 − wnM

rn−2
= 0 (11.20)

which is called the outer horizon. Then T(M) looks like in Fig.12a, having a minimum of

Tmin =

√
n(n− 2)

2πR
(11.21)

The low M brach has C = ∂M∂T < 0 therefore is thermodynamically unstable, like the
Schwarzschild black hole in flat space (it is in fact a small perturbation of that solution,
since the black hole is small compared to the radius of curvature of AdS space).

The high M branch however has C = ∂M/∂T > 0, thus is thermodynamically stable.
We also need to check the free energy of the black hole solution, FBH , is smaller than the
free energy of pure AdS space, FAdS.

The free energy is defined as

Z =
∑

e−βF (11.22)

where β = 1/T (if k = 1). But in a gravitational theory,

Zgrav = e−S (11.23)

where S = euclidean action. We have seen this for example when defining correlators in
AdS-CFT. Then we have that

S(euclidean action) =
F

T
(11.24)
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and therefore we need to compare

FBH − FAdS = T (SBH − SAdS) (11.25)

and an explicit calculation shows that it is < 0 if

T > T1 =
n− 1

2πR
> Tmin (11.26)

There is one more problem. At r → ∞, the metric is

ds2 � (
r

R
dt)2 + (

R

r
dr)2 + r2dΩ2

n−1 (11.27)

therefore the Euclidean time direction is a circle of radius (r/R)× (1/T ), and the transverse
n − 1 dimensional sphere has radius r. Thus both are proportional to r → ∞, however
the N = 4 SYM gauge theory that lives at r → ∞ has conformal invariance, therefore
only relative scales are relevant for it, so we can drop the overall r. Then the topology
at infinity, where N = 4 SYM lives, is Sn−1 × S1, but we want to have a theory defined
on Rn−1 × S1 instead, namely n-dimensional flat space at finite temperature (with periodic
Euclidean time).

That means that we need to scale the ratio of sizes to infinity

r
r
R

1
R

= R · T → ∞ (11.28)

Therefore we must take T → ∞, only possible if M → ∞, and we must rescale the coordi-
nates to get finite quantities. The rescaling is

r =

(
wnM

Rn−2

)1/n

ρ; t =

(
wnM

Rn−2

)−1/n

τ (11.29)

and M → ∞. Under this rescaling, the metric becomes

ds2 = (
ρ2

R2
− Rn−2

ρn−2
)dτ 2 +

dρ2

ρ2

R2 − Rn−2

ρn−2

+ ρ2

n−1∑
i=1

dx2
i (11.30)

and the period of τ is

β1 =
4πR

n
(11.31)

Since for ρ→ ∞ we get

ds2
ρ→∞ � ρ2(

dτ 2

R2
+ d�x2) (11.32)

considering string theory in the metric (11.30)puts N = 4 SYM at constant finite tempera-
ture

T =
R

β1

=
n

4π
(11.33)
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As we saw before, in this AdS black hole metric, supersymmetry is broken. At (r =)
infinity, the fermions are antiperiodic around the Euclidean time direction, thus if we di-
mensionally reduce the N = 4 SYM theory to 3 dimensions (compactify on the Euclidean
time) the fermions become massive. The gauge fields are protected by gauge invariance and
remain massless under this dimensional reduction. The scalars as we saw remain massless
in 3 dimension, at the classical level. At the quantum level, they also get a mass at 1 loop.

Therefore the 3 dimensional theory obtained by dimensionally reducing N = 4 SYM on
the compact Euclidean time is pure QCD (only gauge fields Aaμ and nothing else)! This is the
perturbative specrtrum of the theory, and it is defined as pure 3 dimensional QCD. But like
the real world 4 dimensional QCD, in 3 dimensions the vacuum structure is very interesting,
with nonperturbative states that aquire a mass despite being composed of massless QCD
fields. This phenomenon is known as a mass gap (spontaneous appearence of a minimum
mass of physical states in a system of massless fields).

