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A very basic introduction (survival guide)

1.1 Algebras

2-component notation for 4d spinors

ψ =

(

ψα

χ̄α̇

)

(1)

C matrix

CAB =

(

εαβ 0
0 εα̇β̇

)

; εαβ = εα̇β̇ =

(

0 1
−1 0

)

(2)

Gamma matrix

γµ =

(

0 σµ

σ̄µ 0

)

; (σµ)αα̇ = (1, ~σ)αα̇; (σ̄µ)αα̇ = (1,−~σ)αα̇ (3)

N-extended susy algebra (I,J=1,N)

{QI
α, Q̄α̇J} = 2σµ

αα̇Pµδ
I
J

{QI
α, Q

J
β} = εαβZ

IJ

{Q̄Iα̇, Q̄Jβ̇} = εα̇β̇Z
∗
IJ (4)

Here ZIJ is complex and antisymmetric and is a central charge, i.e. comm-
mutes with all generators.

For N = 2, ZIJ = 2εIJZ. Then the redefinitions

aα =
1√
2
[Q1

α + εαβ(Q2
β)+]; bα =

1√
2
[Q1

α − εαβ(Q2
β)+] (5)

imply for a massive representation in the rest frame (no momentum)

{aα, a
+
β } = 2(M + |Z|)δαβ; {bα, b+β } = 2(M − |Z|)δαβ (6)

and the rest of the (anti)commutators are zero. Which means that we have
the BPS bound: M ≥ |Z|. Indeed, otherwise we would have negative norm
states (ghosts) by acting with the creation operators on the vacuum. Note
that the BPS bound can be proven under more general conditions, when we



are in higher dimensions and we have all sorts of central p-form charges, but
the principle is the same.

Also note that representing a (susy or not) algebra in terms of oscillators
in order to classify representations is a very useful procedure in representation
theory (the high energy theorists’s version), that has been heavily used in
more complicated theories.

We see that when the BPS bound is saturated, one half of the oscillators
dissappear from the spectrum, so BPS representations are shorter (half size).
In fact, they are the same size as a massless representation (a fact that
can be obtained from dimensional reduction from a higher dimensional susy
algebra).

1.2 N = 1 susy

In the N = 1 case, we can represent the algebra by derivatives as

Qα = ∂α − iσµ
αα̇θ̄

α̇∂µ

Q̄α̇ = −∂α̇ + iσµ
α̇αθ

α∂µ; Pµ = i∂µ (7)

We can also define susy invariant derivatives, that are obtained just by
switching the relative sign in the two susy charges, i.e.

Dα = ∂α + iσµ
αα̇θ̄

α̇∂µ

D̄α̇ = −∂α̇ − iσµ
α̇αθ

α∂µ (8)

We can check that indeed these derivatives commute with the supercharges.
Being susy invariant (commute with susy), we can impose susy preserving

constraints by acting with them. In particular, on a general superfield we
can impose the chirality constraint

D̄α̇Φ = 0 (9)

obtaining a chiral superfield. Similarly, a superfield satisfying DαΦ = 0 is
called anti-chiral.

A chiral superfield can be expanded as

Φ = Φ(y, θ) = φ(y) +
√

2θψ(y) + θ2F (y) (10)

where φ, ψ, F are arbitrary functions and F is an auxiliary field called F term.
Thus the chiral (or Wess-Zumino) off-shell multiplet is made of a complex



scalar, a Majorana spinor and an auxiliary complex scalar. These functions
depend on the combination yµ = xµ + iθσµθ̄, since D̄α̇y

µ = 0. Then φ(x) =
Φ|θ=0 (since yµ|θ=0 = xµ and Dαy

µ|θ=0 = 0), and also ψ(x) = DαΦ|θ=0/
√

2,
F (x) = D2Φ|θ=0. We can also expand to find out the components in terms
of x and θ. One Taylor expands the fields φ, ψ, F and then keeps in Φ only
terms that have at most one of each independent spinor. Specifically, one
gets

Φ = φ(x)+
√

2Ψ(x)+θ2F (x)+iθσµθ̄∂µφ(x)− i√
2
θ2(∂µψ(x)σµθ̄)−1

4
θ2θ̄2∂2φ(x)

(11)
The derivatives are also important since they satisfy

∫

d4x

∫

d2θ =

∫

d4xD2|θ=0 ≡
∫

d4xDαDα|θ=0

∫

d4x

∫

d2θ̄ =

∫

d4xD̄2|θ=0 ≡
∫

d4xD̄αD̄α|θ=0 (12)

(true only under space integration!) where (by an abuse of notation) the
N = 1 fermionic integration is

d4θ = d2θd2θ̄ (13)

and we can find component actions from superfield actions by converting the
integrations into D’s and D̄’s and acting with them on various terms in the
action.

