
1 Hamiltonian quantization and BRST

-survival guide; notes by Horatiu Nastase

1.1 Dirac- first class and second class constraints, quan-
tization

Classical Hamiltonian
Primary constraints:

φm(p, q) = 0 (1)

imposed from the start. The equations of motion on a quantity g(q, p) are

ġ = [g,H]P.B. (2)

Define φm ∼ 0 (weak equality), meaning use the constraint only at the end
of the calculation, then for consistency φ̇m ∼ 0, implying

[φm, H]P.B. ∼ 0 (3)

The l.h.s. will be however in general a linearly independent function (of
φm). If it is, we can take its time derivative and repeat the process. In
the end, we find a complete set of new constrains from the time evolution,
called secondary constraints. Together, they form the set of constraints,
{φj}, j = 1, J .

A quantity R(q, p) is called first class if

[R, φj]P.B. ∼ 0 (4)

for all j=1, J. If not, it is called second class. Correspondingly, constraints
are also first class and second class, independent of being primary or sec-
ondary.

To the Hamiltonian we can always add a term linear in the constraints,
generating the total Hamiltonian

HT = H + umφm (5)

where um are functions of q and p. The secondary constraint equations are

[φm, HT ] ∼ [φm, H] + un[φm, φn] ∼ 0 (6)



where in the first line we used that [un, φm]φn ∼ 0. The general solution for
um is

um = Um + vaVam (7)

with Um a particular solution and Vam a solution to Vm[φj, φm] = and va
arbitrary functions of time only. Thus we can choose a total hamiltonian
that splits into a first class part H’

H ′ = H + Umφm (8)

(we can prove that it is so) and a linear combination of first class primary
constraints (we can also prove that),

HT = H ′ + vaφa; φa ≡ Vamφm (9)

Then however we find that the first class secondary constraints generate
time variations that do not change the state, hence can also be added to the
hamiltonian, thus obtaining the extended hamiltonian

HE = HT + va′φa′ (10)

where φa′ are the first class, secondary constraints. In conclusion, we can
add all the first class constraints to the hamiltonian, first the primary ones
as above, so that we get a first class hamiltonian H’, and then the secondary
ones with linear coefficients, to get HE.

Interpretation
Thus one can think of first class constraints as generating a motion tan-

gent to the constraint hypersurface, whereas second class constraints don’t:
the algebra of constraints doesn’t close. First class constraints are like gauge
constraints: the generator of gauge transformations leaves physical quanti-
ties unchanged (gauge invariance). Second class constraints are gauge-fixing
conditions of a larger, equivalent system.

Quantization
We take the independent second class constraints χs, and define

css′[χs′, χs′′ ] = δss′′ (11)

and define the Dirac brackets

[f, g]D.B. = [f, g] − [f, χs]css′[χs′, g] (12)



such that
[f, χs]D.B. = 0 (13)

thus we can take χs = 0 as an operator equation and replace the new (Dirac)
brackets with the commutator for quantization. Thus in the quantum theory
the relevant distinction is between the first class and second class constraints,
not between primary and secondary.

Thus in the quantum theory there are fewer degrees of freedom (one can
take the example of secondary constraints q ∼ 0, p ∼ 0, which means we just
drop q and p in the Poisson bracket to get Dirac). We have to be careful
in the quantum theory, whenever we have relations like [φj, φj′] ∼ 0, thus
[φj, φj′] = cjj′j′′φj′′ that the c’s appear on the r.h.s. not on the l.h.s.

Example: Electromagnetic field
Action

S = −
1

4

∫

F 2
µν (14)

Momenta

P µ =
δL

δAµ,0
= F µ0 (15)

thus we have the primary constraint P 0 = 0. Then the Hamiltonian is

H =

∫

d3xP µAµ,0 − L = ... =

∫

d3x[
1

4
FijF

ij −
1

2
Fi0F

i0 + F i0Ai,0]

=

∫

d3x[
1

4
FijF

ij +
1

2
P rP r − A0P

r
′r] (16)

The secondary constraint comes from [P 0, H] = 0, giving P r
′r ∼ 0. The next

level gives an identity, so the secondary constraint is just P r
,r = 0. Both

primary and secondary constraints are first class. Moreover, we can check
that H is first class also, so we can take it as H’. The total Hamiltonian is

HT =

∫

d3x[
1

4
FijF

ij +
1

2
P rP r − A0P

r
′r] +

∫

d3xv(x)P 0(x) (17)

The extended Hamiltonian is

HE = HT +

∫

d3xu(x)Br
,r(x) (18)

and now we can reabsorb A0(x) into u′(x) = u(x) − A0(x) in HE.