Application: mass gap
We would like to understand the mass gap from AdS-CFT. The spontaneous appearence

of a mass in for physical states of N = SYM dimensionally reduced to 3 dimensions translates
into having a classical mass for physical states living in the gravitational dual (11.30). We
therefore study the fields living in the bulk of the Witten metric (11.30) and we would like
to find a nonzero 3 dimensional mass (for n=4). We look for solutions of the free massless
field equation of motion, �φ = 0 on this space, such that

φ(ρ, �x, τ) = f(ρ)ei
�k·�x (11.34)

is independent of τ (dimensionally reduced) and factorizes in ρ and �x dependence. At the
horizon ρ = b we need to impose that the solution is smooth, i.e. df/dρ = 0. On the other
hand, at ρ→ ∞ we need to impose that the solution is normalizable, which gives

f ∼ 1

ρ4
(11.35)

There is also a non-normalizable solution that goes to a constant at infinity. Then one
plugs the ansatz and boundary conditions in the Klein-Gordon equation and finds a discrete
positive spectrum of values for �k2 ≡ m2, which is the value of the 3 dimensional mass
squared. That means that the finite temperature AdS space (11.30) behaves like a quantum
mechanical box with the zero mode removed. This is exactly the statement of the mass gap.

QCD scattering and the Polchinski-Strassler scenario
We saw that for generic fields φ living in AdS space, they take some value φ0 on the

boundary, and then φ0 acts as a classical source for φ through

φ =

∫
KBφ0 (11.36)

and as sources for composite operators in the CFT that lives at the boundary of AdS space,
out of which we can construct correlators. But in QCD we are interested in S matrices
that describe scattering of physical asymptotic states, and the LSZ formalism relates the S
matrices to correlators. But that assumes the existence of separated asymptotic states.
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In a conformal field theory however, there is no notion of scale, therefore there is no notion
of infinity, and no asymptotic states, so we cannot construct S matrices from correlators.

Therefore in order to construct S matrices so that we can study scattering of states as in
QCD, we need to break the conformal invariance.

It has been understood how to modify AdS5 × S5 in order to get something closer to
QCD on the field theory side. There are many examples of possible modifications. To obtain
something that behaves like real QCD, the ”gravity dual” background looks like AdS5 ×X5

at large ρ (large fifth dimension), which describe the UV (ultraviolet) behaviour of QCD
(QCD is conformal in the UV, where any small physical masses are irrelevant). Here X5 is
some compact space. This AdS5×X5 is then modified in some way at small ρ, corresponding
to the IR (infrared) behaviour of QCD.

The simplest possible model that captures some of the properties of QCD is then to just
cut off AdS5 ×X5 at a certain value of r, rmin = R2Λ, where Λ is the QCD scale (the scale
of the lowest fundamental excitations).

Fields in AdS5 × X5 correspond to 4d composite operators, which correspond to gauge
invariant, composite particles. Examples are nucleons and meson or glueballs. An example
of glueball operator is tr FμνF

μν .
The wavefunction for a glueball state, for instance eik·x, corresponds via AdS-CFT to a

wavefunction Φ for the corresponding AdS5×S5 field which equals the glueball wavefunction
times a wavefunction in the extra coordinates, e.g.

Φ = eik·x × Ψ(ρ, �Ω5) (11.37)

In the example of the mass gap, this wavefunction was (11.34).
Then, Polchinski and Strassler made an ansatz for the scattering of gauge invariant states

in QCD. The amplitude A(pi) in QCD and in the ”gravity dual” is related by convolution
as

AQCD(pi) =

∫
drd5Ω

√−gAstring(p̃i)
∏
i

Ψi(r, �Ω) (11.38)

Since

ds2 =
r2

R2
d�x2 + ... (11.39)

the momentum pμ = −i∂/∂xμ is rescaled between QCD (pμ) and string theory (p̃μ) by

p̃μ =
R

r
pμ (11.40)

Important concepts to remember

• Finite temperature field theory is obtained by having a periodic euclidean time, with
period β = 1/T . The partition function for such periodic paths gives the thermal
partition function, from which we can extract correlators by adding sources, etc.
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• The Wick rotated Schwarzschild black hole has a smooth (non-singular) ”horizon” only
if the euclidean time is periodic with period β = 1/TBH = 8πM . Thus black holes
Hawking radiate.

