
Sugra-Notes by Horatiu Nastase
A very basic introduction (survival

guide)

1 Generalities

Supergravity is the supersymmetric theory of gravity, or equivalently, a the-
ory of local supersymetry. The gauge field of supersymmetry is called a
gravitino, and since it gauges the εα supersymmetry, it is a spin 3/2 field:
ψα

µ . It is also the partner of the graviton, more precisely of the vielbein ea
µ.

Writing down any supersymmetric theory, but in particular supergravity,
for which there are many different types of fields, starts with a counting of
degrees of freedom. Since susy relates bosons and fermions, the number of
d.o.f. for bosons has to match the number for fermions. If they only match
on-shell, we have on-shell sugra, if they match off-shell we have off-shell sugra.

Off-shell counting:
-vielbein or graviton: ea

µ has d2 components, but on it we act with the
symmetries: General coordinate invariance, characterized by an arbitrary
vector ξµ(x) and local Lorentz invariance characterized by an antisymmetric
tensor λmn(x). Thus we have d2 − d− d(d− 1)/2 = d(d− 1)/2 components.
This is the same number as for the metric gµν (symmetric tensor), if the
index µ runs over d-1 instead of d components.

-spinor (i.e. spin 1/2) ψα has n = 2[d/2] components. We work with
irreducible spinors, usually Majorana (then the components above are real).

-gravitino: ψα
µ has nd components. But we have susy acting on it, char-

acterized by the arbitrary spinor εα(x). Thus we have nd − n = n(d − 1)
components. Thus again we have the index µ running over d-1 components.

-scalar fields (propagating or auxiliary): 1 component.
-gauge fields: Aµ have d components, but gauge invariance has an arbi-

trary scalar parameter λ(x), thus we have d-1 components again.
-antisymmetric tensors Aµ1...µr have d(d − 1)...(d − r + 1)/(1 · 2 · ... · r).

But one has a gauge invariance defined by a parameter λµ1...µr−1
, thus the



number of components is

d(d− 1)...(d− r + 1)

1 · 2 · ... · r − d(d− 1)...(d− r + 2)

1 · 2 · ... · r − 1
=

(d− 1)...(d− r)

1 · 2 · ... · r (1)

Obs: auxiliary fields can be also tensors, not only scalars.
On-shell:
-vielbein or graviton: The equation of motion for the linearized graviton

follows from the Fierz-Pauli action

L =
1

2
h2

µν,ρ + h2
µ − hµh,µ +

1

2
h2

,µ; hµ ≡ ∂νhνµ; h ≡ hµ
µ (2)

If we impose the de Donder gauge condition

∂ν h̄µν = 0; h̄µν = hµν − ηµν
h

2
(3)

we get just 2h̄µν = 0. Thus imposing the field equation means restriction of
the number of polarizations: k2 = 0 ⇒ kµεµν(k) = 0, which kills d degrees of
freedom, thus the number of components is

d(d− 1)

2
− d =

(d− 1)(d− 2)

2
− 1 (4)

that is, transverse traceless symmetric tensor.
-scalar field: the KG equation doesn’t restrict anything, we still have 1

component. However, for an auxiliary field, the equation kills it.
-gauge field: In the covariant gauge ∂µAµ = 0, the equation of motion

2Aµ = 0 has only d-2 polarizations: For k2 = 0, kµεaµ(~k) has d-2 independent
solutions.

-spinor: The Dirac equation relates 1/2 of components to the other 1/2,
i.e. the independent solutions to (/p − m)u(p) = 0 are 1/2 as many as
components, so n/2.

-antisymmetric tensor: In the covariant gauge ∂µ1Aµ1...µr = 0, the equa-
tion of motion 2Aµ1 ...µr = 0 has only a number of polarizations equaling the

components, with d replaced by d− 2 (transverse): For k2 = 0, kµ1εaµ1....µr
(~k)

has (d− 2)...(d− 1 − r)/[1 · 2 · .... · (r − 2)] independent solutions.
-gravitino: in the gauge γµψµ = 0 (since only the gamma-traceless part

is an irreducible representation of the Lorentz group), the counting is as for
a gauge field × a spinor, i.e. [(d− 2)n− n]/2 = (d− 3)n/2.



Let’s try to make s supermultiplet out of the graviton and the gravitino.
Applying the rules above, we get:

3d Off-shell: Bosons: ea
µ: 3 · 2/2 = 3. Fermions: ψα

µ : 2 · 2 = 4. Thus we
need one bosonic auxiliary field, S.

On-shell: ea
µ: 1 · 2/2− 1 = 0 vs ψα

µ : (3− 3) · 2/2 = 0, so nothing on-shell.
4d Off shell: Bosons: ea

µ: 4 · 3/2 = 6. Fermions: ψα
µ : 4 · 3 = 12. We

need 6 bosonic auxiliary components. There existseveral constructions, but
the minimal one is a scalar S, a pseudoscalar P and an axial vector Aµ. The
scalar and pseudoscalar can be combined into a complex scalar M = S+ iP .

On-shell: ea
µ: 3 · 2/2 − 1 = 2. vs ψα

µ : 1 · 4/2 = 2, thus they match!
Thus the simplest case is in 3d, but there is no dynamics, and off-shell

we need only one auxiliary scalar.
The simplest on-shell case is 4d.
We will start with on-shell susy in 4d and then move to 3d where things

are simpler.

2 4d on-shell

Susy rules
Supergravity is a supersymmetric theory, so we expect on general grounds

that we have (see the WZ model)

δea
µ =

k

2
ε̄γaψµ (5)

(plus maybe more terms), where the k/2 is by dimensional reasons and the
γa is needed to match indices.

Supergravity is also a local theory of susy, with the gravitino as its gauge
field, so we also expect

δψµ =
1

k
Dµε; Dµε = ∂µε+

1

4
ωab

µ γabε (6)

(plus mabe more terms), where ωab
µ is the spin connection and defines the

covariant derivative acting on spinors in curved space (as we wrote above).
Action
For the gravity action, one takes the Einstein-Hilbert action. One usually

writes the Ricci scalar in terms of Christoffel symbols, i.e. R = R(Γ). For Γ
one usually takes Γλ

µν(g) (symmetric, and expressed in terms of the metric).



This is called the second order formulation. One can also take Γ and g to
be independent, and then the field equation δS/δΓλ

µν = 0 in the absence of
matter fixes Γ = Γ(g). This is called the first order formulation, or Palatini
formalism.

But we saw that spinors need the spin connection and susy needs the
vielbein. So we must use instead the formulation with the vielbein and spin
connection. The Riemann tensor is just the YM curvature (field strength)
for the spin connection,

Rab
µν(ω) = ∂µω

ab
ν − ∂νω

ab
µ + ωac

µ ω
cb
ν − ωac

ν ω
cb
µ ; (R = dω + ω ∧ ω) (7)

For the second order formulation one can use the “vielbein postulate”
(the vielbein is covariantly constant)

Dµe
a
ν ≡ ∂µe

a
ν + ωab

µ (e)eb
ν − Γρ

µν(g)e
a
ρ = 0 ⇒ Dea = 0 : ∂[µe

a
ν] + ωab

[µ (e)eb
ν] = 0

(8)
The solution to the “no torsion” constraint (vielbein postulate) is ω = ω(e).
Torsion is the YM curvature of the vielbein, T a = Dea = 0. For the first
order formulation (Palatini formalism) one treats the spin connection as in-
dependent. Then

Rab
µν(ω) = Rλ

ρµν(Γ)eρaeb
λ (9)

and so the action is

− 1

2k2
eR(e, ω) (10)

The equation of motion for ωab
µ in the absence of matter is just the vielbein

postulate (no torsion constraint), giving ω = ω(e). In the presence of matter
we get some torsion, i.e. the equation of motion for ωab

µ get contributions
from the fermions (which as we saw have covariant derivatives that involve
the spin connection), thus we will have ω = ω(e, ψ).

Note: As for any YM theory, the spin connection curvature satisfies

Rrs
µν(ω)γrs = [Dµ(ω), Dν(ω)] (11)

but moreover, by defining flat covariant derivatives Da = eµ
aDµ we can check

that we have

[Da, Db] = (eµ
ae

ν
bD[µe

c
ν])Dc + (eµ

ae
ν
bR

rs
µν(ω)γrs ≡ T c

abDc +Rrs
abMrs (12)

where Mrs are the Lorentz generators. This definition of torsion and curva-
ture will be generalized to superspace and YM theories.