1.2 BRST and quantization: Lagrangian BRST

For a general YM thoery, usually one adds a gauge fixing term in the action

S → S −

∫

F [A]2

2α
(19)

to gauge fix Fa[A] = ca. Then, Fadeev-Popev show that putting a δ(F a−ca)
in the path integral is equivalent to introducing a det(M(A)) in it, where

Mab(A) =
∂Fa

∂Acµ(x)
Dcb
µ (x,A)δ(x− y) (20)

which in turn can be exponentiated with ghosts (anticommuting) as an extra
term in the action

Seff = S −

∫

F [A]2

2α
+

∫

BaMabCb =

∫

F [A]2

2α
+

∫

Baδgauge,bF
aCb (21)

(the gauge variation is δξbFa = ∂Fa/∂AcµD
cb
µ ). For the usual Fa = ∂µAaµ

then

Seff =

∫

[−
1

4
F 2
µν −

1

2α
(∂µAaµ)

2 +Ba∂µD
ab
µ C

b] (22)

Then the BRST invariance is a residual invariance of the gauge fixed+ ghost
action, that acts on the classical fields (Yang-Mills) as a gauge transformation
with parameter CaΛ, with Λ a noncommuting constant parameter. In total,
the transformation is

δAaµ = Dab
µ C

bΛ

δCa = +
1

2
gf abcC

cΛCb

δBa = −
1

α
∂µAaµΛ (23)

One rewrites the gauge fixing term introducing an auxiliary field (the Lautrup
- Nakanishi field) d, such that the BRST charge (generator of BRST transfor-
mations) satisfies Q2 = 0. Before we do that, we will generalize a little bit the
formalism, for later use. Instead of F a we write Fα, the structure constants
for the gauge algebra are fαβγ = −gf abc, the ghost action is BαF

α
,βC

β, and
the metric for raising and lowering indices is γαβ with γab = −αδab. The



gauge transformation on the classical fields φI is δξφ
I = RI

αξ
α. Then the

gauge fixing + ghost action is

−
1

2
dαdβγαβ + dαF

α +BαF
α
βC

β (24)

Here dα is the auxiliary field. And the BRST transformation is

δφI = RI
αC

αΛ

δCα = −
1

2
fαβγC

γΛCβ

δBα = dαΛ

δdα = 0 (25)

and the BRST charge Q is nilpotent, i.e. satisfies Q2 = 0 (δ2
BRST = 0).

Now one has a quantum action with a BRST invariance. If the invariance
remains after regularization (in susy theories, regularization schemes that
respect both susy and BRST invariance are not known!), one can renormalize
correctly the quantum BRST action.

The Lagrangean formalism above is manifestly covariant (if the gauge
fixing term is Lorentz covariant), but one gauge fixes from the start. One
can however treat the BRST quantization in the Hamiltonian formalism,
where the aproach breaks manifest Lorentz invariance, but is gauge invariant
until the end.

1.3 Hamiltonian BRST (Batalin-Fradkin-Vilkovisky)

One follows Dirac’s formalism in the context of BRST quantization. As
described by Dirac, from the hamiltonian H, now denoted H0 and the first
class constraints, with the Poisson brackets replaced by Dirac brackets to
deal with the second class constraints, one finds an algebra, with structure
functions (depending on p and q) (n)Ub1..bn+1

a1...an (the index a is defined
below, as ghost-antighost and their momenta index), a BRST generalization
of the cjj′j′′ of Dirac. Then one adds ghost, antighost, Lagrange multiplier
fields and the conjugate momenta for all of them, creating an extended phase
space.

Then one constructs a nilpotent BRST chargeQH (i.e. Q2
H = 0), using the

canonical variables of the extended phase space and the structure functions.
In addition one constructs a BRST invariant Hamiltonian

{H,QH} = 0 (26)



In fact, given any classical observable (gauge invariant, bosonic, its bracket
with the first class constraints and H0 vanishes weakly) one can construct a
BRST invariant extension depending on the extended phase space and the
strcture functions.