• Quantum field theory in the presence of a black hole does not have finite tempera-
ture though, since the Schwarzschild black hole is thermodynamically unstable (C =
∂M/∂T < 0).

• Fermions in the Wick rotated black hole are antiperiodic around the Euclidean time
at infinity, thus they are massive if we dimensionally reduce the theory on the peri-
odic time. Since bosons are massless, the black hole (and finite temperature) breaks
supersymmetry.

• By putting a black hole in AdS space, the thermodynamics is stable if we are at high
enough black hole mass M.

• The Witten prescription for finite temperature AdS-CFT is to put a black hole of mass
M → ∞ inside AdS5 and to take a certain scaling of coordinates, giving the metric
(11.30).

• By dimensionally reducing d=4 N = 4 Super Yang-Mills on the periodic euclidean
time, we get pure Yang-Mills in 3 dimensions, which has a mass gap (spontaneous
appearence of a lowest nonzero mass state in a massless theory).

• The mass gap is obtained in AdS space from solutions of the wave equation in AdS that
have a 3 dimensional mass spectrum like the one of a quantum mechanical box with
the ground state removed. Thus the Witten metric is similar in terms of eigenmodes
to a finite box.

• Since N = 4 Super Yang-Mills is conformal, it does not have asymptotic states, so
no S matrices. To define scattering, one must modify the duality and introduce a
fundamental scale (break scale invariance). The simplest model is to cut-off AdS space
at an rmin = R2ΛQCD.

• Gauge invariant scattered states (nucleons, mesons, glueballs) correspond to fields in
AdS5 × S5.

• Other models (”gravity duals”) look like AdS5 × X5 in the UV and cut-off in the IR
and give theories that better mimic QCD.

• The Polchinski-Strassler scenario for the scattering amplitude of QCD (or the QCD-like
model) is a convolution of the amplitude for scattering in the gravity dual.
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Exercises, section 11

1) Parallel the calculation of the Schwarzschild black hole to show that the extremal
(Q=M) black hole has zero temperature.

2) Derive T (r+) and Tmin(M) for the AdS black hole.

3) Check that the rescaling plus the limit given in () gives the Witten background for
finite temperature AdS-CFT.

4) Take a near-horizon nonextremal D3-brane metric,

ds2 = α′{U
2

R2
[−f(U)ds2 + d�y2] +R2 dU2

U2f(U)
+R2dΩ2

5}

f(U) = 1 − U4
T

U4
(11.41)

where UT is fixed, UT = TR2 (T=temperature). Note that for f(U) = 1 we get the near-
horizon extremal D3 brane, i.e. AdS5 × S4. Check that a light ray travelling between the
boundary at U = ∞ and the horizon at U = UT takes a finite time (at UT = 0, it takes an
infinite time to reach U=0).

5) Check that the rescaling

U = ρ · (TR); t =
τ

TR
; �y =

�x

T
(11.42)

where R = AdS radius and T=temperature, takes the above near horizon nonextremal D3
brane metric to the Witten finite T AdS-CFT metric.

6) Near the boundary at r = ∞, the normalizable solutions (wavefunctions) of the massive
AdS laplaceian go like (xΔ

0 ∼)r−Δ (where Δ = 2h+ = d/2 +
√
d2/4 +m2R2). Substitute

in the Polchinski-Strassler formula to obtain the r dependence of the intehral at large r,
and using that r ∼ 1/p, estimate the hard scattering (all momenta of the same order, p)
behaviour of QCD amplitudes.
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12 The PP wave correspondence and spin chains

The Penrose limit in gravity and pp waves
PP waves are plane fronted gravitational waves that is, solutions of the Einstein equation

that correspond to perturbations moving at the speed of light, having a plane wave front.
In a flat background, the pp wave metric is

ds2 = 2dx+dx− + (dx+)2H(x+, xi) +
∑
i

dx2
i (12.1)

For this metric, the only nonzero component of the Ricci tensor is

R++ = −1

2
∂2
iH(X+, xi) (12.2)

PP waves can be defined in pure Einstein gravity, supergravity, or any theory that includes
gravity.

