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Chapter 1

Special Relativity: A Recall

1.1 Introduction

The results of measurements made by an observer depend on the reference
frame of that observer. There is, however, a preferred class of frames, in
which all measurements give the same results, the so-called inertial frames.
Such frames are characterized by the following property:

a particle not subject to any force moves with constant velocity.

This is not true if the particle is looked at from an accelerated frame. Ac-
celerated frames are non-inertial frames. It is possible to give to the laws of
Physics invariant expressions that hold in any frame, accelerated or inertial,
but the fact remains that measurements made in different general frames give
different results.

Inertial frames are consequently very special, and are used as the basic
frames. Physicists do their best to put themselves in frames which are as near
as possible to such frames, so that the lack of inertiality produce negligible
effects. This is not always realizable, not even always desirable. Any object
on Earth’s surface will have accelerations (centrifugal, Coriolis, etc). And we
may have to calculate what an astronaut in some accelerated rocket would
see.

Most of our Physics is first written for inertial frames and then, when
necessary, adapted to the special frame actually used. These notes will be
exclusively concerned with Physics on inertial frames.

We have been very loose in our language, using words with the meanings
they have for the man-in-the-street. It is better to start that way. We shall
make the meanings more precise little by little, while discussing what is
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involved in each concept. For example, in the defining property of inertial
frames given above, the expression “moves with a constant velocity” is a
vector statement: also the velocity direction is fixed. A straight line is a
curve keeping a constant direction, so that the property can be rephrased as

a free particle follows a straight line.

But then we could ask: in which space ? It must be a space on which vectors
are well-defined. Further, measurements involve fundamentally distances and
time intervals. The notion of distance presupposes that of a metric. The
concept of metric will suppose a structure of differentiable manifold — on
which, by the way, derivatives and vectors are well defined. And so on, each
question leading to another question. The best gate into all these questions
is an examination of what happens in Classical Mechanics.

1.2 Classical Mechanics

§ 1.1 Consider an inertial frame K in which points are attributed cartesian

coordinates x = (x1, x2, x3) and the variable t is used to indicate time. It

is usual to introduce unit vectors i, j and k along the axes Ox, Oy and Oz

with origin O, so that x = x1 i + x2 j + x3 k. Suppose that another frame K ′

coincides with K initially (at t = 0), but is moving with constant velocity

u with respect to that frame. Seen from K ′, the values of the positions and

time variable will be (see Figure 1.1)

x′ = x− u t (1.1)

t′ = t . (1.2)

These transformations deserve comments and addenda:

1. they imply a simple law for the composition of velocities: if an object

moves with velocity v = (v1, v2, v3) = (dx
1

dt
, dx

2

dt
, dx

3

dt
) when observed

from frame K, it will have velocity

v′ = v − u (1.3)

when seen from K ′.

2



K

K'

ux

x'

Figure 1.1: Comparison of two frames.

2. as u is a constant vector, a constant v implies that v’ is also constant,

so that K ′ will be equally inertial; a point which is fixed in K (for

example, its origin x = 0) will move along a straight line in K ′; and

vice-versa: K moves with constant velocity = −u in K ′; if a third

frame K ′′ displaces itself with constant velocity with respect to K ′, it

will move with constant velocity with respect to K and will be inertial

also; being inertial is a reflexive, symmetric and transitive property; in

this logical sense, all inertial frames are equivalent.

3. Newton’s force law holds in both reference systems; in fact, its expres-

sion in K,

m
dvk

dt
= m

d2xk

dt2
= F k, (1.4)

implies

m
dv′k

dt′
= m

d2x′k

dt′2
= F ′k = F k .

A force has the same value if measured in K or in K ′. Measuring a force

in two distinct inertial frames gives the same result. It is consequently

impossible to distinguish inertial frames by making such measurements.

Also in this physical sense all inertial frames are equivalent. Of course,

the free cases F′ = F = 0 give the equation for a straight line in both
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frames.

4. equation (1.2), put into words, states that time is absolute; given two

events, the clocks in K and K ′ give the same value for the interval of

time lapsing between them.

5. transformation (1.1) is actually a particular case. If a rotation of a

fixed angle is performed around any axis, the relation between the

coordinates will be given by a rotation operator R,

x′ = R x . (1.5)

Rotations are best represented in matrix language. Take the space

coordinates as a column-vector
(
x1

x2

x3

)
and the 3× 3 rotation matrix

R =

 R1
1 R1

2 R1
3

R2
1 R2

2 R2
3

R3
1 R3

2 R3
3

 . (1.6)

Equation (1.5) becomes x′1

x′2

x′3

 =

 R1
1 R1

2 R1
3

R2
1 R2

2 R2
3

R3
1 R3

2 R3
3


 x1

x2

x3

 . (1.7)

The velocity and the force will rotate accordingly; with analogous vec-

tor columns for the velocites and forces, v′ = R v and F′ = R F. With

the transformed values, Newton’s law will again keep holding. Recall

that a general constant rotation requires 3 parameters (for example,

the Euler angles) to be completely specified.

6. a comment on what is meant by “measurements give the same values” is

worthwhile. Suppose we measure the force between two astronomical

objects. Under a rotation, the force changes its components, and so

does the position vectors, etc. The number obtained for the value of

the force (that is, the modulus of the force vector) will, however, be

the same for a rotated observer and for an unrotated observer.
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7. Newton’s law is also preserved by translations in space and by changes

in the origin of time:

x′ = x− a (1.8)

t′ = t− a0 , (1.9)

with constant a and a0. Eq.(1.8 ) represents a change in the origin of

space. These transformations can be put into a matrix form as follows:

add the time coordinate to those of space, in a 5-component vector

column

(
t
x1

x2

x3
1

)
. The transformations are then written


t′

x′1

x′2

x′3

1

 =


1 0 0 0 −a0

0 1 0 0 −a1

0 0 1 0 −a2

0 0 0 1 −a3

0 0 0 0 1




t

x1

x2

x3

1

 . (1.10)

As a 5× 5 matrix, the rotation (1.6) takes the form
1 0 0 0 0

0 R1
1 R1

2 R1
3 0

0 R2
1 R2

2 R2
3 0

0 R3
1 R3

2 R3
3 0

0 0 0 0 1

 . (1.11)

8. transformation (1.1) is usually called a pure Galilei transformation, or

a galilean boost; it can be represented as
t′

x′1

x′2

x′3

1

 =


1 0 0 0 0

−u1 1 0 0 0

−u2 0 1 0 0

−u3 0 0 1 0

0 0 0 0 1




t

x1

x2

x3

1

 . (1.12)

§ 1.2 Transformations (1.1), (1.2), (1.5), (1.8) and (1.9) can be composed

at will, giving other transformations which preserve the laws of classical me-

chanics. The composition of two transformations produces another admissi-

ble transformation, and is represented by the product of the corresponding
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matrices. There is clearly the possibility of doing no transformation at all,

that is, of performing the identity transformation
t′

x′1

x′2

x′3

1

 =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1




t

x1

x2

x3

1

 =


t

x1

x2

x3

1

 . (1.13)

If a transformation is possible, so is its inverse — all matrices above are

invertible. Finally, the composition of three transformations obey the asso-

ciativity law, as the matrix product does. The set of all such transformations

constitute, consequently, a group. This is the Galilei group. For a general

transformation to be completely specified, the values of ten parameters must

be given (three for a, three for u, three angles for R, and a0). The trans-

formations can be performed in different orders: you can, for example, first

translate the origins and then rotate, or do it in the inverse order. Each order

leads to different results. In matrix language, this is to say that the matri-

ces do not commute. The Galilei group is, consequently, a rather involved

non-abelian group. There are many different ways to parameterize a general

transformation. Notice that other vectors, such as velocities and forces, can

also be attributed 5-component columns and will follow analogous rules.

§ 1.3 The notions of vector and tensor presuppose a group. In current lan-

guage, when we say that V is a vector in euclidean space, we mean a vector

under rotations. That is, V transforms under a rotation R according to

V ′i = Ri
jV

j.

In this expression the so-called “Einstein convention” has been supposed:

repeated upper-lower indices are summed over the all the values they can

assume. This convention will be used throughout this text. Notice that

i, j, k, ... = 1, 2, 3. When we say that T is a second-order tensor, we mean

that is transforms under rotations according to

T ′ij = Ri
mR

j
nT

mn,

and so on for higher-order tensors.
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§ 1.4 The notation used above suggests a new concept. The set of columns(
t
x1

x2

x3
1

)
constitute a vector space, whose members represent all possible positions and

times. That vector space is the classical spacetime. The concept of spacetime

only acquires its full interest in Special Relativity, because this spacetime of

Classical Mechanics is constituted of two independent pieces: space itself,

and time. It would be tempting, always inspired by the notation, to write

t = x0 for the first component, but there is a problem: all components in a

column-vector should have the same dimension, which is not the case here.

To get dimensional uniformity, it would be necessary to multiply t by some

velocity. In Classical Physics, all velocities change in the same way, and

so that the 0-th component would have strange transformation properties.

In Special Relativity there exists a universal velocity, the velocity of light

c, which is the same in every reference frame. It is then possible to define

x0 = ct and build up a space of column-vectors whose components have a

well-defined dimensionality.

§ 1.5 We have said that the laws of Physics can be written as expressions

which are the same in any frame. This invariant form requires some mathe-

matics, in special the formalism of differential forms. Though it is comfort-

able to know that laws are frame-independent even if measurements are not,

the invariant language is not widely used. The reason is not ignorance of

that language. Physics is an experimental science and every time a physicist

prepares his apparatuses to take data, (s)he is forced to employ some particu-

lar frame, and some particular coordinate system. (S)he must, consequently,

know the expressions the laws involved assume in that particular frame and

coordinate system. The laws acquire different expressions in different frames

because, seen from each particular frame, they express relationships between

components of vectors, tensors and the like. In terms of components the

secret of inertial frames is that the laws are, seen from them, covariant: An

equality will have the right hand side and the left hand side changing in the

same way under transformations between them.
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§ 1.6 The principles of Classical Mechanics can be summed up∗ in the fol-

lowing statements:

There are reference systems (or “frames”), called by definition “inertial

systems”, which are preferential, because

the laws of nature are the same in all of them (galilean relativity);

given an initial inertial system, all the other inertial systems are in uniform

rectilinear motion with respect to it (inertia);

the motion of a physical system is completely determined by its initial state,

that is, by the positions and velocities of all its elements for some initial

time (classical determinism);

the basic law says that acceleration, defined as the second time–derivative

of the cartesian coordinates, equals the applied force per unit mass:

ẍ = f(x, ẋ, t) (Newton’s law).

As we can detect the acceleration of a system on which we are placed by

making measurements, the initial inertial system can be taken as any one

with vanishing acceleration.

§ 1.7 Transformations can be introduced in two ways. In the so-called “pas-

sive” way, the frames are transformed and then it is found what the coordi-

nates are in the new frames. In the alternative way, called “active”, only the

coordinates are transformed.

§ 1.8 Let us sum up what has been said, with some signs changed for the

sake of elegance. The transformations taking one into another the classical

inertial frames are:

(i) rotations R(ω) of the coordinate axis as in (1.11), where ω represents

the set of three angles necessary to determine a rotation;

∗ For a splendid discussion, see V.I. Arnold, Mathematical Methods of Classical Me-

chanics, Springer-Verlag, New York, 1968.
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(ii) translations of the origins in space and in time: x′ = x + a and t′ =

t + ao: 
1 0 0 0 a0

0 1 0 0 a1

0 0 1 0 a2

0 0 0 1 a3

0 0 0 0 1

 ; (1.14)

(iii) uniform motions (galilean boosts) with velocity u:
1 0 0 0 0

u1 1 0 0 0

u2 0 1 0 0

u3 0 0 1 0

0 0 0 0 1

 . (1.15)

The generic element of the Galilei group can be represented as

G(ω,u, a) =


1 0 0 0 a0

u1 R1
1 R1

2 R1
3 a1

u2 R2
1 R2

2 R2
3 a2

u3 R3
1 R3

2 R3
3 a3

0 0 0 0 1

 . (1.16)

Exercise 1.1 This is a particular way of representing a generic element of the Galilei

group. Compare it with that obtained by

1. multiplying a rotation and a boost;

2. the same, but in inverse order;

3. performing first a rotation, then a translation;

4. the same, but in inverse order.

Do boosts commute with each other ? �

In terms of the components, the general transformation can be written

x′i = Ri
jx
j + uit+ ai

(1.17)

t′ = t+ a0.

In the first expression, we insist, the Einstein convention has been used.

9



Exercise 1.2 With this notation, compare what results from:

1. performing first a rotation then a boost;

2. the same, but in inverse order;

3. performing first a rotation, then a translation;

4. the same, but in inverse order.

�

The general form of a Galilei transformation is rather complicated. It is

usual to leave rotations aside and examine the remaining transformations in

separate space directions:

x′ = x+ u1t+ a1 (1.18)

y′ = y + u2t+ a2 (1.19)

z′ = z + u3t+ a3 (1.20)

t′ = t+ a0. (1.21)

1.3 Hints Toward Relativity

§ 1.9 In classical physics interactions are given by the potential energy V ,

which usually depends only on the space coordinates: in various notations, F

= - grad V = − ∇V , or F k = − ∂kV . Forces on a given particle, caused by

all the others, depend only on their position at a given instant; a change in

position changes the force instantaneously. This instantaneous propagation

effect violates experimental evidence. That evidence says two things:

(i) no effect can propagate faster than the velocity of light c and

(ii) that velocity c is a frame-independent universal constant.

This is in clear contradiction with the law of composition of velocities

(1.3). This is a first problem with galilean Physics.

§ 1.10 There is another problem. Classical Mechanics has galilean invari-

ance, but Electromagnetism has not. In effect, Maxwell’s equations would

be different in frames K and K ′. They are invariant under rotations and

changes of origin in space and time, but not under transformations (1.1) and

10



(1.2). To make things simpler, take the relative velocity u along the axis Ox

of K. Instead of

x′ = x− u1t (1.22)

t′ = t , (1.23)

Maxwell’s equations are invariant under the transformations

x′ =
x− u1t√

1− u2

c2

(1.24)

t′ =
t− u

c2
x√

1− u2

c2

, (1.25)

where c is the velocity of light. These equations call for some comments:

• time is no more absolute;

• u cannot be larger than c;

• they reduce to (1.22) and (1.23) when u
c
→ 0;

• all experiments confirming predictions of Classical Mechanics consider

velocities which are, actually, much smaller that c, whose experimental

value is ≈ 2.997× 108 m/sec;

• Maxwell’s equations, on the other hand, do deal with phenomena prop-

agating at the velocity of light (as light itself).

§ 1.11 These considerations suggest an interesting possibility: that (1.24)

and (1.25) be the real symmetries of Nature, with Classical Mechanics as a

low-velocity limit. This is precisely the claim of Special Relativity, superbly

corroborated by an overwhelming experimental evidence.† In particular, the

Michelson (1881) experiment showed that the value of c was independent

of the direction of light propagation. The light velocity c is then supposed

† See, for instance, A.P. French, Special Relativity, W.W. Norton, New York, 1968.

Or R.K. Pathria, The Theory of Relativity, 2nd. edition, Dover, New York, of 1974

but reprinted in 2003. Or still the more recent appraisal by Yuan Zhong Zhang, Special

Relativity and its Experimental Foundations, World Scientific, Singapore, 1997.
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to be a universal constant, which is further the upper limit for the velocity

of propagation of any disturbance. This leads to the Poincaré principle of

relativity, which supersedes Galilei’s. There is a high price to pay: the notion

of potential must be abandoned and Mechanics has to be entirely rebuilt, with

some other group taking the role of the Galilei group. It is clear, furthermore,

that the composition of velocities (1.3) cannot hold if some velocity exists

which is the same in every frame.

1.4 Relativistic Spacetime

§ 1.12 Special Relativity has been built up by Fitzgerald, Lorentz, Poincaré

and Einstein through an extensive examination of transformations (1.24),

(1.25) and their generalization. The task is to modify the classical structure

in some way, keeping the pieces confirmed by experiments involving high-

velocity bodies. In particular, the new group should contain the rotation

group. After Poincaré and Minkowski introduced the notion of spacetime, a

much simpler road was open. We shall approach the subject from the modern

point of view, in which that notion play the central role (as an aside: it plays

a still more essential role in General Relativity). We have above introduced

classical spacetime. That concept was created after special-relativistic space-

time, in order to make comparisons easier. And classical spacetime is, as said

in §1.4, a rather artificial construct, because time remains quite independent

of space.

§ 1.13 We have said that some other group should take the place of the

Galilei group, but that rotations should remain, as they preserve Maxwell’s

equations. Thus, the group of rotations should be a common subgroup of the

new group and the Galilei group. Rotations preserve distances between two

points in space. If these points have cartesian coordinates x = (x1, x2, x3)

and y = (y1, y2, y3), their distance will be

d(x,y) =
[
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2

]1/2
. (1.26)

That distance comes from a metric, the Euclidean metric. Metrics are usu-

ally defined for infinitesimal distances. The Euclidean 3-dimensional metric
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defines the distance

dl2 = δijdx
idxj

between two infinitesimally close points whose cartesian coordinates differ by

dx = (dx1, dx2, dx3).

A metric, represented by the components gij, can be represented by an

invertible symmetric matrix whose entries are precisely these components.

The Euclidean metric is the simplest conceivable one,

(δij) =

 1 0 0

0 1 0

0 0 1

 (1.27)

in cartesian coordinates. This will change, of course, if other coordinate

systems are used. Endowed with this metric, the set R3 of 3-uples of real

numbers becomes a metric space. This is the Euclidean 3-dimensional space

E3.

Exercise 1.3 Metric (1.27) is trivial in cartesian coordinates. In particular, it is equal to

its own inverse. Look for the expression of that metric (using dl2) in spherical coordinates,

which are given by

x = r cos θ cosφ

y = r cos θ sinφ

z = r sin θ.

 (1.28)

�

§ 1.14 A metric gij defines:

a scalar product of two 3-uples u and v, by

u · v = giju
ivj ; (1.29)

several notations are current: u · v = (u,v) = < u,v >;

orthogonality: u ⊥ v when u · v = 0;

the norm |v| of a vector v (or modulus of v) by

|v|2 = v · v = gijv
ivj ; (1.30)
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the distance between two points x and y, defined as

d(x,y) = |x− y| . (1.31)

The scalar product, and consequently the norms and distances, are invariant

under rotations and translations. Notice that

1. equation (1.26) is just that euclidean distance.

2. in the euclidean case, because the metric is positive-definite (has all

the eigenvalues with the same sign), d(x,y) = 0⇐⇒ x = y;

3. in (1.31) it is supposed that we know what the difference between the

two points is; the Euclidean space is also a vector space, in which such a

difference is well-defined; alternatively, and equivalently, the differences

between the cartesian coordinates, as in Eq.(1.26), can be taken.

§ 1.15 When rotations are the only transformations — in particular, when

time is not changed — we would like to preserve the above distance. We

have seen that (t, x1, x2, x3) is not dimensionally acceptable. Now, however,

with a universal constant c, we can give a try to x = (ct, x1, x2, x3).

It is tempting to inspect a 4-dimensional metric like

(ηαβ) =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (1.32)

With points of spacetime indicated as x = (ct, x1, x2, x3) that metric would

lead to the infinitesimal distance

ds2 = c2dt2 − dl2

and to the finite distance

d(x, y) = |x− y| =
[
(ct1 − ct2)2 − (x1 − y1)2 − (x2 − y2)2 − (x3 − y3)2

]1/2
.

(1.33)

14



This is invariant under rotations, transformations (1.24), (1.25) and their

generalizations. Actually, the Lorentz metric

ds2 = c2dt2 − (dx1)2 − (dx2)2 − (dx3)2 (1.34)

turns out to be the metric of relativistic spacetime. It is usual to define the

variable x0 = ct as the 0-th (or 4-th) coordinate of spacetime, so that

ds2 = ηαβdx
αdxβ = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 . (1.35)

The Lorentz metric defines a scalar product which is relativistically invariant,

as well as the other notions defined by any metric as seen in § 1.14. Of

course, things have been that easy because we knew the final result, painfully

obtained by our forefathers. Minkowski space (actually, spacetime) is the set

R4 of ordered 4-uples with the metric (1.35) supposed.

The overall sign is a matter of convention. The relative sign is, however,

of fundamental importance, and makes a lot of difference with respect to a

positive-definite metric. In particular, d(x, y) = 0 no more implies x = y.

It shows also how the time variable differs from the space coordinates. We

shall examine its consequences little by little in what follows.

§ 1.16 A metric is used to lower indices. Thus, a variable xi is defined by

xi = gijx
j. We have insisted that the metric be represented by an invertible

matrix. The entries of the inverse to a metric gij are always represented

by the notation gij. The inverse metric is used to raise indices: xi = gijxj.

We are, as announced, using Einstein’s notation for repeated indices. In

Euclidean spaces described in cartesian coordinates, upper and lower indices

do not make any real difference. But they do make a great difference in other

coordinate systems.

Points x= (xα) = (x0, x1, x2, x3) of relativistic spacetime are called events.

The ds in (1.35) is called the interval. The conventional overall sign chosen

above is mostly used by people working on Field Theory. It has one clear

disadvantage: upper and lower indices in cartesian coordinates on 3-space

differ by a sign. Notice that we use upper-indexed notation for coordinates

and some other objects (such as velocities vk, uk and forces F k). Another

point of notation: position vectors in 3-space are indicated by boldfaced (x)
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or arrowed (~x) letters, while a point in spacetime is indicated by simple letters

(x).

x0 c t=

x

Figure 1.2: Light cone of an event at the origin.

§ 1.17 The light cone Expression (1.33) is not a real distance, of course.

It is a “pseudo-distance”. Distinct events can be at a zero pseudo-distance

of each other. Fix the point y = (y0, y1, y2, y3) and consider the set of points

x at a vanishing pseudo-distance of y. The condition for that,

ηαβ(xα − yα)(xβ − yβ) =

(x0 − y0)2 − (x1 − y1)2 − (x2 − y2)2 − (x3 − y3)2 = 0 (1.36)

is the equation of a cone (a 3-dimensional conic hypersurface). Take y at the

origin (the cone apex) and use (1.35): c2dt2 = dx2. A particle on the cone

will consequently have velocity v = dx
dt

satisfying v2 = c2, so that |v| = c.

This cone is called the light cone of event y. Any light ray going through

y = 0 will stay on that hypersurface, as will any particle going through y = 0

and traveling at the velocity of light. The situation is depicted in Figure 1.2,

with the axis x0 = ct as the cone axis.
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§ 1.18 Causality Notice that particles with velocities v < c stay inside

the cone. As no perturbation can travel faster than c, any perturbance at

the cone apex will affect only events inside the upper half of the cone (called

the future cone). On the other hand, the apex event can only be affected

by incidents taking place in the events inside the lower cone (the past cone).

This is the main role of the Lorentz metric: to give a precise formulation

of causality in Special Relativity. Notice that causality somehow organizes

spacetime. If point Q lies inside the (future) light cone of point P , then

P lies in the (past) light cone of Q. Points P and Q are causally related.

Nevertheless, a disturbance in Q will not affect P . In mathematical terms,

the past-future relationship is a partial ordering, “partial” because not every

two points are in the cones of each other.

The horizontal line in Figure 1.2 stands for the present 3-space. Its points

lie outside the cone and cannot be affected by whatever happens at the apex.

The reason is clear: it takes time for a disturbance to attain any other point.

Only points in the future can be affected. Classical Mechanics should be

obtained the limit c → ∞. We approach more and the classical vision by

opening the cone solid angle. If we open the cone progressively to get closer

and closer the classical case, the number of 3-points in the possible future

(and possible past) increases more and more. In the limit, the present is

included in the future and in the past: instantaneous communication becomes

possible.

§ 1.19 Types of interval The above discussion leads to a classification

of intervals between two points P and Q. If one is inside the light cone of

the other, so that one of them can influence the other, then their interval

is positive. That kind of interval is said to be timelike. Negative intervals,

separating points which are causally unconnected, are called spacelike. And

vanishing intervals, lying on the light cones of both points, are null. A real

particle passing through an event will follow a line inside the future line cone

of that event, which is called its world line. Real world lines are composed of

timelike or null intervals. To strengthen the statement that no real distances

are defined by the Lorentz metric, let us notice that there is always a “zero-

length” path between any two points in Minkowski space. In order to see it,
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(i) draw the complete light cones of both points (ii) look for their intersection

and (iii) choose a path joining the points while staying on the light cones.

§ 1.20 Proper time Let us go back to the interval (1.35) separating two

nearby events. Suppose two events at the same position in 3-space, so that

dl2 = d~x2 = 0. They are the same point of 3-space at different times, and

their interval reduces to

ds2 = (dx0)2 = c2dt2 . (1.37)

An observer fixed in 3-space will have that interval, which is pure coordinate

time. (S)he will be a “pure clock”. This time measured by a fixed observer

is its proper time. Infinitesimal proper time is just ds. Let us now attribute

coordinates x′ to this clock in its own frame, so that ds = cdt′, and compare

with what is seen by a nearby observer, with respect to which the clock will

be moving and will have coordinates x (including a clock). Interval invariance

will give

ds2 = c2dt′2 = c2dt2 − dx2 = c2dt2(1− dx2

c2dt2
),

or

dt′ = dt

(
1− v2

c2

)1/2

(1.38)

with the velocity v = dx
dt

. By integrating this expression, we can get the

relationship between a finite time interval measured by the fixed clock and

the same interval measured by the moving clock:

t′2 − t′1 =

∫ t2

t1

dt

(
1− v2

c2

)1/2

. (1.39)

If both observers are inertial v is constant and the relationship between a

finite proper time lapse ∆t′ and the same lapse measured by the moving clock

is

∆t′ =

(
1− v2

c2

)1/2

∆t ≤ ∆t . (1.40)

Proper time is smaller than any other time. This is a most remarkable, non-

intuitive result, leading to some of the most astounding confirmations of the

theory. It predicts that “time runs slower” in a moving clock. An astronaut
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will age less than (his) her untravelling twin brother (the twin paradox). A

decaying particle moving fast will have a longer lifetime when looked at from

a fixed clock (time dilatation, or time dilation).

Exercise 1.4 Consider a meson µ. Take for its mean lifetime 2.2 × 10−6s in its own

rest system. Suppose it comes from the high atmosphere down to Earth with a velocity

v = 0.9c. What will be its lifetime from the point of view of an observer at rest on Earth ?

�

§ 1.21 We have arrived at the Lorentz metric by generalizing the Euclidean

metric to 4-dimensional spacetime. Only the sign in the time coordinate dif-

fers from an Euclidean metric in 4-dimensional space. That kind of metric

is said to be “pseudo-Euclidean”. The group of rotations preserves the Eu-

clidean metric of E3. The group generalizing the rotation group so as to pre-

serve the pseudo-Euclidean Lorentz metric is a group of “pseudo-rotations”

in 4-dimensional space, the Lorentz group. There are 3 independent rotations

in 3-space: that on the plane xy, that on plane yz and that on plane zx. In

four space with an extra variable τ = ct, we should add the rotations in

planes xτ , yτ and zτ . Due to the relative minus sign, these transformations

are pseudo-rotations, or rotations with imaginary angles. Instead of sines

and cosines, hyperbolic functions turn up. The transformation in plane xτ

which preserves τ 2 − x2 is

x′ = x coshφ+ τ sinhφ ; τ ′ = x sinhφ+ τ coshφ. (1.41)

Indeed, as cosh2 φ − sinh2 φ = 1, τ ′2 − x′2 = τ 2 − x2. In order to find φ,

consider in frame K the motion of a particular point, the origin of frame K ′

moving with velocity u = x/t. From x′ = 0 we obtain tanhφ = − u/c, coshφ

=
(

1− u2

c2

)−1/2

and sinhφ = − u
c

(
1− u2

c2

)−1/2

. Inserting these values in the

transformation expression, we find just (1.24) and (1.25),

x′ =
x− ut√
1− u2

c2

(1.42)

t′ =
t− u

c2
x√

1− u2

c2

, (1.43)

which are the Lorentz transformations of the variables x and t. Such trans-

formations, involving one space variable and time, are called pure Lorentz
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transformations, or boosts. The group generalizing the rotations of E3 to 4-

dimensional spacetime, the Lorentz group, includes 3 transformations of this

kind and the 3 rotations. To these we should add the translations in 4-space,

representing changes in the origins of the four coordinates. The 10 transfor-

mations thus obtained constitute the group which replaces the Galilei group

in Special Relativity, the Lorentz inhomogeneous group or Poincaré group.

§ 1.22 Rotations in a d-dimensional space are represented by orthogonal

d × d matrices with determinant = +1. The group of orthogonal d × d

matrices is indicated by the symbol O(d). They include transformations

preserving the euclidean metric in d dimensions (this will be seen below,

in section 2.2). Those with determinant = +1 are called “special” be-

cause they are continuously connected to the identity matrix. They are

indicated by SO(d). Thus, the rotations of E3 form the group SO(3).

This nomenclature is extended to pseudo-orthogonal groups, which preserve

pseudo-euclidean metrics. The pseudo-orthogonal transformations preserv-

ing a pseudo-euclidean metric with p terms with one sign and d− p opposite

signs is labeled SO(p, d − p). The Lorentz group is SO(3, 1). The group of

translations in such spaces is variously denoted as T d or T p,d−p. For space-

time the notations T 4 and T 3,1 are used. Translations do not commute with

rotations or pseudo-rotations. If they did, the group of Special Relativis-

tic transformations would be the direct product of SO(3, 1) and T 3,1. The

Poincaré group is a semi-direct product, indicated P = SO(3, 1)� T 3,1.

§ 1.23 The inverses to transformations (1.42) and (1.43) are

x =
x′ + ut′√

1− u2

c2

(1.44)

y′ = y

z′ = z

t =
t′ + u

c2
x′√

1− u2

c2

. (1.45)

Exercise 1.5 Show it. �

20



§ 1.24 Take again a clock at rest in K ′, and consider two events at the same

point (x’, y’, z’) in K ′, separated by a time interval ∆t′ = t′2− t′1. What will

be their time separation ∆t in K ? From (1.45), we have

t1 =
t′1 + u

c2
x′√

1− u2

c2

; t2 =
t′2 + u

c2
x′√

1− u2

c2

,

whose difference gives just (1.40):

∆t = t2 − t1 =

(
1− u2

c2

)−1/2

∆t′ . (1.46)

§ 1.25 Lorentz contraction Take now a measuring rod at rest in K,

disposed along the axis Ox. Let x2 and x1 be the values of the x coordinates

of its extremities at a given time t, and ∆x = x2−x1 its length. This length

l0 = ∆x, measured in its own rest frame, is called proper length. What would

be that length seen from K ′, also at a fixed time t′ ? Equation (1.44) gives

x1 =
x′1 + ut′√

1− u2

c2

; x2 =
x′2 + ut′√

1− u2

c2

,

whose difference is

∆x = x2 − x1 =

(
1− u2

c2

)−1/2

∆x′ . (1.47)

Thus, seen from a frame in motion, the length l = ∆x′ is always smaller than

the proper length:

l = l0

(
1− u2

c2

)1/2

≤ l0 . (1.48)

Proper length is larger than any other. This is the Lorentz contraction,

which turns up for space lengths. The proper length is the largest length a

rod can have in any frame. The ubiquitous expression
(

1− u2

c2

)1/2

is called

the Lorentz contraction factor. It inverse is indicated by

γ =
1√

1− u2

c2

. (1.49)
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This notation is almost universal, and so much so that the factor is called

the gamma factor. Equations (1.44), (1.45), (1.46) and (1.48) acquire simpler

aspects,

x = γ(x′ + ut′) (1.50)

t = γ(t′ +
u

c2
x′) (1.51)

∆t = γ ∆t0 (1.52)

l0 = γ l , (1.53)

and so do most of the expressions found up to now. Also almost universal is

the notation

β =
u

c
, (1.54)

such that γ = 1√
1−β2

.