The action for the gravitino is the Rarita-Schwinger action (unique action
for a spin 3/2 field), which in curved space and in a general dimension is

−e
2
ψ̄µΓµνρDν(ω)ψρ (13)

and in 4 dimensions can also be rewritten as

−1

2
εµνρσψ̄µγ5γνDρ(ω)ψσ (14)

and the curved space covariantization followed the general rules.
1, 2 and 1.5 order formalisms
So the action must be of the type (10) plus (14), and the invariance of

the type (5) and (6).
But we must be more precise. In second order formalism, in the action

(10) plus (14) and susy rules (5) and (6) we have ω replaced with ω(e, ψ)
which is the solution of the δS/δωab

µ = 0 equation.
In first order formalism, the action is (10) plus (14), and the susy rules

are (5) and (6), but we also need

δωab
µ (first order) = −1

4
ε̄γ5γµψ̃

ab +
1

8
ε̄γ5(γ

λψ̃b
λe

a
µ − γλψ̃a

λe
b
µ); ψ̃ab = εabcdψcd

(15)
but on the right hand side we have equations of motion, so we can see that
ω is auxiliary.

Finally, there is the so-called 1.5 order formalism, which uses the best of
both worlds. We use 2-nd order formalism, but in the action S(e, ψ, ω(e, ψ))
we don’t vary ω(e, ψ) by the chain rule (as if we were in first order formalism
and ω was independent), since its variation will always be multiplied by
δS/δω = 0!

Finally, for completeness, the action of Einstein and local Lorentz trans-
formations on ea

µ and ωab
µ is as follows. Einstein:

δEe
a
µ = ξν∂νe

a
µ + ∂µξ

νea
ν

δEω
ab
µ = ξν∂νω

ab
µ + ∂µξ

νωab
ν (16)

and local Lorentz:

δlLe
a
µ = λabeb

µ

δlLω
ab
µ = −Dµλ

ab ≡ −∂µλ
ab − ωac

µ λ
cb − ωbc

µ λ
ca (17)



In other dimensions and for extended supergravity we can have more
fields, and correspondingly more terms in the action and transformation rules,
and also we could have more fermions added in ω(e, ψ), but it is always the
solution of the ω equation of motion.

Thus for the rest of features we have to go case by case, and the only
universal features of on-shell supergravity have already been explained.

3 3d off-shell

Everything that was said in 4d goes through, but in the Rarita-Schwinger
action (13) we have γµνρ = εµνρ.

We saw that on-shell there is no dynamics, so we need to introduce aux-
iliary fields to find something nontrivial.

We need to introduce auxiliary fields to close the algebra. Indeed, in
global susy, we want to represent the algebra, most notably [ε̄1Q, ε̄2Q] =
1/2ε̄2γ

µε1Pµ, on the fields. One finds that the algebra does not close on all
fields, i.e. that one has additional equation of motion terms spoiling the
algebra. Only after we add the auxiliary fields does the algebra closes.

The same thing happens in local supersymmetry (supergravity), but with
one important difference. We might expect that Pµ is represented in global
susy by the general coordinate transformations, but not quite. In fact, we find
that the local algebra corresponding to the global [ε̄1Q, ε̄2Q] = 1/2ε̄2γ

µε1Pµ

is

[δQ(ε1), δQ(ε2)] = δgen.coord.(ξ
µ) + δlocal Lorentz(ξ

µωab
µ ) + δQ(−ξµψµ)

ξµ =
1

2
ε̄2γ

µε1 (18)

which is the local version of the super-Poincare algebra. It cannot be derived
from group theory alone (from the global algebra)!!

Both in 3 and 4d the local algebra does not close on the gravitino without
auxiliary fields (we get extra equation of motion terms).

After the introduction of auxiliary fields, the algebra closes on all fields,
but we need to add auxiliary field terms to the parameters of the general
coordinate, local Lorentz and susy transformations on the r.h.s. of (18), and
those terms depend on dimension (otherwise the algebra is the same in all
dimensions), and on the particular set of auxiliary fields chosen.



In 3d, we saw that we only need one auxiliary scalar, S. It comes with
the curved space auxiliary action

−e
2
S2 (19)

In flat space this would be completely trivial, but now note that S couples
to the vielbein! This will be very important later on, when one couples
supergravity with matter.

One also needs to add to the susy rules

δ(S)ψµ = cSγµε

δS = −kε̄γµψµS − ce−1εµνρε̄γµDν(ω)ψρ (20)

and the algebra closes with the new local Lorentz parameter on the r.h.s. of
(18)

ξµωab
µ → ξµωab

µ + 4ckε̄2γ
abεaS (21)

4 Superspace-general formalism

(can be skipped)

4.1 Coset theory

Superspace can be understood as a coset space. To define a coset for a
graded (super) Lie algebra [Ta, Tb} = fab

cTc for a group G, we need a split
Ta = {Hi, Kα}, such that we have a reductive algebra, i.e.

[Hi, Hj] = fij
kHk; [Hi, Kα} = fiα

βKβ (22)

(splitting into H and G/H) and where

[Kα, Kβ} = fαβ
iHi + fαβ

γKγ (23)

and if fαβ
γ = 0 we have a symmetric algebra (but not needed). Then by

definition
ezαKαh, ∀h (24)

is a coset element, and for h=1 we have a coset representative L(z). Then
zα are coordinates on the coset space and we can also write h = exp(yiHi)
in general. A general group element g induces a motion on the coset:

gezαKα = ez′αKαh(z, g) (25)



With the definitions x ·K = xµKµ (coset motion) and dx ·K = dxmKm (1-
forms), we can act on the right with an infinitesimal (1-form) G/H element

ex·Kedx·K = ex·K+dxmeµ
m(x)Kµedxmeµ

m(x)ωi
µ(x)Hi + o(dx)2 (26)

and on the left with an infinitesimal general group element

edgaTaex·K = ex·K+dgafµ
a (x)Kµe−dgaΩi

a(x)Hi + o(dg2) (27)

thus defining the (inverse) vielbein eµ
m(x) on the coset, the H connection

ωi
µ(x), the Lie vector fµ

a and the H compensator Ωi
a. Here µ is called a

curved index and m is called a flat index. Equivalently, we may define the
vielbein and H connection as

L−1(z)∂µL(z) = em
µ (x)Km + ωi

µ(x)Hi (28)

One can derive the vielbein postulate (Dem = 0) and the flat (spin) connec-
tion on the coset manifold

ωµ
m

n(x) = er
µ(x)ωµ

m
n(0) + ωi

µ(x)fin
m (29)

One can also define the Lie derivative

l = dgAfµ
A(x)∂µ (30)

One takes fields φa(x) in representations Da
b(h) of H. Defining

ωa
µb

(x) = ωi
µ(x)(Hi)

a
b (31)

(H connection in that representation), we have the covariant derivative

Dmφ
a(x) = eµ

m[∂µφ
a(x) + ωa

µb
φb(x)] (32)

and the variation of φa(x) under the infinitesimal group element dgA is called
H-covariant Lie derivative,

δφa(x) ≡ LHφ
a(x) = lφa(x) + dgAΩi

A(x)(Hi)
a
bφ

b(x) (33)

Here lφa(x) is an orbital part (independent of the H representation of the
field), and the rest is a spin part (depends on representation, and is =0 in
an H-scalar representation, like for instance for the coset space coordinates).



The H-covariant Lie derivatives commute with the covariant derivatives

[Dm,LH] = 0 (34)

One can also define the group-invariant integration measure on the coset
∫

M

µxf(x)dnx (35)

from the Jacobian of the transformation x → x′ on the coset to be

µ(x) = (detem
µ (x))µ(0) (36)

4.2 Rigid superspace

Superspace is the coset super-Poincare/Lorentz, that is, we write a general
super-Poincare group element g as

eξµPµ+εAQA+εȦQ
ȦeλmnMmn (37)

and by acting with it on the coset representative

exµPµ+θAQA+θ̄ȦQ
Ȧ (38)

we find the action of super-Poincare on superspace (xµ, θA, θ̄Ȧ). Note that in
3d, there are no dotted indices, and everything else follows.

Since for super-Poincare, [K,K} doesn’t have any H components, we can
check that ωi

Λ = Ωi
a = 0.

Then Lie derivatives are just the usual supercharges QA, QȦ and momenta
Pµ and thus they satisfy the super Poincare algebra (i.e. form a representa-
tion).

lA = ∂A + iσµ

AḂ
θ̄Ḃ∂µ

lȦ = ∂Ȧ + iσµ

BȦ
θ̄B∂µ; Pµ = i∂µ (39)

Lie derivatives l = H-covariant Lie derivatives LH (since Ωi
a = 0), thus

commute with covariant derivatives Dm.
Superfields are classified as before after the H representation, in this case

their Lorentz group representation (i.e. spin), as scalar, vector superfields,
etc.