In particular, in the maximal 11 dimensional supergravity, we find a solution that has
the above metric, together with

F4 = dx+ ∧ φ (12.3)

where φ is a 3-form that satisfies (Here ∧ denotes antisymmetrization, φ ≡ φμνρdx
μ∧dxν∧dxρ,

|φ|2 ≡ φμνρφ
μνρ and (∗φ)μ1...μ8 ≡ εμ1...μ11φ

μ9μ10μ11)

dφ = d ∗ φ = 0; ∂2
iH =

1

12
|φ|2 (12.4)

For φ = 0 we have a solution with

H =
1

|x− x0|2 (12.5)

that corresponds to a D0-brane that is localized in space and time.
On the other hand, if

H =
∑
ij

Aijx
ixj ; 2trA =

1

12
|φ|2 (12.6)

we have a solution that is not localized in space and time (the spacetime is not flat at infinity).
For φ = 0 we have purely gravitational solutions that obey trA = 0. A solution for generic
(A, φ) preserves 1/2 of the supersymmetry, namely the supersymmetry that satisfies Γ−ε = 0
(where ε is a generic supersymmetry parameter). There is however a very particular case,
that has been found by Kowalski-Glickmann in 1984, that preserves ALL the supersymmetry.
It is

Aijx
ixj = −

∑
i=1,2,3

μ2

9
x2
i −

9∑
i=4

μ2

36
x2
i

φ = μdx1 ∧ dx2 ∧ dx3 (12.7)
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The only background solutions that preserve all the supersymmetry of 11 dimensional
supergravity are Minkowski space, AdS7×S4, AdS4×S7 and the maximally supersymmetric
wave (12.7).

Observation There is one other particular type of pp wave that is relevant, the shockeave
of Aichelburg and Sexl. The solution has a delta function source, corresponding to a black
hole boosted to the speed of light (while keeping its momentum fixed), by

δn(xi, x1) → δn−1(xi)δ(x+) (12.8)

which implies that the harmonic function H of the pp wave splits as follows

H(xi, x+) = δ(x+)h(xi) (12.9)

Horowitz and Steif (1990) proved that in a pp wave background there are no α′ corrections
to the equations of motion (all possible R2 corrections vanish on-shell, i.e. by the use of the
Einstein equation), therefore pp waves give exact string solutions!

In particular, 10 dimensional type IIB string theory, the one that has AdS5 × S5 as a
background solution, contains solutions of the pp wave type, with metric (12.1), together
with

F5 = dx+ ∧ (ω + ∗ω); H =
∑
ij

Aijx
ixj (12.10)

satisfying
dω = d ∗ ω = 0; ; ∂2

iH = −32|ω|2 (12.11)

As in 11 dimensions, here the general metric preserves 1/2 of the supersymmetry defined
by Γ−ε = 0. There is also a maximally supersymmetric solution, that has

H = μ2
∑
i

x2
i ; ω =

μ

2
dx1 ∧ dx2 ∧ dx3 ∧ dx4 (12.12)

Penrose limit
There is a theorem due to Penrose, which states that near a null geodesic (the path of a

light ray) in any metric, the space becomes a pp wave.
Formally, it says that in the neighbourhood of a null geodesic, we can always put the

metric in the form

ds2 = dV (dU + αdV +
∑
i

βidY
i) +

∑
ij

CijdY
idY j (12.13)

and then we can take the limit

U = u; V =
v

R2
; Y i =

yi

R
; R→ ∞ (12.14)

and obtain a pp wave metric in u, v, yi coordinates.
The interpretation of this procedure is: we boost along a direction, e.g. x, while taking

the overall scale of the metric to infinity. The boost

t′ = cosh β t+ sinh β x; x′ = sinh β t+ cosh β x (12.15)
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implies
x′ − t′ = e−β(x− t); x′ + t′ = eβ(x+ t) (12.16)

so if we scale all coordinates (t, x and the rest, yi) by 1/R and identify eβ = R → ∞ we
obtain (12.14).