§ 1.26 What happens to a volume in motion ? As the displacement takes

place along one sole direction, a volume in motion is contracted according to

(1.48), that is:

V = V0

(
1− u2

c2

)1/2

or V0 = γ V . (1.55)

§ 1.27 Composition of velocities Let us now go back to the composition

of velocities. We have said that, with the universality of light speed, it

was impossible to retain the simple rule of galilean mechanics. Take the

differentials of (1.50) and (1.51), including the other variables:

dx = γ(dx′ + udt′)

dy = dy′; dz = dz′

dt = γ(dt′ +
u

c2
dx′) .

Dividing the first 3 equations by the last,

dx

dt
=

dx′ + udt′

dt′ + u
c2
dx′

;
dy

dt
= dy′

√
1− u2

c2

dt′ + u
c2
dx′

;
dz

dt
= dz′

√
1− u2

c2

dt′ + u
c2
dx′

.

Now factor dt′ out in the right hand side denominators:

vx =
v′x + u

1 + u
c2
v′x

; vy = v′y

√
1− u2

c2

1 + u
c2
v′x

; vz = v′z

√
1− u2

c2

1 + u
c2
v′x

. (1.56)
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These are the composition laws for velocities. Recall that the velocity u is

supposed to point along the Ox axis. If also the particle moves only along

the Ox axis (vx ‖ u, vy = vz = 0), the above formulae reduce to

v =
v′ + u

1 + uv′

c2

. (1.57)

The galilean case (1.3) is recovered in the limit u/c→ 0. Notice that we have

been forced to use all the velocity components in the above discussion. The

reason lies in a deep difference between the Lorentz group and the Galilei

group: Lorentz boosts in different directions, unlike galilean boosts, do not

commute. This happens because, though contraction is only felt along the

transformation direction, time dilatation affects all velocities — and, conse-

quently, the angles they form with each other.

§ 1.28 Angles and aberration Let us see what happens to angles. In the

case above, choose coordinate axis such that the particle velocity lies on plane

xy. In systems K and K ′, it will have components vx = v cos θ; vy = v sin θ

and v′x = v′ cos θ′; v′y = v′ sin θ′, with obvious choices of angles. We obtain

then from (1.56)

tan θ =
v′ sin θ′

u+ v′ cos θ′

√
1− u2

c2
. (1.58)

Thus, also the velocity directions are modified by a change of frame. In the

case of light propagation, v = v′ = c and

tan θ =
sin θ′

u/c+ cos θ′

√
1− u2

c2
. (1.59)

This is the formula for light aberration. The aberration angle ∆θ = θ′ − θ
has a rather intricate expression which tends, in the limit u/c → 0, to the

classical formula

∆θ =
u

c
sin θ′ . (1.60)

Exercise 1.6 Show it, using eventually

tan(θ′ − θ) =
tan θ′ − tan θ

1 + tan θ′ tan θ
.

�
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§ 1.29 Four-vectors We have seen that the column (ct, x, y, z) transforms

in a well-defined way under Lorentz transformations. That way of transform-

ing defines a Lorentz vector: any set V = (V 0, V 2, V 2, V 3) of four quantities

transforming like (ct, x, y, z) is a Lorentz vector, or four-vector. By (1.50)

and (1.51), they will have the behavior

V 1 = γ(V ′1 +
u

c
V ′0) (1.61)

V 2 = V ′2 ; V 3 = V ′3 (1.62)

V 0 = γ(V ′0 +
u

c
V ′1) . (1.63)

It is usual to call V 0 the “time component” of V , and the V k’s, “space

components”.

§ 1.30 The classification discussed in § 1.19, there concerned with space

and time coordinates, can be extended to four-vectors. A four-vector V is

timelike if |V |2 = ηαβV
αV β is > 0; V is spacelike if |V |2 < 0; and a null vector

if |V |2 = 0. Real velocities, for example, must be timelike or null. But we

have beforehand to say what we understand by a velocity in 4-dimensional

spacetime.

§ 1.31 The four-velocity of a massive particle is defined as the position

variation with proper time:

uα =
dxα

ds
. (1.64)

Writing

ds =
cdt

γ
, (1.65)

we see that

u1 = γ
vx

c
; u2 = γ

vy

c
; u3 = γ

vz

c
, (1.66)

with vx = dx
dt

, etc, and γ = 1√
1−v2/c2

. In the same way we find the fourth

component, simply

u0 = γ . (1.67)

The four-velocity is, therefore, the four-vector

u = γ

(
1,
vx

c
,
vy

c
,
vz

c

)
. (1.68)
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This velocity has a few special features. First, it has dimension zero. The

usual dimension can be recovered by multiplying it by c, but it is a common

practice to leave it so. Second, its components are not independent. Indeed,

it is immediate from (1.66) and (1.67) that u has unit modulus (or unit

norm): u2 = (u0)2 − ~u2 = γ2 − γ2 ~v2

c2
= γ2(1− ~v2

c2
).

∴ u2 = ηαβ u
αuβ = 1 . (1.69)

Four-velocities lie, consequently, on a hyperbolic space.

Acceleration is defined as

aβ =
d2xβ

ds2
=
duβ

ds
. (1.70)

Taking the derivative d
ds

of (1.69), it is found that velocity and acceleration

are always orthogonal to each other:

a · u = aαuα = ηαβ a
αuβ = 0 . (1.71)

Only for emphasis: we have said in §1.14 that a metric defines a scalar

product, orthogonality, norm, etc. Both the above scalar product and the

modulus (1.69) are those defined by the metric η.

§ 1.32 Quantities directly related to velocities are extended to 4-dimensional

spaces in a simple way. Suppose a particle with electrical charge e moves with

a velocity ~v. Its current will be ~j = e~v. A four-vector current is defined as

jα = e uα , (1.72)

or

j = e γ

(
1,
vx

c
,
vy

c
,
vz

c

)
. (1.73)

Electromagnetism can be written in terms of the scalar potential φ and the

vector potential ~A. They are put together into the four-vector potential

A = (φ, ~A) = (φ,Ax, Ay, Az) . (1.74)

Invariants turn up as scalar products of four-vectors. The interaction of a

current with an electromagnetic field, appearing in the classical Lagrangean,
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is of the “current-potential” type, ~j · ~A. The interaction of a charge e with a

static electromagnetic field is eφ. These forms of interaction are put together

in the scalar

j · A = e Aαu
α = e Aα

dxα

ds
. (1.75)

§ 1.33 The results of §1.8 are adapted accordingly. A 4 × 4 matrix Λ will

represent a Lorentz transformation which, acting on a 4-component column

x, gives the transformed x′. Equations (1.17) are replaced by

x′α = Λα
βx

β + aα (1.76)

The boosts are now integrated into the (pseudo-)orthogonal group, of which Λ

is a member. Translations in space and time are included in the four-vector a.

As for the Galilei group, a 5× 5 matrix is necessary to put pseudo-rotations

and translations together. The matrix expression of the general Poincaré

transformation (1.76) has the form

x′ = Lx =


x′0

x′1

x′2

x′3

1

 =


Λ0

0 Λ0
1 Λ0

2 Λ0
3 a0

Λ1
0 Λ1

1 Λ1
2 Λ1

3 a1

Λ2
0 Λ2

1 Λ2
2 Λ2

3 a2

Λ3
0 Λ3

1 Λ3
2 Λ3

3 a3

0 0 0 0 1




x0

x1

x2

x3

1

 . (1.77)

These transformations constitute a group, the Poincaré group. The Lorentz

transformations are obtained by putting all the translation parameters aα =

0. In this no-translations case, a 4×4 version suffices. The complete, general

transformation matrix is highly complicated, and furthermore depends on

the parameterization chosen. In practice, we decompose it in a product

of rotations and boosts, which is always possible. The boosts, also called

“pure Lorentz transformations”, establish the relationship between unrotated

frames which have a relative velocity ~v = v~n along the unit vector ~n. They

are given by

Λ =


γ −γ v

c
n1 −γ v

c
n2 −γ v

c
n3

−γ v
c
n1 1 + (γ − 1)n1n1 (γ − 1)n1n2 (γ − 1)n1n3

−γ v
c
n2 (γ − 1)n2n1 1 + (γ − 1)n2n2 (γ − 1)n2n3

−γ v
c
n3 (γ − 1)n3n1 (γ − 1)n3n2 1 + (γ − 1)n3n3

 ,

(1.78)

where, as usual, γ = (1− v2/c2)−1/2.
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1.5 Lorentz Vectors and Tensors

§ 1.34 We have said in § 1.3 that vectors and tensors always refer to a

group. They actually ignore translations. Vectors are differences between

points (technically, in an affine space), and when you do a translation, you

change both its end-points, so that its components do not change. A Lorentz

vector obeys

V ′α = Λα
βV

β . (1.79)

A 2nd-order Lorentz tensor transforms like the product of two vectors:

T ′αβ = Λα
γΛ

β
δT

γδ . (1.80)

A 3rd-order tensor will transform like the product of 3 vectors, with three

Λ-factors, and so on. Such vectors and tensors are contravariant vectors

and tensors, which is indicated by the higher indices. Lower indices sig-

nal covariant objects. This is a rather unfortunate terminology sanctioned

by universal established use. It should not be mistaken by the same word

“covariant” employed in the wider sense of “equally variant”. A covariant

vector, or covector, transforms according to

V ′α = Λα
βVβ . (1.81)

The matrix with entries Λα
β is the inverse of the previous matrix Λ. This

notation will be better justified later. For the time being let us notice that,

as indices are lowered and raised by η and η−1, we have

V ′αV
′α = ηαβV

′βV ′α = ηαβΛβ
γΛ

α
δV

γV δ = ΛαγΛ
α
δV

γV δ = Λα
γΛα

δVγV
δ ,

so that we must have Λα
γΛα

δ = δγδ in order to preserve the value of the norm.

Therefore, (Λ−1)γα = Λα
γ and (1.81) is actually

V ′α = Λα
βVβ = Vβ (Λ−1)βα , (1.82)

with the last matrix acting from the right. A good picture of what happens

comes as follows: conceive a (contravariant) vector u as column

(
u0

u1

u2

u3

)
with

four entries and a covector v as a row ( v0,v1,v2,v3 ). Matrices will act from the
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left on columns, and act from the right on rows. The scalar product v ·u will

be a row-column product,

( v0,v1,v2,v3 )

(
u0

u1

u2

u3

)
.

The preservation of the scalar product is then trivial, as

v′ · u′ = ( v0,v1,v2,v3 ) Λ−1Λ

(
u0

u1

u2

u3

)
= ( v0,v1,v2,v3 )

(
u0

u1

u2

u3

)
= v · u. (1.83)

Summing up, covariant vectors transform by the inverse Lorentz matrix.

As in the contravariant case, a covariant tensor transforms like the product

of covariant vectors, etc.

The transformation of a mixed tensor will have one Λ-factor for each

higher index, one Λ−1-factor for each lower index. For example,

T ′αβ
γ = Λα

δ Λβ
ε Λγ

φ T
δ
ε
φ . (1.84)

§ 1.35 We shall later consider vector fields, which are point-dependent (that

is, event-dependent) vectors V = V (x). They will describe the states of

systems with infinite degrees of freedom, one for each point, or event. In

that case, a Lorentz transformation will affect both the vector itself and its

argument:

V ′α(x′) = Λα
β V

β(x) , (1.85)

where x′α = Λα
βx

β. Tensor fields will follow suit.

Comment 1.1 The Galilei group element (1.16) is a limit when v/c → 0 of the generic

group element (1.77) of the Poincaré group. We have said “a” limit, not “the” limit,

because some redefinitions of the transformation parameters are necessary for the limit to

make sense. The procedure is called a Inönü–Wigner contraction.‡

Comment 1.2 Unlike the case of Special Relativity, there is no metric on the complete

4-dimensional spacetime which is invariant under Galilei transformations. For this reason

people think twice before talking about “spacetime” in the classical case. There is space,

and there is time. Only within Special Relativity, in the words of one of the inventors of

spacetime,“. . . space by itself, and time by itself, are condemned to fade away into mere

shadows, and only a kind of union of the two preserves an independent reality”.§

‡ R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications, J.Wiley, New

York, 1974.
§ H. Minkowski, “Space and time”, in The Principle of Relativity, New York, Dover,
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1.6 Particle Dynamics

§ 1.36 Let us go back to Eq.(1.39). Use of Eq.(1.65) shows that time, as

indicated by a clock, is
1

c

∫
α

ds ,

the integral being taken along the clock’s worldline α. From the expression

ds =
√
c2dt2 − d~x2 we see that each infinitesimal contribution ds is maximal

when d~x2 = 0, that is, along the pure-time straight line, or the cone axis.

We have said in § 1.19 that there are always zero-length paths between any

two events. These paths are formed with contributions ds = 0 and stand on

the light-cones. The farther a path α stays from the light cone, the larger

will be the integral above. The largest value of
∫
α

will be attained for α =

the pure-time straight line going through each point.

Hamilton’s minimal-action principle is a mechanical version of Fermat’s

optical minimal-time principle. Both are unified in the relativistic context,

but
∫
α

is a maximal time or length. Let us only retain that the integral
∫
α

is an extremal for a particle moving along a straight line in 4-dimensional

spacetime. “Moving along a straight line” is just the kind of motion a free

particle should have in an inertial frame. If we want to obtain its equation of

motion from an action principle, the action should be proportional to
∫
α
ds.

The good choice for the action related to a motion from point P to point Q

is

S = − mc

∫ Q

P

ds . (1.86)

The factor mc is introduced for later convenience. The sign, to make of the

action principle a minimal (and not a maximal) principle.

Let us see how to use such a principle to get the equation of motion of a

free particle. Take two points P and Q in Minkowski spacetime, and consider

the integral ∫ Q

P

ds =

∫ Q

P

√
ηαβdxαdxβ .

1923. From the 80th Assembly of German Natural Scientists and Physicians, Cologne,

1908.
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Its value depends on the path chosen. It is actually a functional on the space

of paths between P and Q,

F [α
PQ

] =

∫
α
PQ

ds. (1.87)

An extremal of this functional would be a curve α such that δS[α] =
∫
δds

= 0. Now,

δds2 = 2 ds δds = 2 ηαβ dx
αδdxβ,

so that

δds = ηαβ
dxα

ds
δdxβ .

Thus, commuting the differential d and the variation δ and integrating by

parts,

δS[α] =

∫ Q

P

ηαβ
dxα

ds

dδxβ

ds
ds = −

∫ Q

P

ηαβ
d

ds

dxα

ds
δxβ ds

= −
∫ Q

P

ηαβ
d

ds
uα δxβ ds.

The variations δxβ are arbitrary. If we want to have δS[α] = 0 for arbitrary

δxβ, the integrand must vanish. Thus, an extremal of the action (1.86) will

satisfy

mc
d

ds
uα = mc

d2xα

ds2
= 0. (1.88)

This is the equation of a straight line, and — as it has the aspect of Newton’s

second law — shows the coherence of the velocity definition (1.64) with the

action (1.86). The solution of this differential equation is fixed once initial

conditions are given. We learn in this way that a vanishing acceleration is

related to an extremal of S[αPQ]. In the presence of some external force Fα,

this should lead to a force law like

mc
duα

ds
= Fα. (1.89)

§ 1.37 To establish comparison with Classical Mechanics, let us write

S =

∫ Q

P

Ldt , (1.90)
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with L the Lagrangian. By (1.65), we have

L = − mc2

√
1− v2

c2
. (1.91)

Notice that, for small values of v2

c2
,

L ≈ − mc2(1− v2

2c2
) ≈ − mc2 +

mv2

2
, (1.92)

the classical Lagrangian with the constant mc2 extracted.

§ 1.38 The momentum is defined, as in Classical Mechanics, by pk = δL
δvk

,

which gives

p =
1√

1− v2

c2

mv = γ mv (1.93)

which, of course, reduces to the classical p = mv for small velocities.

The energy, again as in Classical Mechanics, is defined as E = p · v − L,

which gives the celebrated expression

E = γ mc2 =
mc2√
1− v2

c2

. (1.94)

This shows that, unlike what happens in the classical case, a particle at rest

has the energy

E = mc2 (1.95)

and justifies its subtraction to arrive at the classical Lagrangian in (1.92).

Relativistic energy includes the mass contribution. Notice that both the

energy and the momentum would become infinite for a massive particle of

velocity v = c. That velocity is consequently unattainable for a massive

particle.

Equations (1.93) and (1.94) lead to two other important formulae. The

first is

p =
E
c2

v. (1.96)

The infinities mentioned above cancel out in this formula, which holds also

for massless particles traveling with velocity c. In that case it gives

|p| = E
c
. (1.97)
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The second formula comes from taking the squares of both equations. It is

E2 = p2c2 +m2c4 (1.98)

and leads to the Hamiltonian

H = c
√

p2 +m2c2 . (1.99)

Now, we can form the four-momentum

p = mcu = (E/c,p) = (E/c, γmv) = γ(mc,mv) , (1.100)

whose square is

p2 = m2c2 . (1.101)

Force, if defined as the derivative of p with respect to proper time, will give

F =
d

ds
p = mc

du

ds
,

just Eq.(1.89). Because u is dimensionless the quantity F , defined in this
way, has not the mechanical dimension of a force (Fc would have).

§ 1.39 We have examined the case of a free particle in §1.36, where the

action

S = − mc

∫
ds

has been used. Let us see, through an example, what happens when a force

is present. Consider the case of a charged test particle. The coupling of a

particle of charge e to an electromagnetic potential A is given by Aαj
α =

e Aau
α, as said in §1.32. The action along a curve is, consequently,

Sem[α] = − e

c

∫
α

Aαu
αds = − e

c

∫
α

Aαdx
α.

with a factor to give the correct dimension. The variation is

δSem[α] = − e

c

∫
α

δAαdx
α− e

c

∫
α

Aαdδx
α = − e

c

∫
α

δAαdx
α+

e

c

∫
α

dAβδx
β

= − e

c

∫
α

∂βAαδx
βdxα+

e

c

∫
α

∂αAβδx
βdxα = − e

c

∫
α

[∂βAα−∂αAβ]δxβ
dxα

ds
ds
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= − e

c

∫
α

Fβαu
αδxβds ,

where we have defined the object

Fαβ = ∂αAβ − ∂βAα . (1.102)

Combining the two pieces, the variation of the total action

S = −mc
∫ Q

P

ds− e

c

∫ Q

P

Aαdx
α (1.103)

is

δS =

∫ Q

P

[
ηαβ mc

d

ds
uα − e

c
Fβαu

α

]
δxβds.

The extremal satisfies

mc
d

ds
uα =

e

c
Fα

β u
β. (1.104)

This is the relativistic version of the Lorentz force law. It has the general

form (1.89).

Exercise 1.7 The Kronecker completely antisymmetric symbol εijk is defined by

εijk =


1 if ijk is an even permutation of 123

−1 if ijk is an odd permutation of 123

0 otherwise

(1.105)

The starting value is ε123 = 1. A useful determinant form is

εijk =

∣∣∣∣∣∣∣
δ1i δ1j δ1k
δ2i δ2j δ2k
δ3i δ3j δ3k

∣∣∣∣∣∣∣ . (1.106)

Indices are here raised and lowered with the euclidean metric.

A Verify the following statements:

1. the component k of the vector product of v and u is (~v × ~u)
k

= εkij v
iuj

2. in euclidean 3-dimensional space, an antisymmetric matrix with entries Mij

is equivalent to a vector vk = 1
2 ε

kij Mij

3. the inverse formula is Mij = 1
2 εijk v

k.

B Calculate

1. εijkε
imn
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2. εijkε
ijn

3. εijkε
ijk.

�

Exercise 1.8 (Facultative: supposes some knowledge of electromagnetism and vector cal-

culus) Tensor (1.102) is Maxwell’s tensor, or electromagnetic field strength. If we compare

with the expressions of the electric field ~E and the magnetic field ~B in vacuum, we see

that

F0i = ∂0Ai − ∂iA0 = ∂ctAi − ∂iφ = Ei ;

Fij = ∂iAj − ∂jAi = εijk(rot ~A)k = εijkBk ,

where εijk is the completely antisymmetric Kronecker symbol. Consequently,

F iβ u
β = F i0 u

0 + F ij u
j = Ei γ + εijkBk γ

vj

c
= γ

(
Ei +

1

c
εijkv

jBk

)

= γ

(
~E +

1

c
~v × ~B

)i
. (1.107)

Thus, for the space components, Eq.(1.104) is

d

ds
~p =

e

c
γ

(
~E +

1

c
~v × ~B

)
.

Using Eq.(1.65),

~F =
d

dt
~p = e

(
~E +

1

c
~v × ~B

)
, (1.108)

which is the usual form of the Lorentz force felt by a particle of charge e in a electromag-

netic field. The time component gives the time variation of the energy:

mc
d

ds
u0 =

e

c
F 0

i u
i

∴
d

ds
(γmc2) = γ

d

dt
E = e γ ~E · ~v ∴ d

dt
E = e ~E · ~v. (1.109)

�

Exercise 1.9 Let us modify the action of a free particle in §1.36 to

S = −
∫
mc ds,

admitting now the possibility of a mass which changes along the path (think of a rocket

spending its fuel along its trajectory).
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1. Taking into account the possible variation of m, find, by the same procedure pre-

viously used, the new equation of force:

d

ds
[mc uα] =

∂

∂xα
mc, (1.110)

with a force given by the mass gradient turning up;

2. show that this is equivalent to

mc
d

ds
uα =

(
δβα − uβuα

) ∂

∂xβ
(mc). (1.111)

Show furthermore, using (1.69), that

3. the force is orthogonal to the path, that is, to its velocity at each point;

4. the matrix P of entries P βα = δβα − uβuα is a projector, that is, P 2 = P .

At each point along the path, P projects on a 3-dimensional plane orthogonal to

the 4-velocity.

�

§ 1.40 Summing up Before going further, let us make a short resumé on

the general notions used up to now, in a language loose enough to make them

valid both in the relativistic and the non-relativistic cases (so as to generalize

the classical notions of § 1.6).

Reference frame A reference frame is a “coordinate system for space po-
sitions, to which a clock is bound”. The coordinate system has two
pieces:

(i) a fixed set of vectors, like the i, j,k usually employed in our
ambient 3-dimensional space;

(ii) a set of coordinate functions, as the usual cartesian, spherical
or cylindrical coordinates. The clock provides a coordinate in the 1-
dimensional time axis.

Inertial frame a reference frame such that free (that is, in the absence
to any forces) motion takes place with constant velocity is an inertial
frame;

(a) in Classical Physics, Newton’s force law in an inertial frame is

m
dvk

dt
= F k;
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(b) in Special Relativity, the force law in an inertial frame is

mc
duα

ds
= Fα.

Incidentally, we are stuck to cartesian coordinates to discuss forces:
the second time-derivative of a coordinate is an acceleration only if
that coordinate is cartesian.

Transitivity of inertia a reference frame moving with constant velocity
with respect to an inertial frame is also an inertial frame. Measure-
ments made at two distinct inertial frames give the same results. It is
consequently impossible to distinguish inertial frames by making mea-
surements.

Causality in non-relativistic classical physics the interactions are given by
the potential energy, which usually depends only on the space coor-
dinates; forces on a given particle, caused by all the others, depend
only on their position at a given instant; a change in position changes
the force instantaneously; this instantaneous propagation effect — or
action-at-a-distance — is a typically classical, non-relativistic feature;
it violates special-relativistic causality, which says that no effect can
propagate faster than the velocity of light.

Relativity the laws of Physics can be written in a form which is invariant
under change of frame. In particular, all the laws of nature are the
same in all inertial frames; or, alternatively, the equations describing
them are invariant under the transformations (of space coordinates and
time) taking one inertial frame into the other; or still, the equations
describing the laws of Nature in terms of space coordinates and time
keep their forms in different inertial frames; this “principle of relativity”
is an experimental fact; there are three known “Relativities”:

(1) Galilean Relativity, which holds in non-relativistic classical phy-
sics; the transformations between inertial frames belong to the Galilei
group;

(2) Special Relativity, which is our subject; transformations be-
tween inertial frames belong to the Poincaré group;

(3) General Relativity, involved with non-inertial frames and the so-
called inertial forces, including gravitation. If you look at things from
an accelerated frame, those things will seem to be subject to a force,
which has however a very special characteristic: it is the same for all
things. Of course, that force is only an effect of your own acceleration,
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but it has in common with gravity that universal character. Locally —
that is, in a small enough domain of space a gravitational force cannot
be distinguished from that kind of “inertial” force.

§ 1.41 There have been tentatives to preserve action-at-a-distance in a rel-

ativistic context, but a simpler way to consider interactions while respecting

Special Relativity is of common use in field theory: interactions are medi-

ated by a field, which has a well-defined behavior under transformations; and

disturbances propagate with finite velocities, with the velocity of light as an

upper bound.
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Chapter 2

Transformations

2.1 Transformation Groups

§ 2.1 We can use changes in spacetime to illustrate the main aspects of

transformation groups. Transformations are then seen as the effect of acting

with matrices on spacetime column–vectors. The null transformation on

spacetime, for example, will be given by the identity matrix

I =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (2.1)

The parity transformation is the inversion of all the space components of

every vector,

P =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (2.2)

Its effect on the position vector will be
x′0

x′1

x′2

x′3

 =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




x0

x1

x2

x3

 =


x0

−x1

−x2

−x3


38



One can also conceive the specular inversion of only one of the coordinates,

as the x-inversion or the x–and–y-inversion:
1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

 ;


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 . (2.3)

The time reversal transformation will be given by
−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 . (2.4)

Composition of transformations is then represented by the matrix prod-

uct. The so–called PT transformation, which inverts all the space and time

components, is given by the product

PT =


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (2.5)

§ 2.2 Transformation groups As most of transformations appearing in

Physics are members of groups, let us formalize it a bit, adapting the alge-

braic definition of a group. A set of transformations is organized into a group

G, or constitute a group if:

(i) given two of them, say T1 and T2, their composition T1 ·T2 is also a trans-

formation which is a member of the set;

(ii) the identity transformation (I such that I · Tk = Tk · I = Tk, for all

Tk ∈ G) belongs to the set;

(iii) to each transformation T corresponds an inverse T−1, which is such that

T−1T = TT−1 = I and is also a member;

(iv) associativity holds: (T1 · T2) · T3 = T1 · (T2 · T3) for all triples {T1, T2, T3}
of members.

Notice that, in general, Ti · Tj 6= Tj · Ti. When Ti · Tj = Tj · Ti, we say that
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Ti and Tj commute. If Ti ·Tj = Tj ·Ti is true for all pairs of members of G, G

is said to be a commutative, or abelian group. A subgroup of G is a subset

H of elements of G satisfying the same rules.

§ 2.3 The transformations P and T above do form a group, with the com-

position represented by the matrix product. P and T , if applied twice, give

the identity, which shows that they are their own inverses. They are actually

quite independent and in reality constitute two independent (and rather triv-

ial) groups. They have, however, something else in common: they cannot be

obtained by a step–by–step addition of infinitesimal transformations. They

are “discrete” transformations, in contraposition to the “continuous” trans-

formations, which are those that can be obtained by composing infinitesimal

transformations step–by–step. Notice that the determinants of the matrices

representing P and T are −1. The determinant of the identity is +1. Adding

an infinitesimal contribution to the identity will give a matrix with determi-

nant near to +1. Groups of transformations which can be obtained in this

way from the identity, by adding infinitesimal contributions, are said to be

“continuous” and “connected to the identity”. P and T are not connected

to the identity.

§ 2.4 The continuous transformations appearing in Physics are a priori sup-

posed to belong to some Lie group, that is, a continuous smooth group.

Lie groups are typically represented by matrices. When a member of a

continuous group G is close to the identity, it will be given by a matrix like

I + δW , where δW is a small matrix, that is, a matrix with small entries.

Actually, a very general characteristic of a matrix M belonging to a Lie group

is the following: M can be written in the form of an exponential,

M = eW = I +W +
1

2!
W 2 +

1

3!
W 3 + · · · .

Consider, for example, the effect of acting on the triple
(
x1

x2

x3

)
with the matrix

I + δW =

 1 0 0

0 1 0

0 0 1

+

 0 −δφ 0

δφ 0 0

0 0 0

 =

 1 −δφ 0

δφ 1 0

0 0 1

 .
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It gives an infinitesimal rotation in the plane (x1, x2): x1′

x2′

x3′

 =

 1 −δφ 0

δφ 1 0

0 0 1


 x1

x2

x3

 =

 x1 − δφ x2

x2 + δφ x1

x3

 .

We suppose δφ to be very small, so that this is a transformation close to the

unity.

Exercise 2.1 Take the matrix

W =

 0 −φ 0

φ 0 0

0 0 0

 .

Exponentiate it, and find the finite version of a rotation: x1
′

x2
′

x3
′

 = eW

 x1

x2

x3

 =

 cosφ − sinφ 0

sinφ cosφ 0

0 0 1


 x1

x2

x3


=

 x1 cosφ− x2 sinφ

x2 cosφ+ x1 sinφ

x3

 .

�

§ 2.5 But there is more. The set of N×N matrices, for any integer N , forms

also a vector space. In a vector space of matrices, we can always choose a

linear base, a set {Ja} of matrices linearly independent of each other. Any

other matrix can be written as a linear combination of the Ja’s: W = waJa.

We shall suppose that all the elements of a matrix Lie group G can be written

in the form M = exp[waJa], with a fixed and limited number of Ja’s. The

matrices Ja are called the generators of G. They constitute an algebra with

the operation defined by the commutator, which is the Lie algebra of G.
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2.2 Orthogonal Transformations

§ 2.6 We have said in § 1.22 that a group of continuous transformations

preserving a symmetric bilinear form η on a vector space is an orthogonal

group or, if the form is not positive–definite, a pseudo–orthogonal group.