Components are defined by acting with the covariant derivatives Dm,
which as we saw commute with the supercharges= Lie derivatives.

Vielbein, curvature, measure, constraints
From the general coset formalism, we calculate the rigid superspace su-

pervielbein. It is

EΛ
M =







δµ
m 0 0

−iσµ

AḂ
θḂ δB

A

−iσµ

BȦ
θB δḂ

Ȧ






(40)

We can then calculate the covariant derivatives DM = EΛ
M (∂Λ + ωi

ΛTi) and
since ωi

Λ = 0 we get DM = EΛ
M∂Λ, i.e.

DA = ∂A − iσµ

AḂ
θ̄Ḃ∂µ

DȦ = ∂Ȧ − iσµ

BȦ
θ̄B∂µ; Dm = ∂m (41)

Then we can use the general definition of curvature and torsion (for any
space, or any gauge theory)

[Dm, Dn] = T p
mn(x)Dp +Ri

mn(x)Ti (42)

where

Ri
mn = eµ

me
ν
nR

i
µν

Ri
µν = ∂µω

i
ν − ∂νω

i
µ + f i

jkω
j
µω

k
ν

T o
mn = eµ

m(Dµe
ν
n)ep

ν − (m↔ n)

Dµe
ν
n = ∂µe

ν
n + ωi

µf
p
nie

ν
p (43)

When we apply this definition to the rigid superspace, we find that there
is no curvature (bosonic or fermionic) and the only torsion is Tm

AḂ
, thus the

only nontrivial commutator is

[DA, DḂ] = Tm
AḂ
Dm (44)

For the superspace coordinate transformation
(

x′

θ′

)

=

(

A B
C D

)(

x
θ

)

= M

(

x
θ

)

(45)

we get the superjacobian

J =
det(A−BD−1C)

det(D)
= sdet(M) (46)



and then the superspace invariant integration measure is

µ = sdetEM
Λ (47)

and in the case of rigid superspace it is trivial (=1).
One can impose susy-preserving constraints on the general superfields

(in the general representations of the Lorentz-H group). As we saw, the
covariant derivatives commute with the supercharges (Lie derivatives), thus
we can impose constraints in terms of covariant derivatives, called covariant
constraints.

The simplest example is the chiral constraint D̄Ȧφ = 0, defining the
chiral superfield and the other simple possibility is φ real and DADAφ = 0,
giving the linear multiplet. One can analyze systematically all covariant
constraints, by combining all possible derivatives and analyzing them in order
of dimension (e.g. [DA] = 1/2, [DADA] = 1, etc.), thus finding all irreps.
The YM multiplet can be defined instead of using constraints, by defining
the field strength of a real superfield V by WA = D̄2DAV .

Covariant formulation
We can also mimic what happens for YM theory in superspace. We start

with a real superfield with a super-index Aa
Λ(x, θ) (super-connection) and

then define super-covariant derivatives

DΛ = ∂Λ + Aa
ΛTa

DM = EΛ
MDΛ = EΛ

MDΛ = EΛ
M∂Λ + EΛ

MAΛ = DM + AM (48)

The define torsion T P
MN , spacetime curvature Rmn

MN and YM curvature F a
MN

by

[DM ,DN} = T P
MNDP +

1

2
Rmn

MNMmn + F a
MNTa

⇒ F a
MN = DMAN − (−)MN(M ↔ N) + [AM , AN} − T P

MNAP (49)

As before, the torsion is fP
MN (structure constants), and the curvature is zero.

We need to impose constraints on the YM curvature components to obtain
usual YM theory.

The constraints that give usual YM are
- “Representation preserving constraints” FȦḂ = 0, FAB = 0 (necessary)
- “Conventional constraints” (optional) FAḂ = 0 (analogy: in GR ω =

ω(e) is either equation of motion or constraint).



Instead of solving the constraints, one can solve the Bianchi identities,
following from Jacobi identities on supercovariant derivatives (and using the
definition of curvatures and torsion):

[DM , [DN ,DP}}+ ... = 0 → [DM , (T
S
NPDS +F a

NPTa)}+supercyclic = 0 (50)

In all cases, we are back to the usual definition of the YM multiplet.

4.3 Local superspace

The definition of local superspace is more tricky, and there are in fact more
versions of how to do it.

Coset approach to 3d sugra
We consider rigid superspace and want on top of it to gauge the super-

Poincare Lie algebra (“YM theory of super-Poincare on rigid superspace”).
Corresponding to the generators TI = {Pµ, Qα,Mrs} we write “gauge fields”
HI

A where now actually the YM index I corresponds to the curved index
M = {µ, α} (α=fermionic) together with the Lorentz index (rs), whereas A
is a flat index {m, a} (a= fermionic).

Exactly as in the covariant YM formulation, one introduces new kinds of
(gauge and super-) covariant derivatives, including the YM fields:

∇A = DA +HI
ATI (51)

where DA are the flat index rigid superspace covariant derivatives.
The generators TI are represented by H-covariant Lie derivatives LH ,

which commute withDM , thus we can find another basis for TI , namely: TI =
{DM ,Mrs}. When we write this change of basis, we get a linear combination
of components of HI

A:

HI
ATI = hM

A DM +
1

2
φrs

AMrs (52)

thus

∇A = DA + hM
A DM +

1

2
φrs

AMrs ≡ EM
A DM +

1

2
φrs

AMrs

EM
A = δM

A + hM
A (53)

We again define torsion and curvature by the commutator of flat covariant
derivatives, just that now there is no extra YM curvature, since the gauge



group is the supergroup itself, thus

{∇A,∇B} = TC
AB∇C +

1

2
Rrs

ABMrs (54)

One then needs to impose constraints on torsion and curvature compo-
nents in order to get the usual supergravity multiplet (by now there are too
many fields). One imposes the conventional constraints

{∇a,∇b} = 2i∇ab; (∇ab ≡ (γm)ab∇m)

↔ T cd
a,b = 2iδ(c

a δ
d)
b ; T c

a,b = 0; Rrs
a,b = 0 (55)

and
T de

a,bc = 0 (56)

By solving the first set of constraints and the Bianchi identities (that follow
from the super-Jacobi identities for ∇A’s), one expresses everything in terms
of EM

a and φrs
a . By using the last constraint, one can also express φrs

a in
terms of EM

a (x, θ), which is thus the only independent superfield.
Then, we have superspace invariances: local Lorentz Lrs, which can be

used to fix Eα
a = δα

Aψ; fermonic super-Einstein kα, used to put Eαβ
a δa

α = 0
((αβ) is a bosonic index expanded in fermions); bosonic super-Einstein kαβ,
which is

kαβ(x, θ) = ξαβ(x) + iθ(αεβ) + iθγη
(γαβ) + iθ2ξαβ (57)

where the first component is general coordinate transformation, the second
is local susy transformation, and the last two can be used to fix a WZ gauge
in which

ψ(x, θ) = emµδ
µm + iθαγµψµ(x) + iθ2S

E(aαβ)(x, θ) = δαβ
ab (θdh

(abcd) + iθ2ψ(abc)) (58)

and the supergravity multiplet is: ψ(abc) is the gamma-traceless gravitino,
h(abcd) is the symmetric vielbein, S is the auxiliary field, and h= trace part
of symmetric vielbein, γµψµ is the gamma-trace of the gravitino.

The local superspace invariant integration measure is, as one would ex-
pect, the same as for rigid superspace,

∫

d3x d2θ sdetEA
M (59)



(with the obvious generalization to any dimension)
One can find that the correct action is

1

k2

∫

d3xd2θ sdetEA
M(R + Λ) (60)

which gives supergravity with a cosmological constant.
Super-Geometric approach
Instead of using the coset approach for rigid superspace and putting YM

fields in the covariant approach for the supergroup, one can mimic GR on
superspace (not defined formally, i.e. like in the coset approach, just a space
with x, θ coordinates), and write superfields for the vielbein and spin con-
nection, with superindices.

Thus one has EM
Λ (x, θ) and ΩMN

Λ (x, θ) and one restricts the number of
components using invariances and physical input, and also adding constraints
on torsion and curvatures constructed using covariant derivatives for the
curved superspace.

[DM , DN} = T P
MNDP +

1

2
Rrs

MNMrs (61)

I haven’t seen this formulation for 3d, although I am sure it exists.