We can show that the maximally supersymmetric pp waves are Penrose limits of maxi-
mally supersymmetric AdSn× Sm spaces. In particular, the maximally supersymmetric IIB
solution (12.12) is a Penrose limit of AdS5 × S5. This can be seen as follows. We boost
along an equator of S5 and stay in the center of AdS5, therefore expanding around this null
geodesic means expanding around θ = 0 (equator of S5) and ρ = 0 (center of AdS5), as in
Fig.13a, giving

ds2 = R2(− cosh2 ρdτ 2
dρ

2 + sinh2 ρdΩ2
3) +R2(cos2 θdψ2 + dθ2 + sin2 θdΩ′

3
2
)

� R2(−(1 +
ρ2

2
)dτ 2 + dρ2 + ρ2dΩ2

3) +R2((1 − θ2

2
)dψ2 + dθ2 + θ2dΩ′

3
2
) (12.17)

b)

rho=0

AdS

S

5

5

a)

Figure 13: a) Null geodesic in AdS5 × S5 for the Penrose limit giving the maximally super-
symmetric wave. It is in the center of AdS5, at ρ = 0, and on an equator of S5, at θ = 0.
b)A periodic spin chain of the type that appears in the pp wave string theory. All spins are
up, except one excitation has one spin down.

We then define the null coordinates x̃± = (τ ± ψ)/
√

2, since ψ parametrizes the equator
at θ = 0. And we make the rescaling (12.14), i.e.

x̃+ = x+; x̃− =
x−

R2
; ρ =

r

R
; θ =

y

R
(12.18)

and we get
ds2 = −2dx+dx− − (�r2 + �y2)(dx+)2 + d�y2 + d�r2 (12.19)
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which is the maximally supersymmetric wave (12.12). The F5 field also matches.
Penrose limit of AdS-CFT; large R charge
Since the maximally supersymmetric wave is the Penrose limit of AdS5×S5, which defines

AdS-CFT, we would like to understand what it means to take the Penrose limit of AdS-CFT.
The energy in AdS space is given by E = i∂τ (the energy is the Noether generator of

time translations) and the angular momentum (Noether generator of rotations) for rotations
in the plane of two coordinates X5, X6 is J = −i∂ψ, where ψ is the angle between X5 and
X6.

But by the AdS-CFT dictionary the energy E corresponds to the conformal dimension Δ
in N = 4 SYM, whereas the angular momentum J corresponds to an R-charge, specifically
a U(1) subgroup of SU(4) = SO(6) that rotates the scalar fields X5 and X6.

After taking the Penrose limit, we will have momenta p± in the pp wave background
defined as

p− = −p+ = i∂x+ = i∂x̃+ = i(∂τ + ∂ψ) = Δ − J

p+ = −p− = i∂x− = i
∂x̃−

R2
=

i

R2
(∂t − ∂ψ) =

Δ + J

R2
(12.20)

We would like to describe string theory on the pp wave, which is the Penrose limit of
AdS5 × S5. That means that we need to keep the pp wave momenta p+, p− (momenta of
physical states on the pp wave) finite as we take the Penrose limit. That means that we
must take to infinity the radius of AdS space, R → ∞, but keep Δ − J and (Δ + J)/R2 of
N = 4 SYM operators fixed in the limit. Therefore we must consider only SYM operators
that have Δ � J ∼ R2 → ∞, thus only operators with large R charge!

From the supersymmetry algebra we can obtain that Δ ≥ |J | (in a similar manner to the
condition M ≥ |Q|, the BPS condition), which means that p± > 0. Since R2/α′ =

√
gsN =√

g2
YMN , if we keep gs fixed, J ∼ R2 means that J/

√
N is fixed, or we look at operators

with R-charge J ∼ √
N .