Rotations preserve the distance d(x,y) of E3 because R(ω) is an orthogo-

nal matrix. Let us see how this happens. Given a transformation represented

by a matrix M ,

xi
′
=
∑
j

M i′
j x

j ,

the condition for preserving the distance will be∑
i′

xi
′
yi
′
=
∑
i′

M i′
jM

i′
k x

j yk =
∑
i

xiyi ;

that is, with MT the transpose of M ,∑
i′

M i′
jM

i′
k =

∑
i′

(
MT

)j
i′M

i′
k =

(
MTM

)j
k = δjk ,

which means that M is an orthogonal matrix: MTM = I. This is indeed an

orthogonality condition, saying that the columns of M are orthonormal to

each other.

Given the transformation xα
′

= Λα′
α xα, to say that “η is preserved”

is to say that the distance calculated in the primed frame and the distance

calculated in the unprimed frame are the same. Take the squared distance in

the primed frame, ηα′β′ x
α′xβ

′
, and replace xα

′
and xβ

′
by their transformation

expressions. We must have

ηα′β′ x
α′xβ

′
= ηα′β′ Λα′

α Λβ′
β x

αxβ = ηαβ x
αxβ , ∀x . (2.6)

This is the group–defining property, a condition on the Λα′
α’s. We see that

it is necessary that

ηαβ = ηα′β′ Λ
α′
α Λβ′

β = Λα′
α ηα′β′ Λ

β′
β.

The matrix form of this condition is, for each group element Λ,

ΛT η Λ = η , (2.7)
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where ΛT is the transpose of Λ. It follows clearly that det Λ = ±1.

When η is the Lorentz metric, the above condition defines a Λ belonging

to the Lorentz group.

Comment 2.1 Consider the transformation
x′0

x′1

x′2

x′3

 =


1 0 0 1

0 1 0 0

0 0 1 0

1 0 0 −1




x0

x1

x2

x3

 =


x0 + x3

x1

x2

x0 − x3

 .

It is a transformation of coordinates of a rather special type. As the determinant is = −1,

it cannot be obtained as a continuous deformation of the identity. Of course, it does not

represent the passage from one inertial frame to another. The equation x− = x0 − x3 = 0

says that the point (x0, x1, x2, x3) is on the light-cone. The remaining variables x+ =

x0 +x3, x1 and x2 represent points on the cone. The coordinates x′α are called “light-cone

coordinates”.

Exercise 2.2 Show that the matrix inverse to Λ can be written as

(Λ−1)αβ′ = Λβ′
α .

�

There is a corresponding condition on the members of the group Lie algebra.

For each member A of that algebra, there will exist a group member Λ such

that Λ = eA. Taking Λ = I +A+ 1
2
A2 + . . . and ΛT = I +AT + 1

2
(AT )2 + . . .

in the above condition and comparing order by order, we find that A must

satisfy

AT = − η A η−1 = − η−1 A η (2.8)

and will consequently have vanishing trace: tr A = tr AT = - tr (η−1 A η)

= - tr (ηη−1 A) = - tr A ∴ tr A = 0.

Comment 2.2 Actually, it follows from the formal identity detM = exp[tr lnM ] that

detM = 1⇒ tr lnM = 0.

We shall need some notions of algebra, Lie groups and Lie algebras. They
are introduced through examples in what follows, in a rather circular and
repetitive way, as if we were learning a mere language.
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§ 2.7 The invertible N × N real matrices constitute the real linear group

GL(N,R). Members of this group can be obtained as the exponential of

some K ∈ gl(N,R), the set of all real N ×N matrices. GL(N,R) is thus a

Lie group, of which gl(N,R) is the Lie algebra. The generators of the Lie

algebra are also called, by extension, generators of the Lie group.

Consider the set of N × N matrices. This set is, among other things, a

vector space. The simplest matrices will be those ∆α
β whose entries are all

zero except for that of the α-th row and β-th column, which is 1:

(∆α
β)δγ = δδα δ

β
γ . (2.9)

An arbitrary N × N matrix K can be written K = Kα
β ∆α

β. Thus, for

example, P = ∆0
0 − ∆1

1 − ∆2
2 − ∆3

3, and T = − ∆0
0 + ∆1

1 + ∆2
2 +

∆3
3.

The ∆α
β’s have one great quality: they are linearly independent (none

can be written as linear combinations of the other). Thus, the set {∆α
β}

constitutes a basis (the “canonical basis”) for the vector space of the N ×N
matrices. An advantage of this basis is that the components of a member

K as a vector written in basis {∆α
β} are the very matrix elements: (K)αβ

= Kα
β. Consider now the product of matrices: it takes each pair (A,B)

of matrices into another matrix AB. In our notation, a matrix product is

performed coupling lower–right indices to higher–left indices, as in(
∆α

β ∆φ
ξ
)δ

ε =
(
∆α

β
)δ

γ

(
∆φ

ξ
)γ

ε

= δβφ
(
∆α

ξ
)δ

ε (2.10)

where, in (∆α
β)δγ, γ is the column index.

Exercise 2.3 Use (2.9),

(∆α
β)δγ = δδα δ

β
γ ,

to show that (2.10) is true. �

§ 2.8 Algebra This type of operation, taking two members of a set into

a third member of the same set, is called a binary internal operation. A

binary internal operation defined on a vector space V makes of V an algebra.

The matrix product defines an algebra on the vector space of the N × N
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matrices, called the product algebra. Take now the operation defined by

the commutator: it is another binary internal operation, taking each pair

(A,B) into the matrix [A,B] = AB −BA. Thus, the commutator turns the

vector space of the N × N matrices into another algebra. But, unlike the

simple product, the commutator defines a very special kind on algebra, a Lie

algebra.

§ 2.9 Lie algebra A Lie algebra comes up when, in a vector space, there is

an operation which is antisymmetric and satisfies the Jacobi identity. This

is what happens here, because [A,B] = −[B,A] and

[[A,B], C] + [[C,A], B] + [[B,C], A] = 0.

This Lie algebra, of the N × N real matrices with the operation defined by

the commutator, is called the real N -linear algebra, denoted gl(N,R). A

theorem (Ado’s) states that any Lie algebra can be seen as a subalgebra of

gl(N,R), for some N .

The members of a vector base for the underlying vector space of a Lie

algebra are the generators of the Lie algebra. {∆α
β} is called the canonical

base for gl(N,R). A Lie algebra is summarized by its commutation table.

For gl(N,R), the commutation relations are[
∆α

β,∆φ
ζ
]

= f(αβ )(φζ )
(δγ) ∆γ

δ . (2.11)

The constants appearing in the right-hand side are the structure coefficients,

whose values in the present case are

f(αβ )(φζ )
(δγ) = δφ

β δα
γ δδ

ζ − δαζ δφγ δδβ . (2.12)

§ 2.10 A group is a matrix group when it is a subgroup of GL(N,R) for some

value of N . A Lie group G can be isomorphic to matrix groups with many

different values of N . Each one of these “copies” is a linear representation of

G. A finite linear transformation with parameters wαβ is given by the matrix

M = exp[w] = exp[wαβ∆α
β]. Then,

w2 = wαβ w
φ
ξ ∆α

β ∆φ
ξ = wαβ w

β
ξ ∆α

ξ = (w2)αξ ∆α
ξ

w3 = wαβ w
φ
ξ w

γ
δ ∆α

β ∆φ
ξ ∆γ

δ = (w3)αξ ∆α
ξ, etc,
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and M will have entries

M r′
s =

(
ew

α
β∆α

β
)r′

s =

(
∞∑
n=0

wn

n!

)r′

s =
∞∑
n=0

1

n!
(wn)r

′

s .

To first order in the parameters,

M r′
s ≈ δr

′
s + wr

′
s .

If a metric η is defined on an N -dimensional space, the Lie algebras

so(η) of the orthogonal or pseudo–orthogonal groups will be subalgebras of

gl(N,R). Given an algebra so(η), both basis and entry indices can be lowered

and raised with the help of η. We define new matrices ∆αβ by lowering labels

with η : (∆αβ)δγ = δδαηβγ. Their commutation relations become

[∆αβ,∆γδ] = ηβγ ∆αδ − ηαδ ∆γβ . (2.13)

Exercise 2.4 Use Exercise 2.3 to prove (2.13). �

The generators of so(η) will then be Jαβ = ∆αβ - ∆βα, with commutation

relations

[Jαβ, Jγδ] = ηαδJβγ + ηβγJαδ − ηβδJαγ − ηαγJβδ . (2.14)

These are the general commutation relations for the generators of orthogonal

and pseudo–orthogonal groups. We shall meet many cases in what follows.

Given η, the algebra is fixed up to conventions. The usual group of rota-

tions in the 3-dimensional Euclidean space is the special orthogonal group,

denoted by SO(3). Being “special” means connected to the identity, that is,

represented by 3× 3 matrices of determinant = +1.

Exercise 2.5 When η is the Lorentz metric, (2.14) is the commutation table for the

generators of the Lorentz group. Use Exercise 2.4 to prove (2.14). �

§ 2.11 The group O(N) is formed by the orthogonal N × N real matrices.

The group U(N) is the group of unitary N ×N complex matrices. SO(N) is

formed by all the matrices of O(N) which have determinant = +1. SU(N)

is formed by all the matrices of U(N) which have determinant = +1. In
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particular, the group O(3) is formed by the orthogonal 3 × 3 real matrices.

The group U(2) is the group of unitary 2 × 2 complex matrices. SO(3) is

formed by all the matrices of O(3) which have determinant = +1. SU(2) is

formed by all the matrices of U(2) which have determinant = +1.

Comment 2.3 If a group SO(p, q) preserves η(p, q), so does the corresponding affine

group, which includes the translations. We should be clear on this point. When we write

xj , for example, we mean xj − 0, that is, the coordinate is counted from the origin. The

translation indicated by aj is a global translation of the whole space — of the point and

of the origin together. xj − 0 goes into (xj + aj) - (0 + aj). Vectors are not changed.

All points are changed in the same way, so that differences remain invariant. This would

perhaps become more evident if we noticed that the (squared) distances between two point

x and x′ in E3 are actually always η(x′ − x,x′ − x) = (x′ − x)2 + (y′ − y)2 + (z′ − z)2.

Translations lead simultaneously x→ x + a and x′ → x′ + a. The affine group related to

SO(r, s) is frequently called “inhomogeneous SO(p, q)” and denoted ISO(r, s). In cases

given below, the Euclidean group on E3 can be indicated also by ISO(3), and the Poincaré

group, also called inhomogeneous Lorentz group, by ISO(3, 1).

The simplest and best–known non–trivial Lie group is that formed by
rotations in 3-dimensional Euclidean space. We shall use it as a spearhead
to introduce and illustrate the main ideas on more general Lie groups.
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2.3 The Group of Rotations

§ 2.12 The rotation group in Euclidean 3-dimensional space can actually be

taken either as the special orthogonal group SO(3) or as the special unitary

group SU(2). Their Lie algebras are the same. The distinction lies in their

manifolds, and has important consequences. For example, SU(2) has twice

more representations than SO(3). In particular, the Pauli representation

given below (Eq. 2.23) is a representation of SU(2), but not of SO(3). As

far as space only in concerned, it is SO(3) which is at work, but some fields

— spinors — can “feel” the difference. In this section we shall be using the

ordinary metric gij = δij for the Euclidean space, so that there will be no

difference at all between raised and lowered indices.

Comment 2.4 Lie groups are differentiable manifolds. The SU(2) manifold is a 3-

dimensional sphere S3, while the SO(3) manifold is like half the sphere S3. The topology

of SU(2) is consequently simpler. It all happens as if SU(2) “covered” SO(3) twice.

Technically, SU(2) is indeed the double covering of SO(3).

§ 2.13 The fundamental representation (that of lowest dimension) of SO(3)

is given precisely by the orthogonal 3 × 3 matrices which have given it its

name. The most convenient basis for the 3 generators Ja of the Lie algebra,

which satisfy the commutation relations

[Jb, Jc] = ifabcJa (2.15)

will be that in which their matrix elements are just the structure coefficients,

(Jb)ac = ifabc . (2.16)

Given a Lie algebra, the representation whose matrix elements are just the

structure coefficients is called the “adjoint representation” of the algebra.

It is more deeply concerned with the group geometry than any other rep-

resentation. For SO(3), this representation coincides with the fundamental

one, which is not the case for most groups.

For the rotation group, the structure constants are given by fabc = εabc,

the Kronecker completely antisymmetric symbol given in Exercise 1.7. Thus,

(2.15) is just the usual table of commutators

[J1, J2] = i J3 ; [J2, J3] = i J1 ; [J3, J1] = i J2 ; (2.17)
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(if we take hermitian matrices for the Jk’s; if antihermitian, just drop the i

factors). The matrices are

J1 =

 0 0 0

0 0 −i
0 i 0

 ; J2 =

 0 0 i

0 0 0

−i 0 0

 ; J3 =

 0 −i 0

i 0 0

0 0 0

 .

(2.18)

Without the i factors, the generators constitute also a basis for the underlying

vector space of the Lie algebra. In terms of the group parameters, which can

be taken as 3 angles collectively represented by the vector ω = (w1, w2, w3),

a generic member of the Lie algebra will be

W = − i Jawa =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .

The general group element R = eW can be obtained without much ado
by direct exponentiation. Using the notation ω = |ω| and defining in the
parameter space the unit vector u = ω/|ω|, its explicit form is

R(ω) =

 C + (1− C)u1u1 (1− C)u1u2 − S u3 (1− C)u1u3 + S u2

(1− C)u1u2 + S u3 C + (1− C)u2u2 (1− C)u2u3 − S u1

(1− C)u1u3 − S u2 (1− C)u2u3 + S u1 C + (1− C)u3u3


(2.19)

where C = cosω and S = sinω. The general expressions of the matrix
elements, as in

Wij = − εijkωk ; W 2
ij = wiwj − δij ω2 ;

Rij = δij − εijk uk sinω + (uiuj − δij)(1− cosω) ,

are particularly useful for computations. The intuitive meaning of the expo-
nential matrix becomes clear when we apply it to a vector x:

R(ω) x = (u · x)u + (u× x)× u cosω + (u× x) sinω

= x cosω + (u× x) sinω + (1− cosω)(u · x)u ,

or still, decomposing x into a piece parallel to u

x‖ = (u · x)u
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and a piece orthogonal to u,

x⊥ = (u× x)× u cosw = x− (u · x)u,

R(ω)x = x‖ + x⊥ cosω + (u× x) sinω . (2.20)

Thus, R(ω) represents a rotation around u or ω. The unit vector u, which
is an eigenvector of R(ω) with eigenvalue 1, defines the axis of rotation. In
particular, a rotation of an angle φ around the 3rd axis k (see §1.1) is given
by ω = (0, 0, φ) and has the effect

R(0, 0, φ)x = x‖ + x⊥ cosφ+ (k× x) sinφ . (2.21)

A complete rotation around the 3rd axis is given by ω = (0, 0, 2π). It leads
to R(0, 0, 2π)x = x‖ + x⊥ = x. As expected, a complete rotation around an
axis corresponds to the identity transformation: R(0, 0, 2π) = I. We shall
see below, in the discussion of the Pauli representation, that this result is
not as trivial as it may seem.

Notice that these transformations can be seen as acting on the “position
vector” x, or any other vector. We can give here an important step towards
abstraction: to define a vector as an object transforming as above. Still
better: an object transforming as above is said to belong to the “vector
representation” of the group.

§ 2.14 Casimir operator We can write also the explicit form of W 2:

W 2 =

 −ω3
2 − ω2

2 ω1ω2 ω1ω3

ω1ω2 −ω3
2 − ω1

2 ω2ω3

ω1ω3 ω2ω3 −ω2
2 − ω1

2

 .

By taking the trace, we find that

−1

2
trW 2 = −tr(JaJb)w

awb = −1

2
ωaωbεcadεdbc = δabω

aωb = w2 .

The matrix making its appearance here, the bilinear form with entries γab

= 1
2

tr(JaJb), is an invariant. It gives always the same matrix if acted upon

by the group transformations: R−1γR = γ. Or, equivalently, it commutes

with all the generators. The operator J2 = γabJ
aJ b is also an invariant,

the squared angular momentum. This kind of invariant operator, obtained

by using an invariant bilinear form on the generators, is called a Casimir

invariant. It has a fixed eigenvalue in a fixed representation.
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Comment 2.5 γab is actually a metric on the group manifold, called the Killing–Cartan

metric [more about that far below, see Eq.(8.64)]. We have chosen the factors so that, for

the rotation group, it coincides with the Euclidean metric (1.27) in cartesian coordinates,

(δij) =

 1 0 0

0 1 0

0 0 1

 . (2.22)

Exercise 2.6 For the squared angular momentum, it is usual to write the eigenvalue in

the form J2 = j(j+ 1). Show that, for the vector representation given by matrices (2.18),

J2 = 2 and j = 1. �

§ 2.15 For general Lie groups and algebras, more invariants can be found,

each one related to an invariant multilinear form. The number of independent

invariants will be the rank of the Lie algebra. The rotation group has rank 1:

the above invariant is the only one. The Euclidean group, the group SU(3),

the Lorentz group and the Poincaré group are rank-2 groups and will have

two independent invariants. As the invariants commute with every operator,

they have the same eigenvalues for all the states of a given representation.

An important result from group theory is the following: a representation

is completely characterized by the eigenvalues of the independent invariant

operators. As said above, the number of independent invariant operators is

the rank of the group. Their eigenvalues are consequently used to label the

representations. Of course, any function of the invariants is itself invariant.

It is then possible to choose the independent invariants to be used — with

obvious preference for those with a clear physical meaning.

§ 2.16 The action of the group transformations on its own Lie algebra is

called the adjoint representation of the group. The algebra members are

transformed by similarity: given any element M = JaM
a in the algebra, it

will transform according to M → M ′ = g−1Mg. Because of its role in the

differential structure of the Lie group, this is the most important represen-

tation, on which all the other representations somehow mirror themselves.

Here, for an arbitrary element M ,

M ′ = R−1MR = M cosω + [M,W ]
sinω

ω
+W (M · ω)

1− cosω

ω2
.
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Comment 2.6 We see easily why γab = 1
2 tr(JaJb) is an invariant: it is a trace, and

traces are invariant under similarities because tr(AB) = tr(BA) and consequently trM ′

= tr(R−1MR) = tr(RR−1M) = trM .

Comment 2.7 The form (2.19) is one of many possible different parameterizations for a

given rotation. It has been used because it gives special emphasis to the role of the Lie al-

gebra and the related adjoint representation. The Euler angles, much used in the problem

of the rigid body, provide another. Lie groups are manifolds of a very special kind and,

roughly speaking, parameters are coordinates on the group manifold. Changing parame-

terizations corresponds to changing coordinate systems. As with coordinates in general, a

special parameterization can ease the approach to a particular problem. The Cayley-Klein

parameters, for example, are more convenient to solve some gyroscope problems.

§ 2.17 For SU(2), the fundamental representation is generated by the 2× 2

Pauli matrices:

σ1 =

(
0 1

1 0

)
; σ2 =

(
0 −i
i 0

)
; σ3 =

(
1 0

0 −1

)
. (2.23)

It is easily checked that the generators of the Lie algebra, satisfying (2.17),

are actually {1
2
σa}. The general element W in the Lie algebra representation

is now given by

W = 1
2
σa ωa = 1

2

(
ω3 ω1 − iω2

ω1 + iω2 −ω3

)
.

The group element can again be found by direct exponentiation:

R(ω) = eiW = I cos
ω

2
+ i(σ · ω

ω
) sin

ω

2
. (2.24)

§ 2.18 As a rule, the value of j specifies the “spin value”. For the spinor

representation, J2 = 3/4 and j = 1/2. We say that “spin one–half” systems

are described. The vector representation is attributed “spin–one”. We shall

see much more about spinors when discussing Dirac fields.

Exercise 2.7 In a way analogous to Exercise 2.6, show that for the spinor representation

given by the Pauli matrices (2.23), the values are indeed J2 = 3/4 and j = 1/2. �

§ 2.19 We have seen above that R(0, 0, 2π) = I for the vector representation.

Here, however, we find immediately that R(0, 0, 2π) = I cos π = − I. A
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complete rotation around an axis does not lead back to the original point.

Only a double complete rotation, like R(0, 0, 4π), does. Objects belonging to

this representation are deeply different from vectors. They are called (Weyl

or Pauli) spinors. The column vectors

(
1

0

)
and

(
0

1

)
, eigenvectors of σ3,

can be used as a basis: any such spinor can be written in the form

ψ = ψ↑

(
1

0

)
+ ψ↓

(
0

1

)
=

(
ψ↑

ψ↓

)
. (2.25)

Comment 2.8 The reason for the “arrow” notation is the following: σ3 will appear later

as the operator giving the spin eigenvalues along the axis 0z: eigenvalue +1 for spin “up”,

eigenvalue -1 for spin “down”. The general Pauli spinor will be a superposition of both.

Comment 2.9 Non–matrix representations can be of great help in some cases. For ex-

ample, take the functions Ψ(x) defined on the Euclidean 3-dimensional space. Acting on

them, the set of differential operators Jm = iεmrsx
r∂s satisfy the rules (2.17) and lead to

the invariant value j = 1. They provide thus a representation equivalent to that of matri-

ces (2.18). Two distinct kinds of operators, acting on different spaces but with the same

value of the invariants are said to provide different “realizations” of the corresponding

representation.

§ 2.20 We have above defined the vector representation of the group. A vec-

tor, or a member of the vector representation, is any object v = (v1, v2, v3)T

transforming according to v = R(ω) v, or , (v1′ , v2′ , v3′)T = R(ω) (v1, v2, v3)T .

We shall use the compact version

vi
′
= Ri′

j v
j ,

giving each component. The position vector is a particular case, with xi
′

=

Ri′
j x

j. A question may come to the mind: how would a composite object,

such as one with components like xixj, transform? Well, each piece will

transform separately, and xi
′
xj
′

= Ri′
mR

j′
nx

mxn. Any object transforming

in this way,

T i
′j′ = Ri′

mR
j′
nT

mn ,

is said to be a second–order tensor, or to belong to a tensor representation of

the group. Notice that there is no need at all that it be a product like xixj:

the only thing which matters is the way it undergoes the transformations of
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interest. In the same way, higher–order tensors are defined: a tensor of order

r is any object transforming according to

T i1
′i2′i3′ ... ir ′ = Ri1′

j1 R
i2′
j2 R

i3′
j3 . . . R

ir ′
jr T

j1j2j3 ... jr .

We have thus an infinite series of tensor representations of the rotation group.

Different representations mean different spaces: T i1i2 , which can be repre-

sented by a 3 × 3 matrix, belongs to a space quite different from that to

which a vector vi belongs. It is enough to look at the dimensions to see

that each tensorial order leads to different spaces. But there is more. As is

well known in the case of rotations, higher–dimensional vectors spaces, on

whose members the groups acts by higher–dimensional matrices, provide new

representations. Each one corresponds to some value of J2 = j(j + 1). It

is proven that there is one representation of SO(3) for each non–vanishing

integer value of j, and one representation of SU(2) for each non–vanishing

half–integer or integer value of j. Thus, SU(2) has all the representations

j = 1, 2, 3, . . . of SO(3), plus those with j = 1/2, 3/2, 5/2, . . . To these we

can add a j = 0 representation, whose members have one component only

and are called invariants, scalars or singlets of both groups.

§ 2.21 The N ×N matrices representing SO(3) constitute a group, isomor-

phic to our original SO(3). And we arrive thus to the fundamental notion

of abstract group. It is far more convenient to look at all these “copies” of

SO(3) as mere representations of one same abstract group, which by histor-

ical and intuitive reasons we call . . . again SO(3). Abstract groups coming

up in Physics have this thing in common, they are named after the first

representation that has been found. SU(2) is no more simply the group of

special unitary complex 2 × 2 matrices: it is the abstract group isomorphic

to that one, with an infinite number of representations given by higher–order

matrices.

When we talk currently about “vectors”, we usually mean just the above

vectors, those of SO(3). We shall, however, see other groups below. Each

one will have its own vectors, tensors, etc. It should be clear that, whenever

we use the expressions “vectors” and “tensors”, we should specify the group.
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2.4 The Poincaré Group

§ 2.22 Different observers, as said, are supposed to be attached to different

inertial reference frames. The field equations must be valid and the same

in any inertial reference frame. This means that they must be written as

equalities with the right– and left–hand sides transforming in exactly the

same way. We say then that they are “in covariant form”. To obtain covariant

equations, it is enough that they come as extrema of an action functional

which is invariant under the group of transformations of inertial frames.

The transformations of the Poincaré group are, by definition, those con-

tinuous transformations under which is invariant the interval between two

events, or points on Minkowski spacetime.

The Poincaré transformations are of two types, each constituting a sub–

group: translations and Lorentz transformations. The latter leave the above

expression invariant because they are the (pseudo) rotations in Minkowski

space, on which the interval represents a (pseudo) distance. Spacetime trans-

lations constitute the so–called inhomogeneous part of the Poincaré group.

They leave the interval invariant because they change both the origin and

other points in the same way. Mathematically speaking, this means that

spacetime should be seen not as a vector space, but as an affine space:

Minkowski spacetime has no preferred origin. The interval is also invariant

under some discrete transformations: inversions (2.2), (2.3) of the space axis

and of the time axis (2.4). Some authors round up these transformations and

those constituting the Lorentz group into the “full Lorentz group”. Other

withdraw from this denomination the time inversion. We shall consider only

the continuous transformations here, and consider a Poincaré transformation

as a Lorentz transformation plus a translation. Given cartesian coordinates

on spacetime,

x′α = Λα
β x

β + aα . (2.26)

The interval will remain invariant if

ηαβ Λα
γ Λβ

δ = ηγδ . (2.27)

These pseudo–orthogonality conditions on the matrix Λ = (Λα
β) can be seen,

as already said, as the defining relations of the Lorentz subgroup. It is usual
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to indicate (2.26) by the compact notation

L = (Λ, a) . (2.28)

Pure translations and Lorentz transformations are given respectively by (I, a)

and (Λ, 0). The composition of two Poincaré transformations comes imme-

diately from (2.26):

(Λ′, a′)(Λ, a) = (Λ′Λ,Λ′a+ a′) . (2.29)

Comment 2.10 In (2.26), a Lorentz transformation is performed first, and then transla-

tions are applied: (Λ, a) = (1, a)·(Λ, 0). This is the most widely–used convention. Another

is possible: we could have written x′a = Λαβ(xβ + aβ) and (Λ, a) = (Λ, 0) · (1, a). In the

latter parameterization, a Lorentz transformation is applied to the already translated

point.

A general Poincaré transformation is conveniently represented by the 5 × 5

matrix appearing in (1.77).

2.5 The Lorentz Group

§ 2.23 The general Lorentz transformation, including rotations, is far more

complicated than that given in Eq.(1.78). In practice, we decompose it in

a product of rotations and boosts, which is always possible. Boosts can be

seen as “rotations” of imaginary angles: it is enough to take coshα = γ and

tghα = v/c. As to the translations, they form an abelian subgroup.

Let us consider now the fundamental question: given the fields neces-

sary to the description of a physical system, how do we obtain an invariant

Lagrangian L(~φ, ∂µ~φ) ? It is a preliminary requisite that the fields have a

well–defined behavior when submitted to transformations. Fields — used to

describe systems with a continuous infinity of degrees of freedom — belong

to certain function spaces, which we could call “configuration spaces” — just

the spaces of those degrees of freedom. Under a transformation, a field φ is

taken into some other field φ′ belonging to the same space of φ and which

represents, in the new frame, the same configuration represented by φ in the
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original frame. It is in this sense that a configuration is invariant in Special

Relativity: it is impossible to discover, by the sole analysis of the states, on

which frame the system stands. Thus, given an L as in (1.77), there exists

acting on the configuration space an operator U(L) such that

φ′ = U(L)φ .

Suppose then that, acting on the configuration space, there are operators

U(L1), U(L2), U(L3), etc, corresponding to the transformations L1, L2, L3,

etc. And suppose furthermore that those operators respect the group condi-

tions:

(i) U(L1L2) = U(L1) U(L2) (composition)

(ii) U(L0) is the identity operator if L0 is the group identity: U(L0)φ = φ

(iii) U(L−1) U(L) = U(L) U(L−1) = U(L0)

(iv) U(L1L2) U(L3) = U(L1) U(L2L3).

We say then that U(L) “represents” L, and that the set of all U(L) constitutes

a representation of the group on the configuration space.

Comment 2.11 This scheme is quite general, holding for any group acting on some space,

though not every space accepts a representation of a given group.

We are now in position to state what is understood by “well–defined”

behavior. A field will have a well–defined behavior if it belongs to a space on

which a representation is defined. It is usual to say, for simplicity, that “φ

belongs to the representation”. Thus, the admissible fields (the “relativistic

fields”) are those belonging to the representations of the Poincaré group.

There is a last step. A field can be given by an individual function φ,

or by several functions φi which can be seen as components of a single field,

arranged for example in a column–vector (φ1, φ2, . . . )
T on which the opera-

tors U(L) will act as matrices. Well, but not only vectors have components.

Tensors have them, which generalize vectors. Fields can be tensors, on whose

indices the matrix of the vector representation will act one at a time. Con-

figuration space would then consist of tensors. But, even then, the U(L)
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would provide linear transformations. They are said to constitute a linear

representation. Notice that non–linear representations are quite possible, but

the formalism they are involved in is far more complicated. For simplicity,

we shall devote ourselves almost exclusively to linear representations, which

are realized by fields with components.

As said, we should specify the group whenever we use the expressions

“vectors” and “tensors”. The tensors used in General Relativity are tensors

of the group of general coordinate transformations. We shall be interested,

by now, in the Lorentz group tensors (which are unaffected by translations).

A tensor of a generic order N (or: a field belonging to a tensor representation)

will transform according to

T µ
′
1µ
′
2...µ

′
N = Λµ′1

ν1 Λµ′2
ν2 . . .Λ

µ′N
νN T

ν1ν2...νN (2.30)

§ 2.24 A first important particular case is the scalar field which, because it

has only one component, is invariant:

φ′(x′) = φ(x) . (2.31)

It represents a single infinity of degrees of freedom.

Comment 2.12 When a field belongs to a representation but has only one component,

we say that it is a singlet. This terminology holds for other groups: whenever a field

ignores a symmetry group, we put it into a singlet representation. The Lagrangian of any

theory is a scalar with respect to all the symmetries.

A second important particular case is the vector field, which transforms

like xµ:

V µ′(x′) = Λµ′
ν V

ν(x). (2.32)

A second-order tensor will have the behavior

T µ
′ν′(x′) = Λµ′

ρ Λν′
σT

ρσ(x), (2.33)

and so on for higher-order tensors. The word “tensor” can be used in a

larger sense, so as to encompass scalars (0-th order tensors) and vectors (first

order). We shall later on examine the main cases of physical interest. But

it should be clear that it is the Lorentz group which fixes the terminology.
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When talking about relativistic fields, we classify them as scalars, vectors,

2nd-order tensors, spinors, etc. All these names refer to their behavior under

the Lorentz group.

Relativistic fields are defined according to their behavior under

Lorentz transformations, that is, according to the Lorentz group

representation they belong to.