The most general action for the chiral superfield is

L =

∫

d4θK(Φ, Φ̄) +

∫

d2θW (Φ) +

∫

d2θ̄W̄ (φ̄) (14)

where the first term is called Kahler potential and the second is called super-
potential (with its conjugate). If we have several superfields transforming in
the representation of a group, we write the same formula, with Φ = ΦaT a and
an overall Tr to the action (T a= generator in the particular representation).

To find the component action, as we said, we can convert integrals to
covariant derivatives and act on the Lagrangean. But this is easier for the
superpotential, for which we only need to use Φ(y, θ), not Φ(x, θ). For the
Kahler potential, it is possible, but more difficult, since we need to remember
that

{Dα, D̄α̇} = −2iσµ∂µ (15)



so we have to be careful of the order in which we take the derivatives. It
is probably simpler for the Kahler potential to just do the fermionic inte-
grations. However, when one does super-Feynman rules for supergraphs, one
uses only D2 and D̄2, as it turns out to be simpler. We should also remember
that

D̄2D2Φ = 162Φ (16)

on a chiral superfield.
The only renormalizable terms in the chiral superfield action are: For the

Kahler potential, the kinetic term

K = Φ+Φ (17)

For the superpotential, the terms

W = λΦ +mΦ2 + gΦ3 (18)

where m gives masses, g is a Yukawa coupling and λ gives a constant F-term,
being just λF in components.

Gauge superfields are introduced as follows. A general (arbitrary function
of superspace) real scalar superfield V (thus V = V +) will contain the gauge
field Aµ. But we impose the super-gauge symmetry

V → V + iΛ − iΛ+ (19)

defined by the chiral superfield Λ. V has many components, but we can fix a
gauge by using the super-gauge symmetry, such that V becomes very simple:

V = −θσµθ̄Aµ + iθ2(θ̄λ̄) − iθ̄2(θλ) +
1

2
θ2θ̄2D (20)

So the susy multiplet is made up of a gauge field, a Majorana fermion and a
complex auxiliary scalar, called a D term.

This gauge is called the Wess-Zumino (WZ) gauge and breaks manifest
(superspace) susy (but we still have component susy!), but keeps as residual
symmetry the usual bosonic gauge symmetry Aµ → Aµ +∂µΛ(x). The super-
field strength is

Wα = −1

4
D̄2DαV (21)

and is a chiral superfield, is Majorana: (Wα)+ = Wα̇ and satisfies the reality
constraint

DαWα = Dα̇Wα̇ ↔ Im(DαWα) = 0 (22)



which is the susy generalization of the Bianchi identity.
In the nonabelian case (YM), we have the gauge transformation

e−2eV → eiΛ+

e−2eV e−iΛ (23)

and the super-field strength is

Wα =
1

8e
D̄2(e2eVDαe

−2eV ) (24)

and every superfield is contracted with the generators T a.
The SYM kinetic action is

ISY M = −1

4

∫

d4xd2θtrWαW
α + h.c.

=

∫

d4xtr[−1

4
FµνF

µν +
i

4
Fµν ∗ F µν − iλ̄σµ∇µλ+

D2

2
] + h.c. (25)

where we have written the an imaginary term, because we can write an action
with the complex coupling

τ =
θ

2π
+

4πi

g2
(26)

that reads

ISY M =
1

16π
Im[τ

∫

d4xd2θtrWαW
α]

=
1

g2

∫

d4x tr[−1

4
FµνF

µν − iλ̄σµ∇µλ+
D2

2
] +

θ

32π2

∫

d4xFµν ∗ F µν(27)

and the kinetic action for the matter multiplet (chiral scalar field), coupled
to the YM (nonabelian) multiplet, is

Imatter =
1

4g2

∫

d4xd2θd2θ̄tr(Φ+e−2gV Φ)

=
1

2g2

∫

d4x tr[|∇µφ|2 − iψ̄σµ∇µψ + F+F − φ+[D, φ]

−ig
√

2φ+{λ, ψ}ig
√

2ψ̄[λ̄, φ]] (28)

To this, as we saw, we can add a renormalizable cubic superpotential, but
there is no renormalizable term we can add for the YM multiplet.