String spectrum from Super Yang-Mills
One can calculate the lightcone Hamiltonian (for time= x+) for a string moving in the

pp wave and obtain

Hl.c. ≡ p− = −p+ =
∑
n∈Z

Nn

√
μ2 +

n2

(α′p+)2
(12.21)

where Nn is the total occupation number,

Nn =
∑
i

ain
†
ain +

∑
α

bαn
†bαn (12.22)

Here n > 0 are left-movers and n < 0 are right-movers. Note that the formula includes
the n=0 mode! We also have the condition that the total momentum along the closed string
should be zero, by translational invariance (the same as for the flat space string), giving

P =
∑
n∈Z

nNn = 0 (12.23)
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A physical state is then |{ni}, p+ >.
We note that the flat space limit μ→ 0 gives

p+p− =
1

α′
∑
n

nNn (12.24)

which is indeed the flat space spectrum in lightcone parametrization (M2 = p+p− + �p2).
If we translate the Hamiltonian in SYM variables, using that E/μ = (Δ − J), p+ =

(Δ + J)/R2 � 2J/R2 = 2J/(α′√g2
YMN , we get

(Δ − J)n = wn =

√
1 +

g2
YMN

J2
(12.25)

where we are in the limit that
g2
YMN

J2
= fixed (12.26)

Thus we will try to find operators with fixed Δ − J in the above limit.
The SYM fields
In SYM J rotates X5 and X6, therefore the field Z = Φ5 + iΦ6 is charged with charge

+1 under those rotations, and Z̄ is charged with charge −1, whereas the rest of the 6
SYM scalars, φi, i = 1, ..., 4 are neutral. The gaugino χ splits under this symmetry into 8
components χaJ=+1/2 and 8 components χaJ=−1/2. The 4 gauge field components Aμ complete
the SYM multiplet.

These SYM fields are arranged under their gYM = 0 value for Δ − J as follows. At
Δ − J = 0 we have a single field, Z (Δ = 1 and J = 1). At Δ − J = 1 we have Φi (Δ = 1
and J = 0), χaJ=+1/2 (Δ = 3/2 and J = 1/2) and Aμ (Δ = 1 and J = 0). The rest have

Δ − J > 1 (Z̄ and χaJ=1/2 have Δ − J = 2).
The vacuum state of the string then must be represented by an operator of momentum

p+, therefore with charge J , and with zero energy, thus with Δ − J = 0. From the above
analysis, the unique such operator is

|0, p+ >=
1√

JNJ/2
Tr[ZJ ] (12.27)

The string oscillators (creation operators) on the pp wave at the n = 0 level are 8
bosons and 8 fermions of p− = 1, therefore should correspond to fields of Δ − J = 1 to
be inserted inside the operator corresponding to the vacuum, (12.27). They must be gauge
covariant, in order to obtain a gauge invariant operator. It is easy to see then that the
unique possibility is the 8 χaJ=+1/2 for the fermions and the 4 φi’s, together with 4 covariant

derivatives DμZ = ∂μZ + [Aμ, Z] for the bosons. We have replaced the 4 Aμ’s with the
covariant derivatives DμZ in order to obtain a covariant object.

These fields are to be inserted inside the trace of the vacuum operator (12.27), for example
a state with 2 n=0 excitations will be (a†0,r corresponds to Φr and b†0,b to ψbJ=1/2)

a†0,rb
†
0,b|0, p+ >=

1

NJ/2+1
√
J

J∑
l=1

Tr[ΦrZ lψbJ=1/2Z
J−l] (12.28)
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where we have put the φr field on the first position in the trace by cyclicity of the trace.
The string oscillators at levels n > 1 are obtained in a similar manner. But now they

correspond to excitations that have a momentum einx/L around the closed string of length
L. Since the closed string is modelled by the vacuum state Tr[ZJ ], the appropriate operator
corresponding to an a†n,4 insertion is

a†n,4|0, p+ >=
1√
J

J∑
l=1

1√
JNJ/2+1/2

Tr[Z lφ4ZJ−l]e
2πinl

J (12.29)

Actually, this operator vanishes by cyclicity of the trace, and the corresponding string state
doesn’t satisfy the equivalent zero momentum constraint (cyclicity). In order to obtain a
nonzero state, we must introduce at least two such insertions.