The final quantum action is of the type

Squ =

∫

[piq̇i + πµλ̇
µ + η̇aPa −H + {ψ,QH}]dt (27)

where λµ are Lagrange multipliers, πµ their conjugate momenta, ηa are the
ghosts Cα and the antighost-momenta P (B)α, Pa are the antighosts Bα and
ghost-momenta P (C)α, and ψ is a “gauge fixing fermion”, an arbitrary func-
tion of the variables of extended phase space, corresponding to a gauge choice,
and then the path integral over the quantum action is independent on ψ. To
reproduce the gauge choice ξµ made in the Lagrangean formulation, we put
ψ = Bµξ

µ + .... The “gauge fixing+ghost” terms from the Lagrangean for-
mulation are then encoded in the ψ term.

Structure functions
The structure functions will have “ghost symmetry” (as we can check by

counting lower and upper indices). The first (zeroth order) structure func-
tions are the constraints themselves (together with the conjugate momenta
to the Lagrange multipliers - “anticonstraint momenta”-)

(0)Ua = Ga ≡ {πµ(λ), φα(q, p)} (28)

The next order structure functions are the structure constants of the bracket
algebra of the constraints

(1)Ub1b2
a1 = −

1

2
(−)b2fb1b2

a1 (29)

where f are the cjj′j′′ of before, i.e. {φα, φβ} = fαβ
γφγ.

At the next order, one works out the Jacobi identities for brackets of
εaGa, where εa is a gauge parameter, replaced with the BRST expression on
classical fields, ΛCa. The Jacobi identity can be rewritten as

ΛaΛ2Λ3C
b1Cb2Cb3((1)Db1b2b3

a1)AGa1(−1)a1 = 0 (30)

where the symbol A denotes ghost-symmetrization. The solution to this
equation is

((1)Db1b2b3
a1)A = 2(2)Ub1b2b3

a1a2Ga2 (31)



and iteratively if

((1)Db1...bn+2

a1...an)A = (n + 1)(n+1)Ub1...bn+2

a1...an+1Gan+1
(32)

we take its bracket before ghost-symmetrization with another Ga getting a
Jacobi identity defining (n+1)D, etc.

Hamiltonian BRST charge QH

Corresponding to
Ga = {πµ(λ), φα} (33)

we have “ghosts”
ηa = {P µ(B), Cα} (34)

and “antighosts”
Pa = {Bµ, Pα(C)} (35)

and we have “ghost number” +1 for ηa and -1 for Pa. Then the nilpotent
BRST charge is

QH = ηaGa +
∑

n≥1

ηbn+1 ...ηb1 (n)Ub1 ...bn+1

a1...anPan
...Pa1 (36)

We can directly find QH , by putting QH = caGa+... and requiring {QH , QH}
=0 and find the result order by order in the ghosts. Assuming that Ga are
real and defining ηa to be real, then we find that QH is real.

Examples: U(1) gauge theory: QH = ηaGa. Gauge thoery with closed
gauge algebra with field-independent structure constants

QH = ηGa −
1

2
ηb2ηb1fb1b2

aPa(−)b2 (37)

Thus YM gives

QH =

∫

d3x[caDiE
a
i + P (B)aπ0(λ) −

1

2
gCbCcfcb

aPa(C)] (38)

while the bosonic string has

QH =

∫

dσ[C+Ψ++C−Ψ−+P (B)µπµ(λ)−∂σC
+C+P+(C)+∂σC

−C−P−(C)]

(39)
BRST invariant Hamiltonian and observables



An observable is defined as a real, bosonic, first class quantity A0, that
can be extended to an BRST invariant quantity A.

In other words, for a bosonic function A satisfying

{A0, Ga} = Wa
bGb (40)

we can extend it to a BRST invariant A, {A,QH} = 0 by

A = A0 +
∑

n≥1

ηbn ...ηb1Ab1...bn
a1...anPan

...Pa1 (41)

and the first term is
A = A0 + ηaAa

bPb + ... (42)

By introducing a new real anticommuting ghost c0 and ghost number 1 and
its conjugate momentum Pa, and also considering A0 as a new Ga, we can
write an extended charge

S = QH + caA (43)

for which we apply the usual QH construction and thus find QH and A
together. For the Hamiltonian, since

{H, φα} = Vα
βφβ (44)

we find
HBRST = H0 + ηaVa

bPb + ... (45)

but for a general observable A there is no general construction.
Comments
In the Hamiltonian formulation all transformation rules follow from

δ(field) = {ΛQH , field} = {field, QH}Λ (46)

Here QH = ηaGa + ... and the higher orders in ghosts can be found by the
Noether method, i.e.