5 Superspace-bottom line

One can represent the rigid super-Poincare algebra in terms of

lA = ∂A + iσµ

AḂ
θ̄Ḃ∂µ

lȦ = ∂Ȧ + iσµ

BȦ
θ̄B∂µ; Pµ = i∂µ (62)

One can also define flat index covariant derivatives that commute with the
above susy generators

DA = ∂A − iσµ

AḂ
θ̄Ḃ∂µ

DȦ = ∂Ȧ − iσµ

BȦ
θ̄B∂µ; Dm = ∂m (63)

which are related to the curved index covariant derivatives DΛ by the rigid
supervielbein (DM = EΛ

M∂Λ)

EΛ
M =







δµ
m 0 0

−iσµ

AḂ
θḂ δB

A

−iσµ

BȦ
θB δḂ

Ȧ






(64)



One can also define curvature and torsion by the usual

[Dm, Dn] = T p
mn(x)Dp +Ri

mn(x)Ti (65)

and find that we have no curvature and only Tm
AḂ

. The superjacobian is

J =
det(A−BD−1C)

det(D)
= sdet(M) (66)

and then the superspace invariant integration measure is

µ = sdetEM
Λ (67)

and in this case of rigid superspace it is trivial (=1). For local superspace,
it will be the same, except then it will be nontrivial. For a YM theory, one
can define YM and super- covariant derivatives

DΛ = ∂Λ + Aa
ΛTa; DM = EΛ

MDΛ = DM + AM (68)

and imposing constraints FAB = 0, FȦḂ = 0, FAḂ = 0 on their curvatures

[DM ,DN} = T P
MNDP +

1

2
Rmn

MNMmn + F a
MNTa (69)

one can find the YM supermultiplet.
In the local superspace case, things are more complicated. One choice is

one can write down (gauge and super-) covariant derivatives

∇A = EM
A DM +

1

2
φrs

AMrs (70)

where DM is the curved index rigid super-covariant derivative, EM
A is the

inverse supervielbein. By imposing constraints on the torsion and curvatures
derived from it

{∇A,∇B} = TC
AB∇C +

1

2
Rrs

ABMrs (71)

together with their Bianchi identities (Jacobi identities), one gets the usual
supergravity. We have seen that in 3d, the constraints are {∇A,∇B} = i∇AB

and T de
a,bc = 0.

Another choice is the super-geometric approach. One defines superspace
supervielbein EM

Λ (x, θ) and superconnection ΩMN
Λ (x) and constrains their



components and the torsion and curvature derived from curved superspace
covariant derivatives.

The latter procedure can be generalized to any dimension and for any
types of fields. For instance, in 11d, one can write down a general superspace
superfield 3-form AΛΠΩ also, and the constraints are also in terms of its
curvature, H = dA.

6 4d off-shell and in superspace

Off-shell
As we saw, in order to match degrees of freedom off-shell and to close

the algebra on the fields (specifically, on the gravitino), we need to introduce
extra fields: scalar S and pseudoscalar P (together complex scalar M =
S + iP ) and axial vector Aµ.

One needs to add auxiliary terms to the susy rules, which become

(δem
µ =

k

2
ε̄γmψµ)

δψµ = (
1

k
Dµε) +

i

2
Aµγ5ε−

1

2
γµηε; η ≡ −1

3
(S − iγ5P − i/Aγ5)

δS =
1

4
ε̄γ ·Rcov

δP = − i

4
ε̄γ5γ ·Rcov

δAµ =
3i

4
ε̄γ5(R

cov
µ − 1

3
γµγ ·Rcov) (72)

where the symbol Rµ,cov is the gravitino field equation Rµ = εµνρσγ5γνDρψσ,
but with supercovariant derivatives (i.e. their variation doesn’t have ∂µε
terms)

Rµ,cov = εµνρσγ5γν(Dρψσ − i

2
Aσγ5ψσ +

1

2
γσηψρ) (73)

The Lagrangean is

L = −e
2
R(e, ω) − 1

2
εµνρσψ̄µγ5γνDρψσ − e

3
(S2 + P 2 − A2

µ) (74)

Again, note that if in flat space the auxiliary fields would not couple to
anything, now they couple to the vielbein!



The introduction of auxiliary fields closes the algebra, and one just gets
extra auxiliary field-dependent terms in the parameters of transformations.
Specifically, one has

[δQ(ε1), δQ(ε2)] = δgen.coord.(ξ
α) + δQ(−ξαψα)

+δlocal Lorentz[ξ
µω̂mn

µ +
1

3
ε̄2σ

mn(S − iγ5P )ε1]

ω̂µ,ab = ωµ,ab −
i

3
εµabcA

c, ξµ = ε̄2γ
µε1 (75)

Superspace
Indices: flat: M= m (bosonic), a (fermionic); curved: Λ= µ (bosonic), α

(fermionic). Flat fermionic, a= A, Ȧ.
Using as a starting point the super-geometric approach, one has a su-

perpace supervielbein EM
Λ (x, θ), on which one can act with super-Einstein

transformations, defined by ξΛ(x, θ) and with super-local Lorentz ΛMN(x, θ),
but since we don’t want to mix bosons and fermions, we have to restrict it
to

ΛMN =





Λmn 0 0
0 −1

4
(σmn)ABΛmn 0

0 0 +1
4
(σmn)ȦḂΛmn



 (76)

We also have a super-spin connection ΩMN
Λ (x, θ), but since it should be a

connection for the local Lorentz transformation, it has the same structure as
ΛMN , namely

ΩMN
Λ =





Ωmn
Λ 0 0
0 −1

4
(σmn)ABΩmn

Λ 0
0 0 +1

4
(σmn)ȦḂΩmn

Λ



 (77)

One can then define (super-GR) covariant derivatives

DΛ = ∂Λ +
1

2
Ωmn

Λ Mmn; DM = EΛ
MDΛ (78)

and torsion and curvatures

[DN , DM} = T P
NMDP +

1

2
Rmn

NMMmn (79)

and correspondingly, Bianchi identities from the Jacobi identities of the co-
variant derivatives

[DM , [DN , DP}} + supercyclic = 0 (80)



Note that the covariant derivatives have the right limit for rigid super-

space, when EΛ
M → E(0)Λ

M , Ωmn
Λ = 0.

One has to make a gauge choice in which

Em
µ (x, θ = 0) = em

µ ; Ea
µ(x, θ = 0) = ψa

µ, Ωmn
µ (x, θ = 0) = ωmn

µ (81)

This is really a gauge choice and not a definition since the one has to check
that these components transform in the right way.

Note that this is different from what we had in the 3d coset approach,
where the independent components had flat fermionic index only (and curved
bosonic and fermionic), so there is no general prescription for what compo-
nents are of interest.

Still, we have much too many fields left, so one has to impose constraints.
The constraints are

T p
mn = T n

am = T c
ab = Tm

ab +
1

4
(Cγ)r

ab = 0 (82)

They can be split into: Conventional

T p
mn = TC

AB = T Ċ
AḂ

= 0

Tm
AḂ

+
i

4
(σm)AḂ = T n

Am(σ̄n
m)ḂĊ = 0 (83)

Representation preserving

T Ċ
AB = Tm

AB = 0 (84)

and Super-conformal choice
Tm

Am = 0 (85)

After solving the constraints and Bianchi identities we get that supertorsions
and supercurvatures can be expressed in terms of 3 superfields,

R, GAȦ; WABC (86)

whereGAȦ is Hermitean, R andWABC are chiral superfields (DȦR =DȦWBCD

= 0), WABC is totally symmetric and we also have

DAGAȦ = D̄ȦR
∗; DAWABC = DB

ĖGCĖ +B ↔ C (87)



The action is simply the superinvariant measure (unlike in 3d, for exam-
ple),

S =

∫

d4xd4θ sdet EM
Λ (88)

Its variation (on the constraints) is given by

δS =

∫

d4xd4θ sdet EM
Λ [vmGm − RU − R∗U∗] (89)

where vm and U are arbtrary superfields, thus the field equations are

Gm = R = 0 (90)

and these encode the equations of motion of the off-shell supergravity. In
particular, the auxiliary fields are given by

R(x, θ = 0) = S + iP ≡M ; Gm(x, θ = 0) = Aaux
m (91)

We can make the above formalism look more like we expect from GR and
rigid superspace, but we will do it next section.

7 Superspace actions and coupling supergrav-

ity to matter

The simplest expression for matter actions is in superspace. We saw that
covariant derivatives have the right rigid superspace limit, so we can define
chiral fields in the same way, by D̄ȦΦ = 0. We have already seen that R and
GAȦ are chiral. All the formulas of rigid superspace follow, remembering to
use the new covariant derivatives. We get component fields for φ by acting
with the covariant derivatives.

We note that now the superspace has to have flat spinor indices (or we
can make a transformation to flat spinor indices).