Discretized string action
We can now also derive a Hamiltonian that acts on the above string states, from the

SYM interactions. One starts by noting that in SYM, the operator

O = Tr[Z lφZJ−l] (12.30)

can be mapped to a state
|bl >≡ Tr[(a†)lb†(a†)J−l]|0 > (12.31)

The reason this mapping can be done is a bit complicated, but one can do it. One then
performs a rather involved derivation, which can be understood as follows. One introduces
b+l operators for inserting b+ among a+’s as above. Then the action of the interacting piece of
the Lagrangian, Lint on the 2-point function of operators O, < OO > via Feynman diagrams,
becomes the action of a Hamiltonian on a state |bl >. One can then find the Hamiltonian

H ∼
∑
l

b+l bl +
g2
YMN

(2π)2
[(bl + b+l ) − (bl+1 + b+l+1)]

2 (12.32)

Then the first term is a usual harmonic oscilator, giving a discrete version of
∫
dx[φ̇(x)2

φ(x)
2].

Since a discretized relativistic field is written as φ(x) ∼ bl+b
+
l , the second term is a discretized

version of φ′2, giving the continuum version of the Hamiltonian

H =

∫ L

0

dσ
1

2
[φ̇2 + φ′2 + φ2] (12.33)

where

L = J

√
π

gsN
(12.34)

is the length of the string. This Hamiltonian then is exactly the Hamiltonian of the string
on a pp wave (before quantization).

This description of the insertion of φ’s and their corresponding b+l operators among a
loop of Z’s and their corresponding a+ operators reminds one of spin chains. A spin chain
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is a one dimensional system of length L of spins with only up | ↑> or down | ↓> degrees of
freedom, as in Fig.13b. This equivalence can in fact be made exact.

The Heisenberg XXX spin chain Hamiltonian, HXXX

A spin chain is a model for magnetic interactions in one dimension, where the only
relevant degrees of freedom are the electron spins. Heisenberg (1928) wrote a simple model
for the rotationally invariant interaction of a system of spin 1/2, called the Heisenberg XXX
model, with Hamiltonian

H = J

L∑
j=1

�σj · �σj+1 (12.35)

Here �σj are Pauli matrices (spin 1/2 operators) at site j, with periodic boundary condi-
tions, i.e. �σL+1 ≡ �σ1, and J is a coupling constant.

• If J < 0 the system is ferromagnetic, and the interaction of spins is minimized if the
spins are parallel, therefore the vacuum is | ↑↑ ... ↑>.

• If J > 0 the system is antiferromagnetic and the interaction is minimized for antipar-
allel spins, therefore the vacuum is | ↑↓↑↓ ... ↑↓>.

The XXX stands for rotationally invariant. The XYZ model is not rotationally invariant
and has

H =
∑
j

(Jxσ
x
j σ

x
j+1 + Jyσ

y
j σ

y
j+1 + Jzσ

z
jσ

z
j+1) (12.36)

and Jx �= Jy �= Jz.
The solution of the HXXX model was done by Bethe in 1931, by what is now known as

the Bethe ansatz.
Denote by |x1, ..., xN > the state with spins up at sites xi along the chain of spins down,

e.g. |1, 3, 4 >L=5= | ↑↓↑↑↓>. Each spin up excitation is called a ”magnon”.
Then the one-magnon (one pseudoparticle) state is

|ψ(p1) >=
L∑
x=1

eip1x|x > (12.37)

which diagonalizes the Hamiltonian

H|ψ(p1) >= 8J sin2 p1

2
|ψ(p1) >= E1|ψ(p1) > (12.38)

The ansatz for the 2-magnon state is

|ψ(p1, p2) >=
∑

1≤x1<x2≤L
ψ(x1, x2) > |x1, x2 > (12.39)

where the wavefunction ψ(x1, x2) is

ψ(x1, x2) = ei(p1x1+p2x2) + S(p2, p1)e
i(p2x1+p1x2) (12.40)
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Plugging this ansatz in the Schrodinger equation we obtain solutions for S and the total
energy E. The total energy is just the sum of the 2 magnons’ energies, E = E1 + E2, and

S(p1, p2) =
φ(p1) − φ(p2) + i

φ(p1) − φ(p2) − i
; φ(p) ≡ 1

2
cot

p

2
(12.41)

One can then also write down ansatze for a multiple magnon state, and the Schrodinger
equation will give a set of equations (Bethe equations) for the ansatz, but we will not describe
them here.