§ 2.25 A surprise comes out in this story: the tensor representations do not

cover all the linear representations. This is due to the fact that the mappings

Λ→ U(Λ) defining the representations are not necessarily single–valued. We

have seen that this happens for the SU(2) Pauli representation: a rotation

of an angle 2π, which in E3 is the same as a rotation of 4π, is taken into +1

or -1.

Comment 2.13 For the time being, only particles corresponding to low order tensors

and spinors (that is, small values of j) have been discovered in Nature.

§ 2.26 Let us make a parenthesis on Quantum Mechanics. The fields Ψ(x, t)

= Ψ(x) turning up are, ultimately, wavefunctions. Take two of them, say φ(x)

and ψ(x) and submit them to a change of frame: φ′(x′) = U(L)φ(x), ψ′(x′)

= U(L)ψ(x). The invariance of physical measurements will require

| < φ(x)|ψ(x) > |2 = | < φ′(x′)|ψ′(x′) > |2 = | < φ(x)|U †(L)U(L)|ψ(x) > |2 ,

that is,

U †(L) U(L) = ±1 .

The operators U(L) must, consequently, be either unitary or antiunitary —

which, by the way, is true for any symmetry. In the Hamiltonian case, for

example, two systems are equivalent when related by a canonical transfor-

mation. Here, two systems are equivalent when related by a unitary or antiu-

nitary transformation. A discrete transformation can, in principle, be repre-

sented by an antiunitary operator. For continuous transformations, however,

which can, when small enough, be seen as infinitesimally close to the identity,

the operators must be actually unitary, as for small transformations both U

59



and U † are both close to the identity. Consequently, an U(L) connected to

the identity will have the form

U(L) = eiJ ,

where J is a hermitian operator (or U(L) = eJ , where J is antihermitian.).

In the representation U : (Λ, a)→ U(Λ, a), the composition rule is

U(Λ′, a′) U(Λ, a) = U(Λ′Λ,Λ′a+ a′) . (2.34)

The operators will have the forms

U(a) = exp[iaµP
µ] (2.35)

U(Λ) = exp[ i
2
αµνM

µν ] , (2.36)

where aµ and αµν = −ανµ are the parameters of the transformations and

P µ, Mµν their generators, matrices in the linear representations. The com-

mutation relations of the generators are characteristic of the group itself and,

consequently, independent of the representation. The generators themselves

belong to a vector space and, with the operation defined by the commuta-

tor, constitute an algebra. The commutators are antisymmetric and satisfy

the Jacobi identity, defining the Lie algebra of the group. The Poincaré

commutation rules are

[P µ, P ν ] = 0 (2.37)[
Mµν , P λ

]
= − i

(
P µ ηνλ − P ν ηµλ

)
(2.38)

[Mµν ,Mρσ] = i (Mµρ ηνσ +Mνσ ηµρ −Mνρ ηµσ −Mµσ ηνρ) . (2.39)

It is usual to forget good (mathematical) manners and call this commutation

table “the group algebra”. Equation (2.37) says that translations are inde-

pendent of each other; (2.38) says that their generators transform as vectors

under Lorentz transformations; and (2.39), that the generators of Lorentz

transformations behave as second–order tensors. This can be directly veri-

fied by using the “kinematic” realization

P µ = i ∂µ (2.40)

Mµν = − i (xµ∂ν − xν∂µ) (2.41)
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whose operators act on functions defined on spacetime (when no place for

confusion exists, we shall be using the notation ∂α = ∂
∂xα

). We have said

that generators transform like vectors under Lorentz transformations. It is

immediate to find that property (2.38) is satisfied if P µ is replaced by xµ.

Any object satisfying it is, by definition, a vector of the Lorentz Lie algebra.

Exercise 2.8 Verify that the operators (2.40) and (2.41) really satisfy Eqs.(2.37-2.39).

�

The action functional should be invariant. As the modulus of the Ja-

cobian determinant of these transformations is 1, the integration measure

d4x = dx0dx1dx2dx3 is invariant, and consequently the density must also be

invariant.

Expression (2.41) generalizes to spacetime the non–relativistic orbital an-

gular momentum M ij = −i(xi∂j - xj∂i) = Mij = xipj - xjpi, related to the

usual angular momentum Lk = (r× p)k by Lk = (1/2)εkijMij. The compo-

nent M12 of angular momentum is the generator of rotations on the plane

(12), and so on. Let us recall that the spin of a particle is the angular mo-

mentum which remains in its rest frame, an effect of quantum nature: in L

= r× p, operators r and p cannot have both well–determined simultaneous

values in Quantum Mechanics. In the classical case, it can be accounted for

by adding to (2.41) an operator sµρ commuting with Mρσ and also satisfying

(2.39). It is, in this way, “put in by hand”.

§ 2.27 In order to classify the relativistic fields, we need a method to classify

the representations of the Poincaré group. We have said in § 2.15, when

talking about rotations, that invariant operators have fixed eigenvalues in a

given representation, and can be used to classify representations. The number

of independent, intercommuting invariant operators is the (algebra or group)

rank. The rotation group has rank one, and the square angular momentum

is the best choice to classify its representations. The Lorentz group and

the Poincaré group have rank two. We need consequently two invariant

operators of the algebra (2.37)-(2.39), two operators which commute with

all the generators. It is easy to verify that PµP
µ, for example, does that.

We shall want to classify particles, and the fields related to them, by the

mass and the spin, and shall choose the two invariants which are nearer to
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them. These are special combinations of the momentum and the angular

momentum. We shall see later how to obtain the momentum and angular

momentum for fields (this is the role of the first Noether theorem), and here

only illustrate the ideas in the case of a mechanical particle. The invariant

best related to mass is precisely PµP
µ, whose eigenvalues are well–known

from Special Relativity: PµP
µ = m2c2, m being the rest mass of the particle

of 4-momentum P µ. In realization (2.40), this invariant operator is (minus)

the D’Alembertian. Another invariant operator is WµW
µ, where Wµ is the

Pauli–Lubanski operator

Wσ = − i
2
εµνρσ (Mµν + sµν)P ρ , (2.42)

εµνρσ being the totally antisymmetric Levi–Civita (or Kronecker) symbol.

This symbol generalizes to 4-dimensional space the symbol we have met in

Exercise 1.7.

Comment 2.14 The totally antisymmetric Levi–Civita symbol, or 4-dimensional Kro-

necker symbol, is defined by

εµνρσ =


1 if µ ν ρ σ is an even permutation of 0123

−1 if µ ν ρ σ is an odd permutation of 0123

0 otherwise

(2.43)

The starting value is ε0123 = 1. The determinant form is

εµνρσ =

∣∣∣∣∣∣∣∣∣
δ0µ δ0ν δ0ρ δ0σ
δ1µ δ1ν δ1ρ δ1σ
δ2µ δ2ν δ2ρ δ2σ
δ3µ δ3ν δ3ρ δ3σ

∣∣∣∣∣∣∣∣∣ . (2.44)

Indices are here raised and lowered with the Lorentz metric, so that ε0123 = − 1. In

4-dimensional space there is no more a relationship between vectors and antisymmetric

matrices. However, the symbol allows the definition of the dual: given a 2nd order anti-

symmetric tensor F ρσ, its dual is defined as

F̃µν = 1
2 εµνρσF

ρσ. (2.45)

Notice that, in order to prepare for the contraction, indices must be raised. The dual,

consequently, depends on the metric. Some identities come out from the contractions of

the symbols themselves:

1. once contracted:

εµνρσε
µαβγ = δαν δ

β
ρ δ

γ
σ − δαν δβσδγρ − δασ δβρ δγν + δασ δ

β
ν δ

γ
ρ + δαρ δ

β
σδ

γ
ν − δαρ δβν δγσ (2.46)
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2. twice contracted:

εµνρσε
µνβγ = 2 (δβρ δ

γ
σ − δβσδγρ ) (2.47)

3. thrice contracted:

εµνρσε
µνργ = 3! δγσ = 6 δγσ (2.48)

4. totally contracted:

εµνρσε
µνρσ = 4! = 24 . (2.49)

Of course, other conventions concerning the signs are possible.

Operator WµW
µ is of fundamental interest because it is intimately related

to spin. Notice first that, as an invariant, it can be calculated in any reference

frame. Suppose m 6= 0 and take the rest frame, in which the momentum is

the 4-vector
◦
p = (mc, 0). We see easily that

◦
W 0 = 0. The space components

of W are

◦
W i = − i

2
εlk0i s

lk mc = − i
2
mc εilk s

lk ≡ −mc Ŝi . (2.50)

We have reverted to the 3-dimensional Kronecker symbol, because εijk =

ε0ijk. We have also profited to introduce the spin operator Ŝ, a 3-vector:

Ŝi = 1
2
εilk s

lk. We now obtain WµW
µ = WiW

i = −WiWi = −m2c2ŜiŜi =

−m2c2 Ŝ2, whose eigenvalues will be−m2c2 s(s+1). We have said above that

the Poincaré group has rank two: the eigenvalues of two invariant operators

are necessary to label a representation. If we choose P 2 and W 2 for that

role, the representations will be classified by the values of two quantities of

obvious physical meaning. A relativistic field will belong to a representation

and be characterized by its spin and mass, besides other eventual invariants

related to other symmetries. This is not true, of course, if m = 0. The spin

operator is not defined in that case. We shall see later how an alternative

quantity, the helicity, can be used in that case. Notice en passant that we

need the whole Poincaré group in order to classify the elementary particles:

the Lorentz group alone would provide no invariant related to the mass.

§ 2.28 If we want a matrix realization of the generic element of the Lorentz

group, as in (1.78), we must beforehand introduce matrix generators. We
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can take, for the rotations, those of (2.18) transmuted into 4× 4 matrices:

J1 =


0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0

 ; J2 =


0 0 0 0

0 0 0 i

0 0 0 0

0 −i 0 0

 ; J3 =


0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0

 ;

and, for the “boosts”,

K1 = −


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 ;K2 = −


0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

 ;

K3 = −


0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

 .

These six generators can be put together as matrices Jαβ with elements

(Jαβ)µ ν = i (ηαν δ
µ
β − ηβν δµα) . (2.51)

The relationship is given by Jk = 1
2
εkijJij; Jk0 = iKk; J0k = − iKk . The

Lorentz matrices can then be written as exponentials,

Λµ
ν =

(
exp[ i

2
ωαβJαβ]

)µ
ν ,

where ωαβ = - ωβα are the transformation parameters. The matrices Jαβ =

- Jβα satisfy (2.39): they provide, as expected, a representation (the vector

representation) of the Lie algebra of the Lorentz group. The factor “ 1
2

” in

the exponent accounts for double counting.

§ 2.29 Let us rewrite (2.32) for the vector fields:

φ′µ(x′) = Λµ
ν φ

ν(x) =
(
exp[ i

2
ωαβJαβ]

)µ
ν φ

ν(x) .

Notice that the generators Jαβ generate the complete Lorentz transformation,

including the change x→ x′. In effect, it is impossible to effectuate a Lorentz
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transformation on the functional form φν alone, as the argument is itself a

Lorentz vector. The infinitesimal transformations, to first order in a small

parameter δωαβ, follow directly:

φ′µ(x′) = φµ(x) + i
2
δωαβ (Jαβ)µ ν φ

ν(x) = φµ(x) + δωµν φ
ν(x) ,

that is,

δφµ(x) = φ′µ(x′)− φµ(x) = i
2
δωαβ (Jαβ)µ ν φ

ν(x) = δωµν φ
ν(x) . (2.52)

But we have also

φ′µ(x′) = φ′µ(x+ dx) = φ′µ(x) + ∂λφ
µ dxλ .

Equating the two expressions for φ′µ(x′), we obtain the infinitesimal trans-

formation at fixed point x:

δ̄φµ(x) = φ′µ(x)− φµ(x) = δωαβ (Jαβ)µ ν φ
ν − ∂λφµ dxλ

= δφµ(x)− ∂λφµ dxλ . (2.53)

Notice that we have introduced the notation

δ̄φµ(x) = φ′µ(x)− φµ(x) (2.54)

for the fixed-point variation of φ. Let us rewrite the total variation:

δφµ(x) = δ̄φµ(x) + ∂λφ
µ dxλ . (2.55)

Comment 2.15 For the spacetime cartesian coordinates,

x′ε = xε + δωεγx
γ ; xδ = x′δ − δωδγx′γ =

(
δδγ − δωδγ

)
x′γ . (2.56)

This infinitesimal transformation corresponds, consequently, to a coordinate transforma-

tion characterized by
∂xδ

∂x′σ
= δδσ − δωδσ . (2.57)
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Chapter 3

Introducing Fields

§ 3.1 In the Hamiltonian formulation of Classical Mechanics, each state

of a physical system is represented by a point (q, p) on its phase space,

where q = (q1, q2, · · · , qN) indicates collectively its N degrees of freedom

and p = (p1, p2, · · · , pN) the respective conjugate momenta. The time evo-

lution of the system is described by a line on that space, each point (q(t), p(t))

of which represents the set of values of all the degrees of freedom and cor-

responding momenta at a certain instant t. The motion along the line, sup-

posed continuous, is described by Hamilton’s equations. In the Lagrangian

formulation of Classical Mechanics, states are made to correspond to points

(q(t), q̇(t)) in the so called µ-space, whose evolution is regulated by the La-

grange equations. Both the Hamiltonian and the Lagrangian formulations

are refinements of Newton’s approach. The theory is strictly deterministic:

once the initial conditions are given, the state is fixed at every moment.

We are, of course, talking about the simplest mechanical systems, those

with a finite number N of degrees of freedom (such as the harmonic oscil-

lator, the pendulum, the system earth-sun, etc). The approaches are ex-

tended without much ado to systems with an infinite but countable number

of degrees of freedom (as the classical gases, whose description requires an

additional use of statistics to compensate for our ignorance of the detailed

initial conditions).

The treatment can, finally, be also extended to systems with a continuous

infinity of degrees of freedom. Such systems will be our concern here: a
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continuous infinity of degrees of freedom is what we shall call a classical

field. Instead of the above qk, the system is represented by a function φ(x),

with φ replacing q and the continuous variable x replacing the tag k. The

simplest among the systems of this kind is the so-called 1-dimensional solid,

or better, the vibrating line. Each point of the continuous elastic solid takes

part in the dynamics and the whole motion can only be described if all their

positions are specified.

3.1 The Standard Prototype

§ 3.2 Let us describe a crude model for the vibrating line, which provides a

paradigmatic example.∗ An intuitive approach starts with a discrete model

and then examines the changes when a passage to the continuum is made.

The system is conceived as a line of beads or “atoms” with longitudinal vi-

brations around their equilibrium positions, which are disposed at a distance

a from their immediate neighbors. We shall suppose N “atoms” with the

same mass m, so that the line has length L = Na.

φ1︷︸︸︷ φ2︷︸︸︷ φj︷︸︸︷ φj+1︷︸︸︷ φj+3︷︸︸︷
•
0

|——•—
1

|———–
2

|–•——
3

| - - -
j

|—•———
j+1

|——•—|——•—
j+3

| - - -
N−1

|————
N

|•
|← →|
a

The discrete vibrating line

Let φj be the displacement of the j-th atom with respect to its equilibrium

position and suppose (here dynamics comes in) harmonic forces to be acting

between (only) nearest neighbors, all with the same elastic constant K. This

j-th atom will obey Newton’s equation of motion

mφ̈j = K (φj+1 − φj + φj−1 − φj) , (3.1)

with kinetic energy Tj = (mφ̇2
j)/2 and potential energy

Vj = K
4

[
(φj+1 − φj)2 + (φj−1 − φj)2] . (3.2)

∗ E. M. Henley and W. Thirring, Elementary Quantum Field Theory, McGraw-Hill,

New York, 1962.
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The total Lagrangian function for all the atoms will be

L = 1
2

∑N
j=1

[
mφ̇2

j −K (φj+1 − φj)2
]
, (3.3)

leading to the action

S[φ] =

∫ T

0

dtL = 1
2

∫ T
0
dt
∑N

j=1

[
mφ̇2

j −K (φj+1 − φj)2
]
. (3.4)

Each displacement φj is a degree of freedom, with conjugate momentum

πj = δL/δφ̇j = mφ̇j. The Lagrange equations turn out to be just (3.1).

§ 3.3 The central actor in the Hamiltonian formulation is the Hamiltonian

function

H = T + V =
∑
j

[
πj

2

2m
+
mω2

2
(φj+1 − φj)2

]
,

where we have used the oscillator frequency ω = (K/m)1/2. Combining

Hamilton’s equations

φ̇j =
δH

δπj
=
πj
m

π̇j = − δH

δφj
= − δV

δφj
= K (φj+1 − φj + φj−1 − φj)

we arrive at (3.1) again.

§ 3.4 The Hamilton equations are particular cases of the Liouville equation

Ḟ = {F,H},

which governs the evolution of a general dynamical function F (φ, π). The

curly bracket is the Poisson bracket:

{A,B} =
∑
j

[
∂A

∂φj

∂B

∂πj
− ∂A

∂πj

∂B

∂φj

]
.

The only nonvanishing Poisson brackets involving the degrees of freedom and

their momenta are {φi, πj} = δij.

We have thus the three main approaches to the one-dimensional system of

coupled oscillators, whose complete description requires the knowledge of all
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the displacements φi with respect to the equilibrium positions φi = 0. Two

questions remain: (i) the Lagrangian (3.3) is not as yet completely specified,

as the summation requires the knowledge of φ0 and φN+1; (ii) the physical

problem is not well characterized, as the boundary conditions are missing.

Both problems are solved by taking periodic conditions: φi+N = φi. This

corresponds to making the extremities join each other (N = 0). In fact, we

had been cheating a bit when we wrote Eq.(3.3). As the summation runs

from i = 1 to i = N , that expression only acquires a meaning after a periodic

condition φ0 = φN , φN+1 = φ1 is imposed.

§ 3.5 The degrees of freedom are coupled in Eqs. (3.1). To solve the equa-

tions, it is highly convenient to pass into the system of normal coordinates,

in terms of which the degrees of freedom decouple from each other. Such

coordinates φ̃i, and their conjugate momenta π̃i, will be such that

φj = 1√
N

N/2∑
n=−N/2

ei
2πnj
N φ̃n ; πj = 1√

N

N/2∑
n=−N/2

ei
2πnj
N π̃n . (3.5)

These expressions can be inverted by using the Kronecker identity

1
N

N∑
n=1

ei
2πn(j−j′)

N = δjj′ (3.6)

to give

φ̃m = 1√
N

N∑
n=1

e−i
2πnm
N φn ; π̃m = 1√

N

N∑
n=1

e−i
2πnm
N πn . (3.7)

Though we have passed from the real φi, πi to the complex variables φ̃i,

π̃i, the number of independent variables is the same because φ̃−j = φ̃∗j and

π̃−j = π̃∗j . We find easily that the only nonvanishing Poisson brackets can

be summed up as {φ̃i, π̃∗j} = δij. It is not difficult to show, with the help of

(3.6), that
N∑
j=1

πj
2 =

N/2∑
j=−N/2

π̃∗j π̃j ,

and

K
2

N∑
j=1

(φj − φj−1)2 = m
2

N/2∑
j=−N/2

φ̃jφ̃
∗
j

[
4ω2 sin2 πj

N

]
.
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Consequently, in normal coordinates, the Hamiltonian function reads

H = 1
2

∑N/2
n=−N/2

[
π̃∗n π̃n
m

+m
(
2ω sin πn

N

)2
φ̃∗n φ̃n

]
. (3.8)

We see that the new oscillators, with frequencies

wk = 2ω sin πk
N

(3.9)

instead of ω, decouple entirely from each other. They are, of course, the

normal modes of the system. The equations of motion become simply

¨̃φj + ωj
2 φ̃j = 0 (3.10)

with solutions

φ̃n(t) = φ̃n(0) cosωnt+
1

ωn

˙̃φn(0) sinωnt . (3.11)

§ 3.6 The normal modes of vibration of the system are thus the Fourier

components of the degrees of freedom. They are “collective” degrees of free-

dom, in the sense that each mode contains information on all the original

degrees of freedom. On the space of degrees of freedom, they are “global”.

The oscillation frequency (3.9) is such that

−2ω ≤ ωk ≤ 0 for k in the interval −N/2 ≤ k ≤ 0 ;

2ω ≥ ωk ≥ 0 for k in the interval N/2 ≥ k ≥ 0 .

In consequence, the decomposition (3.5) can be separated into positive- and

negative- frequency parts:

φj = 1√
N

 −1/2∑
k=−N/2

+

N/2∑
k=1/2

 ei 2πkj
N φ̃k

= 1√
N

N/2∑
k=1/2

[
ei

2πkj
N φ̃k + e−i

2πkj
N φ̃−k

]
. (3.12)

For each one of these oscillators, we can introduce new variables ak and a∗k
as

ak =
1√

2mωk

[
mωkφ̃k + iπ̃k

]
(3.13)
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a∗k =
1√

2mωk

[
mωkφ̃

∗
k − iπ̃∗k

]
. (3.14)

As a∗k 6= a−k, the total number of variables remains the same. The only

nonvanishing Poisson brackets are now {ai, a∗j} = − i δij. The equations of

motion become ȧk = − i ωk ak, with solutions

ak(t) = e−iωktak(0). (3.15)

Both ak and a∗−k will have frequencies with the same sign. It is convenient

to redefine ωk as the positive object ωk = 2ω| sin(πk/N)| and take the mass

m = 1. Once this is made,

φ̃k =
1√
2ωk

[
ak + a∗−k

]
.

Thus, φ̃k has only contributions of frequencies with the same sign. If we

establish by convention that these frequencies are to be called positive, it is

easy to see that φ̃−k = φ̃∗k will only have contributions of negative frequencies.

Let us substitute φ̃k in (3.5):

φj(t) = 1√
N

N/2∑
k=−N/2

1√
2ωk

[
ei2πkj/N ak + e−i2πkj/N a∗k

]
. (3.16)

§ 3.7 We now intend to change into the continuum case. There is a well-

known recipe to do it, inspired in the trick to go from finite to continuum

Fourier transforms. We know where we want to arrive at, and we find a

procedure to accomplish it. But it should be clear that it is only that — a

practical recipe.

The prescription goes as follows. First, we take the limits a → 0 and

N → ∞ simultaneously, but in such a way that the length value L = Na

remains finite. On the same token, each intermediate label value k tends to

infinity in a way such that the product ka retains a finite value (the “distance

to the origin”). We call x this value, x = ka. Combining dimensional reasons

and the necessity to keep finite the kinetic energy, the summation
∑N

n=1 and

the degree of freedom φ must behave like

N∑
n=1

→ 1

a

∫ L

0

dx ; φj →
√
a φ(x) . (3.17)
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We have then that

1

a
(φj+1 − φj) =

√
a
φ(x+ a)− φ(x)

a
→
√
a
∂φ

∂x
.

The equation of motion (3.1) will now be

φ̈ = ω2a2 1

a

[(
∂φ

∂x

)
x

−
(
∂φ

∂x

)
x−a

]
and, in the limit, turns up as the wave equation

∂2φ

∂t2
= c2 ∂

2φ

∂x2
, (3.18)

with the parameter c = ωa as the velocity of wave propagation. The

finiteness of c requires that the frequency ω become infinite. The Lagrangian

density becomes

L[φ] =
1

2

∫ L

0

dx m

[
φ̇2 − c2

(
∂φ

∂x

)2
]
, (3.19)

corresponding to the action

S[φ] =

∫ T

0

dtL[φ] =
1

2

∫
0

dtdx m

[
φ̇2 − c2

(
∂φ

∂x

)2
]
. (3.20)

To obtain a continuum–infinite version of equations (3.5), it is enough to

take

k =
2πl

L
;

2π

L

N/2∑
l=−N/2

→
∫
dk ;

L

2π
φ̃k → φ̃k , (3.21)

arriving at

φ(x) =
1√
L

∫
dk eikx φ̃k ; π(x) =

1√
L

∫
dk eikx π̃k . (3.22)

There are two different kinds of summation limits, and differences in the

absorption of factors between φ and φ̃, as seen in (3.17) and (3.21). The

degrees, and their Fourier components, acquire dimensions in the process.†

† The function exp[ikx] is typically a wave which repeats itself when x = 2πn/k, with

n = ±1, 2, 3, . . . . As the number of times the wave repeats itself in a cycle of length 2π, k

is called the wave-number. As an exponent can have no dimension, k must have dimension

inverse to x.
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The continuum limit of (3.16), with ωk → k ω a → kc
.
= ωk (the last

dot–equality indicating a redefinition of the symbol ωk), is

φ(x, t) =

∫
dk√
2Lωk

[
ei(kx−ωkt) ak(0) + e−i(kx−ωkt) a∗k(0)

]
. (3.23)

§ 3.8 This example may seem a parenthesis a bit too long. We are here

using the vibrating line only as a suggestive illustration,‡ which anticipates

many points of interest. It gives due emphasis to the meaning of the position

coordinate x, transmutation of the old label i: it should not be mistaken by

a generalized coordinate. It is a parameter, appearing in the argument of

the field φ(x, t) on equal footing with the time parameter. This is manifest

in the fact that the equation of motion (3.18) does not come from (3.19) as

the usual Lagrange equation,

δL
δφ

=
∂L
∂φ
− d

dt

∂L
∂φ̇

= 0 , (3.24)

but through its covariant form,

δL
δφi

=
∂L
∂φi
− ∂µ

∂L
∂∂µφi

=
∂L
∂φi
− ∂

∂t

∂L
∂φ̇i

+
∂

∂~x
· ∂L
~∂φi

. (3.25)

Comment 3.1 The expression in (3.24) is the Lagrange derivative of Classical Mechanics

when the degree of freedom and its first time derivative are enough to fix the problem.

When higher-order derivatives are necessary, the derivative is

δ

δqk
=

∂

∂qk
− d

dt

∂

∂q̇k
+
d2

dt2
∂

∂q̈k
− . . . , (3.26)

with alternating successive signs. This derivative takes into account the effect of a co-

ordinate transformation on the time derivatives. It is the first example of a covariant

derivative: δ
δqk

F (q, q̇, q̈) transforms just as F (q, q̇, q̈) under coordinate transformations.

We could say further that the equation of motion endures a “covariantiza-

tion”, a process by which the time variable t and the “space” variable x

acquire a similar status. As in Special Relativity, they become coordinates

‡ It has, of course, an interest by itself. Deeper developments to can be found in A.

Askar, Lattice Dynamical Foundations of Continuum Theories, World Scientific, Singa-

pore, 1985.
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on one same space, “spacetime”. One aspect of this effect is the change

undergone by the action, from (3.4) to (3.20). In the latter, space and time

parameters are equally integrated over. And the Lagrange derivative changes

accordingly. There is actually more: the above wave equation is not invari-

ant under transformations analogous to those of non- relativistic Physics, the

Galilei transforms x′ = x−vt and t′ = t. It is invariant under transformations

analogous to those of relativistic Physics, alike to Lorentz transformations:

x′ = γ(x− vt) and t′ = γ(t− vx/c2) with γ = (1− v2/c2)−1/2.

Let us insist: we have defined a classical field as a continuous infinity

(labeled by x) of degrees of freedom, each one described by a function. The

generalized coordinates are the very fields φ(x), one for each value of x.

Thus, the parameter x spans the space of degrees of freedom. The equation

of motion is of the kind to be found later, governing relativistic fields. It is

usual to call it “field equation” in the continuum case.

One further remark: the decomposition into Fourier components is ex-

tensively used in canonical field quantization. In that case, it is the normal

modes which are quantized as oscillators, leading to the quantization rules

for the fields themselves. There is actually a further, usually overlooked,

proviso: in order to qualify as a field, the infinite variables describing the

system must be really at work. It may happen that many, or most of them,

are quiescent. In the above use of Fourier analysis, this would show up if

most of the modes were not actually active (φ̃n = 0 for many values of n).

We might, in that case, talk of a quiescent field. An example is the field of

fluid velocities in a laminar flow, for which most of the Fourier components

are not active. They become active at the onset of turbulence.§

3.2 Non-Material Fields

§ 3.9 The vibrating line involves a material field, a field of displacements

describing the mechanics of a would-be 1-dimensional elastic medium. Mate-

rial fields abound, for example, in Fluid Mechanics of inhomogeneous media:

the density, the concentration of each type of constituent, the velocity, the

§ Arnold Sommerfeld, Mechanics of Deformable Bodies, Academic Press, New York,

1967 (mainly section 38).
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local pressure and temperature in the inhomogeneous case, and so on. The

concept of field extends to non-mechanical systems (examples: the electric

field, the gravitational field, . . . ) exhibiting a continuous infinity of degrees

of freedom. In that case, the notion of field is actually inevitable for the

description of interactions, as the alternative — the description of interac-

tions by action at a distance — has never been given a simple, satisfactory

formulation. Though implicit in the work of Galilei and Newton, the notion

has been explicitly and systematically used by Faraday and has led to the

complete description of the classical electromagnetic phenomena synthesized

in Maxwell’s equations.

In Wave Mechanics, the state of a system is characterized by a wave-

function ψ(~x, t) (or better, by the ray to which ψ(~x, t) belongs in Hilbert

space), and its time evolution is ruled by the prototype of nonrelativistic

wave equation, the Schrödinger equation. The wavefunction must be known

at each point of spacetime, so that the system requires a continuous infinity

of values to be described. Function ψ(~x, t) has, consequently, the role of a

field. It is usual to obtain it from Classical Mechanics by using the so-called

quantization rules, by which classical quantities become operators acting on

the wavefunction. Depending on the “representation”, some quantities be-

come differential operators and other are given by a simple product. Thus,

the above ψ(~x, t) corresponds to the configuration–space representation, in

which the Hamiltonian and the 3-momenta are given by

H → i ~
∂

∂t
; (3.27)

~p→ ~
i

→
∇ , (3.28)

and ~x is the operator acting on ψ(~x, t) according to ψ(~x, t)→ ~x ψ(~x, t).¶ In

the case of a free particle, in which H = p2/2m, these rules lead to the free

Schrödinger equation

i~
∂

∂t
ψ(~x, t) = − ~2

2m

→
∇

2

ψ(~x, t) . (3.29)

¶These rules have been of great help in guessing most of the basic facts of Quantum

Mechanics. But it should be clear that they are only guides, not immune to ambiguities.

For example, they must be changed in the presence of spin.
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We shall from now on avoid the use of arrows, indicating 3–vectors by bold–

faced characters. For example, the 3–momentum will be written p = − i ~∇.

3.2.1 Optional reading: the Quantum Line

§ 3.10 Another version‖ of the rules is summarized in the prescription re-

lating Poisson brackets to commutators: i~ { , } → [ , ]. Thus, the oscillators

of section 3.1 can be quantized by taking the variables ai, a
∗
j into operators

ai, a
†
j annihilating and creating quanta, and going from {ai, a∗j} = −i δij into

[ai, a
†
j] = δij. Let us recall a few elementary facts on the quantum harmonic

oscillator. It is ruled by the Hamiltonian operator

Ĥ = 1
2

(
mω2q̂2 +

1

m
p̂2

)
.