We have again

Φ = Φ(y, θ) = φ(y) +
√

2ψ(y) + θ2F (y); yµ = xµ + iθσµθ̄ (92)

thus

φ(x) = Φ|θ=0; ψ(x) =
DAΦ|θ=0√

2
; F (x) = D2Φ|θ=0 (93)



One can also define YM superfields. As usual, we start with a real gauge
superfield V = V +, that has a gauge transformation (for the nonabelian case)

eV → eΛ̄eV e−Λ (94)

with Λ chiral D̄ȦΛ = 0. The only nontrivial thing is the appearance of R in
the definition of the gauge invariant field strength:

WA = (D̄2 − 1

3
R)e−VDAe

V (95)

since we now have
∫

d4xd2θ̄ =

∫

(D̄2 − 1

3
R)|θ=0 (96)

In order to write lagrangians, we need to find invariant measures. We
have already found the invariant measure for the total superspace. Thus the
Kahler potential in curved space is

∫

d4xd4θ sdet EM
Λ K(Φ,Φ+) (97)

However, things are clearer in chiral superspace. We need to find the chiral
measure, i.e. a chiral curved space-invariant density, which we will call E ,
with D̄ȦE = 0. It is found to be

E = e[1 + iθσmψ̄m − θ2(M∗ + ψ̄mσ̄
mnψ̄n)] (98)

Thus the superpotential term is written as
∫

d4xd2θEW (Φ) (99)

The superpotential is a chiral superfield, and thus can always be written as
d2θU = (D̄2 − 1

3
R)U , with U a general superfield. We see that if we choose

U=1, we get
∫

d4xd2θ ER =

∫

d4xd2θEd2θ̄ (100)

and we can figure out that the last expression has to be an invariant measure,
thus equals the Einstein action

−3

∫

d4xd4θ sdet EM
Λ (101)



We can check this also explicitly, as we can find that

R = M + θ(σmσ̄nψmn − iσmψ̄mM + iψmA
m) + θ2[−1

2
Rmn

mn
i ψ̄mσnψmn

+
2

3
MM∗ +

A2
m

3
− ieµ

mDµA
m +

1

2
ψ̄ψ̄M − 1

2
ψmσ

mψ̄nσ
n

+
1

8
εmnpq(ψ̄mσ̄nψ̄pq)] (102)

Thus the most general Lagrangean is

S =

∫

d4xd4θ sdet EM
Λ [K(Φ,Φ+) + Φ+eV Φ]

+

∫

d4xd2θE [W (Φ) + TrWAWA] + h.c.

=

∫

d4xd2θ E [D̄2 − 1

3
R][K(Φ,Φ+) + Φ+eV Φ]

+

∫

d4xd2θE [W (Φ) + TrWAWA] + h.c. (103)

Unlike in flat space, now a constant term in the superpotential is nontrivial,
since it couples to supergravity. Also, the Kahler potential for a neutral
scalar starts in flat space with Φ+Φ, but now we can have also a+ cΦ+, and
it is still nontrivial. In fact, there should be a term with a, as it contains just
the Einstein action, as we have mentioned.

Note that with this Lagrangean, we get the supergravity action multiplied
by a+φ+φ for a usual scalar (the θ = 0 component of the Kahler potential),
thus we are in a Brans-Dicke parametrization:

−1

3

∫

d4xd2θ ER(a+ φ+(x)φ(x)) (104)

or in general (if we extract the constant term out of the Kahler potential)

−1

3

∫

d4xd2θ ER(a+K(φ(x), φ+(x))) (105)

The choice a = −3 gives the usual Einstein action. We redefine K

1 − 1

3
K = e−k/3 (106)



where k is the modified Kahler potential, and this expression multiplies the
off-shell supergravity action. We must perform a Weyl rescaling on the x-
space action to get to the Einstein frame and eliminate e−k/3.

The scalar potential before the rescaling would be again given by the
auxiliary fields, just that now we have also sugra auxiliary fields, multiplied
by e−k/3:

g2V =
∑

i

|Fi|2 −
g2

2
DaDa − 1

3
(|M |2 + A2

m)e−k/3 (107)

but since the θ2 component of E is M++fermions, we get a M W (φ) coupling,
as well as a −Mφ/3dW (φ)/dφ coupling. Also from the Kahler potential, we
get a coupling ∂K/∂φiFiM , thus

M ∼ φ
dW (Φ)

dφ
− 3W (Φ) (108)

and Fi also get modified. The actual formula is quite complicated, and after
the Weyl rescaling we get something simpler:

V = ek[
∑

ij

g−1
ij̄

(
∂W

∂φi

+W
∂k

∂φi

)(
∂W

∂φj

+W
∂k

∂φj

)∗ − 3|W |2]

+
1

2
f−1

AB(
∂k

∂φi
(TA)ijφj)(

∂k

∂φk
(TB)klφl)

∗ (109)

where

gij̄ =
∂2k

∂φi∂φ∗

j

(110)

is the metric on scalar field (φi) space (as well as on the space of their
fermionic partners), thus the kinetic action is

∫ √
g[gij̄Dµφ

i(Dµφ)∗j̄ + gij̄ψ
iD/ψ̄j̄] (111)

and fAB is a scalar-dependent metric on YM space (the kinetic term is
−1/4Re[fABF

A
µνF

Bµν), thus the second term in V comes from the D terms.
One usually defines the “covariant derivative”

Di =
∂

∂φi

+
∂k

∂φi

(112)



and thus in the absence of D terms one writes for the scalar potential

V = ek[
∑

ij

g−1
ij̄
DiW (DjW )∗ − 3|W |2] (113)

and the gaugino action (in the presence of D terms) is

−1

2
Re[fABΛ̄AD/λB] +

1

2
ek/2Re

∑

ij

g−1
ij̄
DiW (

∂fAB

∂φi
)∗(λ̄AλB) (114)

8 General dimensions and KK

8.1 On shell

In 4d, N = 2 supergravity is obtained by coupling the (2, 3/2) supergravity
multiplet to a (3/2, 1) multiplet (gravitino and abelian vector field). The
number of gravitinos will correspond in general to the number of supersym-
metries (as each one maps the graviton into a different gravitino).

If one minimally couples the gravitinos to the abelian gauge field, ob-
taining what is called a gauged supergravity, one is forced to introduce a
cosmological constant term. One finds the new gravitino law

δψi
µ = Dµ(ω(e, ψ))εi + gγµε

i + gεijAµε
j (115)

and in general, the cosmological constant manifests itself by the nonlinear
susy term in the gravitino law, gγµε

i, with g being the cosmological constant
also (thus having AdS supergravity).

The N = 3 model couples the multiplets (2, 3/2), 2(3/2, 1), (1, 1/2),
thus the field content is ea

µ, ψ
i
µ, A

i
µ, λ (i=1,3).

Again, coupling gravitinos minimally to abelian gauge fields to obtain a
gauged supergravity implies a cosmological constant (thus having AdS super-
gravity), but moreover, one also makes the gauge fields nonabelian.

The N = 4 model also has scalar fields, for a field content (ea
µ, ψ

i
µ, A

k
µ, B

k
µ,

λi, φ, B), where Aµ are vectors, Bµ are axial vectors, φ is a scalar and B a
pseudoscalar. It can be derived by dimensional reduction from the N = 1
supergravity in d=10. It also can be gauged, and again the gauged model is
nonabelian and AdS.

Finally, one has the maximal N = 8 supergravity model, that can be
derived from reduction from the N = 2 model in d=10 or from the unique



N = 1 model in 11d. It also can be gauged, obtaining a nonabelian AdS
model.

By requiring that we have at most spin 2, (higher spins are not coupled
consistently to gravity), we can have at most the N = 8 model, which can be
obtained from the unique d=11 supegravity, which has thus a lot of appeal.
Indeed, M theory is supposed to be 11d sugra at low energies.

One can find a lot of supergravities in many dimensions, but all can
be obtained by dimensional reductions of the 11d supergravity and the IIB
model in d=10. For ungauged models, that has generally been proven, as
one needs to compactify on tori (usual dimensional reduction). To obtain
gauged models, one needs to compactify on nontrivial spaces, so that was
done case by case (and there are cases that have not been solved).

The field content of 11d supergravity is graviton, gravitino and 3-form,
ea

µ, ψµ, Aµνρ, and the only nontrivial bosonic term is a CS coupling, εFFA.

8.2 Off-shell and superspace

The set of auxiliary fields is not known in general, except in a few cases, like
the N = 1 and N = 2 models.

One does know however in a few cases a superspace formulation that
gives, when imposing constraints (and maybe Bianchi identities), the on-
shell supergravity (i.e. its equations of motion).

Most notably, this is the case for the d=11 N = 1 supergravity. Brink
and Howe and independently Cremmer and Ferrara have found that one can
have a superspace formulation in terms of a supervielbein EM

Λ and super-
spin connection ΩMN

Λ (again, with only Ωmn
Λ independent, for local Lorentz

invariance). But one finds that one also needs a super-3 form AΛΣΩ. Thus in
general, one needs more superspace fields than the supervielbein and super-
connection, and what kind of fields needs to be treated case by case.