The scalar potential of the general N = 1 system is then given by

g2V =
∑

i

|Fi|2 −
g2

2
DaDa (29)

where the F terms (auxiliary) Fi are replaced by their equation of motion and
similarly for the D terms Da. In the general N = 1 system, ISY M + Imatter+
superpotential, we have

Fi =
∂W

∂Φi

; Da = Φ+T aΦ ≡ Φ+i
(T a)ijΦ

j (30)

For an abelian theory, one can still add a term to the susy action, called
Fayet-Iliopoulos term (FI term)

LFI =

∫

d2θd2θ̄ξaV a (31)

which just shifts the D term:

Da = ξa + Φ+i
(T a)ijΦ

j (32)

1.3 N = 2 and N = 4 susy

An N = 2 YM superfield Ψ is simpler when expressed in terms of two N = 1
superspaces (as opposed to an N = 2 superspace), so by an expansion in a θ̃
spinor, with coefficients that are N = 1 superfields (in θ). Specifically, one
has

Ψ = Φ(ỹ, θ) +
√

2θ̃αWα(ỹ, θ) + θ̃2G(ỹ, θ)

G(ỹ, θ) = −1

2

∫

d2θ̄[Φ(ỹ, θ)]+e−2eV (ỹ,θ)

ỹµ = xµ + iθσµθ̄ + iθ̃σµ ¯̃θ = yµ + iθ̃σµ ¯̃θ (33)

and the most general action for Ψ is the an arbitrary function

1

16π
Im

∫

d4xd2θd2θ̃F(Ψ) (34)

(where the 16π and the Im as opposed to Re are of course conventional).
With Ψ = ΨaT a → Φ = ΦaT a,Wα = W a

αT
a, we can do the d2θ̃ integration

as

Im

∫

d4x[

∫

d2θFab(Φ)W aαW b
α +

∫

d2θd2θ̄(Φ+e−2gV )aFa(Φ)] (35)



where Fa = ∂F/∂Φa, etc.
Classically, the unique renormalizable N = 2 action is given by

F(Ψ) = Fclass(Ψ) =
1

2
τtrΨ2 (36)

and it coincides with ISY M +Imatter. There is no renormalizable N = 2 invari-
ant self-interaction allowed (for N = 1, we had a nontrivial superpotential
Φ3).

Still, the model is nontrivial, as there is a nontrivial D term (even if the F
terms are trivial). Since Φ is in the adjoint representation, (T a)bc = f a

bc and
we can subsitute it in the general formula. Thus the F and D term action is

Iaux =
1

g2

∫

d4xtr[
D2

2
− gφ+[D, φ] + F+F ] (37)

giving the scalar potential

V =
1

2
([φ+, φ])2 (38)

which has a nontrivial minimum if

[φ+, φ] = 0; φ 6= 0 (39)

One the most general N = 2 SYM lagrangean would also involve a term
∫

d4xd4θd4θ̄H(Ψ,Ψ+) (40)

but this will be a higher derivative lagrangean, as we can check by dimen-
sional analysis: For each set of N = 1 θ’s, we have seen that D2D̄2 = 2,
thus for the first component of the previous action we would get something
like 2

2H(φ, φ∗).
The other N = 2 multiplet is the hypermultiplet, which is composed of

two N = 1 chiral multiplets, Q and Q̃. The most general N = 2 preserving
coupling of the Nf hypermultiplets characterized by an index i and in the
fundamental Nc of the gauge group, to the SYM multiplet is, in N = 1
language
∫

d2θd2θ̄(Q+
i e

−2VQi + Q̃ie
2V Q̃+

i ) +

∫

d2θ(
√

2Q̃iΦQi +miQ̃iQi) + h.c. (41)



N=4 SYM is the theory with

F(Ψ) = Fclass(Ψ) =
1

2
τtrΨ2 (42)

coupled to one massless adjoint hypermultiplet similarly to the coupling
above: The index i is now also in the adjoint of the gauge group, so we
need to put a trace outside the integral . The superpotential is now

W = εijkTrΦ
i[Φj,Φk]; i = 1, 2, 3 (43)

It is the unique lagrangean allowed by N = 4 susy, and the theory is super-
conformal.