We change into simpler dimensionless variables Q̂ =
√

mω
~ q̂ and P̂ = 1√

mω~ p̂,

such that [Q̂, P̂ ] = i. In the configuration space representation, Ĥ takes the

form

Ĥ = 1
2
~ω
(
Q2 − d2

dQ2

)
and has eigenfunctions ψn(Q) with eigenvalues En = (n+ 1

2
)~ω. One passes

into the occupation-number representation by defining annihilation and cre-

ation operators, respectively

â = 1√
2

(
Q̂+ iP̂

)
= 1√

2

(
Q+

d

dQ

)
and

â† = 1√
2

(
Q̂− iP̂

)
= 1√

2

(
Q− d

dQ

)
,

as well as the occupation-number operator N̂ = â†â. We find immediately

that [â, â†] = 1 and Ĥ = ~ω(N̂ +1
2
).

One next introduces a Fock space, generated by the set {|n >} of eigen-

kets |n > of N̂ . These kets are normalized in such a way that â|n > =

‖ This paragraph is, as the title above announces, optional. It supposes some knowledge

of Quantum Mechanics and introduces some notions of the so-called “second quantization”

formalism, which lies outside the scope of the present text.
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√
n |n − 1 >; â†|n > =

√
n+ 1 |n + 1 >; N̂ |n > = n |n >. The number n

is interpreted as the number of quanta. The state with zero quanta |0 >,

such that â|0 > = 0 or N̂ |0 > = 0, is that with the minimum energy and

is called the “vacuum”. Its energy, by the way, is not zero — it is Ĥ|0 > =

(1/2)~ω|0 >. Each state |n > can be obtained from the vacuum by creating

n quanta: |n > = (1/
√
n!) (â†)n|0 >. Thus, this occupation-number repre-

sentation describes the oscillator in terms of excitation quanta. When there

is only one oscillator, all the quanta are identical — they are characterized

by the energy, which is the same for all. From these states one can pass to

other representations: usual wavefunctions in configuration space are ψn(x)

= < x |n >, wavefunctions in momentum space are ψn(p) = < p |n >, etc.

Comment 3.2 Turning again to the problem of coordinates on phase space: in Quantum

Mechanics, {qk} and {pk} become operators, represented by matrices. To specify a matrix

one needs all its entries, which are, in the case, infinite.

All this can be generalized to a system with an arbitrary number of indepen-

dent oscillators. It is enough to add a label to distinguish them. The kets, in

that case, will be multiple. Annihilation and creation operators are defined

for each oscillator, and a general state will be

|n1, n2, n3, · · · >=
1√

n1!n2!n3! . . .
(â†1)n1 (â†2)n2 (â†3)n3 . . . |0, 0, 0, · · · > .

The total number of quanta in a given state will be the eigenvalue of the

operator N̂ =
∑

i â
†
i âi.

The vibrating line has a continuous infinity of oscillators, each one char-

acterized by the momentum k. The Fock space will consist of a continuous

infinity of kets, collectively indicated, for example, by |{nk} >. The field

φ(x, t) in (3.23) becomes consequently also an operator, which is the quan-

tized field of the material line:

φ(x, t) =

∫
dk√
2Lωk

[
ei(kx−ωkt) ak(0) + e−i(kx−ωkt) a†k(0)

]
=

∫
dk√
2Lωk

[
eikx ak(t) + e−ikx a†k(t)

]
. (3.30)

In the last step use has been made of (3.15). Applied to the vacuum |{nk =

0} >, this field spans the one-quantum states:

φ(x, t)|0 >=

∫
dk√
2Lωk

exp [−i(kx− ωkt)] |0, 0, . . . , 1k, · · · > ,
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where the ket in the integrand indicates the state with one quantum of mo-

mentum k. Well, the vibrating line stands for a system of material mechanic

oscillators, necessarily quantal. This “quantum line” is the simplest example

of a quantum field.

A simple direct computation gives the complete, collective quantization

rules, including all the degrees of freedom:

[φ(x, t), φ(x′, t)] = 0 ;

[π(x, t), π(x′, t)] = 0 ;

[φ(x, t), π(x′, t)] = i ~ δ(x− x′) . (3.31)

3.3 Wavefields

§ 3.11 Wavefunctions are precisely the kind of fields we shall be most con-

cerned with. The word “classical” acquires here a more precise meaning:

the field ψ(x, t) will be classical as long as it is an usual function, whose

values are classical (real or complex) numbers (for short, “c–numbers”). In

that case, it will belong to spaces on which hold the same algebraic proper-

ties of the complex numbers. Field ψ(x) = ψ(x, t) will no more be classical

when it belongs to function spaces with more involved algebras (for example,

when not all fields commute with each other) and can no more be treated

as an ordinary function. It is the case of quantized fields, which are cer-

tain functionals or distributions, inhabiting spaces with non-trivial (though

well-defined) internal algebras. Thus, as it stands, “classical” here means

merely “non-quantum”. The standard procedure begins with classical fields

and proceeds to quantize them by changing their algebras. And the general

structure, be it Lagrangian or Hamiltonian, is transferred to the quantum

stage, so that the preliminary study of classical fields is inescapable. It would

be highly desirable to have a means of getting at the quantum description of

a system without the previous knowledge of its classical description, not the

least reason being the possible existence of purely quantum systems with no

classical counterpart. Or with many of them, as there is no reason to believe

that the classical limit of Quantum Mechanics be unique. This would avoid

the intermediate procedure of “quantization”. For the time being, no such
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course to a direct quantum description is in sight.

The fields appearing in relativistic field theory are not, in general, of

the material type seen above. For that reason we shall not have the same

phenomenological, immediate intuition which has conducted us to conceive,

in the example of the vibrating line, the harmonic oscillator as a first rea-

sonable trial. In other words, the access to dynamics is far more difficult.

Phenomenology gives information of a general nature on the system, basically

its symmetries. Symmetries, though important also for non-relativistic sys-

tems, become the one basic tool when the energies involved are high enough

to impose the use of a relativistic approach.

A very important fact is that every symmetry of the Lagrangian is also

a symmetry of the equations of motion. The procedure for high energies is

rather inverse to that used for a mechanical system. For the latter, in general,

the equations of motion are obtained phenomenologically and the Lagrangian

leading to them (if existent) is found afterwards. In relativistic Field Theory,

most commonly we start from a Lagrangian which is invariant under the

symmetries suggested by the phenomenological results, because then the field

equations will have the same symmetries. In particular, the Lagrangian

involving relativistic fields will be invariant under the transformations of

the Poincaré group. This is imposed by Special Relativity: the behavior of

the system does not depend on the inertial frame used to observe it. That is

where the adjective “relativistic” comes from. Furthermore, depending on the

system, other symmetries can be present, some of them “external” (parity,

conformal symmetry, . . . ), other “internal” (isospin, flavor, color, . . . ). The

Lagrangian approach is specially convenient to account for symmetries, and

is more largely used for that reason. It will be dominating in this text.

3.4 Internal Transformations

§ 3.12 Let us repeat ourselves. Besides those related to transformations

taking place on spacetime, Nature exhibits other kinds of symmetries. As

spacetime is taken to be our external space, such symmetries are said to be

internal. They are taken into account by supposing the existence of other

spaces to which fields belong and on which transformations are represented
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in a way as analogous as possible to those on spacetime.

The general arguments on symmetries and invariance of the Lagrangian

extend to these symmetries. If the theory is invariant under such internal

transformations (say, symmetries related to the conservation of isospin, fla-

vor, color, etc), the Lagrangian will be invariant and the fields will necessarily

belong to representations of the corresponding groups. Fields invariant un-

der any transformation of G, so that φ′(x) = φ(x), are supposed to stay in a

singlet (0-dimensional) representation.

Consider then those transformations changing only the functional form

of the fields. We shall consider only a very particular kind amongst all the

possibilities of such changes: the fields will be supposed to have components

in some “interior” space, and changes will be only combinations of these com-

ponents. This means that such “interior” transformations will be supposed

to be represented by linear representations of the symmetry groups. The

fields will present indices related to such internal representations. A scalar

field (meaning: a Lorentz scalar field) φ will, for example, appear as φa, the

a indicating a direction in an internal carrier vector space. A gauge potential

is a Lorentz 4-vector belonging also to a representation of the gauge group

and will appear in the form Aaµ. There is here, of course, a physicists’ bias.

Physicists are used to calling “fields” the components of certain mathematical

objects, and we shall not fight this long–established attitude. The main ideas

are best introduced through an example. The simplest non-trivial example

of internal symmetry is provided by isospin.

Isospin has been introduced by Heisenberg in the nineteen-fifties to ac-

count for what was then called the “charge independence” of the strong

interactions. The proton and the neutron had been observed to have identi-

cal strong interactions, and almost the same mass. The mass difference was

supposed to be of electromagnetic origin. As long as we could consider strong

interactions alone, and forget about electromagnetic interactions, they were

one and the same particle. Or better: they were seen as components of a

double wavefunction, a doublet like (2.25), called the “nucleon”:

N =

(
p

n

)
.
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A pure proton would be the analogous to the spin up state; the neutron,

the spin down. As all that had nothing to do with spin, the name (isobaric

spin, later) isospin was coined. The Lagrangian describing strong interac-

tions would be invariant under “internal” rotations, formally identical with

the above described, but in another, “internal” space. All this talk about “in-

ternal” things (space, components, wavefunctions) is only to help intuition.

It refers only to behavior under changes in the functional form of the fields,

changes independent of their arguments (that is, of spacetime). Coming back

to isospin: we have said that the proton-neutron system, or the nucleon, was

attributed isospin 1/2. The pions appear with 3 possible charges, but their

strong interactions ignore that difference. Thus, they also exhibit charge

independence and, by an analogy with the rotation group, were accommo-

dated in an isospin = 1 representation. In this way an internal symmetry

was revealed: particles were cased in carrier vector spaces, the symmetry

says that transformations in those spaces were irrelevant to Physics. In the

isospin case the group was supposed to be just SU(2), and two representa-

tions were immediately known. A field without isospin would be cased in the

scalar representation. This was the starting point of a very powerful method.

Once particles (quanta of fields) were found experimentally, people tried to

accommodate them into representations (“multiplets”) of some group. One

same multiplet for particles of close masses, different components for differ-

ent charges. The strong interactions would not “see” the components, only

each multiplet as a whole. It would in this way be “independent of charge”.

The isospin rotations are formally the same as given above, though without

any spacetime realization. The indices refer to internal space. For Pauli

matrices, another notation became usual: τ1, τ2 and τ3 instead of σ1, σ2 and

σ3. A rotation like (2.24) in an isospin = 1/2 spinor representation, as that

of the nucleon, will consequently be written

N ′(x) = e
i
2
ωkτk N(x) . (3.32)

§ 3.13 Now: it may happen that the internal transformation parameters be

different at different points of spacetime. When the transformation param-

eters ωa are independent of spacetime points, the above transformation is

called a global gauge transformation (old name: gauge transformations of the
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first kind). When ωa depend on the point, the transformation is a local gauge

transformation (old name: gauge transformations of the second kind). The

formalism would remain much the same, except for the derivatives. It is clear

that a derivative ∂µ, when applied to

N ′(x) = e
i
2
ωk(x)τk N(x)

will have an extra contribution:

∂µ N
′(x) = e

i
2
ωk(x)τk ∂µN(x) + [ i

2
∂µω

k(x)τk] e
i
2
ωk(x)τk N(x) .

Thus, usual derivatives will not be covariant. To find invariant Lagrangians

it will be necessary to define a modified, covariant derivative including an

extra field,

Dµ = ∂µ + i
2
Akµ(x) τk , (3.33)

such that

[∂µ + i
2
Ak′µ(x)τk] N

′(x) = e
i
2
ωk(x)τk [∂µ + i

2
Ajµ(x)τj] N(x) . (3.34)

Akµ(x) is a gauge potential, with a peculiar behavior under transformations.

This behavior will be just peculiar enough to compensate the misbehavior of

the derivative:

Ak′µ(x)
τk
2

= e
i
2
ωk(x)τk

[
Akµ(x)− ∂µωk(x)

] τk
2
e−

i
2
ωk(x)τk .

With U(x) = e
i
2
ωk(x)τk , this is the same as

i
2
Ak′µ(x)τk = U(x)

[
∂µ + i

2
Akµ(x)τk

]
U−1(x) . (3.35)

Exercise 3.1 Try to show that, if Akµ(x) transforms according to (3.35), then the deriva-

tive defined in (3.33) is indeed a covariant derivative, that is, Eq.(3.34) holds. This is why

the derivative is called “covariant” derivative: applied to a field, it transforms just in the

same way as the field itself. �

The physical consequences are overwhelming. The presence of a point-

dependent symmetry imposes the presence of new fields. These fields have
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been found to mediate most of the fundamental interactions of Nature. When

related to external symmetries, they turn up as the Christoffel symbols in

gravitation theory. For internal symmetries, they appear in two distinct fam-

ilies. As the gluon fields (with gauge group SU(3)), they are the mediating

fields of chromodynamics, supposed to describe the strong interactions be-

tween the quarks. In the electroweak theory describing electrodynamics and

weak interactions, they turn up, after a certain symmetry–breaking process,

as the fields describing the photon, the Z0 and the pair W±. Mathematically,

they are related to connections.
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Chapter 4

General Formalism

Before we start with a general description of the Lagrangian formalism, it
would be wise to assess what we can and what we cannot expect from it. For
example, we shall be supposing a complete equivalence between Lagrange and
Hamilton approaches and shall use variational principles without too much
restraint. As it would not be practical to stop at every step to inquire on
its validity, let us rather list once for all its main qualities and shortcomings.
We shall use the language of Classical Mechanics, because it is simpler and
more intuitive.

§ 4.1 Positive points of the Lagrangian formalism:

1. with respect to Newtonian mechanics, that of Lagrange is simpler: in-

stead of vectors (forces), it works with scalars, the kinetic energy T and

the potential V ; forces, even those related to constraints, are no more

fundamental;

2. the procedure is standardized: we write T and V in terms of generalized

coordinates {qj}, we form the Lagrangian L = T−V and the equations

of motion are those of Lagrange:

d

dt

(
∂L
∂q̇j

)
− ∂L
∂qj

= 0 ;

3. these equations hold in any system of generalized coordinates, while

Newton’s have different forms in each coordinate system, leading to

the famous “fictitious” forces in the non–cartesian case; notice that,
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for systems with two or more degrees of freedom, it is the whole set of

equations which is invariant under a change of system of generalized

coordinates, and not each one;

4. it provides an extremely elegant approach to symmetries and to the

dynamical invariants of a theory;

5. from the point of view of manipulations, we frequently gain from the

fact that L is defined up to a temporal total derivative of a function of

coordinates and time: L and

L′ = L+
df(q, t)

dt

lead to the same equations; two physical systems are equivalent when

there is a coordinate transformation making their Lagrangian differ

only by such a total derivative; in the relativistic case, systems de-

scribed by Lagrangians differing by 4-divergences are equivalent;

6. the formalism is easy to extend; to the continuous case as illustrated

in chapter (3); to the relativistic case as we shall see in the following;

it applies to an unbelievable variety of systems: elastic fields, electro-

magnetism, elementary particles, electric circuits, solids, liquids, etc;

as announced, we are using the language of Classical Mechanics, but

these qualitative comments hold in general;

7. the structural analogy resultant from this unicity in the variety is ex-

tremely useful: once a particular procedure is found to be fruitful in

a particular Lagrangian theory, its application to other cases suggests

itself immediately;

8. the approach is globalized directly: the action functional contains in-

formation on the system as a whole, including boundary conditions; it

lends itself directly to quantization via the integral functional methods.
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§ 4.2 Negative points of the Lagrangian formalism:

1. going from the Newtonian to the Lagrangian formulation is only pos-

sible if

the system is holonomic (that is, if all its constraints are integrable),

or almost; ∗

the forces are derived from a potential (also a bit generalizable);

the constraints do not produce any work;

2. not every equation of motion can be obtained as the Euler–Lagrange

equation of some Lagrangian function (famous counter–example: the

Navier–Stokes equation) — in order to be, it must satisfy the conditions

of a theorem due to Vainberg;

3. when the Lagrangian function does exist, it is not necessarily unique:

the equation for a free particle, q̈ = 0, comes from the Lagrangian

L′ = q̇ ln q̇, besides the usual L = q̇2/2; actually, it comes from any

Lagrangian of the form L = f(q̇), provided f ′′ 6= 0;

4. the Lagrangian function has, as a rule, a lower degree of symmetry

than the equations of motion; for example, q̈ = 0 is invariant under the

scaling transformation q → kq, where k is a constant, but the unusual

Lagrangian L′ above is not;

5. qualifying item (8) above, the Lagrangian formulation does not lead

to a unique quantization procedure; actually, even the equations of

motion, which the present discussion may seem to suggest to be more

fundamental, fail to determine a unique quantization procedure.

§ 4.3 From the Hamiltonian point of view, two physical systems are equiv-

alent when there is a canonical transformation taking coordinates and mo-

menta of one system into the coordinates and momenta of the other. The

∗ Some anholonomic cases are amenable to a Lagrangian treatment, but they are

exceptional. Because the usual quantization procedure uses, directly or indirectly, the

Lagrangian formulation, there are many constrained systems which we do not know how

to quantize.
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superiority of the Hamiltonian formulation rests precisely in its invariance

under canonical transformations, more general than the generalized coordi-

nate transformations. The Lagrangian and Hamiltonian formulations are not

always equivalent — for them to be, in Classical Mechanics, it is necessary

that the condition

det

[
∂2L
∂q̇i∂q̇j

]
6= 0

hold,† which forebodes difficulties in the zero–mass cases.

§ 4.4 Classical Mechanics is a very difficult science, with many questions as

yet without answer. For instance, is there one formulation which is more

fundamental? When they are not equivalent, which is the correct one? Clas-

sical Mechanics has even become a kind of chasse gardée for mathematical

sophistication. Even seemingly simple systems, as that of two independent

oscillators with incommensurate frequencies, can suggest matter for further

research. Well, we cannot expect to solve every problem. The method of

science — trial and error — leads anyhow to surprisingly many good an-

swers. For example, we have a beautiful quantum description of the Helium

atom, despite the problematic stability of the corresponding 3–body classi-

cal system. These words, to justify the rather unworried presentation which

follows.

§ 4.5 The Hamiltonian formalism has another peculiarity, not mentioned

in the previous discussion: it can be generalized to the case of fields while

keeping a complete analogy with Classical Mechanics. This is frequently an

advantage, but can become a hindrance in relativistic theories, because of

the distinct role played by time with respect to space coordinates. The La-

grangian formalism, on the other hand, allows a explicitly covariant approach

to the field equations: the four variables representing points of spacetime have

an equal status. This simplifies life considerably and is the main reason for

its wide use in relativistic field theories.

† This is Donkin’s theorem.
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4.1 Lagrangian Approach

4.1.1 Relativistic Lagrangians

§ 4.6 Let us start thinking about the form a Lagrangian function should

have. In a relativistic theory it should, to begin with, be invariant under the

transformations of the Poincaré group. Invariance of a Lagrangian under a

transformation ensures the covariance of the Euler–Lagrange equations under

the transformation. This is the reason for which Lagrangians, in relativistic

Field Theory, are supposed to be Poincaré invariant. The fields are the

degrees of freedom, supposed to provide with their gradients (first–order

derivatives with respect to space and time coordinates, corresponding to the

“velocities”) — a complete characterization of the system. A second–order

derivative would lead to a third–order equation, and in that case the fields

and velocities would be insufficient to describe the system. We take for

Lagrangians, therefore, invariant functions of the fields and their gradients.‡

Furthermore, our Lagrangians will have no explicit dependence on space or

time coordinates, which are only parameters. These comments summarize

the underlying spirit of Field Theory: the state of the system is characterized

by the fields and their first derivatives. And, though we are heating up

to a long discussion of special–relativistic fields, these considerations would

hold for a non–relativistic (or Galilei–relativistic) theory, with the Galilei

group taking the place of the Poincaré group. Another condition which we

shall impose is that the Lagrangian be real. The reason is that no classical

system has ever been found to suggest any kind of complex energy. In the

quantum case, the Lagrangian should be self–adjoint, or simply hermitian.

A non–hermitian Lagrangian would break probability conservation, thereby

violating the scattering matrix unitarity. But it can be used in some cases

(under the form of “optical potentials”) to describe non–isolated systems.

Next, we take a Lagrangian density as simple as possible. This is a rather

loose condition. Of course, given an invariant L, also L17, arctan(L) or

any function of L, are invariant. We take the simplest possible invariant

‡ Function of fields mean function of the forms of the fields, of the way they depend

on their arguments. Thus, what we have are actually functionals.
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functional of the fields and their derivatives leading to results confirmed by

experiment. The theories of polynomial type, with the Lagrangian density

a polynomial in the fields and their derivatives, are always the first trial.

Models with non–polynomial terms are, however, increasingly studied. And

a last condition, this one also dictated by simplicity. The Lagrangian will be

supposed to depend, at each point of spacetime, only on the values of the fields

and their derivatives in an infinitesimal neighborhood of that point. In this

case, the Lagrangian — and the theory — is said to be “local”. Non–local

theories are in principle conceivable, but they are extremely complex and of

a rather uncontrollable diversity. We shall ignore them.

§ 4.7 Thus, given a set of fields {φi(x)}, the Lagrangian density will have

the form

L(x) = L[φ(x), ∂µφ(x)], (4.1)

where we use the notations φ(x) = {φ1(x), φ2(x), φ3(x), . . . } and ∂µφ(x) =

{∂µφ1(x), ∂µφ2(x), ∂µφ3(x), . . . }. Actually, as it is defined up to a gradient,

the density has no need to be a complete invariant. Under a Poincaré trans-

formation, it can acquire a gradient. In what follows, only its integral will be

taken as invariant. From the density L(x), one could obtain directly the field

equations, simply by generalizing the procedure of Classical Mechanics so as

to abrogate the special status of the time parameter t = x0/c with respect to

the space coordinates. We shall, however, follow a more instructive method,

arriving at the field equations through the mediation of a variational prin-

ciple, Hamilton’s principle. Here an adaptation of that of particle classical

mechanics to the continuum case, it states that the action, defined by

A[φ] =

∫
d4xL(x) , (4.2)

is minimal for all states actually occurring, that is, for all solutions of the

equations of motion.

Notice that the action contains more on the system than the Lagrangian

density or the equations. The integration in (4.2) covers the whole spacetime

region occupied by the physical system to be described by the fields. Thus,

the action includes information on this region. In this sense, it is a “global”
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characteristic of the system. In the case of particle mechanics, what is defined

is the action of a trajectory γ,

A[γ] =

∫
γ

dtL(x, t) , (4.3)

the integral being performed along γ. The action is thus a function (better:

a functional) of the trajectory. It is global, it depends on the whole of γ.

In the relativistic case, it becomes a functional of the “field configuration”

φ and depends on the domain of spacetime occupied by the system, whose

boundaries are 3-dimensional surfaces assuming the role of γ’s end-points.

In terms of fields, this region is delimited by the boundary conditions, which

are consequently incorporated in the action. In principle, the action contains

all the conceivable information on the system.

4.1.2 Simplified Treatment

§ 4.8 Hamilton’s principle states that, for an arbitrary variation of the de-

grees of freedom all over the system, the action stands fixed. The physical

states (the solutions of the equations of motion) are characterized by minima

of the action as a functional of the fields:

δA[φ] = 0 . (4.4)

Let us be more clear: the action (4.2) does not depend on x, as it is an

integral over x. A[φ] depends actually on the functional form of φ. It is

as a functional, on the space of which the φk’s are coordinates, that A is

minimal. It is in the φ-space that A is to be differentiated, and the states

actually realized correspond to the values which minimize A.

Let us start with the standard treatment leading to the Euler-Lagrange

equations. The differential of A will be

δA = δ

∫
d4xL(φ, ∂µφ) =

∫
d4x

[
∂L
∂φi

δφi +
∂L

∂ (∂µφi)
δ (∂µφi)

]
.

Notice that spacetime is unaffected by differentiation in functional space:

the integration region is kept fixed. This is the covariant analogous to the

classical mechanical procedure of taking variations of the trajectories at a
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fixed value of the time parameter “t”.§ The measure d4x is also kept fixed.

We shall see later that its variation, though important in other aspects, does

not contribute to the Euler-Lagrange equations [see below, Eq.(4.29) and the

discussion leading to (4.33)]. We shall also use, for that reason,

δ(∂µφi) = ∂µ(δφi) (4.5)

(we shall also elaborate on this point later – see comment below equation

(4.24)). The last term in the right–hand side is∫
d4x

∂L
∂ (∂µφi)

δ (∂µφi) =

∫
d4x

{
∂µ

[
∂L

∂ (∂µφi)
δφi

]
− δφi ∂µ

[
∂L

∂ (∂µφi)

]}
.

With the help of the 4-dimensional Gauss theorem, we have∫
d4x

{
∂µ

[
∂L

∂ (∂µφi)
δφi

]}
=

∫
dσα

∂L
∂ (∂αφi)

δφi .

This term reduces consequently to an integration over a 3-dimensional hy-

persurface, the boundary of the integration region — or the boundary of the

system. The variation δφi is arbitrary over all the interior of the system,

but on the boundary we take δφi = 0 (this is the covariant analogous to the

classical mechanical procedure of taking null variations at the trajectories

end–points). Then,

δA =

∫
d4x

[
∂L
∂φi
− ∂µ

∂L
∂ (∂µφi)

]
δφi . (4.6)

As the δφi are arbitrary, δA = 0 implies the Euler–Lagrange equations

∂L
∂φi
− ∂µ

∂L
∂ (∂µφi)

= 0 . (4.7)

§ 4.9 It is worth noticing that, as (4.6) holds always under the supposed

conditions, the Euler–Lagrange equations imply an extremal of the func-

tional (4.2). In functional analysis, expression (4.6) provides the definition

of the functional derivative of A[φ] with respect to φi: it is the term between

brackets in the integrand. We write

δA[φ]

δφi
=
∂L
∂φi
− ∂µ

∂L
∂ (∂µφi)

. (4.8)

§ See for instance H. Goldstein, Classical Mechanics, Addison–Wesley, Reading, Mass.,

1982.
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In the particular case of variational calculus, this functional derivative is

called Lagrange derivative. If L depends on higher–order derivatives of φ,

the Lagrange derivative takes the form

δA[φ]

δφi
=
∂L
∂φi
−∂µ

∂L
∂ (∂µφi)

+∂µ∂ν
∂L

∂ (∂µ∂νφi)
−∂µ∂ν∂λ

∂L
∂ (∂µ∂ν∂λφi)

+· · · (4.9)

with alternating successive signs. This is the functional version of (3.26). As

this is one of the conditions imposed above, at least for relativistic fields we

shall stop at the second term in the right–hand side.

Exercise 4.1 Scalar fields satisfy the Klein-Gordon equation:

( +m2) φ(x) = 0 .

This equation comes from Eq.(1.101),

p2 = m2c2

by using the quantization rules (3.27) and (3.28). The d’Alembertian operator is simply

the Laplace operator in 4-dimensional Minkowski space. In Cartesian coordinates {xα},
in terms of which the Lorentz metric is η = diag(1,−1,−1,−1),

= ηαβ∂α∂β = ∂α∂α = ∂0∂0 − ∂1∂1 − ∂2∂2 − ∂3∂3 .

Show that the Klein-Gordon equation comes out as the Euler-Lagrange equation of

the Lagrangian

L = 1
2 [∂µφ∂

µφ − m2φ2] .

Show that it comes also from

L = 1
2 φ[ + m2]φ ,

taking into account terms up to second order in the Lagrangian derivative. �

4.1.3 Rules of Functional Calculus

We intend now to introduce some formal devices, which both ease the ma-
nipulations and provide better understanding. They are — though presented
here as expedients of a practical nature, without any pretense to rigor — the
stepping stones of variational calculus. To do it, we shall show an alternative
road to the Euler–Lagrange equation (4.7).

§ 4.10 Consider a point y interior to the domain on which the field and the

system it describes is present, and the variation δφ(y) at that point. Instead
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of the functional differential of A previously used, we shall take the derivative

of

A[φ] =

∫
d4xL[φ(x), ∂µφ(x)] .

We write

δA[φ]

δφ(y)
=

∫
d4x

[
∂L(x)

∂φ(y)
+

∂L(x)

∂(∂µφ(x))

δ(∂µφ(x))

δφ(y)

]
. (4.10)

As the variation is well–defined, unique at each point, we shall agree to put

δφ(x)

δφ(y)
= δ4(x− y) . (4.11)

This can also be written

δφ(x) =

∫
d4x δ4(x− y)δφ(y) .

This is to say that δ4(x− y) is the functional derivative of φ with respect to

itself. Recall the case of the vibrating line, where x takes the place of the

index i and the differential dφi is replaced by the variation δφ(x). There is a

clear analogy between (4.6), written in terms of the Lagrange derivative

δA[φ] =

∫
d4x

δA[φ]

δφ(x)
δφ(x) , (4.12)

and the usual differential of a several–variables function f ,

df =
∑
i

∂f

∂xi
dxi .

Expression (4.11) is the analogue of the well–known relation

dxi

dxj
= δij ,

which holds for Cartesian coordinates. Notice also that the variation at point

y has nothing to do with the variation at point x — they are variations of

distinct degrees of freedom, so that

δ

δφ(y)

∂

∂xµ
φ(x) =

∂

∂xµ
δ

δφ(y)
φ(x) =

∂

∂xµ
δ4(x− y) . (4.13)
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At this point, (4.10) can be written

δA[φ]

δφ(y)
=

∫
d4x

[
∂L(x)

∂φ(x)
δ4(x− y) +

∂L(x)

∂(∂µφ(x))

∂

∂xµ
δ4(x− y)

]
.

Let us take separately the last term: it is∫
d4x ∂µ

[
∂L(x)

∂(∂µφ(x))
δ4(x− y)

]
−
∫
d4x

[
∂µ

∂L(x)

∂(∂µφ(x))

]
δ4(x− y) .

Using again the four–dimensional Gauss theorem, we see that the term with

the total derivative is an integral on the boundary of the system, and — as

y is in its interior — it vanishes. The delta factors out in all the remaining

terms and

δA[φ]

δφ(y)
=

∫
d4x

[
∂L(x)

∂φ(x)
− ∂µ

∂L(x)

∂(∂µφ(x))

]
δ4(x− y)

=
∂L(y)

∂φ(y)
− ∂µ

∂L(y)

∂(∂µφ(y))
, (4.14)

just the expression turning up in the Euler–Lagrange equation (4.7). There

is more than simple analogy in the steps taken above. They are justified by

Functional Analysis and the whole derivation is essentially correct. Advanced

calculations in Field Theory can be very involved and the functional methods,

which simplify them, are more and more used. It is not always possible to

prove the results in a quite rigorous way and they should, whenever feasible,

be checked in some independent manner. Here, these procedures will be

regarded as a kind of stenographic language. Rigorous proofs involve defining

suitable topology and integration measure, besides verifying the convergence

at each step.