The SU(2) sector and HXXX from SYM
In the previous analysis we had only few insertions of b+l operators, i.e. we had only few

φi’s among mostly Z’s inside the operators and no Z̄’s.
We can instead consider instead of such operators the ”SU(2) sector” constructed out of

two complex fields,
Z = φ1 + iφ2; and W = φ3 + iφ4 (12.42)

and no φ5, φ6, nor Z̄ and W̄ . And consider operators with large, but arbitrary numbers of
both Z and W , that is, operators of the type

OJ1,J2
α = Tr[ZJ1W J2] + ...(permutations) (12.43)

Then one can similarly calculate the Hamiltonian acting on states corresponding to such
operators, and obtain that if we only consider 1-loop interactions and planar diagrams (that
can be drawn on a plane without self-intersections; these diagrams are leading in a 1/N
expansion, for an SU(N) gauge group),

H1−loop,planar =
g2
YMN

8π2
HXXX1/2 (12.44)

Important concepts to remember

• pp waves are gravitational waves (gravitational solutions for perturbations moving at
the speed of light), having a plane wave front.

• Both the maximal 11 dimensional supergravity and the 10 dimensional supergravity
that is the low energy limit of string theory have a pp wave solution that preserves
maximal supersymmetry.

• The maximally supersymmetric pp wave solution of 10 dimensional supergravity is the
Penrose limit of AdS5 × S5: look near a null geodesic at ρ = θ = 0.

• The Penrose limit of AdS-CFT corresponds to large R charge J , J � Δ ∼ R2 ∼√
g2
YMN .

• String energy levels on the pp wave are recovered from AdS-CFT if g2
YMN/J

2 = fixed.
String oscillators correspond to insertion of φi, DμZ and χaJ=1/2 inside Tr[ZJ ], with

some momentum e2πin/J .
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• The discretized string action is obtained from Super Yang-Mills’s Feynman diagramat-
tic action. Thus the long operator acts as a discretized closed string.

• The Heisenberg XXX spin chain Hamiltonian is diagonalized by Bethe ansatz, for
excitations (”magnons”) of spin up propagating in a sea of spin down states.

• One loop planar interactions in the SU(2) sector (Z,W ) of large R-charge Super Yang-
Mills gives the Heisenberg XXX spin chain Hamiltonian.
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Exercises, section 12

1) An Aichelburg-Sexl shockwave is a gravitational solution given by a massless source
of momentum p, i.e. T++ = pδ(x+)δ(xi). Find the function H(x+, xi) defining the pp wave
in D dimensions.

2) If the null geodesic moves on S5, one can choose the coordinates such that it moves
on an equator, thus the Penrose limit gives the maximally supersymmetric pp wave. Show
that if instead the null geodesic moves on AdS5, the Penrose limit gives 10d Minkowski space
(choose again ρ = 0)

3) Write down the N=4 SYM fields (including derivatives) with Δ − J = 2.

4) Check that, by cyclicity of the trace, the operator with 2 insertions of Φ1,Φ2 at levels
+n and −n equals (up to normalization)

Tr[Φ1Z lΦ2ZJ−l] (12.45)

5) Check that the Bethe ansatz for 2 magnons, with

E = E1 + E2; S(p1, p2) =
φ(p1) − φ(p2) + i

φ(p1) − φ(p2) − i
; φ(p) =

1

2
cot

p

2
(12.46)

solves the Schrodinger equation for HXXX1/2.
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