1.4 Susy breaking (Witten index)

Since always we have in the algebra

{Q,Q} ∝ H (44)

and the vacuum should be susy by itself, thus

Q|0 >= 0 ⇒ ||Q|0 > || = 0 ⇒ E0 = 0 (45)

so a necessary condition for susy to be unbroken is that the vacuum energy
is zero (just from the susy algebra).

At any nonzero energy level, we need the same number of bosons and
fermions (hence the counting of bosonic and fermionic states to determine
the field content of a susy theory), because we will have in general

Q|b >=
√
E|f >; Q|f >=

√
E|b > (46)

thus we can only have a susy invariant state if it is a linear superposition of
bosonic and fermionic states |b > −|f >. And the number of purely bosonic
and purely fermionic states has to be the same, nE 6=0

B = nE 6=0
F . However, for

the ground state, bosonic and fermionic states are invariant by themselves:

Q|b >= 0; Q|f >= 0 (47)

So when we say |b > and |f > we really mean bosonic and fermionic
zero modes (creation operators) acting on a particular vacuum, so b+vac|0 >,
f+

vac|0 >.



Thus the number of fermionic and bosonic zero modes (vacuum states)
need not be the same. The quantity

nE=0
B − nE=0

F (48)

is also invariant under changes in the parameters of the theory. Indeed, if
say a boson acquires a mass, then to balance the massive state equality, a
fermion will acquire a mass also.

But
Tr(−1)F ≡< i|(−1)F |i >= nE=0

B − nE=0
F (49)

(since at nonzero level, the bosons match the fermions), so

Tr(−1)F = Tre2πiJz (50)

is called the Witten index and is independent of the parameters of the theory,
and characterizes susy breaking. From what we said, we deduce that

• If the Witten index Tr(−1)F is nonzero, susy is unbroken

• If the Witten index is zero, but nE=0
B = nE=0

F 6= 0, susy is still unbroken,
because that means there is an operator C such that Tr((−1)FC) 6= 0,
and we just need to redefine the fermion number.

• If the Witten index is zero and nE=0
B = nE=0

F = 0, then susy is broken,
because that means that the true vacuum has higher energy.

Both Tr(−1)F and any other Tr((−1)FC) needed can be in general cal-
culated as topological invariants, and we can thus determine if a theory will
(dynamically or spontaneously) break susy.

In conclusion, we have the following cases for the shape of the susy gauge
theory scalar (Higgs) potential:

• True vacuum at φ = 0 has E=0 (and maybe false vacuum at φ 6= 0 and
E 6= 0): susy unbroken, gauge symmetry unbroken.

• True vacuum at φ = 0 has E1 > 0 (and maybe false vacuum at φ 6= 0
and E2 > E1): susy broken, gauge symmetry unbroken.

• False vacuum at φ = 0 has E1 > 0 but true vacuum at φ 6= 0 has
E2 = 0: susy unbroken, gauge symmetry broken.



• False vacuum at φ = 0 has E1 > 0 and true vacuum at φ 6= 0 has
0 < E2 < E1: susy broken, gauge symmetry broken.

Witten did an analysis of the Witten index of susy gauge theories and
has found that the only possibility for susy breaking is (maybe!- we need
to treat case by case) is of matter in a complex representation of the gauge
group and of coupling to gravity.

In particular, rigid N = 2 gauge theories (that have matter in real repre-
sentations) cannot have susy broken. That is the reason why we need N = 1
for phenomenology (MSSM)- we can only break rigid susy in N = 1 theories
with complex representations.

1.5 Susy breaking- types

Susy breaking can a priori be:
-tree level (spontaneous)
-perturbative (spontaneous)
-nonperturbative: spontaneous or dynamical. Dynamical means that

there is a dynamical mechanism that makes the variables at low energy dif-
ferent from what they are at high energy. An example of that is the QCD
phenomenon of formation of VEV for < q̄q > at low energies, or any fermion
bilinear condensate for that matter.