For the 11d sugra, one defines super-torsion and curvature in the usual
way (as in 4d), and also H = dA as the curvature of A = dzΛdzΣdzΩAΛΣΩ

(dzΛ = (dxµ, dθ)). Then one defines (as for torsion and curvature) flat index
curvature by multiplying with inverse supervielbeins (here EM = dzΛEM

Λ ):

H = EMENEPEQHMNPQ (116)

One can write down a set of constraints on torsion, curvature and HMNPQ

that, together with the usual Bianchi identities and the Bianchi identity of
H, dH = 0, imply the 11d sugra equations of motion.



8.3 KK reduction

Metrics and generalities
Kaluza-Klein reduction (KK) treats the case of a space that breaks into

a noncompact space M times a compact space S. There are 3 metrics that
one sometimes calls KK metrics. The first one is the KK background metric,
that has to be a solution of the supergravity theory. Generically, it is (in the
case M × S)

gΛΣ =

(

g
(0)
µν (x) 0

0 g
(0)
mn(y)

)

(117)

where x are coordinates on the noncompact space M and y are coordinates
on the compact space S.

The second one is the equivalent of Fourier decomposition on a circle or
spherical harmonic decomposition on S2. It is the KK expansion. Every
field in the theory, including every component of the metric is expanded in
the complet set of (generalized) spherical harmonics on the compact space S,
called Y I

n (y) (we have put explicitly an index n for the degree of the spherical
harmonic, e.g. l on S2, although it is implicit in the representation index I).
Thus generically, we write for a field φ(x, y)

φ(x, y) =
∑

n

φI
n(x)Y I

n (y) (118)

The third one is the KK (reduction) ansatz metric and corresponds to
having the dimensional reduction ansatz of keeping only the fields in the first
representation (n=1), what we would call independent of the coordinate y on
the compact space (although generically, there will be the given y dependence
of the first spherical harmonic Y1(y). Also generically, it is not necessarilly
the first expansion element that is kept for all fields, some might keep only
n=2, say). Thus generically, this would be

φ(x, y) = φ1(x)Y1(y) (119)

Thus let’s see what happens for a KK reduction on a p-torus T p (i.e. on
a background M × T p). The KK expansion of the metric would be

gΛΣ =
(

gµν(x, y) = g
(0)
µν (x) +

∑

n h
(n)
µν (x)ein y

R ;gµm(x, y) =
∑

nB
m,(n)
µ (x)ein y

R

gµm(x, y) gmn(x, y) = δmn +
∑

q h
(q)
mn(x)eiq y

R (y)

)

(120)



In this case the spherical harmonics for different components are the same
(just Fourier exponentials), but in general they are not. Also, in general,
there would be a nontrivial background metric for the compact metric (but
a torus is flat).

The KK reduction ansatz is then

gΛΣ =

(

gµν(x) = g
(0)
µν (x) + h

(0)
µν (x) gµm(x) = B

m,(0)
µ (x)

gµm(x) gmn(x) = δmn + h
(0)
mn(x)

)

(121)

And we can see the general behaviour: gµν(x) will give the metric, gµm

gives vectors, and gmn gives scalars in the lower dimension. Similarly, for
a vector Aµ will still be a vector, but Am will be scalars, and similarly for
antisymmetric tensors, etc. A M × S spinor will split into many spinors in
the lower dimension (M).

Consistent truncation and nonlinear ansatz
We should note that whereas the KK expansion is always valid (it being

the result of a generalized Fourier theorem- that is, the spherical harmonics
form a complet set over the compact space), the KK reduction ansatz is not
in general, with the exception of the torus reduction. It is in general valid
only at the linearized level.

Indeed, making a truncation to the lowest modes must be a solution to
the equations of motion, i.e. it must be a consistent truncation.

To see what can go wrong, note that we can have a term in the KK
expanded action of a φ3 coupling, of the type

(...)

∫

ddx

√

detg
(0)
µν φ

In

n φ
I0
0 φ

J0

0 (x)

∫

d(D−d)y

√

detg
(0)
mnY

InY I0Y J0(y) (122)

If the y integral is nonzero, the equation of motion for φn will be like

(2 + ...)φIn

n (x) = (...)φI0
0 φ

J0

0 (x) (123)

and we see that it’s inconsistent, that is, not a solution of the equations of
motion, to put the mode φn to zero and keep only the lowest mode φ0.

For the torus reduction, this is not a problem, since then Y I0(y) = 1
and

∫

dyY In =
∫

dyeiny/R = 0, so there are no nonzero couplings as the one
above.

A generalization of this case is if we have a global symmetry under a
group G and by the reduction ansatz we keep ALL the singlets under G. Then



φI0
0 is a singlet and so is φI0

0 φ
J0

0 , but φIn
n is not, and by spherical harmonic

orthogonality the integral of their product is zero.
We also see what we could do to make the KK truncation consistent. We

have to make nonlinear redefinitions of fields, of the type

φ′

n = φn + aφ2
0 + ...

φ′

o = φ0 +
∑

mn

cmnφmφn + ... (124)

This corresponds to making from the begining a nonlinear KK ansatz, which
we have to remember that comes from the KK expansion only after a non-
linear redefinition.

The simplest example of nonlinear KK ansatz is the fact that in order to
get the correct d-dimensional Einstein action (in Einstein frame) from the
D-dimensional we need to rescale the metric as follows.

gµν(x, y) = gµν(x)

[

det gmn(x, y)

det g
(0)
mn(y)

]

−
1

d−2

(125)

We can easily check that then we don’t get extra factors of the compact
metric in front of the d-dimensional Einstein action.

Original Kaluza-Klein
As an example, let us look at the original Kaluza-Klein reduction, of 5d

gravity to 4d (on a circle). The linearized KK reduction ansatz is

gΛΣ =

(

gµν(x) Bµ(x)
Bµ(x) φ(x)

)

(126)

where gµν(x) is the 4d metric, Bµ(x) is a vector (“electromagnetism” were
hoping K&K), and φ is a scalar. Incidentally, note that if we put the scalar
φ = 1 as K&K wanted, we get an inconsistent ansatz! A fact noticed by K&K,
who noted that one needs a scalar. As it is, the ansatz is still inconsistent,
but now we can make a nonlinear redefinition of fields, or equivalently, write
from the begining the consistent nonlinear KK ansatz

gΛΣ =

(

gµν(x)φ
−1/2(x) Bµ(x)φ(x)

Bµ(x)φ(x) φ(x)

)

= φ̄−1/3(x)

(

gµν(x) Bµν(x)φ̄(x)
Bµν(x)φ̄(x) φ̄(x)

)

(127)



For general compact spaces, the linearized KK ansatz for the off-diagonal
metric is

gµm(x, y) = BAB
µ (x)V AB

m (y) (128)

where V AB
m (y) are the Killing vectors of the space (corresponding to isome-

tries). Thus for avery independent Killing vector, we get a vector field.
Vielbein and spinors. Killing spinors
All of this was in terms of the metric, but we saw that one uses the

vielbein in supergravity. Let us use α, a for flat indices on the noncompact
and compact spaces, respectively. Then one can fix the off-diagonal part of
the local Lorentz group (from SO(D− 1, 1) to SO(d− 1, 1)×SO(D−d)) by
imposing the gauge choice Eα

m = 0. Then one has the nonlinear KK ansatz

Eα
µ (x, y) = eα

µ(x)

[

detEa
m(x, y)

dete
(0)a
m (y)

]

−
1

d−2

Ea
µ(x, y) = Bm

µ (x)Ea
m(x, y); Bm

µ (x, y) = BAB
µ (x)V AB

m (y) (129)

and the nonlinear ansatz for Ea
m has to be determined separately (case by

case).
Spin 1/2 fermions on a torus just split up into many d dimensional

fermions. The D-dimensional fermionic index A splits up into the d di-
mensional M and the compact space i, so that the linearized KK ansatz is
of the type λA(x, y) = λi

M(x). In general, on a product space, we will have a
product of spinors:

λA(x, y) = λM(x)IηI
i (y) (130)

where I counts the number of compact space spinors (their representation).
Howver since both λA and λM need to be anticommuting, we need to take
ηI

i (y) to be a commuting spinor.
On a space with symmetries, ηI

i (y) are so-called Killing spinors. The
Killing spinors are the “square root” of Killing vectors in the following sense.
A Killing vector satisfies the Killing equation

D(µV
AB
ν) = 0 (131)

(in the case of gravity theories, we always mean the equation in the back-
ground metric), whereas a Killing spinor satisfies the equation

Dµη
I
i = ceα

µγαη
I
i (132)



On a sphere, the two are related by (where we have been a bit cavalier about
the index conventions)

V AB
µ = η̄Iγµη

J(γAB)IJ (133)

Notice that Dµη is the susy variation of the N = 1 supergravity vielbein.
In more general gravitational theories (supergravity) on more general

spaces, one defines therefore Killing spinors as spinors that preserve some
susy, meaning that one takes δsusyλA(x, y) = 0, which in general will imply
for the compact space ηI something of the type

Dµη
I = (fields × gamma matrices)µ|backgroundη

I (134)

and one still makes the ansatz

λA(x, y) = λM(x)IηI
i (y) (135)

but one keeps only as many spinors as Killing spinors: since they preserve
susy, the d-dimensional spinors they multiply will be massless, whereas the
other spinors will become massive in the limit, so for the KK reduction one
keeps only the massless modes.