The gauge fixing term is manifestly separately gauge invariant. To obtain
the usual gauge choice (in the Lagrangean formalism), one takes ψ + Bµξ

µ

where ξµ is the usual gauge choice.
One can check that QH is the Noether charge of the rigid BRST symmetry

of the quantum action, QH =
∫

d3xj0, with jµ the Noether current.
Quantum theory



As stated before, the quantum theory is obtained by promoting the con-
straint algebra to an operatorial algebra, on a physical space. Observables
are BRST invariant, thus on physical states

[Â, Q̂H ] = 0; Â ∼ Â′ = Â+ [K̂, Q̂H ] (47)

that is, I can add a BRST variation to an observable without affecting the
physics. This defines a cohomology on the observables (Q2

H = 0, and the
equivalence classes are QH-closed modulo QH - exact observables). This gives
also a cohomology on the physical states:

Physical states are defined by

QH |ψ >= 0 (48)

This is obtained from the fact that Q2
H = 0, QH is hermitian and thus we

obtain || QH |ψ > ||2 = 0. For boundary condition (physical states at the
extremes of integration, t = t0 and t = t1), in the path integral formalism,
this implies that

QH(t0) = 0; QH(t1) = 0 (49)

Note that this definition gives also a cohomology on physical states, as
physical states are QH-closed, and the equivalence class is defined by QH-
exact states (we drop QH |χ > terms from ψ >).

As noted at the begining of this section, we have the Fradkin-Vilkovisky
theorem stating that the path integral over the quantum action in the pres-
ence of a gauge fermion ψ is independent of ψ. But we can’t put ψ = 0, since
then the path integral is not well defined! In other words, we MUST fix the
gauge, but the result is gauge invariant.

Physical states and the Kugo-Ojima quartet mechanism
In the BRST formalism, gauge invariance is replaced by BRST invariance.

On has the BRST charge QH and the ghost charge Qc. The BRST charge
has ghost number one, thus [iQc, QH ] = QH . Zero norm states (BRST exact,
|psi >= QH |χ >) form a representation of the algebra V0, and the physical
Hilbert space is closed modulo exact states, i.e.

Hphys = Vphys/V0 (50)

Physical states are BRST singlets and (because of [iQc, QH ] = QH), also
ghost number zero sector, i.e.

QH |k, 0 >= 0; Qc|k, 0 >= 0 (51)



Unphysical states come naturally in BRST doublet representation. Given a
state |k,N > of ghost number N, i.e.

QH |k,N >6= 0; iQc|k,N >= N |k,N > (52)

we define the zero norm state

|k,N + 1 >≡ QH |k,N >; < N + 1, k|k,N + 1 >= 0 (53)

and further action with QH yields nothing. However, that is not the whole
story. Using [iQc, QH ] = QH in between |k,N > and a < k,−(N + 1)| we
can convince ourselves that the latter exists, such that

< k,−(N + 1)|k,N + 1 >= 1 (54)

Then we also define

QH |k,−(N + 1)| ≡ |k,−N > (55)

Thus, the BRST doublets come in pairs, forming the BRST quartets or
Kugo-Ojima quartets (irreps). We can define the creation operators

|k,N >≡ χ+
k |0 >; −|k,−N >≡ β+

k |0 >

|k,N + 1 >≡ γ+
l |0 >; −|k,−(N + 1) >≡ γ̄+

k |0 > (56)

which imply commutation relations

[QH , χk] = −iγk; {QH , γ̄k} = βk; [QH , βk] = {QH , γk} = 0 (57)

Then the projector onto n unphysical particles is defined recursively as

P (n) =
1

n
[−β+

k P
(n−1)χk − χkP

(n−1)βk − wklχ
+
k

P (n−1)χ+
l + iγ+

k P
(n−1)γ̄k − iγ̄+

k P
(n−1)γk] (58)

whereas the projector onto physical states=singlets is

P (0) =
∑

n

1

n!
φ+
α1
...φ+

αn
|0 >< 0|φαn

...φα1
(59)



And then any representative of the cohomology (state in Vphys, BRST closed,
or invariant) can be written as

|f >= P (0)|f > +
∑

n≥1

P (n)|f > (60)

as a sum of a physical state (in Hphys) and a BRST-exact state (in V0), since
∑

n≥0

P (n) = 1 (61)

Final comments: Interpretation and classical BRST
It is important to note that one introduces the ghost variables in the sys-

tem in order to do BRST quantization, however BRST symmetry is actu-
ally a classical symmetry! One introduces the ghosts and a Grassman-odd
BRST charge for any first-class system, defining a classical BRST cohomol-
ogy. One speaks of functions instead of operators and states for the classical
cohomology. Also note that this can only be done in the Hamiltonian case,
since otherwise the constraint algebra doesn’t close off-shell (or Q is not
nilpotent off-shell).