Tree level:
The condition for susy to be unbroken is the minimization of the scalar

potential to give zero energy. For the general tree-level (renormalizable)
N = 1 theory, that just means that the F terms and the D terms have to
vanish (all of them!)

Fi =
∂W

∂Φi
= 0

Da = ξa + Φ+i
(T a)ijΦ

j = 0 (51)

A simple analysis shows that there are as many equations as unknowns, so
for a generic superpotential it is possible to find solutions to these equations,
and susy is unbroken.

If there are no U(1) factors, it is always possible. If we have U(1)’s, but
the FI factors ξa vanish, then the vanishing of the F terms implies there
is another solution that vanishes both the F and the D terms. The same



is true even in non-renormalizable theories (thus for quantum corrections).
Thus generically, only the FI terms allow spontaneous breaking of susy, or
otherwise if there is no overall minimum of the superpotential.

There are cases when there is no overall minimum of the superpoten-
tial. The most common is a generalization of a class of models due to
O’Raifeartaigh. COnsider two sets of scalars, Xn and Yi, and

W =
∑

i

Yif(Xn) (52)

Then the F term vanishing gives

fi(xn) = 0;
∑

i

yi
∂fi(x)

∂xn
= 0 (53)

and we can always solve the second set by yi = 0, but if there are more
Y’s than X’s, there is no generic solution to the first (more conditions than
variables).

For the Fayet-Iliopoulos mechanism, consider a U(1) model with two chi-
ral superfields of opposite charges ±e, Φ± and superpotential (most general
U(1)-invariant renormalizable) W = mΦ+Φ−. Then

V (φ+, φ−) = m2|φ+|2 +m2|φ−|2 + (ξ + e2|φ+|2 − e2|φ−|2)2 (54)

and clearly there is no zero energy minimum if ξ 6= 0.
Tree level susy breaking implies the sum rule (is proven exactly)

∑

spin 0

mass2 − 2
∑

spin 1/2

mass2 + 3
∑

spin 1

mass2 = 0 (55)

holding separately for each set of given conserved quantum numbers.
An analysis of these sum rules for MSSM shows that it contradicts ex-

periment. It would imply the existence of light particles that are excluded
experimentally. So tree level susy breaking is ruled out in the Standard
Model.

Perturbative level
As was proven by Seiberg, because of the holomorphy of the superpoten-

tial, one can prove that there are only 1-loop corrections to it (thus the F
terms).



From it one can prove that if there are no FI terms and if if there is an
overall minimum to the superpotential (no F terms), then susy is not broken
at any finite order in perturbation theory.

Susy breaking terms in the Wilsonian (low energy) effective interaction
can induce tadpoles that are quadratically divergent only if there are scalars
that are neutral with respect to all exact symmetries. In theories without
such scalars, all superrenormalizable interactions are soft, i.e. there are no
quadratic or higher divergencies. In particular, the Minimally Supersym-
metric Standard Model (MSSM) is such a model, and that is the main phe-
nomenological reason for wanting it. The absence of quadratic divergencies
implies that one can maintain a separation of scales between the electroweak
and GUT scales. The other reason is the coupling unification, which is not
perfect in the Standard Model and becomes better in MSSM.

So as we saw, tree level susy breaking is excluded experimentally in
MSSM, and that implies that it is not broken perturbatively either, at any
finite order in perturbation theory. So we are left with nonperturbative break-
ing as the only solution for MSSM.

Nonperturbative level
That is actually phenomenologically good, since it allows for a separation

of scales between the unification scale MX and the susy breaking scale MS .
From coupling running we get MS = MXexp(−8π2b/G2(MX)), where b is
of order 1 and G(µ) is an asymptotically free gauge coupling that becomes
strong at MS. This is analogous to chiral symmetry breaking in QCD.

So we assume a strong force that becomes strong and breaks susy, but
since we don’t see such a force, it must be in a hidden sector. Then the
phenomenlogy is in how is the susy breaking communicated to MSSM.