From the Killing spinors one can build up all the other “massless spherical
harmonics”, Killing vectors, scalars, conformal Killing vectors, and vector-
spinor (for the gravitino), thus completing the linear KK reduction.

Symmetries
When one dimensionally reduces supergravity on a q-torus T q, one gets

many scalars (from D-dimensional scalar φI , from the compact metric gmn,
compact vectors AI

m, compact antisymmetric tensors, e.g. Amn), many vec-
tors (from vectors AI

µ, off-diagonal metric gµm, off-diagonal antisymmetric
tensors Aµm, etc.), and so on. Usually the fields of same spin (even if com-
ing from different D dimensional fields) combine to form multiplets of some
global symmetry group G (there doesn’t seem to be a systematic of which
group, basically is trial and error, counting the number of fields in each spin
and trying to arrange them in multiplets of some group).

When one dimensionally reduces on a nontrivial compact space instead,
e.g. a sphere Sq, the torus abelian Killing spinors turn into a nonabelian
Killing spinors (satisfying nonabelian commutation relations), and so the
abelian vector fields transforming in a global symmetry group G turn into
nonabelian fields of part or all of the group G, thus gauging the global sym-
metry, getting a gauged supergravity.



To get the gauged supergravity, one generically needs however to use a
nonlinear KK ansatz, in order to have a consistent truncation.

9 Calabi-Yau compactifications and special

geometry; flux compactifications

Kahler and Calabi-Yau
If we compactify 10d string theory on a spaceK6, we would like to preserve

N = 1 susy in 4d. The holonomy group, defined as the group formed by
paralel transport of a spinor along closed paths in a n-dimensional space, is
an element of SO(n).

If we have N = 1 susy in 4d, and if we don’t have any fluxes, the Killing
spinor equation will be just the condition for covariantly constant spinor

Dµη = 0 (136)

(for instance, for compactification on a sphere, the γµ term on the r.h.s. of
the Killing spinor equation comes from a constant flux in the susy law, that
is needed to keep the curvature of the sphere).

But if there is one (and only one) covariantly constant spinor, the holon-
omy of a space is SU(n/2).

A complex manifold is a manifold over which we can find an almost com-
plex structure J i

j that obeys J2 = −1 and can be diagonalized at any point
over complex numbers. If when we diagonalize J at a point we have the
Nijenhuis tensor =0 (analog to having the Riemann tensor =0 when we put
the metric to 1), we have a complex manifold, with coordinates zi (and z̄j̄).

If a manifolld has U(N) (or subgroups) holonomy, with N=n/2, then it
is called a Kahler manifold , and then J i

j is covariantly constant (which is
an equivalent definition of the Kahler manifold). On a Kahler manifold we
can always find locally a Kahler potential such that the metric is

gij̄ =
∂2K

∂zi∂z̄j̄
(137)

The spin connection on a Kahler manifold is a U(N) ∼ SU(N) × U(1)
gauge field. If the holonomy is SU(N), the U(1) part is topologically trivial
(pure gauge, with zero YM curvature), or equivalently, the first Chern class
c1(K) = 0.



Conversely, Calabi and Yau proved that for a Kahler manifold of c1(K) =
0 there exists a unique Kahler metric of SU(N) holonomy. We saw that means
that there is a covariantly constant spinor, Diη = 0, and from [Di, Dj]η = 0
one gets that the manifold is also Ricci-flat, Rij̄ = 0, thus obeying both the
susy and Einstein equations needed for a good compactification to 4d. It is
called a Calabi-Yau space.

Note now that the general chiral multiplets in 4d also have a Kahler
potential, and it is not a coincidence. Indeed, the general N = 1 chiral
multiplet model has a Kahler metric on the scalar field space. The scalar
fields in N = 2 vector multiplets have a metric that is of a type called special
Kahler, sometimes called special geometry. And the scalar fields in N = 2
hypermultiplets have a quaternionic manifold.

When we compactify string theory on a Calabi-Yau (or any other space
for that matter), the low energy theory has (massless) scalars that correspond
to deformations of the compact space (not to the coordinates of the space!!),
called moduli. Thus the moduli space of Calabi-Yau compactifications is also
Kahler (since it preserves N = 1 susy, which implies a Kahler potential for
the scalars), just like the Calabi-Yau itself!

We know however that in 4d we can’t break N = 2 susy, so for phe-
nomenology we need N = 1, so why study it? However, a startling result
found in the early 90’s (see e.g. the Strominger paper in 1990 that defined
special geometry rigorously) is that in N = 1 string compactifications we still
have the N = 2 structure of special geometry on the vector moduli= scalars
in the low energy vector multiplets (but no quaternionic structure for the
hypermultiplet scalars). This was found first for heterotic compactifications
that were preserving N = 2 susy on the CY, and then extended to type II
compactifications through dualities.

So the geometry of moduli space of Calabi-Yau’s is actually not only
Kahler, but special Kahler, or special geometry.

Before we study that though, we will say a few things about topology.
Topology
Betti numbers. On a real manifold one can define p-forms (antisymmetric

tensors) and the differential operator d acting on them. Exact forms: ψ =
dφ. Closed: dψ = 0. Cohomology, as usual= equivalence classes of closed
forms, modulo exact forms: for p-forms, we have the p-th cohomology group,
Hp(M ;R), whose dimension is called the p-th Betti number bp (the number
of linearly independent p-forms on the manifold that are closed, but not
exact). The number bp of M is also= the number of independent closed p-



dimensional surfaces on M that are topologically nontrivial, and is = the
number of linearly independent harmonic p-forms. This real cohomology is
called de Rham cohomology.

On a compactification on M4 ×K6, a p-form with n indeices in M4 and
p-n in K6 will be temporarily called a (n, p − n) form (not to be confused
with the complex (p,q) forms below). The number of zero eigenvalues of
the laplacean on K6, ∆K , on such forms is bp−n(K) and is= the number of
massless n-forms in M4.

For fermions, the index of the (gauged) Dirac operator,

indexDK/ = n+ − n− (138)

is the number of positive chirality zero eigenvalues- the number of negative
chirality eigenvalues and is a topological invariant (nonzero eigenvalues can-
cel). The Atiyah-Singer theorem relates it to other topological invariants.
On a 6d manifold K6, we have (for spinors in the Q representation)

indexQDK/ =
1

48(2π)3

∫

K

[trQF ∧ F ∧ F − 1

8
trQF ∧ trR ∧ R] (139)

Hodge numbers On Kahler manifolds, one defines Dolbeault cohomology,
where the differential operator is ∂̄, and cohomology is defined as closed
(∂̄ψ = 0), modulo exact (ψ = ∂̄φ) forms again. But now we have zi and
z̄j̄ coordinates, and correspondingly we have (p,q)-forms, thus we have the
cohomology groups H (p,q)(K), of dimensions hp,q, called Hodge numbers. The
Hodge decomposition theorem states that

Hn
D = ⊕p+q=nH

p,q ⇒ bn =
∑

p+q=n

hp,q (140)

The Euler characteristic of a manifold is given by

χ =
∑

n

(−1)nbn =
∑

p,q

(−1)p+qhp,q (141)

Relations:

bp = bn−p(real dim.n) ⇒ hp,q = hN−p,N−q(complex dim.N)

(Poincare duality); hp,q = hq,p; b0 = 1 ⇒ h0,0 = 1 (142)



Holomorphic form. On a Calabi-Yau space of complex dimension N, there
exists a unique holomorphic, everywhere nonzero N-form (more precisely, one
(0,N) and one (N,0) form). Let’s call it Ω. In fact, the Calabi-Yau definition
involves the condition c1(K) = 0, which is equivalent to the existence of this
unique holomorphic form. Thus also hN,0 = h0,N = 1.