The path integral interpretation of ghosts doesn’t even work (at least not
immediately) in the general case (see later, the case of ghosts-for-ghosts).
Quantization means promoting the constraint algebras (with Poisson or Dirac
brackets) to operatorial (commutation) algebras and impose them on a Hilbert
space in order to define a physical subspace. Also note that in the Lagrangean
case one obtains the FP terms from the path integral, but now these terms
come only from the ψ term. Without it, one can still speak about BRST
symmetry!

The classical cohomology of zero ghost number is isomorphic to the classes
of gauge invariant classical “observables”, whereas the higher ghost number
classical cohomologies are the same as the cohomologies of the operator d
(exterior derivatives), acting on the gauge orbits generated by Ga, i.e. instead
of dxa one uses gauge orbits ωa, and then d2 ∼ 0 and the cohomology is
defined only weakly, dA ∼ 0 is closed and A ∼ dB is exact.

The BRST construction then possesses topological information about
gauge orbits and how they fill the constraint surface.

Example: BRST quantization of the bosonic string
The action

S = −
1

2

∫

d2ξ
√

g(ξ)gab∂aX
µ(ξ)∂bXµ(ξ) (62)



is invariant under world sheet reparametrizations ξ → f(ξ) and Weyl trans-
formations gαβ → λ(ξ)gαβ(ξ). We fix reparametrization invarinace choosing
a conformal gauge gαβ = ρ(ξ)δαβ. Then the action plus gauge fixing terms
and FP ghosts gives

S = −
1

2

∫

d2z∂zX
µ∂z̄Xµ −

1

2

∫

d2zb(z)∂z̄c(z) −
1

2

∫

d2zb̄(z)∂z c̄(z) (63)

The gauge fixed reparametrization generators, Tx(z), T̄x(z̄) generate confor-
mal transformations

Ln =

∮

Tx(z)z
n+1dz; L̄n =

∮

T̄x(z̄)z̄
n+1dz̄ (64)

satisfying the Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
D

12
n(n2 − 1)δn+m,0 (65)

The BRST charge is

QBRST = ciGi +
1

2
cicjfkijbk; [G− i, Gj] = f kijGk (66)

and here

QBRST =

∮

dzjBRST ; Tgh(z) = c∂zb + 2∂zc · b

jBRST = c(Tx(z) +
1

2
Tgh(z)) +

3

2
∂2
z c (67)

Then the nilpotency of the BRST charge is obtained from the OPE:

{QBRST , QBRST } =
∮

jBRST (z)

∮

|z|>|w|

jBRST (w) +

∮

jBRST (w)

∮

|w|>|z|

jBRST (z)

=

∮

dw

∮

dz : c(z)[Tx(z) +
1

2
Tgh(z)] :: c(w)[Tx(w) +

1

2
Tgh(w)] :

= −
1

12

∮

dw∂3
wc(w)c(w)(D− 26) (68)

thus nilpotency of QBRST implies D=26. Observables transform as

δBO(z) = [Q,O(z)] =

∮

dw

2πi
jBRST (w)O(z) (69)



1.4 Batalin-Vilkovisky (BV) or field-antifield formal-
ism

It deals with actions, thus is manifestly Lorentz covariant, but fixes the gauge
at the very end, thus keeps the beauty of both Lagrangean and Hamiltonian
BRST quantization formalisms. One does so by adding to each field an
“antifield”, a type of Lorentz covariant conjugate momentum with opposite
statistics. Now the action is equal to the BRST charge.

Thus we want
δBRSTφ

A = (φA, SΛ) (70)

which at first sight is a contradiction, since the action is commuting, whereas
the BRST charge is anticommuting. But all one really knows is that the
combination of the BRST charge and the bracket is anticommuting. In the
Hamiltonian case one takes the BRST charge to be anticommuting, and the
bracket (Poisson or Dirac) to be anticommuting, but now we take the charge
(=action) to be commuting, and the bracket to be anticommuting. It is called
the “antibracket”.