4.1.4 Variations

§ 4.11 A physical system will thus be characterized as a whole by some

symmetry-invariant action functional like (4.2),

A[φ] =

∫
d4xL[φ] , (4.15)
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where φ represents collectively all the involved fields. Let us examine in some

more detail the total variation¶ of the action functional under the simulta-

neous change of the coordinates according to

x′µ = xµ + δxµ , (4.16)

and of the fields according to

φ′i(x
′) = φi(x) + δφi(x) . (4.17)

Let us first define the change in the functional form of φi(x),

δ̄φi(x) = φ′i(x)− φi(x) . (4.18)

Consider

φ′i(x
′) = φ′i(x+ δx) ≈ φ′i(x) + ∂µφ

′
i(x) δxµ .

The last term is

∂µφ
′
i(x) δxµ = ∂µφi(x) δxµ + ∂µδ̄φi(x) δxµ ≈ ∂µφi(x) δxµ

to first order, so that

φ′i(x
′) = φ′i(x) + ∂µφi δx

µ .

We can use (4.18) to write

φ′i(x
′) = φi(x) + δ̄φi(x) + δxλ

∂φi(x)

∂xλ
. (4.19)

or

δφi(x) = δ̄φi(x) + δxµ ∂µφi(x) . (4.20)

The total variation of a field φi is, in this way, separated into two parts:

the first term represent changes in the functional forms of the fields them-

selves, the second term the variation due to changes δxµ = x′µ − xµ in the

coordinates, that is, in the argument. By an iteration procedure we find,

always retaining only terms to first order,

∂xσ

∂x′µ
= δσµ −

∂δxσ

∂x′µ
= δσµ −

∂xρ

∂x′µ
∂δxσ

∂xρ
= δσµ −

(
δρµ −

∂δxρ

∂xµ

)
∂δxσ

∂xρ

¶When said like that, without further specification, “variation” means the first–

variation, or the first–order variation.
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= δσµ −
∂δxσ

∂xµ
,

and consequently

∂

∂x′µ
=
∂xσ

∂x′µ
∂

∂xσ
=

(
δσµ −

∂δxσ

∂x′µ

)
∂

∂xσ
=

(
δσµ −

∂δxσ

∂xµ

)
∂

∂xσ
,

which is
∂

∂x′µ
=

∂

∂xµ
− ∂δxσ

∂xµ
∂

∂xσ
. (4.21)

The derivative ∂/∂xµ of expression (4.20) is

∂µ [δφi(x)] = ∂µ
[
δ̄φi(x)

]
+ ∂µ

(
δxλ
)
∂λφi(x) + δxλ ∂µ∂λφi(x) . (4.22)

On the other hand, if we apply (4.21) to (4.19) we find, always retaining only

the first order terms,

δ [∂µφi(x)] = ∂µ δ̄φi(x) + δxλ ∂µ ∂λφi(x) . (4.23)

Comparing this with (4.22), we arrive at the “commutator”

[∂µ, δ]φi(x) =
[
∂µ(δxλ)

]
∂λφi(x) . (4.24)

Thus, we can commute ∂µ and δ only if the spacetime variation δxλ is point–

independent. This is the case of equation (4.5), because there the spacetime

variable was kept fixed.

Concerning the purely functional variations,

(i) take the derivative of (4.20):

∂µδφi(x) = ∂µδ̄φi(x) + ∂σφi(x) ∂µδx
σ + δxσ ∂µ∂σφi(x) ;

(ii) apply (4.20) to the derivative function ∂µφi(x):

δ∂µφi(x) = δ̄∂µφi(x) + δxσ ∂σ∂µφi(x) ;

(iii) take the difference of both expressions, using (4.24) to obtain the ex-

pected result

δ̄∂µφi(x) = ∂µδ̄φi(x) .

The change in the functional form of the derivative of φi(x) is the derivative

of the change in the functional form of φi(x). We can spell it in commutator

form, [
∂µ, δ̄

]
φi(x) = 0 . (4.25)
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Let us go back to the action functional (4.15). It does not depend on

x. Its is a functional of the fields, depending on the integration domain.

Variations (4.16) and (4.17) will have effects of two kinds: changes in the

integration volume and in the Lagrangian density. We shall indicate this by

writing

δA[φ] =

∫ [
δ(d4x)L+ d4x δL

]
. (4.26)

To calculate the first term it is enough to recall that, given a coordinate

transformation as (4.16), the change in the volume element is fixed by the

Jacobian,

d4x′ =

∣∣∣∣∂x′∂x

∣∣∣∣ d4x . (4.27)

The Jacobian determinant
∣∣∂x′
∂x

∣∣ is∣∣∣∣∣∣∣∣∣
∂x′0

∂x0
∂x′0

∂x1
∂x′0

∂x2
∂x′0

∂x3

∂x′1

∂x0
∂x′1

∂x1
∂x′1

∂x2
∂x′1

∂x3

∂x′2

∂x0
∂x′2

∂x1
∂x′2

∂x2
∂x′2

∂x3

∂x′3

∂x0
∂x′3

∂x1
∂x′3

∂x2
∂x′3

∂x3

∣∣∣∣∣∣∣∣∣ ≈
∣∣∣∣∣∣∣∣∣∣

∂(x0+δx0)
∂x0

∂(x0+δx0)
∂x1

∂(x0+δx0)
∂x2

∂(x0+δx0)
∂x3

∂(x1+δx1)
∂x0

∂(x1+δx1)
∂x1

∂(x1+δx1)
∂x2

∂(x1+δx1)
∂x3

∂(x2+δx2)
∂x0

∂(x2+δx2)
∂x1

∂(x2+δx2)
∂x2

∂(x2+δx2)
∂x3

∂(x3+δx3)
∂x0

∂(x3+δx3)
∂x1

∂(x3+δx3)
∂x2

∂(x3+δx3)
∂x3

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
1 + ∂δx0

∂x0
∂δx0

∂x1
∂δx0

∂x2
∂δx0

∂x3

∂δx1

∂x0
1 + ∂δx1

∂x1
∂δx1

∂x2
∂δx1

∂x3

∂δx2

∂x0
∂δx2

∂x1
1 + ∂δx2

∂x2
∂δx2

∂x3

∂δx3

∂x0
∂δx3

∂x1
∂δx3

∂x2
1 + ∂δx3

∂x3

∣∣∣∣∣∣∣∣∣ .
Thus, to first order, ∣∣∣∣∂x′∂x

∣∣∣∣ ≈ 1 + ∂µ (δxµ) , (4.28)

so that

δ(d4x) = ∂µ (δxµ) d4x . (4.29)

We have thus the first contribution to (4.26). The variation of the Lagrangian

density will have two contributions, one coming from the coordinate varia-

tions and another coming from the variations in the functional form of the

fields:

δL = (∂µL) δxµ + δ̄L , (4.30)
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where

δ̄L =
∂L
∂φi

δ̄φi +
∂L

∂(∂µφi)
δ̄(∂µφi) . (4.31)

The dependence of L on x comes exclusively through the fields — a basic

hypothesis of Field Theory. Equation (4.25) authorizes commuting δ̄ and ∂µ,

leading to

δ̄L =
δL
δφi

δ̄φi + ∂µ

[
∂L

∂(∂µφi)
δ̄φi

]
. (4.32)

with δL/δφi the Lagrangian derivative.

Attention should be paid to the different notations ∂L/∂φi and δL/δφi.
Notice that it would not be clear that we are allowed, while manipulating

the second term in (4.31), to perform an integration by parts, as here also

the integration boundaries are varying.

Finally, putting together (4.29), (4.30) and (4.32), we arrive at the ex-

pression of the action first–variation:

δA[φ] =

∫
d4x

{
δL
δφi

δ̄φi + ∂µ

[
∂L

∂(∂µφi)
δ̄φi + L δxµ

]}
. (4.33)

This is a most important formula, instrumental in our future derivations of

the Noether theorems relating Lagrangian symmetries to conserved charges.

4.2 The First Noether Theorem

§ 4.12 Symmetries, we recall, are transformations leaving formally invariant

the equations of motion. This means that, if applied to a solution of the

equations, they lead to another solution, compatible with the same boundary

conditions. A sufficient condition for the equations to be invariant is, as we

have said many times, that the Lagrangian be invariant.

When the equations of motion are obtained from a variational principle,

like Hamilton’s, it is possible to establish a relationship between the sym-

metries and the integrals of motion. This is the content of Noether’s first

theorem. In condensed form, this theorem says the following: to each trans-

formation which leaves the action invariant corresponds a combination of the

fields and their derivatives which is also invariant. The transformation can

include changes in the coordinates and alterations in the fields, the latter
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being related to the former or not. Since their publication in 1918, the theo-

rem has been subjected to many extensions and adaptations. We shall here

present a version specially adapted to Field Theory.‖

The transformations will be supposed to be continuous and connected

to the identity. For all that will concern us here, it will be sufficient to

consider the first-order infinitesimal case. Equation (4.33) gives the response

of the action functional to variations both in the fields and in the spacetime

coordinates:

δA[φ] =

∫
d4x

[
δL
δφi

δ̄φi + ∂µ

(
∂L

∂(∂µφi)
δ̄φi + L δxµ

)]
From this expression will come the two Noether theorems we intend to

study. The first will be concerned with global transformations, that is, with

transformations which are the same at all points of the system. In other

words, the transformation parameters (the group parameters) will be point-

independent. The second theorem is concerned with transformations which

change from point to point.

As we have seen in page 57, a well-defined behavior under transformations

require that each field belong to some representation of the corresponding

group. Suppose that Ta, for a = 1, 2, . . . , N = group dimension, are the

generators in some matrix representation to which φ belongs, and that φi are

the components. Then,

φ′i(x
′) =

[
eω

aTa
]
ij
φj(x) (4.34)

will be the general form of the transformation undergone by φ. In the case

of a global transformation the parameters ωa will be constants; in the case

of a local transformation, they will be point-dependent, ωa = ωa(x). In the

infinitesimal case, with very small parameters δωa,

φ′i(x
′) ≈ [δij + δωa(Ta)ij]φj(x) ,

= φi(x) + δωa(Ta)ijφj(x) . (4.35)

‖ A very complete treatment can be found in N. P. Konopleva and V. N. Popov, Gauge

Fields, Harwood Academic Plub., Chur, 1981.
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In terms of the transformation parameters, variations (4.16) and (4.17)

will be, to first order,

δxµ =
δxµ

δωa
δωa ; (4.36)

δφi(x) =
δφi(x)

δωa
δωa . (4.37)

The field variation at a fixed point x will be

δ̄φi(x) =

[
δφi(x)

δωa
− ∂φi(x)

∂xµ
δxµ

δωa

]
δωa . (4.38)

It is clear that, from (4.35),

δφi(x)

δωa
= (Ta)ijφj(x) . (4.39)

To get an idea on how to obtain δxµ

δωa
, consider again the particular case

of a rotation around the third axis: in the infinitesimal case,
x′0

x′1

x′2

x′3

 =


x0

x1

x2

x3

+ δω3


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0




x0

x1

x2

x3

 ,

that is, δxµ

δω3 = µ-th component of (0,−x2, x1, 0)T . For example, δx2

δω3 = x1.

This is, of course, consistent with the kinematic representation of equations

(2.40, 2.41), in which

x′µ = xµ + δω3
(
x1∂2 − x2∂1

)
xµ = xµ + δω3

(
x1δµ2 − x2δµ1

)
.

4.2.1 Symmetries and Conserved Charges

§ 4.13 In search of the first Noether theorem, consider constant parameters

δωa and take (4.36), (4.37) and (4.38) into (4.33). The action variation

becomes

δA[φ] =

∫
d4x

{
δL
δφi

δ̄φi(x)

δωa
+ ∂µ

[
∂L

∂(∂µφi)

δ̄φi
δωa

+ L δx
µ

δωa

]}
δωa . (4.40)

When the variation comes from a symmetry transformation, the action

must remain invariant: δA = 0. The δωa’s appear factorized. They are small,
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but totally arbitrary. Thus, in order that the integral vanish for any δωa it is

necessary that the integrand vanishes. In other words, action invariance un-

der a global transformation imposes the vanishing of the derivative of A with

respect to the corresponding constant (but otherwise arbitrary) parameter

δωa. The condition for that is

δL
δφi

δ̄φi(x)

δωa
= − ∂µ

[
∂L

∂(∂µφi)

δ̄φi
δωa

+ L δx
µ

δωa

]
. (4.41)

This is the content of the historical Noether theorem: if the action is

invariant under the transformations of an N -dimensional group, then there

are N linear combinations of the Lagrangian derivatives which reduce to

divergences.

§ 4.14 When the field φi is a solution of the Euler-Lagrange equation δL
δφi

=

0, the current

Ja
µ = −

[
∂L

∂(∂µφi)

δ̄φi
δωa

+ L δx
µ

δωa

]
. (4.42)

will have vanishing divergence:

∂µJa
µ = 0 . (4.43)

There will be one conserved current for each group generator. Each will

result in a conserved charge (that is, an integral of motion). To see this, take

in spacetime a volume unbounded in the space-like directions, but limited

in time by two space-like surfaces w1 and w2. Integrating (4.43) over this

volume, we get an integral over the boundary surface, composed of w1, w2

and the time-like boundaries supposed to be at infinity. If we now suppose

the current to be zero at infinity on these boundaries, we remain with∫
w1

dσµ Ja
µ =

∫
w2

dσµ Ja
µ . (4.44)

This means that the integral Qa =
∫
wn
dσµ Ja

µ, taken over a space-like (hy-

per)surface wn, is independent of which wn one takes, provided the current

vanishes at space infinity. In a more prosaic way: take an axis x0 = ct and as

spaces the planes given by t = constant; then the integral will be the same
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on any such plane — will be time-independent. In effect, integrating (4.43)

in d3x,

d

dx0

∫
d3xJa

0(x) = −
∫
space

d3x∂iJa
i(x) = −

∫
bound

dσiJa
i(x) = 0 . (4.45)

Thus, to each group generator will correspond a “charge”

Qa =

∫
d3xJa

0(x, t) , (4.46)

which is conserved,
d

dt
Qa = 0 . (4.47)

§ 4.15 We shall see below, when we study the main Lagrangians, applica-

tions of all that. A few comments:

(i) the (“Noether”) current is not unique; addition of the divergence of any

antisymmetric tensor, Ja
µ → Ja

µ + ∂λAa
µλ, with Aa

µλ = −Aaλµ, gives

another conserved current (as ∂µ∂λAa
µλ = 0) and the charge will not change

if the tensor Aa
µλ vanishes at the space infinity.

(ii) the theorem is frequently presented in the physical literature as just

(4.47): to each transformation leaving indifferent the action (and conse-

quently the field equations) corresponds an invariant, a constant of motion.

In the mathematical literature, the theorem is (4.41). In this last, histori-

cal form, it is possible to show an inverse theorem: if there are N linearly

independent combinations of the Lagrangian derivatives reducing to diver-

gences, then the action is invariant under the transformations of some N

dimensional group. Whether there is or not some kind of inverse for the

“physical” version is not clear. If the question is whether there is a symme-

try corresponding to any integral of motion, the answer is no. The so-called

“topological invariants” are not related to symmetries — we shall see an

example below.

(iii) Equation (4.41) holds always, provided there is a symmetry of the action

functional, for fields satisfying or not the equation of motion; it provides

consequently information on the “space of states” of the system presenting
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the symmetry. Relations of this kind, independent of the field equations,

are called “strong relations”. We shall say a little more about that in the

discussion of the second Noether theorem.

4.2.2 The Basic Spacetime Symmetries

The last term in (4.42) takes into account precisely transformations to which

spacetime coordinates are sensitive. We have seen that physical fields must

have a well–defined behavior under spacetime translations and Lorentz trans-

formations. These can be realized as coordinate transformations on Min-

kowski spacetime and will consequently lead to currents, the densities of

energy-momentum and 4-dimensional angular-momentum, engendered by ev-

ery physical field. They are the most important field characteristics. Other

spacetime symmetries may be eventually present, and will be left for later

examination.

Translations and Energy-Momentum

§ 4.16 Consider an infinitesimal translation (α = 0, 1, 2, 3)

x′µ = xµ + δxµ = xµ +
δxµ

δaα
δaα .

We can, in this case, take the xµ themselves as parameters,

δxµ

δaα
= δµα . (4.48)

Fields are Lorentz tensors and spinors, and as such unaffected by translations:

δφi/δa
α = 0. Consequently, from (4.38),

δ̄φi = − (∂µφi) δ
µ
α δa

α = − (∂αφi) δa
α.

The Noether current (4.42) related to invariance under translations will be

Θα
µ :=

∂L
∂∂µφi

∂αφi − δµαL . (4.49)
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Exercise 4.2 Use Eq.(4.20) to rewrite the general Noether current (4.42) as

Ja
µ = − ∂L

∂(∂µφi)

δφi
δωa

+ Θα
µ δx

α

δωa
. (4.50)

�

Due to the choice (4.48), the translation–algebra index α appears as a

spacetime index and Θα
µ is a second-order tensor. With all indices raised,

Θλµ = ηλα Θα
µ =

∂L
∂∂µφi

∂λφi − ηλµL . (4.51)

If we look for the analogous in Classical Mechanics, we find that this quan-

tity corresponds to the “stress–energy tensor”. In Field Theory it is usual to

call it the canonical energy–momentum tensor density. The corresponding

conserved charges will be

P λ =

∫
d3xΘλ0(x). (4.52)

In particular, the charge P 0 corresponds to the Hamiltonian, with Θ00 the

energy density. For covariance reasons, P λ must then be the 4-momentum

and Θk0 its space density.

Summing up: the invariants related to the translations are the momen-

tum components and the Noether currents constitute the energy–momentum

tensor density.

Exercise 4.3 Again the real scalar field. From the first Lagrangian in Exercise 4.1,

L = 1
2 [∂µφ∂

µφ − m2φ2] ,

find the energy–momentum tensor density

Θλµ = ∂λφ∂µφ − ηλµL .

Show that the energy density can be put into the positive form

Θ00 = 1
2 [∂0φ ∂0φ+ ∂iφ ∂iφ +m2 φ2] .

�
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Lorentz Transformations and Angular Momentum

§ 4.17 Consider now infinitesimal rotations in spacetime (Lorentz transfor-

mations):

x′µ = xµ + δxµ = xµ + 1
2

δxµ

δωαβ
δωαβ .

Recall that Cartesian spacetime coordinates transform according to the ma-

trix vector representation (see § 2.28), whose matrices have entries given in

Eq.(2.51):

[Jαβ]µ ν = i
(
ηανδ

µ
β − ηβνδ

µ
α

)
.

Consequently,

x′µ =
[
exp

(
i
2
δωαβ Jαβ

)]µ
ν x

ν ≈
[
δµν + i

2
δωαβ (Jαβ)µ ν

]
xν =

= xµ + 1
2

(δωµν − δωνµ) xν . (4.53)

We use then δωαβ = − δωβα to obtain

x′µ = xµ + δωµν xν . (4.54)

Therefore,
δxµ

δωαβ
=
(
δµα xβ − δ

µ
β xα

)
. (4.55)

Exercise 4.4 Check this formula. �

The Noether current corresponding to Lorentz transformations is known as

the total angular momentum current density:

Mµ
αβ = − ∂L

∂∂µφi

δ̄φi
δωαβ

− L δxµ

δωαβ
. (4.56)

Using (4.38) or (4.50), it can be rewritten in the form

Mµ
αβ = Θα

µ xβ −Θβ
µ xα −

∂L
∂∂µφi

δφi
δωαβ

. (4.57)

The first part,

Lµαβ = Θα
µ xβ −Θβ

µ xα , (4.58)
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is present for all fields and is called the orbital angular–momentum density

tensor. The last term is the spin current density,

Sµαβ = − ∂L
∂∂µφi

δφi
δωαβ

, (4.59)

which appears only when the field is not a Lorentz singlet. In effect, a scalar

field is defined as a field such that

δφ(x) = φ′(x′)− φ(x) = 0,

which is to say that

δφ(x)

δωαβ
= 0 . (4.60)

The spin density clearly vanishes. We find also

δ̄φ(x)

δωαβ
= xα∂βφ− xβ∂αφ ,

which helps to understand what happens to the scalar field: the field changes

its functional form so as to just compensate the change in the argument. This

compensation does not happen for other fields. A (Lorentzian) vector field,

for example, is a field transforming like xµ:

φ′µ(x′) =
[
exp

(
i
2
δωαβ Jαβ

)]µ
ν φ

ν(x)

≈ φµ(x) + i
2
δωαβ (Jαβ)µ ν φ

ν(x) = φµ(x) + δωµν φ
ν(x) . (4.61)

We find then [Cf. eq.(4.55)]

δφµ(x)

δωαβ
= δµαφβ − δ

µ
βφα ; (4.62)

δ̄φµ(x)

δωαβ
= δµαφβ − δ

µ
βφα + [xα∂β − xβ∂α]φµ . (4.63)

The last term is analogous to that of the scalar case and compensates

the argument change, but there is a non-vanishing net variation δφµ(x) as

a response to the Lorentz transformation. The spin density is exactly the

contribution to Mµ
αβ coming from this “intrinsic” response.

From ∂µM
µ
αβ = 0 and ∂µΘα

µ = 0 follows

∂µS
µ
αβ = Θβα −Θαβ . (4.64)
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The antisymmetric part of the canonical energy–momentum density tensor

measures the breaking of pure–spin conservation. Of course, there is no

a priori reason for the spin to be conserved separately, but this happens

when the canonical energy–momentum density tensor is symmetric. From

the conservation of the orbital angular momentum for scalar fields, it comes

that the energy–momentum is symmetric for those fields.

§ 4.18 The energy–momentum density tensor is the source for Einstein’s

equations

Rµν − 1
2
gµνR− gµνΛ = 8πG

c4
Tµν

for the gravitational field. Nevertheless, the left-hand side is symmetric in the

two indices. The source current Tµν representing energy and momentum must

therefore be a symmetric tensor, which is not in general the case of the above

canonical tensor Θλµ. The solution to this conundrum comes from the fact

that it is possible to obtain, from the canonical tensor, a symmetric tensor

which differs from it by the total divergence of an antisymmetric tensor. An

example is the Belinfante tensor

ΘB
λµ = Θλµ + 1

2
∂ν
(
Sνλµ − Sµλν − Sλµν

)
, (4.65)

where Sµρσ = ηραησβSµαβ.

Exercise 4.5 (Facultative) Show that ΘB
λµ is indeed symmetric, by calculating ΘB

λµ

- ΘB
µλ and using Eq.(4.64). �

Examples of these conserved quantities will be seen in greater detail in

the study of specific fields. We have said that, besides the ever–present

translation and Lorentz invariances, other spacetime symmetries can man-

ifest themselves. The most important is the conformal symmetry, which

shows up when no scale–fixing parameter (such as a mass) is present in the

theory. We shall not consider it here.

4.2.3 Internal Symmetries

§ 4.19 Any field has necessarily a well–defined behavior under Poincaré

transformations. It can further belong to a representation U(G) of an in-

ternal transformation group G, as in the example of § 3.12. Under a trans-

formation given by the element g ∈ G, its behavior is generically represented
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by

φ′i(x) = [U(g)]ji φj(x) =
[
eiω

aTa
]j
i
φj(x) . (4.66)

The Ta are the G generators in the U representation. In the presence of a

local gauge invariance (see section 3.4), fields like the above φi(x) appear

in physical Lagrangians in two ways. First, as free fields. Second, combined

into certain currents which couple to gauge potentials. In consequence, those

currents appear as sources in the right-hand side of the equations of motion

for the gauge fields. For this reason such φi(x) are called source fields. Gauge

potentials, on the other hand, mediate the interactions between the source

fields. They are written as Aµ = JaA
a
µ, with Ja the generators in the ad-

joint representation of G. Under a transformation g = eiω
aJa , they change

according to (3.35),

A′µ(x) = gAµ(x)g−1 + g∂µg
−1 . (4.67)

A covariant derivative depends on the field φi on which it applies: Aµ will be

written with the generators in the representation of φi. Field strengths Fµν

= JaF
a
µν transform according to

F ′µν(x) = gFµν(x)g−1 .

When G is an abelian group, the transformation is a product of phase trans-

formations. As they are quite independent, it is enough to consider the

one-dimensional case:

φ′(x) = e−iqα φ(x) . (4.68)

The quantity q is a constant, playing the role of a 1-dimensional generator.

Notice that, if φ(x) were supposed to be real, the transformation would cause

a duplication of the number of degrees of freedom, which is incompatible with

the idea of a symmetry. Thus, this phase transformation only makes sense if

φ(x) is complex. In that case, (4.68) should be paired with

φ∗′(x) = eiqα φ∗(x) . (4.69)

The argument above could be retaken at this point: φ = φ∗ would imply qα =

0. The infinitesimal versions of the two equations are δ̄φ(x) = −iqδαφ(x)
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and δ̄φ∗(x) = iqδαφ∗(x). The Noether current (4.42) will then be given by

Jµ = −
[

∂L
∂(∂µφ)

δ̄φ

δα
+

∂L
∂(∂µφ∗)

δ̄φ∗

δα

]
= iq

[
∂L

∂(∂µφ)
φ− ∂L

∂(∂µφ∗)
φ∗
]
.

(4.70)

4.3 The Second Noether Theorem

§ 4.20 Let us once again go back to equation (4.33): it gives the variation of

the global action of the system in terms of the variations of the coordinates

(4.16) and the fields (4.17). One point is of basic importance: in no moment,

during its derivation, have we used (as we did while obtaining the equations

of motion) the boundary conditions. In other words, we have made no inte-

gration by parts. This means that, if we consider some sub–domain of the

system, equation (4.33) will give the action variation in that region, provided

of course that the integration take place only on it.

Let us make now a stronger supposition: that, under symmetry transfor-

mations, the action be an extremal in each sub–region of the system. The

action remains unmoved under transformations in a small region around each

point in the system. We shall have, in that case, a local symmetry and δA = 0

on an arbitrary volume inside the system. That requires the vanishing of the

integrand everywhere, leading to the Lie equation:

δL
δφi

δ̄φi + ∂µ

[
∂L

∂(∂µφi)
δ̄φi + L δxµ

]
= 0. (4.71)

From this expression we can get again (4.41) for constant parameter

transformations and the consequent Noether theorem. But we can obtain

something more: instead of using the functional differentiation, we can use

functional derivations. We could proceed in the spirit of equation (4.10),

getting directly the functional derivative of equation (4.33):

δA[φ]

δωa(y)
=
δL(x)

δφi(x)

δ̄φi(x)

δωa(y)
+ ∂µ

[
∂L(x)

∂(∂µφi(x))

δ̄φi(x)

δωa(y)
+ L δxµ

δωa(y)

]
. (4.72)

Point-dependent transformations are characteristic of gauge theories. Here,

we shall only call attention to some consequences of one fact in those theories.
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There are two kinds of fields in those theories, “source” fields transforming

according to

δ̄φ(x) = δωa(x)Taφ(x), (4.73)

and gauge potentials transforming according to

δ̄Aaµ(x) = fabcδω
b(x)Acµ(x)− ∂µδωa(x). (4.74)

In both cases, fields and parameters are at the same point x. Thus, in the

simplified approach we are adopting, we use

δ̄φ(x)

δωa(y)
= δ4(x− y) Taφ(x);

δ̄Aaµ(x)

δωb(y)
= fabcA

c
µ(x) δ4(x− y)− δab∂µδ4(x− y).

The δ’s ensure locality. For any y interior to the system, these expressions

lead to the vanishing of the divergence term. What remains is

δA[φ,A]

δωa(y)
=
δL(y)

δφ(y)
Taφ(x) +

δL(y)

δAbµ(y)
fabcA

c
µ(y) + ∂µ

δL(y)

δAaµ(y)
. (4.75)

The second Noether theorem says that, in the presence of a local symmetry

related to a group with N generators, that is when

δA[φ]

δωa(y)
= 0 , (4.76)

there are N independent relations between the Lagrange derivatives and their

derivatives. This is what we obtain from the above equation:

∂µ
δL(y)

δAaµ(y)
+

δL(y)

δAbµ(y)
fabcA

c
µ(y) = − δL(y)

δφi(y)
Taφ(x). (4.77)

Notice that the equations of motion have not been used. These relations are

“strong”, they hold independently of the solutions, reflecting the symmetries

of the very space of possible states of the system.

More detail will be given in the section on gauge theories, but a few

general comments can be made here. Define the object

Ja
µ(x) = − δL(x)

δAaµ(x)
. (4.78)

111



The last expression above takes the form

∂µJa
µ(x)− fabcAbµ(x)J cµ(x) = − δL(x)

δφ(x)
Ta φ(x). (4.79)

The total operator acting on J in the left-hand side will be the covariant

derivative, actually a covariant divergence. In the right-hand side appears a

factor resembling the Euler-Lagrange form, which is zero for solutions of the

field equations. Then, a weak result would be: the “current” J has vanishing

covariant divergence. In gauge theories, J is the current produced by the

sources. The second Noether theorem does not lead to conserved quantities,

but establishes constraints on the possible sources.

There will be conserved charges under the additional proviso that the

local transformations become constant transformations outside the system.

We shall come back to these points presently.
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4.4 Topological Conservation Laws

§ 4.21 As we have said, not every conserved quantity is related to a sym-

metry. Let us see a simple example in two–dimensional spacetime, with

coordinates x0 = vt and x1 = x. Let a field be given by a scalar function

φ(x, t) and consider the totally antisymmetric symbol in two dimensions, εµν ,

ε01 = - ε10 = 1; ε00 = ε11 = 0. The current defined by jµ(x, t) = εµν∂
νφ will

be automatically conserved:

∂µjµ(x, t) = 0.

This is an identity, valid independently of any Lagrangian we may have cho-

sen — that is, of any dynamics. This kind of conservation precedes dynamics,

it comes from something still more fundamental. This would be a simple cu-

riosity if it did not apply to well–defined cases. But it does. A well-known

example is that of a field obeying the so–called sine-Gordon equation

1

v2

∂2φ

∂t2
− ∂2φ

∂x2
= − sinφ(x, t). (4.80)

A particular solution is the solitary wave of Figure 4.1, given by
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Figure 4.1: Sine-Gordon wave (4.81) with v = 0.5.
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φ(x, t) = 4 arctan exp

[
x− vt√
1− v2

]
. (4.81)

Let us use it to unravel the meaning of the current conservation above. For

this solution,

J1 = ε01∂
0φ =

v√
1− v2

4eγ(x−vt)

1 + e2γ(x−vt) = 2γv
1

cosh[γ(x− vt)]
.

Thus, J1 → 0 for x→ ±∞. But ∂0J0+ ∂1J1 = 0 implies

∂

∂(vt)

∫ +∞

−∞
dxJ0(x, t) =

∫ +∞

−∞
dx
∂J1(x, t)

∂x
= J1(+∞, t)− J1(−∞, t) = 0.