Calabi-Yau moduli space
The moduli of Calabi-Yau spaces in string theory (deformations that are

not changing the topology, thus don’t affect the low energy theory, thus being
zero energy deformations, or moduli) are of two types.

The complex structure moduli are defined as follows.
A CY space X has b3 topologically nontrivial 3-surfaces (see before).

There exists a basis for it, (AI , B
J), I, J = 1, b3/2, of surfaces with in-

tersection numbers

AI ∩ BJ = −BJ ∩ AI = δJ
I ; AI ∩ AJ = BI ∩BJ = 0 (143)

which is unique up to an Sp(b3, Z) transformation that acts on the vector
(AI , B

J) and preserves the intersection matrix above. This basis is dual to
the basis of 3-forms for H3(X,R), given by (αI , β

J) (i.e.
∫

AI
βJ = δJ

I , etc.).
The complex structure moduli are the b3 periods of the holomorphic N-

form (3-form for CY3) Ω, i.e.

FI =

∫

AI

Ω; ZJ =

∫

BJ

Ω (144)

They will give N = 2 vector multiplets and thus live in a special Kahler
manifold. The two periods are related by the period matrix N IJ : ZJNIJ =
FI , or rather

NIJ =
∂FI

∂ZJ
(145)

The Kahler structure moduli are defined as follows. The Kahler form on a
Calabi-Yau is kij = gik̄J

k̄
j, or compactly (denoted also J to confuse people),

the 2-form
J = gij̄dz

i ∧ dzj̄ (146)

In string theory, one also has the NS-NS 2-form field Bµν , defining another 2-
form B, and then the complexified Kahler class on X is K = J+iB. Similarly
to the complex structure then, one has b2 topologically nontrivial 2-surfaces,



and one can find a basis (A′

I′, B
′J ′

), I ′, J ′ = 1, b2/2 on them and define the
Kahler moduli as integrals of K on them

XI′ =

∫

AI′

K; XJ ′

=

∫

BJ′

K (147)

They will give N = 2 hypermultiplets, thus have a quaternionic structure
(hyper-geometry).

For the simplest Calabi-Yau, namely the torus T 2, the Kahler structure
modulus is the overall volume (plus B-field integral), while the complex struc-
ture is τ , the complex parameter defining the ratio of torus cycles (the com-
plex periodicities of the torus are 1 and τ). Thus Kahler class determines
“size” and complex structure determines “shape”.

Mirror symmetry exchanges complex structure moduli with Kahler mod-
uli, thus also exchanging the topological numbers b2 and b3 for CY3 and
vector multiplets with hypermultiplets.

Conifold transitions. Moduli spaces of CY have sometimes singularities,
for instance when one of the periods, say Z1, vanishes, and then the Calabi-
Yau becomes singular, and is known as a conifold. Strominger showed in
1995 that string theories resolves these singularities, that one can associate
with black hole multiplets becoming massless and condensing (the same way
Seiberg and Witten resolved N = 2 SYM moduli space singularities by con-
densation of monopoles). Then Greene, Morrison and Strominger (also in
1995) showed that this string-smoothed transition in moduli space signals a
smooth transition between topologically different Calabi-Yau’s (with differ-
ent Euler characteristic and Hodge numbers).

Special geometry (see Fre; deWit and van Proeyen 1995 reviews)
On the space of nv N = 2 vector multiplets coupled to N = 2 supergrav-

ity, one has special geometry, defined by a Sp((nv + 1), Z) vector bundle.
The metric on the moduli space of the Calabi-Yau’s will be the scalar

field moduli space, thus the Kahler potential of the CY moduli space is the
modified supergravity Kahler potential k of the scalars in chiral multiplets:

gij̄ = ∂i∂j̄k (148)

The complex dimension of the moduli space gives the number of vector
multiplets nv (since each vector multiplet has a complex scalar). In the
presence of N = 2 supergravity though, we have also the graviphoton, i.e.
the photon superpartner of the graviton, hence the nv+1 in the vector bundle.



This is called local special geometry. If we don’t have supergravity, the 1 is
absent and we have rigid special geometry.

For type IIB on a CY3, we have the N = 2 multiplets: supergravity, h21

vectors coming from the complex structure, and b2 + 1 = h1,1 + 1 hypermul-
tiplets coming from the Kahler structure and

the complexified coupling

τ = a+ ie−φ (149)

Special geometry for the moduli space of CY’s means that (ZI , FJ) are
projective sections (coordinates) of an Sp(b3, Z) vector bundle over the mod-
uli space. They are defined locally, and then one has

k(ZI , Z̄ J̄) = −ln(iFI Z̄
I − iZIF̄I) (150)

The global definition for CY3 involves the holomorphic 3-form Ω. Defining
the inner product

< A|B̄ >=

∫

X

d6xA ∧ B̄ (151)

one has
k = −ln < Ω|Ω̄ > (152)

and the relation to the special coordinates from before is given by the local
decomposition of the holomorphic 3-form in the 3-form basis

Ω = ZIαI + FJβ
J (153)

which implies the previous definition.
Remembering that special geometry is N = 2 theory on vector multiplets,

for which the chiral action is
∫

d4xd4θF(Ψ) (154)

the Kahler potential is the above if

FJ(ZI) =
∂F
∂ZJ

(155)

and the metric on vector field space is

fIJ = ∂I∂JF (156)



so that the YM kinetic action is
∫

d4xIm(fIJF
I
µνF

J
µν) (157)

We see that the metric on vector field space is the same as the period matrix.
Also the Yukawa couplings in the N = 2 vector multiplets are

FIJK = ∂I∂J∂KF (158)

Flux compactifications and inflation
In the presence of IIB G-flux, defined as the 3-form

G = FRR − τHNS (159)

(see Giddings, Kachru and Polchinski= GKP) one has the Gukov-Vafa-
Witten (GVW) superpotential

W =

∫

K6

Ω ∧G(3) (160)

where Ω is the holomorphic 3-form.
The F-theory generalization is (F theory is by definition IIB with vary-

ing complex coupling τ , interpreted as the complex structure modulus of
a T 2 fibration of the compactification manifold, i.e. τ is the ratio of cycle
periodicities of a torus that varies from point to point)

W =

∫

X8

Ω4 ∧G(4) (161)

where Ω4 is the holomorphic 4-form over the Calabi-Yau X8 and G(4) is the
previous flux viewed as a 4-form when τ is geometric.

GKP consider a single Kahler modulus, a radius ρ, as well as the complex
structure moduli Zα and the dilaton τ , with tree-level Kahler potentials

K(ρ) = −3ln[−i(ρ − ρ̄)]

K(τ, Zα) = −ln(−i(τ − τ̄)) − ln(−i
∫

K6

Ω ∧ ω̄) (162)

Tadpole cancellation (generalized D3 charge conservation on the compact
space) requires for F theory

L ≡ 1

2

∫

X8

G4 ∧G4 =
χ

24
−ND3 (163)



where ND3 is the number of D3’s minus the number of anti-D3’s transversal
to X8. Here ND3 is D3 charge, L is D3 charge induced by the flux (in IIB
language, 2L =

∫

H(3) ∧ F(3), thus this charge contribution comes from a
Chern-Simons coupling in the II action, of the type

∫

HNS
(3) ∧ FRR

(3) ∧ ARR
(4) =

∫

BNS
2 ∧ FRR

(3) ∧H+,RR
(5) ), and χ/24 is gravitational charge, which in IIB lan-

guage is negative charge of O3 orientifolds and D3 charge induced on D7’s.
Kachru, Kallosh, Linde and Trivedi (KKLT) showed that the tree level

Kahler potential from before, together with the nonperturbative superpoten-
tial

W = W0 + Aeiaρ (164)

(which can come either from euclidean D3 brane instantons which live in
X8, or from a purely 4d phenomenon, the N = 1 SYM effective theory
having gluino condensation), are enough to create a stable AdS minimum
(the potential V (σ = Imρ) has a negative minimum). Then addition of
D̄3 branes (and correspondingly extra flux, to satisfy charge conservation),
breaks susy and gives a potential of type

V =
D

σ3
(165)

that lifts the AdS vacuum to a dS vacuum. Its moduli are fixed, so the D̄3 is
stuck at a fixed position. This creates a scenario where one needs to tunnel
out of the potential barrier to zero energy (old inflation).

Then Kachru, Kallosh, Maldacena, McAllister and Trivedi (KKLMMT)
introduced also an extra moving D3 brane, and one has inflation from the
D3− D̄3 potential in the flux compactification geometry (the inflaton is the
distance between the fixed D3 and the moving D̄3). But generically, moduli
stabilization is too constraining, and the potentials are too steep for good
inflation. At special points, these problems might be aleviated.