For each field φA we introduce an antifield φ∗
A with opposite statistics,

such that
(φA, φ∗

B) = δAB; (φA, φB) = (φ∗
A, φ

∗
B) = 0 (71)

where the delta contains also a 4d delta function. The antibracket of func-
tions of fields and antifields is

(f, g) = ∂f/∂φA
∂

∂φ∗
A

g − ∂f/∂φ∗
A

∂

∂φA
g (72)

As usual, we require that BRST transformations are nilpotent, thus

(S, S) = 0 (73)

This is called the “master equation”. The action is composed of a minimal
part Smin depending only on φi, Cα and ghosts-for-ghosts if present, as well as
their antifields, but not anitghosts or antighost-antifields, and a nonminimal
action Snonmin. The minimal action appears as

Smin = Scl(φ
i) + φ∗

A(δBRSTφ
A)/Λ + ... (74)

where the terms with ... indicate two and more antifields, and φi are classical
fields. The “classical correspondence limit”

Scl(φ
i) = Smin(φ∗

A = 0, φA) (75)



is automatic, since S has ghost number zero, and all ghosts have positive
ghost number, and by definition there are no antighosts in Smin, thus at
φ∗
A = 0 there can be no ghosts left in the action.

Note that the action is BRST invariant before gauge fixing, as in the
Hamiltonian formalism, thus BRST is a symmetry of the classical action,
even before gauge fixing!

Expanding the action in antifields φ∗
A we get

S = S0 + S1 + S2 + S3... (76)

we get a number of equations from the master equation:

(S0, S0) = 0; (S0, S1) = 0; (S1, S1) + 2(S0, S2) = 0; .... (77)

Here the first equation is automatically satisfied (no φ∗
A’s, so zero bracket),

the second expresses the gauge invariance of the classical action (it becomes
∂S0/∂φ

A × δBRSTφ
A = 0). The third equation says that the BRST algebra

(commutator of two transformations) is proportional to the field equations.
Indeed, (S1, S1) is proportional to (δBRST , δBRST ), and the second starts with
δS0/δφ

A. For theories with a closed gauge algebra, the BRST transforma-
tions are nilpotent, thus then we must have S2 = 0. Otherwise, as in some
sugra theories, two BRST transformations yield another one plus field equa-
tions, and then one has

δBRST (CαΛ1)δBRST (CαΛ2) = Λ1Λ2∆
ij ∂

∂φj
S0 (78)

and ∆ij corresponds to (S0, S2), thus S2 is a “nonclosure term”.
Ghosts-for-ghosts appear when the ghost action obtained by Fadeev-

Popov gauge quantization has still some gauge invariance. For instance, for
the antisymmetric tensor Aµν after FP quantization we get a ghost action
Bν∂µ[∂

µCν−∂nuCµ], which has still the gauge invariance ∂Cν = ∂νΛ1. Thus
one further makes the gauge choice ∂νC

ν = 0 and gets ghosts-for-ghosts D̄
and D, with action D̄∂ν∂

νD. But also the antoghosts have a gauge invariance
δBµ = ∂µΛ2, and fixing it by ∂νBν = 0, we get ghosts-for-ghosts Ē and E,
with action Ē∂ν∂

νE. Here the anti- is suppressed in terminology. This
is partly because one can’t really justify this repeated procedure from FP
quantization!

In fact, the correct number of ghosts-for-ghosts is 3, not 4, and is correctly
obtained in the BV formalism.



Finally, one needs to add the nonminimal action

Snonmin = παB
∗α (79)

where B∗α are the antighosts and πα correspond to the conjugate momenta
of the Lagrange multipliers in the Hamiltonian BRST formalism. Then the
full action is

S = Smin + Snonmin (80)

and is still nilpotent (S, S) = 0. But this action is still gauge invariant!
So we must fix the gauge, as we did in the Hamiltonian BRST formalism.