The mechanism by which this can happen are
-the mediation is done by the SU(3)×SU(2)×U(1) fields themselves, also

known as gauge mediation. Then the mass splittings in quarks, leptons,
gauge bosons and superpartners would be of order g2

i /16π2 (where gi are the
Standard Model couplings) with respect to the susy breaking scale. Thus if
the masses will be in the 100 GeV- 10 TeV range, MS would be around 100
TeV.

-the mediation is done by gravity, or rather the auxiliary fields that are
superpartners of gravity, also know as gravity mediation. We expect then
that the mass splittings between observed particles and superparticles to be
of order

√
GM2

S or GM3
S, corresponding to MS = 1011 GeV and 1013 GeV,

respectively.



Finally, susy breaking itself can happen as we said, either spontaneously,
namely that there is a nonperturbative superpotential (because there is no
perturbative one, as we saw) that gives a nonzero vacuum energy, or dynam-
ically, in that the correct low energy fields are not supersymmetric.

Seiberg’s analysis of N = 1 models generated such a nonperturbative
superpotential.

It is actually not easy to find examples where the susy breaking is not of
the dynamical type.

For example, take the case of adding quark superfields in the fundamental
representation of SU(NC) and also in the fundamental of a flavor group
SU(Nf ). The quarks are characterized by the chiral superfield Q in the
fundamental and a chiral superfield Q̃ in the antifundamental, such thatDa =
Q+T aQ − Q̃T aQ̃+. For Nf < Nc one can take Q = Q̃+. Then, for no tree
level superpotential, Seiberg found that for NC > Nf the Wilsonian effective
action is for an effective gauge group SU(NC − Nf) and gauge invariant
combinations of the quarks. The effective superpotential is found to be

Weff (Q, Q̃) = (Nc −Nf )

(

Λ3NC−Nf

det(Q̃Q)

)
1

NC−Nf

(56)

and while this superpotential doesn’t break susy and is actually written in
terms of Q and Q̃ it is so in an non-analytic way, moreover the gauge theory
is only effective, so it is a dynamical superpotential.

More to the point, if one takes a susy generation of Standard Model
quarks and leptons without the right-handed leptons and without the U(1)Y ,
so SU(3)× U(1) with Q, ū, d̄, L, one can prove that the low energy is given
by the gauge invariant quantities: X1 = QūL, X2 = Qd̄L, Y = Q2ūd̄, with
effective superpotential (depending also a priori on the scales of the two gauge
groups, Λ2 and Λ3 for SU(2) and SU(3) respectively)

Weff(X1, X2, Y,Λ2,Λ3) = c
Λ7

3

Y
(57)

and one can check that there is no supersymmetric vacuum. In fact, there is
no vacuum at all, so that is maybe not so good phenomenologically. In any
case, this is a relevant example of dynamical susy breaking.

Gravitational mediation of susy breaking can be of first or second order
in k =

√
8πG. If it is first order, it gives things like gaugino masses. Putting



auxiliary scalars in the supergravity multiplet to their VEVs will generate
susy terms. This will give susy-breaking terms in the Lagrangean of the type

L = −2Re[m̃∗
g

Λ∂W

∂Λ
] (58)

due to a dependence on a scale Λ of the (effective) superpotential, that can
be either explicit or due to renormalization of couplings. The latter comes
from an anomaly in the trace of the energy-momentum tensor, and then the
previous susy-breaking term is called anomaly mediated. Note that here the
’complex gravitino mass’ m̃∗

g is of order k.
Gravitational mediation of order k2 is also of two types:
-There is the observable sector and a hidden sector that becomes strong at

an intermediate scale mW � Λ � mP l and produces a spontaneous breaking
of susy in the hidden sector. The kΛ2 is of order TeV and then Λ ∼ 1011

GeV.
-Besides the observable and hidden sectors, there are also modular super-

fields (superfields that include moduli, e.g. compactification moduli). The
hidden sector is not spontaneously broken, but the gauge couplings of the
hidden sector (that become strong at Λ llmP l also) give a nonperturbative
superpotential for the moduli superfields. So nonperturbative hidden sector
effects such as gaugino condensation (VEVs for bilinears in gauginos) produce
W. Then susy breaking in the modular sector is transmitted gravitationally
to the observable sector. Then k2Λ3 ∼ TeV, implying Λ ∼ 1013GeV .