We have thus a conserved “charge”. We can normalize things conveniently

and calculate

n =
1

2π

∫ +∞

−∞
dxJ0(x, t) =

1

2π

∫ +∞

−∞
dxε01∂

1φ(x, t) =

1

2π

∫ +∞

−∞
dx
∂φ(x, t)

∂x
=

1

2π
[φ(+∞, t)− φ(−∞, t)]. (4.82)
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Sine-Gordon wave

Figure 4.2: Space cross-section of the above sine-Gordon wave at t = 0.

The aspect of solution (4.81) at a fixed time is given in Figure 4.2: it

has φ(+∞, t) = 2π and φ(−∞, t) = 0. It follows that n = 1. Waves like

that are called “solitons” (or solitary waves) and turn up as solutions of
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many non–linear equations. The sine-Gordon equation has also solutions

with many solitons (which “grow” many times 2π), inverted solutions with

the wave decreasing (“anti–solitons”) and still solutions combining r solitons

and s anti–solitons. For such solutions, the above number n is n = r − s

= “soliton number”. We have, at the beginning of the discussion, carefully

avoided saying anything on boundary conditions, which are different for each

kind of solution. For fixed boundary conditions, however, there will be all the

solutions with a fixed n. This number n is an example of invariant related

to the topology of the fields (or of the space of solutions). This kind of

invariant is, for that reason, called “a topological number”. It is not related

to any symmetry and cannot be obtained through the Noether theorem.

Other non-linear equations exhibit solitonic solutions with non–Noetherian

conserved charges. The best known are mostly in two-dimensional space

[(1+1)-space, one dimension for space, one for time], like the Korteweg-de

Vries (KdV) equation.

There are thus two kinds of conserved quantities in Physics: those coming

from Noether’s theorem – conserved along solutions of the equations of mo-

tion – and the topological invariants, which come from the global, topological

properties of the space of states.

§ 4.22 A Note on the Hamiltonian Approach To pass into the Hamil-

tonian formalism, we must first define the momentum conjugate to each φi.

A majority of authors follow the classic analogy, putting

πi
.
=

∂L
∂(∂0φi)

,

which gives the time parameter a favored role from the start. A few others

introduce a 4-vector momentum for each φi,

πi
µ .

=
∂L

∂(∂µφi)
, (4.83)

in terms of which the field equations become compact indeed:

∂µπi
µ =

∂L
∂φi

. (4.84)

Comment 4.1 We have been talking about a “minimum” of the action but it is enough

to have an extremum to arrive at the field equations. To go into the details of the principle

of minimal action, we should study also the second variation.
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Chapter 5

Bosonic Relativistic Fields

We now proceed to a detailed discussion of the main fields which have been
found to describe elementary particles — and, consequently, the fundamental
interactions — in Nature. They are classified, as repeatedly announced, by
their behavior under transformations of the Poincaré group. It is fortunate
that, at least for the time being, only particles and fields belonging to the
lowest representations — those of small dimensions — seem to play a ba-
sic role. They also have different characters according to their spins being
integers or half-integers. Integer-spin particles are called bosons, and their
fields are bosonic fields. Half-integer-spin particles are called fermions, and
their fields are fermionic fields. Bosonic and fermionic particles have quite
distinct statistical behaviour. We start with bosons of small spins, actually
only spins 0 and 1. And first we present fields without interactions.

5.1 Real Scalar Fields

§ 5.1 These are the simplest relativistic fields, defined in page 107 as those

which are, on the whole, Lorentz invariant. They satisfy the Klein-Gordon

equation:

( +m2) φ(x) = 0 . (5.1)

We are using units with c = 1 and ~ = 1. We shall see below that real scalar

fields describe neutral mesons.

Comment 5.1 Schrödinger has found this wave equation even before he found his famous

nonrelativistic equation – but discarded it because it led to negative-energy solutions for

free states – for which at that time there was no interpretation.
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The D’Alembertian operator is simply the Laplace operator in 4-dimen-

sional Minkowski space. In Cartesian coordinates {xα}, in terms of which the

Lorentz metric is η = diag (1,−1,−1,−1) and thus coordinate–independent,

it is

= ηαβ∂α∂β = ∂α∂α = ∂0∂0 − ∂1∂1 − ∂2∂2 − ∂3∂3 . (5.2)

The Klein-Gordon equation describes the field in absence of any source,

that is, in absence of any interaction. It is the simplest relativistic adaptation

of the Schrödinger equation, actually the Poincaré invariant PµP
µ = m2 of

§ 2.27, with P µ = i ∂µ, applied to the field φ(x). This means that, as a

matter of fact,

every relativistic field satisfies the Klein-Gordon equation.

We introduce it as the equation for scalar fields because it is the only

equation they satisfy. Other fields either obey to equations implying the

Klein-Gordon equation (as the Dirac fields) or obey the Klein-Gordon equa-

tion plus some supplementary conditions (as the higher-spin fields).

Source terms can be added in the right-hand side, but for the time being

we examine the sourceless equation. As seen in Exercise 4.1, the equation

comes out as the Euler-Lagrange equation of the Lagrangian

L = 1
2

[∂µφ∂
µφ − m2φ2] , (5.3)

or, if we prefer, from

L = 1
2
φ [ + m2] φ , (5.4)

which differs from the previous one only by a total divergence. When using

the second version, we should not forget to consider terms up to second order

in the Lagrangian derivative. The energy-momentum tensor density, whose

general expression is (4.49), comes easily from (5.3):

Θλµ = ∂λφ∂µφ − ηλµL . (5.5)

In particular, the densities of momenta

Θ0i = ∂0φ ∂iφ (5.6)
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and of energy

Θ00 = 1
2

[∂0φ ∂0φ+ ∂iφ ∂iφ +m2 φ2] . (5.7)

Notice that, as a summation of real squares, this expression is always positive.

It is of course to be expected that the energy density be positive in the

absence of interactions.

The fact that θ00 is positive leads, by the way, to a criterion for the

presence of a field. We might ask on which region of spacetime is some

field φ(x) really present. As any contribution of the field adds up a positive

quantity, we can say that the field is present on every point x at which θ00 > 0

and absent wherever θ00 = 0.

As to the angular momentum, we have seen that it reduces to the orbital

part in this case.

Of course, a field can interact with other fields, or with itself. The study

of free fields is of interest because it allows the introduction of notions and

methods, but in itself a free field is rather empty of physical content: the

real characteristics of the system it supposedly describes can only be assessed,

measured, through interactions with other systems, described by other fields.

These characteristics are described precisely by the responses of the sys-

tem to exterior influences. The Lagrangian of a theory is the sum of free

Lagrangians, fixing the fields which are at work, and of “interaction La-

grangians”, which try to describe the interplay between them. In the case

of an isolated scalar field one tries, for reasons of simplicity, to describe the

self-interaction by monomial terms like λφ3,λφ4,λφ8,· · · λφn. More involved,

non-polynomial interaction Lagrangians (such as cos(αφ) and exp(αφ), which

lead to the Sine-Gordon and the Liouville equations) can be of great interest.

In 4-dimensional spacetime, only the Lagrangian Lint = λφ4 seems able to

produce a coherent theory in the quantum case. The other lead to uncon-

trollable infinities.

Exercise 5.1 Find the Euler-Lagrange equation of the Lagrangian

L = 1
2

[
∂µφ∂

µφ − m2φ2
]

+
λ

4
φ4 . (5.8)

Find the energy-momentum density tensor. �
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5.2 Complex Scalar Fields

§ 5.2 A complex field is equivalent to two real fields φ1 and φ2, put together

as

φ(x) = φ1(x) + i φ2(x) . (5.9)

In the jargon of field theory it is usual to forget about the infinity of degrees

of freedom represented by each component and talk about each components

as if it were “one” degree. There are then “two” independent degrees of

freedom, and we can use either φ1(x), φ2(x) or the pair φ(x), φ∗(x). The

Lagrangian, which leads to two independent Klein-Gordon equations, is

L = ∂µφ
∗∂µφ−m2φ∗φ = ∂µφ1∂

µφ1 −m2φ2
1 + ∂µφ2∂

µφ2 −m2φ2
2 . (5.10)

The energy-momentum density tensor is now

Θµλ = ∂µφ∗∂λφ+ ∂µφ∂λφ∗ − ηµλL. (5.11)

The density of energy (notice: always positive) is

Θ00 = ∂0φ
∗∂0φ+ (~∇φ∗) · (~∇φ) +m2φ∗φ , (5.12)

(where ~∇ is the 3–dimensional, space gradient) and that of momentum,

Θ0i = ∂0φ
∗∂iφ+ ∂iφ

∗∂0φ . (5.13)

Exercise 5.2 Verify formulas (5.11) and (5.12). �

The spin density is zero also here.

§ 5.3 A question comes up naturally at the sight of (5.10): φ(x) has two

“components”, but it is a Lorentz scalar. What is the meaning of these

components ? In order to answer this question, let us begin by noting that

the Lagrangian has a supplementary invariance, absent in the real scalar case:

it does not change under the transformations

φ(x)→ φ′(x) = eiαφ(x) ;

φ∗(x)→ φ′∗(x) = e−iαφ∗(x) , (5.14)
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where α is an arbitrary constant. This transformation takes place only in the

space of fields, leaving spacetime untouched. It is a rotation in the complex

field plane, the same as

φ′1 = φ1 cosα− φ2 sinα ;

φ′2 = φ1 sinα + φ2 cosα . (5.15)

Let us see what Noether would have to say about the invariance under these

transformations (called gauge transformations of first kind, or global gauge

transformations). Looking at the terms in the current, we shall have δxµ

δωa
= 0;

δ̄φ
δωa

= δ̄φ
δα

= iφ; δ̄φ∗

δωa
= δ̄φ∗

δ̄α
= −iφ∗. Consequently, the Noether current will be

Jµ(x) = i [φ∗(∂µφ)− (∂µφ
∗)φ] = i φ∗

↔
∂µ φ . (5.16)

Even had we guessed this expression without Noether’s help, we would know

that its divergence vanishes: from the very field equations

φ(x) +m2φ(x) = 0 ; φ∗(x) +m2φ∗(x) = 0 , (5.17)

we see that ∂µJ
µ = i[∂µφ

∗∂µφ + φ∗( φ) − ( φ∗)φ − ∂µφ∗∂µφ] = i[φ∗( φ) −
( φ∗)φ] = im2[φ∗φ − φ∗φ] = 0. Because it is a conservation law quite inde-

pendent of spacetime (related to an “internal” symmetry, with the complex

plane in the role of internal space), it is highly tempting to attribute to the

corresponding charge,

Q =

∫
d3xJ0(x) , (5.18)

the role of electric charge. This would be wrong.

§ 5.4 To understand this point, which is fundamental, let us begin by re-

marking that there are — besides the “topological charges” mentioned in

section 4.4 — two kinds of charge in Physics. As far as is known nowadays,

the barionic number and the flavor hypercharge, for example, are not associ-

ated to any field, while the electric charge is the source of the electromagnetic

field. There are thus charges related to certain fields, and others which, at

least apparently, are not. A Lagrangian like (5.10) cannot really describe a

field with electric charge: as soon as such a charge is present, another field is

automatically created, which must appear also in the Lagrangian. In other

121



words, electrically charged fields cannot be described by a free Lagrangian.

Let us see what happens if, in (5.14), the angle becomes dependent on the

spacetime position:

φ(x)→ φ′(x) = eiα(x)φ(x) ;

φ∗(x)→ φ′∗(x) = e−iα(x)φ∗(x) . (5.19)

A function like eiα, or eiα(x), can be seen as a complex matrix with a sin-

gle entry. It will be, of course, a unitary matrix. The set of such unitary

1–dimensional matrices form a group, denoted U(1) or SO(2). Equations

(5.14) describe a transformation belonging to U(1) which is the same at all

points of spacetime. We try to represent this case in Figure 5.1, in which

the x-axis represents spacetime. On the other hand, Eqs.(5.19) describe a

Figure 5.1: A global gauge transformation is the same at every point.

transformation of U(1) which is different at each point of spacetime, as indi-

cated in Figure 5.2. In the first case, the degrees of freedom are everywhere

rotated of the same angle α: the transformation is “global”. In the second

case, called gauge transformations of second kind, that particular degree of

freedom which is indexed by x is rotated by the angle α(x). At different

events, the angle can be different. It is a different element of the same group

U(1) which is at work.
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Figure 5.2: Local gauge transformations: different at each point.

Comment 5.2 Nomenclature has wavered a little. Nowadays, when people say “gauge

transformations”, they mean usually gauge transformations of second kind. Because these

expressions are so telling, it would perhaps be better to call them “global” and “local”

gauge transformations.

§ 5.5 For local gauge transformations a new problem arises: the Lagrangian

(5.10) is no more invariant:

L → L′ = [∂µ − iαµ]φ∗[∂µ + iαµ]φ−m2φ∗φ, (5.20)

where αµ = ∂µα(x). It all happens as if the derivatives were changed, and

only them. The mass term remains invariant. Is there another case in which

derivatives get changed ? Let us now recall two properties of the electromag-

netic 4–vector potential Aµ:

1. it is defined only up to a 4-divergence, the same field (the same value

of the observable Fµν = ∂µAν − ∂νAµ being given by Aµ and by

A′µ = Aµ − ∂µα , (5.21)

for any function α(x).

2. its coupling to other fields is of the so-called minimal type: it changes

the canonical momenta pµ of charged particles (or other fields) to pµ−
Aµ and, consequently, the derivatives ∂µ to (∂µ + eAµ) (classically, the

electric charge “e” can be absorbed into Aµ).
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Thus, if we want that the Lagrangian describe a charged field, we must

modify the derivatives in (5.10) to allow the presence of an electromagnetic

field. It becomes

L = [(∂µ − iAµ)φ∗] [(∂µ + iAµ)φ]−m2φ∗φ− 1
4
FµνF

µν , (5.22)

the last term being the Lagrangian of the free electromagnetic field. And

now a very beautiful thing happens: (5.22) is invariant under the gauge

transformations described by (5.19) and (5.21) together. The potential Aµ

compensates, through its indetermination (5.21), the variance of φ. It is the

simplest known gauge potential. Its simplicity is due to the related group

U(1), which has one single generator and is, consequently, abelian.

§ 5.6 The above procedure can be generalized. Transformations (5.19) are

not, of course, the most general admissible unitarity transformations. Given

any “internal” group with generators {Ja}, transformations like φ(x) →
φ′(x) = eiα

a(x)Jaφ(x) are admissible. What has been done can be adapted

to provide an invariant Lagrangian. Such a “gaugefication” or “localization”

of a symmetry has been first performed by Yang and Mills around 1953 for

SU(2), which is a simple but non-abelian group.∗ It is the starting point of

gauge theories.

Comment 5.3 If we proceed to quantize the theory, particles come up as quanta of each

field: neutral particles as neutral fields, charged particles as quanta of charged fields. Thus,

an approach like the above one is necessary to describe charged particles.

Back to the discussion about charges: those related to a global conservation

do not require (or: are not sources of) additional fields. Those related to

fields, like the electric charge, are related to a local invariance, or to a gauge

invariance. There will be a great difference between the abelian and the

non–abelian cases.

Well, let us try to sum up what we have learned here. First, charge-

carrying fields must be complex. In this case, the field and its complex

conjugate are described together. If the charge creates another field, it is

necessary to adapt the Lagrangian. In their quantum versions, the field and

∗ C. N. Yang and R. L . Mills, Phys. Rev. 96 (1954) 191.
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its complex conjugate describe jointly particles and antiparticles. Thus, the

field φ either creates an antiparticle or annihilates a particle; φ∗ either creates

a particle or annihilates an antiparticle. Furthermore, φ and φ∗ couple with

opposite signs with the electromagnetic field: it is enough to check the signs

in (5.22). A last comment: if φ = φ∗, case of the real field, the current (5.16)

vanishes identically, and all additive charges are zero. Consequently, real

fields will describe particles which are equal to their antiparticles, which do

not carry any additive charge and are unable to interact electromagnetically.

5.3 Vector Fields

§ 5.7 An electric charge creates a field, to which responds any other electri-

cally charged object. This field - the electromagnetic field - is a vector field.

The charged objects interact with each other electromagnetically and we say

that the electromagnetic field “mediates” that interaction. The same hap-

pens with other interactions. With the remarkable exception of gravitation,

all the known fundamental interactions of Nature are mediated by vector

fields.

As the name indicates, a vector field is a set of four fields transforming

as the components of a Lorentz vector. It can be indicated as

φ(x) =


φ0(x)

φ1(x)

φ2(x)

φ3(x)

 .

This means that the set transforms according to the vector representation

of the Lorentz group, that of the cartesian coordinates xµ:

φ′µ(x′) = Λµ
νφ

ν(x) . (5.23)

The vector field is real or complex if each one of its components is real or

complex. The complex field is formally richer, and includes the real field as

a particular case. In Nature, we find both kinds among the mediating fields
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of the electroweak interactions, whose quanta have been found in 1983: the

bosons W±
µ are described by a pair of complex conjugate massive vector fields

and the boson Z0
µ by a real massive vector field. The photon field Aµ is a real

vector field with vanishing mass. It is the mediating field of electromagnetism

and will be discussed in an independent chapter.

5.3.1 Real Vector Fields

§ 5.8 The simplest, most natural Lagrangian for a real vector field φ of mass

M would be

L = − 1
2

[
(∂µφν)(∂

µφν)−M2φνφν)
]
, (5.24)

which is, actually, the covariant sum of four Lagrangians of the scalar type.

But here, unlike the internal components of the complex scalar field, the

components are truly those of a vector and the way they are contracted in

the Lagrangian is a requirement of Lorentz invariance. This Lagrangian leads

naturally to four independent Klein-Gordon equations,

( +M2)φµ(x) = 0. (5.25)

The energy-momentum density tensor is symmetric,

Θµν = − ∂µφλ∂
νφλ − ηµνL. (5.26)

The spin density obtained from L is the first we have the opportunity to

write down:

Sµ(αβ)(x) = − φα(x)∂µφβ(x) + φβ(x)∂µφα(x). (5.27)

It has clearly vanishing divergence for the solutions, which is to be expected

given the symmetry of the canonical energy-momentum density. The spin

Sµ(αβ) =
∫
d3x S0

(αβ)(x) and the orbital angular momentum are, consequently,

separately conserved.

There is, however, a difficulty. The terms containing the component

φ0(x) contribute to L with opposite sign with respect to the terms of the

other components, so that L has not a well-defined sign. This leads to an
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energy density which is not positive-definite:

Θ00 = − 1
2
(∂0φ0)2 − 1

2
(
→
∇φ0)2 − M2

2
(φ0)2

+ 1
2

3∑
j=1

[
(∂0φj)

2 + (
→
∇φj)2 +M2φ2

j

]
. (5.28)

The three positive contributions are alike those of the scalar case, but there

are negative terms. A Hamiltonian which is not positive–definite is a serious

defect in a theory proposed to describe a free, non-interacting system. A

supplementary condition must be introduced in order to correct it. The only

condition which is invariant and linear in the fields is

∂µφ
µ = 0, (5.29)

which should hold at each point of the system. We could put also a constant

in the right-hand side, but this would add an arbitrary constant to the theory.

The above condition reduces to three the number of independent degrees of

freedom and, when used to eliminate the miscreant φ0, does lead to a positive-

definite energy. We shall not prove it here, as it requires the use of Fourier

analysis in detail.

The physical system is described by the Lagrangian plus the supplemen-

tary condition. This is a novel situation: the Lagrangian alone does not

determine, via the minimal principle, the acceptable conditions. There is

something amiss with the Lagrangian (5.24). The problem can be circum-

vented by using another, the Wentzel–Pauli Lagrangian

L′ = L+ 1
2
(∂µφν)(∂

νφµ) (5.30)

= − 1
4

[(∂µφν − ∂νφµ)(∂µφν − ∂νφµ)] + M2

2
φνφν . (5.31)

The Euler-Lagrange equation coming from this Lagrangian is the Proca equa-

tion

φν − ∂ν(∂µφµ) +M2φν = 0, (5.32)

whose solutions satisfy automatically the supplementary condition if M 6=
0. In effect, taking ∂ν of the equation we obtain M2∂νφ

ν = 0. Thus, the

Lagragian L′ automatically implements the supplementary condition. It is
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interesting to introduce the variable Fµν = ∂µφν − ∂νφµ, in terms of which

the Lagrangian takes the form

L′ = − 1
4
FµνF

µν + M2

2
φνφν (5.33)

and the Proca equation becomes

∂µF
µν +M2φν = 0. (5.34)

Exercise 5.3 Obtain (5.34) from (5.33). �

The Wentzel–Pauli Lagrangian is used by most modern authors. It leads

to the energy-momentum density

Θ′αµ = − Fµν∂
αφν − δαµL′ (5.35)

and the spin density

S ′µαβ = Sµαβ + φα∂βφ
µ − φβ∂αφµ = φβF

µ
α − φαF µ

β . (5.36)

In the case M = 0, which includes the electromagnetic field, L′ does not

implement the supplementary condition. In that case, however, L′ has a

special, extra symmetry: it does not change if the field changes as

φµ(x)→ φ′µ(x) = φµ(x) + ∂µf(x),

for any differentiable function f(x). This is a gauge invariance and allows

one a lot of freedom in choosing the field. Each choice of the field is called

“a gauge”. In particular, if ∂µφ
µ = g(x), it is possible to implement the

supplementary condition whenever a solution f can be found for the Poisson

equation f(x) = - g(x), which would lead immediately to ∂µφ
′µ = 0. This

choice is called the Lorenz gauge (not Lorentz !). As the Lagrangian is

invariant under any “change of gauge”, the physical results found in that

particular gauge hold true in general. As already announced, the electro-

magnetic field will deserve a special chapter.
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5.3.2 Complex Vector Fields

§ 5.9 Let us examine the case of the complex vector field, which includes

the real case. As said above, the electroweak bosons W±
µ are described by a

pair of complex conjugate massive vector fields. The Lagrangian is

L = −
[
∂µφ

∗ν∂µφν −M2φ∗νφν
]
, (5.37)

and the subsidiary conditions,

∂µφ
µ = 0 ; ∂µφ

∗µ = 0 . (5.38)

The equations of motion come out as(
+M2

)
φν = 0 ;

(
+M2

)
φ∗ν = 0 . (5.39)

The energy-momentum density tensor is symmetric:

Θαµ = − ∂µφ∗ν∂
αφν − ∂µφν∂αφ∗ν − ηαµL, (5.40)

and in special

Θ00 = −
(
∂0φ∗ν∂

0φν + ∂iφ
∗ν∂iφν

)
−M2φνφ∗ν , (5.41)

Θi0 = −
(
∂iφ∗ν∂

0φν + ∂iφν∂0φ
∗ν) . (5.42)

As in the complex scalar case, there will be a global U(1) symmetry. The

corresponding Noether current will be

Jµ = − i [φ∗ν∂µφν − (∂µφ∗ν)φν ] , (5.43)

with the charge

Q = − i

∫
d3x

[
φ∗ν

↔
∂0 φν

]
. (5.44)

The spin density will be

Sµ(αβ) = − ∂L
∂(∂µφν)

δφν
δωαβ

− ∂L
∂(∂µφ∗ν)

δφ∗ν
δωαβ

. (5.45)

Using (4.62) we find

Sµ(αβ) = φ∗β
↔
∂µ φα − φ∗α

↔
∂µ φβ . (5.46)
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Comment 5.4 It is a useful notation to put all antisymmetrized indices inside square

brackets. Thus, the above expression is

Sµ(αβ) = φ∗[β
↔
∂µ φα].

Spin itself will be, of course,

S(αβ) =

∫
d3xS0

(αβ). (5.47)

Thanks to the symmetry of θαµ, S(αβ) is conserved. We can separate the

purely spatial components and define the (tri–)vector spin:

Si = 1
2
εijkS(jk) = 1

2
εijk

∫
d3x S0

(jk). (5.48)

In the quantized theory, this conserved vector ~S will be the spin of the field

quanta.

§ 5.10 The Wentzel-Pauli Lagrangian would come as follows: first, introduce

the complex vector field as the combination of two real vector fields

φµ = φ(1)
µ + iφ(2)

µ ;

φ∗µ = φ(1)
µ − iφ(2)

µ .

The Lagrangian is then the sum of two Lagrangians like (5.33):

L′ = − 1
4
F (1)
µν F

µν
(1) −

1
4
F (2)
µν F

µν
(2) + M2

2
φν(1)φ

(1)
ν + M2

2
φν(2)φ

(2)
ν . (5.49)

This is the same as

L′ = − 1
4
F ∗µνF

µν + M2

2
φνφ∗ν . (5.50)

Two Proca equations come out in consequence:

∂µF
µν +M2φν = 0. (5.51)

∂µF
∗µν +M2φ∗ν = 0. (5.52)

The ensuing energy-momentum density tensor is:

Θαµ = − 1
2

(F ∗µν∂αφν + F µν∂αφ∗ν)− ηαµL, (5.53)

130



with in particular

Θ00 = 1
2

[(∂0φk)(∂0φ
∗
k)− (∂iφ0∂iφ

∗
0] + 1

4
F ∗ijF

ij − M2

2
φνφ∗ν . (5.54)

The spin density will be

Sµ(αβ) = 1
2

[
F ∗µαφβ − F ∗µβφα + F µ

αφ
∗
β − F µ

βφ
∗
α

]
. (5.55)

§ 5.11 A last comment: theories with massive vector fields as above inter-

acting with other fields are, in general (perturbatively) “unrenormalizable”.

This means that, once quantized, they lead to infinite values for certain fi-

nite quantities. The exceptions are the gauge fields, of which the simplest

example is the electromagnetic field.
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Chapter 6

Electromagnetic Field

This is the best known of all fields. What follows has no pretension at all
to an introduction to electrodynamics. We shall only outline the general
aspects of the electromagnetic field, emphasizing some features which are
more specific to it while exhibiting some properties it shares with fields in
general.

6.1 Maxwell’s Equations

§ 6.1 Classical forms The electric field ~E and the magnetic field ~H created

by a charge density ρ and a current density ~j satisfy Maxwell’s equations:

rot ~E +
∂ ~H

∂ct
= 0 (6.1)

div ~H = 0 (6.2)

div ~E = 4π ρ (6.3)

rot ~H − ∂ ~E

∂ct
=

4π

c
~j. (6.4)

Fields ~E and ~H can exist (that is, it is possible to have ~E 6= 0 and/or
~H 6= 0) in domains of space where ρ = 0 and ~j = 0. This is the case,

for example, of radio waves traveling far away from their sources. In such

a sourceless case, Maxwell’s equations present a special symmetry, called
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duality: they remain invariant if we exchange

~E ⇒ ~H

(6.5)

~H ⇒ − ~E.

If we wished to extend this symmetry to the case with nonvanishing sources,

it would be necessary to postulate the existence of a magnetic charge density,

to be introduced in the right hand side of (6.2) and a magnetic current density

to be introduced in the right hand side of (6.1). A magnetic density would be

carried by magnetic monopoles. Unlike electric monopoles which turn up at

every corner, magnetic monopoles have never been observed, despite many

efforts.

From equations (6.3) and (6.4) follows the local conservation of charge,

or continuity equation:
∂ρ

∂t
+ div ~j = 0. (6.6)

§ 6.2 Integral versions Let us recall the meaning of Maxwell’s equations,

which is better understood in their integral versions, which are laws going

after illustrious names:

1. the Gauss law: ∫
S=∂V

d~S · ~E = 4π

∫
V

ρ d3x ; (6.7)

the flux of ~E through a closed surface S is equal to the charge contained

in the volume V of which S is the border;

2. the Faraday induction law:∫
l=∂S

d~l · ~E = −
∫
S

d~S · ∂
~H

∂ct
; (6.8)

the time-variation of the magnetic flux crossing a surface S creates a

circulation of the electric field along the line l which is the border of S;

3. there are no magnetic monopoles:∫
S=∂V

d~S · ~H = 0; (6.9)
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the flux of ~H through any closed surface S vanishes; or, no surface can

contain a magnetic charge;

4. Maxwell’s displacement current:∫
l=∂S

d~l · ~H =

∫
S

d~S ·

(
4π

c
~j +

∂ ~E

∂ct

)
; (6.10)

the circulation of ~H along a closed line bordering a surface S is due not

only to the current through S, but also to the flux of the time variation

of ~E. Recall that 1
4π

∂ ~E
∂ct

is the “displacement current”. In its absence,

the above equation spells Ampère’s law.

§ 6.3 Maxwell tensor Though established long before the advent of Spe-

cial Relativity, Maxwell’s equations were already relativistic-covariant. This

is not explicit in the expressions given above. It is convenient to pass into a

covariant notation. Let us define an antisymmetric matrix, whose entries we

shall denote Fαβ = − F βα:

(Fαβ) =


0 −E1 −E2 −E3

E1 0 −H3 H2

E2 H3 0 −H1

E3 −H2 H1 0

 . (6.11)

This is the electromagnetic tensor, or Maxwell tensor, or still “field strength”.

Let us define also its dual,

(F̃αβ) = (1
2
εαβγδFγδ) =


0 −H1 −H2 −H3

H1 0 E3 −E2

H2 −E3 0 E1

H3 E2 −E1 0

 , (6.12)

which is obtained from the first by performing the duality transformation

(6.6) for each entry.

6.2 Transformations of ~E and ~H

§ 6.4 We shall here be interested in the behavior of the electric and magnetic

fields under boosts. This means, in view of Eq.(6.11), the behavior of Fαβ.

It will be necessary, consequently, to examine the behavior of tensors.
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We have in § 1.29 defined a Lorentz vector as any set V = (V 0, V 1, V 2, V 3)

of four quantities transforming like (ct, x, y, z). In the case of a boost like

that given by Eqs. (1.50) and (1.51), with a velocity v along the axis Ox (v

= vx), they will have the behavior

A1 = γ(A′1 +
v

c
A′0)

A2 = A′2 ; A3 = A′3 (6.13)

A0 = γ(A′0 +
v

c
A′1) .

We have in § 1.32 introduced the four-vector current (1.73)

jα = e uα = e γ (1,
vx

c
,
vy

c
,
vz

c
)

and the four-vector potential (1.74)

A = (Aα) = (φ, ~A) = (φ,Ax, Ay, Az) .

They will both transform in the above way. For instance,

φ = γ(φ′ +
v

c
A′x) .

This is the case for upper-indexed vectors (contravariant vectors). Lower-

indexed vectors (covariant vectors, or covectors as Aα, for example), once

contracted with upper-indexed vectors give invariants, scalars like jαAα. It

follows that they transform just in the inverse way. The inverse transforma-

tion, in the case of the boost above, corresponds to exchange the roles of the

reference frames or, more simply, to change the sign of the boost velocity.

Thus,

A1 = γ(A′1 −
v

c
A′0)

A2 = A′2 ; A3 = A′3 (6.14)

A0 = γ(A′0 −
v

c
A′1) .