This is done by acting with a fermionic generator onto the fields and antifields
and then setting the (old) antifields to zero. Thus the final gauge fixed
quantum action is given by

Squ(φ) = S(φ′, φ∗′)|φ∗=0;

φ′A = eψφA = φA + (ψ, φA) +
1

2
(ψ, (ψ, φA)) + ...; φ∗

A
′ = eψφ∗

A = ...(81)

Here the fermionic generator ψ is completely arbitrary, but one usually makes
it independent on antifields, and then one gets

Squ(φ
A) = S(φA, φ∗

A = ∂ψ/∂φA) (82)

Thus the classical action is obtained by putting in the (minimal plus nonmin-
imal) action the antifields to zero, whereas the quantum action is obtained
by first rotating the fields with ψ and then putting the antifields to zero.

An often used choice is
ψ = BαF

α (83)

where F α is a gauge choice. Then one gets

B∗α = F α; π∗α = 0, φ∗
A = BαδF

α/δφA (84)

and the quantum action is

Squ = Scl +Bα∂F
α/∂φA(δBRSTφ

A)/Λ + ...+ παF
α (85)

Here the second term is clearly the FP term and the dots come from possible
S2 and higher Sn in Smin.

From Hamiltonian-BRST to BV-BRST



BV has antifields, whereas Hamiltonian BRST has momenta. Thus we
need to extend the BV action in a Hamiltonian direction, by including the
momenta among the fields, and then we relate to the Hamiltonian formalism.

We will start with the set za = {pi, qi, C
α, P (C)α}. The Lagrange mul-

tipliers appear as antifields of the momenta conjugate to the ghosts, i.e.
λα = P (C)∗α.

In the Hamiltonian formalism, we have

QH = παP (B)α +Q1
H(pi, qi, C

α)P (C)α

HBRST = H0(p
i, qi) + CαVα

βP (C)β + ... = H(pi, qi, C
α, P (C)α) (86)

Then za have the Poisson (or Dirac) brackets and transformation rules

{za, za} = Ωab; δBRST z
a = {za, Q1

HΛ} (87)

(note that we also have the BV brackets (za, z∗b ) = δab ) and one has the
brackets

{Q1
H , Q

1
H} = {Q1

H , H} = 0 (88)

Then the BV action in Hamiltonian form is

SH =
1

2
Ωbaż

bża −H − {ψ,Q1
H} + z∗a{z

a, Q1
H}

1

2
Ωbaż

bża −H − {ψ,Q1
H} −

1

2
Ωab(z∗az

∗
b , Q

1
H) (89)

and is BV-bracket-nilpotent, i.e. (SH , SH) = {SH , QH} = 0.
For usual Yang-Mills, we don’t get anything new from BV.
Construction of ghosts-for-ghosts
Example: coupling of Ynag-Mills fields Aa

µ to several antisymmetric ten-
sors Ba

µν in the adjoint. Then

Scl =

∫

d4x[−
1

2
Ba
µνF

µν
a +

1

2
AaµA

µ
a ] (90)

with gauge invariance δBa
µν = εµνρσD

ρξσ,a, δAaµ = 0. The FP ghost action for
DµBµν = 0 is

LFP = Bν
a(D

µεµνρσD
ρCσ,a) (91)

with gauge invariances

δBa
µ = ∂µλ

a; δCa
µ = ∂µλ̄

a (92)



but at the nonabelian level they are only true on-shell (for F a
µν = 0). One

needs to introduce ghosts-for-ghosts Ca to fix the extra invariance. Naively
we would also need a Ba, but that’s not the case.

To find the correct (BRST invariant) quantum action we use BV. Intro-
duce the fields φA = {Ba

µν , A
a
ν, C

a
ν , C

a} and their antifields. Then

Smin = Scl +

∫

d4x[B∗µν
a εµνρσD

ρCσ,a + C∗µ
a DµC

a + “more′′] (93)

and requiring nilpotence (S, S) = 0 we find that

Smin2 = “more′′ = −
1

2
B∗µν
a B∗ρσ

b εµνρσf
abcCc (94)

(write down all possible terms in S with correct ghost number and dimension,
and require the master equation (S1, S1) + 2(S0, S2) = 0. The nonminimal
terms to be added are

Snonmin = πµa b
∗a
µ + πab

∗a + πaad
∗a (95)

Here as advocated, bµa and ba are the antighosts for the ghosts caµ and Ca,
and πaµ, πa their auxiliary fields. One finds then the extra ghost da.

Finally, one can add a particular gauge fermion, eliminate the antifields
by φ∗

A = ∂ψ/∂φA and plug back in the action to get the BRST quantum
action.