§ 6.5 To see how this appears in matrix language, recall that the usual

notation for a general Lorentz transformation is xα
′

= Λα′
βx

β. We have in

Eqs. (6.13) an inverse transformation, corresponding to xα = (Λ−1)αβ′x
β′ .
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Precisely, we have a transformation of type Aα = (Λ−1)αβ′A
β′ . In detail,

Eqs. (6.13) are 
A0

A1

A2

A3

 =


γ βγ 0 0

βγ γ 0 0

0 0 1 0

0 0 0 1




A0′

A1′

A2′

A3′

 (6.15)

and Eqs. (6.14) are
A0

A1

A2

A3

 =


γ − βγ 0 0

− βγ γ 0 0

0 0 1 0

0 0 0 1




A0′

A1′

A2′

A3′

 . (6.16)

Exercise 6.1 Verify that the matrices appearing in Eqs. (6.15) and Eqs. (6.16)

1. have determinants = 1 and

2. are inverse to each other.

�

§ 6.6 The cases above are, of course, particular boosts. Under general

Lorentz transformations (see § 1.34) vectors and covectors change as given

by Eqs. (1.79) and (1.81). Second order tensors follow (1.80). That is to

say that they transform like objects whose components are the products of

vectors and/or covector components. We are anyhow interested only in the

behavior of the antisymmetric tensor Fαβ under boosts.

§ 6.7 Let us go back to the case of § 6.5. To get the behavior of a tensor Tαβ,

the simplest procedure is to consider A as in (6.13) together with another

vector

B1 = γ(B′1 +
v

c
B′0)

B2 = B′2 ; B3 = B′3 (6.17)

B0 = γ(B′0 +
v

c
B′1) .
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Tαβ will transform like AαBβ. Some examples are:

A1B1 = γ2(A′1B′1 +
v

c
A′1B′0 +

v

c
B′1A′0 +

v2

c2
B′0A′0)

∴ T 11 = γ2(T ′11 +
v

c
T ′10 +

v

c
T ′10 +

v2

c2
T ′00) (6.18)

A1B0 = γ2(A′1B′0 +
v

c
A′1B′1 +

v

c
A′0B′0 +

v2

c2
A′0B′1)

∴ T 10 = γ2(T ′10 +
v

c
T ′11 +

v

c
T ′00 +

v2

c2
T ′01) (6.19)

A1B2 = γ(A′1B′2 +
v

c
A′0B′2) and A1B3 = γ(A′1B′3 +

v

c
A′0B′3)

∴ T 12 = γ(T ′12 +
v

c
T ′02) and T 13 = γ(T ′13 +

v

c
T ′03) (6.20)

A2B2 = A′2B′2 ; A2B3 = A′2B′3 ; A3B3 = A′3B′3

∴ T 22 = T ′22 ; and also T 33 = T ′33 , T 23 = T ′23 (6.21)

A0B0 = γ2(A′0B′0 +
v

c
A′0B′1 +

v

c
A′1B′0 +

v2

c2
A′1B′1)

∴ T 00 = γ2(T ′00 +
v

c
T ′01 +

v

c
T ′10 +

v2

c2
T ′11) (6.22)

A0B1 = γ2(A′0B′1 +
v

c
A′0B′0 + A′1B′1 +

v2

c2
A′1B′0)

∴ T 01 = γ2(T ′01 +
v

c
T ′00 + T ′11 +

v2

c2
T ′10) (6.23)

A0B2 = γ(A′0B′2 +
v

c
A′1B′2) ; A0B3 = γ(A′0B′3 +

v

c
A′1B′3)

∴ T 02 = γ(T ′02 +
v

c
T ′12) and T 03 = γ(T ′03 +

v

c
T ′13). (6.24)

A few possibilities are missing, but these are more than enough to tackle

the question of tensors with well-defined symmetries in the indices. Take for

example Ex = F 01, antisymmetric: F 01 will transform like A0B1 − A1B0 =

γ2(1− v2

c2
)(A′0B′1−A′1B′0) = F ′01 = E ′x. Another case: Hz = F 12 transforms

like A1B2−A2B1 = γ(F ′12 + v
c
F ′02) and ∴ Hz = γ[H ′z + v

c
E ′y]. In this way
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we find the cases:

Ex = E ′x

Ey = γ(E ′y +
v

c
H ′z)

Ez = γ(E ′z −
v

c
H ′y)

Hx = H ′x

Hy = γ(H ′y −
v

c
E ′z)

Hz = γ(H ′z +
v

c
E ′y). (6.25)

The left-hand side gives the fields as seen from a frame K, the right-hand

side as seen from a frame K ′. Electric and magnetic fields depend, as we see,

on the reference frame from which they are looked at.

§ 6.8 All this is actually much simpler in the matrix version of § 6.5. The

transformation above is

Fαβ = (Λ−1)αα′(Λ
−1)ββ′F

α′β′ = (Λ−1)αα′F
α′β′(Λ−1)ββ′ ,

or F = (Λ−1)F ′(Λ−1)T . As the matrix Λ−1 in (6.15) is symmetric, (Λ−1)T =

Λ−1,

F =

(
0 −E1 −E2 −E3

E1 0 −H3 H2

E2 H3 0 −H1

E3 −H2 H1 0

)
= (Λ−1)F ′(Λ−1)T =

 γ βγ 0 0

βγ γ 0 0

0 0 1 0

0 0 0 1

 0 −E1′ −E2′ −E3′

E1′ 0 −H3′ H2′

E2′ H3′ 0 −H1′

E3′ −H2′ H1′ 0

 γ βγ 0 0

βγ γ 0 0

0 0 1 0

0 0 0 1

 .

The result of the matrix products is an equality which is equivalent to the

set of equations (6.25):

F =

 0 −E1′ −γ(E2′+βH3′ ) −γ(E3′−βH2′ )

E1′ 0 −γ(H3′+βE2′ ) γ(H2′−βE3′ )

γ(E2′+βH3′ ) γ(H3′+βE2′ ) 0 −H1′

γ(E3′−βH2′ ) −γ(H2′−βE3′ ) H1′ 0

 .

§ 6.9 Suppose that the magnetic field vanishes in frame K ′: ~H ′ = 0. In
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frame K,

Ex = E ′x

Ey = γE ′y

Ez = γE ′z

Hx = H ′x = 0

Hy = − γ
v

c
E ′z = − v

c
Ez

Hz = γ
v

c
E ′y =

v

c
Ey. (6.26)

Thus, in a way, an electric field in frame K ′ turns up as a magnetic field in

frame K. A magnetic field which is zero in one frame appears very effectively

in another. The relationship between ~E and ~H can, in frame K, be summed

up as

c ~H = ~v × ~E. (6.27)

~E and ~H are clearly orthogonal to each other.

Suppose now that it is the electric field which vanishes in frame K ′:
~E ′ = 0. This time, in frame K,

Hx = H ′x

Hy = γH ′y

Hz = γH ′z

Ex = E ′x = 0

Ey = γ
v

c
H ′z =

v

c
Hz

Ez = − γ
v

c
H ′y = − v

c
Hy. (6.28)

The relationship between ~E and ~H in frame K is now encapsulated in

c ~E = − ~v × ~H. (6.29)

Also in this case ~E and ~H are orthogonal to each other. It is possible to show

in general that, whenever a frame exists in which either ~E or ~H vanish, there

is another frame in which they are orthogonal. And vice versa: if a frame

exists in which they are orthogonal, there exists another frame in which one

of them is zero.
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Electric and magnetic fields cannot, of course, simply convert into each

other by a change of frames. The electric field is a true vector, while the

magnetic field is a pseudo-vector. Some other vector must be present to

avoid parity violation. This is done by the velocity v in Eqs. (6.27) and

(6.29).

§ 6.10 Field invariants We verify the relationships

FαβF
αβ = − F̃αβF̃

αβ = − 2 ( ~E2 − ~H2). (6.30)

FαβF̃
αβ = − 4 ~E · ~H. (6.31)

These two expressions are contractions of Lorentz tensors and, consequently,

Lorentz invariants. Contraction (6.31) is not, however, invariant under parity

transformation: it is a pseudoscalar. It is, furthermore, a total derivative.

6.3 Covariant Form of Maxwell’s Equations

§ 6.11 Equations 6.1-6.4 are covariant, but this is not evident at first sight.

They can be easily put into an explicitly covariant form in terms of the

Maxwell tensor. Indeed, if we introduce the four-vector j = (ρc,~j), Maxwell’s

equations take the form

∂αF̃
αβ = 0; (6.32)

∂αF
αβ = jβ. (6.33)

Equation (6.32) includes the first pair of Maxwell’s equations, Eqs. (6.1) and

(6.2). Equation (6.33) includes the second pair, Eqs.(6.3) and (6.4). Notice

that now the duality symmetry (6.6) in the absence of source becomes simply

the exchange of Eqs. (6.32) ⇔ (6.33) by the exchange of Fαβ with its dual

F̃αβ.

Exercise 6.2 Verify that the equations (6.32) and (6.33) are equivalent to the set (6.1)-

(6.4). �

Allied to the antisymmetry of Fαβ, (6.33) implies

∂αj
α = 0 (6.34)
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which is just the continuity equation (6.6).

There is a certain confusion in the standard language used in this sub-

ject. What is usually called “electromagnetic field” is the pair ( ~E, ~H) or, if

we prefer, the tensor Fαβ. These are the observables of the theory. Here,

however, the role analogous to the basic fields of previous sections will be

played by the electromagnetic potential Aα, defined as that field for which

Fαβ = ∂αAβ − ∂βAα. (6.35)

Historically, the vector potential ~A has been suggested by Eq.(6.2): if ~H has

vanishing divergence (in a simply-connected region), then it is the curl of

some vector, ~H = rot ~A. By covariance, there must exist a time-component

A0 satisfying, because of Eq.(6.1),

~E = − ~∇A0 − 1

c

∂ ~A

∂t
. (6.36)

Expression (6.35) is the explicitly covariant expression: it gives Ei =− ∂iA0−
∂0A

i (the usual gradient is a covector, with lower indices). Notice that Aα is

not an observable, as it is defined up to a gauge transformation

Aα(x)⇒ A′α(x) = Aα(x) + ∂αφ(x) (6.37)

with φ an arbitrary function. This transformation leaves Fαβ in (6.35) in-

variant. Classical objects only see the field strength Fαβ: we have met it

[Eq.(1.102)] in the study of the motion of a charged particle.

Though it is in principle possible to work with variables ~E and ~H, the

covariant formulation turns out to be very complicated. Classically, this

would nevertheless be justified, on the basis of ~E and ~H being observables

and Aα not. In the quantum case, however, it is known that ~E and ~H are not

able to describe all the facets of the electromagnetic field. The circulation∮
γ
~A ·d~l of ~A along a closed curve γ can be measured as a wavefunction phase

(the Bohm-Aharonov effect). In consequence, it will be through the vector

field Aα that electromagnetism will de described, though we shall keep for it

the name “potential”. The reason behind that is a special character of Aα:

it is a gauge field and deeply different from standard vector fields. This will

be discussed in the chapter on gauge fields.
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§ 6.12 The wave equation We arrive at the field equation for Aα by taking

(6.35) into (6.33):

Aα − ∂α(∂βA
β) = jα. (6.38)

At the same time, (6.35) makes of (6.32) an identity. Actually, (6.32) is

a 4-dimensional version of div ~H = 0, more precisely it is div F = 0. And

(6.35) expresses F = rot A in the 4-dimensional case. Finally, taken together,

definition (6.35) and Eq.(6.38) have the same content as Maxwell’s equations.

Let us compare the sourceless case (jα = 0) with the Proca equation for

a general vector field, Eq.(5.32). We see that Aα is a real vector field with

zero mass. The difficulties with the non-positive energy turn up here again,

with an additional problem: the subsidiary condition

∂αA
α = 0 (6.39)

cannot be included automatically into any Lagrangean. In compensation, we

have here an additional freedom of choice: function φ in (6.37) can be chosen

at will. Given any Aα, choosing φ obeying

φ+ ∂αA
α = 0 (6.40)

will lead to ∂αA
′α = 0. The left-hand side of Eq. (6.38) is invariant under

transformation (6.37): this is the “gauge invariance” of the theory. When

we choose a particular A′α in (6.37), we say that we are “fixing a gauge”.

In particular, a potential satisfying Eq.(6.39) is said to be “in the Lorenz

gauge”. In that gauge, the wave equation reduces to the d’Alembert equation

Aα = jα. (6.41)

Notice that the Lorenz condition (6.39) does not fix Aα completely. To

begin with, we can pass into the Lorenz gauge from any Aα by choosing

a φ obeying (6.40). We have ∂αA
′α = 0. But then a new transformation

A′′α = A′α + ∂αφ′ with φ′ = 0 (φ′ is “harmonic”) will take into the same

condition for A′′α, ∂αA
′′α = 0. Thus, a potential in the Lorenz gauge is

determined up to a gradient of a harmonic scalar. This additional freedom

can be used to eliminate one of the components of Aα, for example A0: choose
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φ′ such that ∂0φ
′ = - A′0; then we shall have A′′0 = 0 at any point x = (~x, t).

In that case, ∂0A
′′
0 = 0 and the Lorenz condition takes the form

~∇ · ~A = 0 ; A0 = 0. (6.42)

This gauge is known as the radiation gauge, or Coulomb gauge. The choice

is not explicitly covariant, but can be made in each inertial frame. If we pass

into the momentum representation through the Fourier transform

Aµ(x) = 1
(2π)3/2

∫
d4k δ(k2)eikxAµ(k), (6.43)

Equations (6.42) become

A0(k) = 0, (6.44)

~k · ~A(k) = 0. (6.45)

The latter is a transversality condition. In this gauge, of the initial four

components of the potential, only two remain independent. Notice that the

massive vector field, once submitted to the transversality condition, remained

with three independent components. The zero mass field has the extra condi-

tion (6.44), which reduces the number of components to two. As seen above,

this is due to the gauge invariance. The relation between vanishing mass and

gauge invariance is simple to see: in the Lagrangean (5.33) for the vector

field, only the mass term is not gauge invariant. And let us repeat; although

(6.44) and (6.45) are not covariant, it is possible to choose the φ’s in each

frame so as to realize them. Therefore, the electromagnetic field has only

two independent components, and they can be taken as orthogonal to the

propagation direction
~k

|~k|
. As said at the beginning of section 5.2, it usual to

forget about the infinity of degrees of freedom represented by each compo-

nent and talk about each components as one degree. In this language, the

electromagnetic field has two degrees of freedom.

6.4 Lagrangian, Spin, Energy

§ 6.13 Let us go back to the Lagrangians (5.24) and (5.33) for the vector

field. In the case of vanishing mass they become

L = − 1
2
(∂µφν)(∂

µφν), (6.46)
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L′ = − 1
4
FµνF

µν . (6.47)

Notice that only Eqs.(6.33), corresponding to the second pair, follow from

these Lagrangians. Equations (6.32), the first pair, are not really field equa-

tions — they are identities holding automatically for any Fαβ of the form

(6.35). Notice further that, as announced, it is the potential Aα which plays

the role of fundamental field: it is by taking variations with respect to it that

the field equations are got from the Lagrangians.

As a Lagrangian for the sourceless field, (6.47) has many advantages:

1. its is explicitly invariant under gauge transformations;

2. by Eq.(6.30), it is explicitly invariant under the exchange of Fαβ with

its dual F̃αβ and is, consequently, duality invariant;

3. by the second equality in (6.30), it is written in terms of classical observ-

ables; notice that invariant (6.31) cannot be used as long as experiment

support strict parity conservation in electromagnetism; furthermore, as

a total derivative, it would give no local equation through the minimal

action procedure; by the pure Lagrangian method, it actually gives

identity (6.32), the first pair of Maxwell’s equations;

4. Fαβ has a clear mathematical meaning, as the four-dimensional rota-

tional of the vector field.

Expression (6.46) is not explicitly gauge invariant. It seems simpler in

the massive case, and with it calculations are indeed simpler. For gauge

transformations with φ = 0, it is clearly invariant up to total divergences.

As to (6.47), it is explicitly invariant, and differs from (6.46) by a term

1
2
∂µ(Aν∂

νAµ)− 1
2
Aν∂

ν∂µA
µ,

which only reduces to a pure divergence when the Lorenz condition is satis-

fied. We shall use (6.46) only for exercise (see Comment 6.1 below).

Maxwell’s equations with sources are obtained by adding to (6.46) or

(6.47) the coupling term

LI = − jA = − jµA
µ. (6.48)
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Notice that, under a gauge transformation, LI acquires an extra term equal to

[− jµ∂µφ], which is a total divergence [− ∂µ(jµφ)] due to current conservation.

This conservation is, consequently, related to gauge invariance.

Exercise 6.3 Find Eq.(6.33) from Eqs.(6.47) and (6.48). �

Comment 6.1 Using (6.46), it is immediate to arrive at

Θαβ = − (∂αAγ∂
βAγ)− ηαβL, (6.49)

that is,

Θ00 = − 1
2 (∂0Aγ∂

0Aγ) + 1
2 (∂jAγ∂

jAγ) (6.50)

and

Θi0 = − (∂iAγ∂
0Aγ). (6.51)

We also obtain

Sµαβ = Aβ∂
µAα −Aα∂µAβ . (6.52)

The spin density will be then given by

S0
ij = − Ai

↔
∂0Aj , (6.53)

and the spin vector by

Si = 1
2 εijk

∫
d3xAj

↔
∂0Ak. (6.54)

These expressions differ from the more usual ones, but allow us to use what has been said

on the vector fields.

The more usual treatment starts from Lagrangian (6.47). The canonical

energy–momentum density turns out to be

Θαβ = F νβ∂αAν + 1
4
ηαβFγδF

γδ . (6.55)

The angular momentum density tensor is

Mµαβ = Θµαxβ −Θµβxα + F µαAβ − F µβAα, (6.56)

expression in which we recognize the spin density tensor

Sµαβ = F µαAβ − F µβAα. (6.57)

The spin itself will be given by

Sij =

∫
d3x S0ij =

∫
d3x [F 0iAj − F 0jAi],
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or, with Sk = 1
2
εkijS

ij,

~S =

∫
d3x E×A . (6.58)

Notice that, once (6.57) is known, it is possible to obtain the symmetrized

energy–momentum (4.65):

Θαβ
B = FαγFγ

β + 1
4
ηαβFγδF

γδ. (6.59)

The energy density takes on, up to an acceptable divergence, the value

Θ00 = 1
2

(E2 + H2), usually presented in the standard form

Θ00 =
1

8π

(
E2 + H2

)
, (6.60)

(for which the notation W is frequently used) and so does the momentum

density

Θi0 = (E×H)i . (6.61)

The vector

S =
c

4π
E×H (6.62)

is called the Poynting vector, and measures the energy flux of the electro-

magnetic field. This has the dimension (energy × c)/volume. Consequently,

the flux of momentum density is actually S/c2.

It is a historical misfortune that the same notation be currently used for
spin and for the Poynting vector.

6.5 Motion of a Charged Particle

§ 6.14 We have seen the motion of a charged particle in § 1.39. The action

used was (1.103). Let us rewrite it in the form

S = − mc

∫
ds− e

c

∫
AαU

αds. (6.63)

We can use the same trick which has led to Eq.(1.91) to isolate the time

variable — use Eq.(1.65), ds = cdt/γ — and the Lagrangian. It is necessary

to take into account also Eqs.(1.68) and (1.74),

U = γ (1, ~v/c) ; A =
(
φ, ~A

)
,
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to arrive at

L = − mc2

√
1− v2

c2
+ e

c
~A · ~v − eφ. (6.64)

Exercise 6.4 Fill in the details to get Eq.(6.64) from Eq.(6.63). �

The momentum canonically conjugate to the position variable ~x is now

~P =
∂L

∂~v
= γm~v + e

c
~A = ~p+ e

c
~A, (6.65)

where ~p is the free-particle momentum (1.93). This modification of the free

momentum to the real conjugate momentum in the presence of interaction,

~p ⇒ ~p+ e
c
~A (6.66)

seems to have been, historically, the first version of the so-called minimal

coupling rule.

§ 6.15 The Hamiltonian is

H = ~v · ∂L
∂~v
− L = γmc2 + eφ. (6.67)

Exercise 6.5 Again, fill in the details to get this expression. �

In consequence, the complete minimal coupling rule says: in order to take

the electromagnetic interaction of a particle into account, simply add e
c
~A to

its free momentum and eφ to its free energy.

§ 6.16 The covariant version (1.104) of the Lorentz force law

d

ds
pα = e

c
Fα

β U
β

can be decomposed into three space- and one time- components. Recall (i)

the definition (1.100) of the four-momentum, p = mcU = γ(mc,mv); (ii)

that F i0 = Ei and F ij = εijkH
k. Then, again using Eqs.(1.68) and (1.74),

as well as Eq.(1.65) under the form d
ds

= γ
c
d
dt

, we find
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the Lorentz force law proper,

~̇p =
d

dt
[mγ~v] = e ~E +

e

c
~v × ~H (6.68)

and the energy time variation,

dE
dt

=
d

dt
γmc2 = e ~E · ~v. (6.69)

Notice that the particle energy remains constant in time if the field is purely

magnetic.

Exercise 6.6 Verify that dE
dt = ~v · d~pdt . This is always valid. Here, it turns up trivially. �

§ 6.17 Constant and uniform fields An electromagnetic field is said to

be constant when it does not change with time. In that case, the potentials

φ and ~A depend only on the space position ~x. Or, in wider generality: some

gauge can be chosen in which that happens – this is enough. In that case,

the second of Maxwell’s equations, (6.2), keeps the form div ~H = 0 but the

first (6.1) reduces to rot ~E = 0. This means that we still have ~H = rot ~A,

but now ~E is a pure gradient. Equation (6.36) gives

~E = − grad φ. (6.70)

Here the only possible gauge addition to φ is a constant, in principle arbitrary.

In most cases we fix the value of φ at some point (frequently, φ(~x)→ 0 when

~x → ∞). Once this is done, the scalar potential is uniquely defined. The

same is not true of the vector potential: it remains defined only up to a

gradient of an arbitrary function of ~x.

There is a specially simple particular case: when ~E and ~H have also the

same values at every point ~x. In that case the electromagnetic field is said

to be uniform. When ~E is a constant vector, then its relation to φ can be

reversed:

φ = − ~E · ~x. (6.71)

Exercise 6.7 Find (6.70) from (6.71), recalling that the i-th component of the gradient

of a scalar product is given by

[grad (~a ·~b)]i = ∂i(ajbj).

�
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And if ~H is a constant vector, then its relation to ~A can be reversed:

~A = 1
2
~H × ~x. (6.72)

Exercise 6.8 Verify that (6.72) leads indeed to ~H = rot ~A, if H is a constant vector.

Use

[rot (~a×~b)]k = εkij∂i(~a×~b)j = εkij∂i(εjrsarbs) = εkijεjrs∂i(arbs),

and then one of the contractions of Exercise 1.7. �

The next two paragraphs show two rather unrealistic exercises, intended
to fix some ideas about the probing of fields by particles. They examine
the motions of a charged particle in uniform constant electric and magnetic
fields, forgetting the current produced by those very motions.

§ 6.18 Motion in a uniform constant electric field In a uniform con-

stant electric field, the Lorentz force law (6.68) reduces to

~̇p = e ~E. (6.73)

As ~E is fixed both in time and space, it defines a preferred direction. Let us

choose the cartesian coordinates axes in such a way that ~E stands along the

Ox direction. A charged particle will have a motion governed by

ṗx = eE ; ṗy = 0 ; ṗz = 0

∴ px(t) = px(0) + eEt ; py(t) = py(0) ; pz(t) = pz(0).

Suppose the charged particle has initially only one momentum component,

along Oy. In that case px(0) = 0, py(0) = p0, pz(0) = 0, and

px(t) = eEt ; py(t) = p0 ; pz(t) = 0.

To find the velocity it is better to use Eq.(1.96),

~v =
~pc2

E
,

with the energy E given in the present case by

E =
√
m2c4 + ~p2c2 =

√
m2c4 + p2

0c
2 + (eEct)2 =

√
E2

0 + (eEt)2c2 ,
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where

E0 =
√
m2c4 + p2

0c
2

is the particle energy at start. Then,

vx =
dx

dt
=
pxc

2

E
=

eEtc2√
E2

0 + (eEct)2
;

vy =
dy

dt
=
pyc

2

E
=

p0c
2√

E2
0 + (eEct)2

.

As pz(t) = 0, the motion will take place on the plane xy. The integrations

give

x(t) =

√(
E0

eE

)2

+ c2t2 ; y(t) =
p0c

eE
arcsinh

eEct

E0

. (6.74)

The choice of initial conditions (x(0) = E0
eE

, y(0) = 0) has been made so

as to make simpler to get the equation of the trajectory, which is found by

eliminating t:

x =
E0

eE
cosh

eEy

p0c
. (6.75)

As cosh z ≈ 1 + 1
2
z2, the non-relativistic limit gives a parabola.

§ 6.19 Motion in a uniform constant magnetic field In this case, the

Lorentz force law (6.68) reduces to

~̇p =
e

c
~v × ~H. (6.76)

We have called attention below Eq.(6.69) to the fact that the energy remains

constant in time if the field is purely magnetic. It will be, consequently, very

convenient to use also here Eq.(1.96),

~p =
E~v
c2

.

The equation becomes
E
c2

d~v

dt
=
e

c
~v × ~H,

or
d~v

dt
=
ec

E
~v × ~H. (6.77)

150



It will be also convenient to introduce the notation

ω =
ecH

E
. (6.78)

If we now choose the axes so that ~H lies along Oz, the equations take the

forms

v̇x = ωvy ; v̇y = − ωvx ; v̇z = 0. (6.79)

A first integration gives, with convenient integration constants,

vx = v0 cosωt ; vy = − v0 sinωt ; vz = v0z = constant.

The absolute value of the velocity on plane xy is time-independent, as v2
0 =

v2
x + v2

y. The final solution is

x = x0 +
v0

ω
sinωt ; y = y0 +

v0

ω
cosωt ; z = z0 + v0zt. (6.80)

On the plane xy the particle performs a rotation of frequency ω and radius
v0
ω

around the point (x0, y0). Combined with the uniform motion along the

axis Oz, the trajectory is a helix whose axis lies along the direction of ~H. If

v0z = 0, of course, the motion will remain on plane xy. Notice further that

the motion only takes place when the particle is initially “injected” with

some velocity v0 6= 0.

6.6 Electrostatics and Magnetostatics

§ 6.20 Electrostatics In a particular frame, we may have non-uniform

but time-independent fields ~E or ~H. Let us begin with the case ~H = 0.

Maxwell’s equations reduce to

rot ~E = 0 (6.81)

div ~E = 4π ρ. (6.82)

The first equation again implies (6.70), ~E = − grad φ. Together with (6.82),

we have that necessarily

∆φ = − 4π ρ. (6.83)
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This is the Poisson equation. Recall that, in cartesian coordinates,

∆φ =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
. (6.84)

The sourceless case (ρ = 0) leads to the Laplace equation

∆φ = 0. (6.85)

This is probably the most important equation of Mathematical Physics. It

turns up in a wide variety of domains, from Music (a function φ satisfying

it is called a harmonic) to Topology. Given a set of boundary conditions, it

has a large number of elementary solutions (in the spherically symmetrical

case, “spherical harmonics”). As it is a linear equation, the general solution

is a superposition of those. This means that the space of solutions is a vector

space, for which the elementary solutions constitute a base.

The equation imposes some strict conditions on the solutions. For exam-

ple, the signs of the second derivatives cannot be all the same and, conse-

quently, they can have neither maxima nor minima.

Let us consider a point-like particle of charge e. Such a system has spher-

ical symmetry around the particle. We can fix the particle at the origin of

a spherical coordinate system. The field ~E created at a point (r, θ, ϕ) will

have an absolute value depending only on the distance to the origin, which

is r. Notice that the origin itself, the very site of the particle, is excluded.

The flux through a surface of fixed radius r will be∫
S=∂V

d~S · ~E = r2E

∫
dϕd(cos θ) = 4π r2E.

On the other hand, from the Gauss law (6.7), this must be 4π
∫
V
ρd3x = 4π e,

so that

E =
e

r2
.

As a vector field with no rotational [by Eq.(6.81)], ~E must then be given by

Coulomb’s law :
~E =

e

r3
~r . (6.86)

The potential will be

φ =
e

r
. (6.87)
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The origin has been excluded. The point-like charge at ~r = 0 can be intro-

duced as eδ3(~r). In fact, a detailed Fourier analysis shows that

∆
e

r
= − 4πeδ3(~r) . (6.88)

Because the equation is linear, the field created by a set of charges

(e1, e2, e3, ...) will be the sum of the fields created by the individual charges

ek. If the point at which the field is to be measured stands at a distance r1

of the charge e1, at a distance r2 of the charge e2, in short at a distance ri of

the charge ei, then

φ =
∑
i

ei
ri
. (6.89)

In the case of a continuum distribution of charges with density ρ, the solution

for the Poisson equation will be

φ =

∫
d3x

ρ

r(x)
. (6.90)

The charge in a volume element d3x will be ρd3x, and the variable r(x)

represents the distance between that volume element and the point at which

the field is to be measured.

We have discussed fields created by electrically-charged pointwise par-

ticles. We could have said: by electric monopoles. There is no magnetic

analogous to such fields, as there are no magnetic monopoles.

§ 6.21 Magnetostatics We may have ~E ≡ 0 in a particular frame. Max-

well’s equations reduce to

∂ ~H

∂t
= 0 (6.91)

div ~H = 0 (6.92)

c rot ~H = 4π ~j. (6.93)

We learn from the first equation above that ~E ≡ 0 implies that ~H is constant

in time. As there are no magnetic charges, the only possible source of a pure

magnetic field is a current ~j produced by electric charges in motion. The

system is not really static, but can be made to be stationary by a device:
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take the time average of all fields over a large lapse. We shall use the “hat”

notation Ĥ, Ê, etc for these averages. For example,

Ĥ = lim
T→∞

1

T

∫ T

0

H(t)dt .

Notice that the time average of a time derivative vanishes for any quantity

which remains finite. Thus,

d̂Ek

dt
=

1

T

∫ T

0

dEk

dt
dt =

Ek(T )− Ek(0)

T
→ 0

for T large enough.

It is better to take back the complete Maxwell’s equations. Once the

averages are taken, only remain

div Ĥ = 0 (6.94)

c rot Ĥ = 4π ĵ. (6.95)

We can then introduce an average potential vector such that

rot Â = Ĥ, (6.96)

which will consequently obey

c rot rot Â = c grad div Â− c ∆Â = 4π ĵ.

Exercise 6.9 Show that

rot rot ~V = grad div ~V −∆~V .

�

Now we choose the Coulomb gauge (6.42), div Â = 0 and remain with

∆Â = − 4π

c
ĵ. (6.97)

This is now the Poisson equation for each component of Â, and the solution

can be obtained by analogy with the electrostatic case. Equation (6.90) will

lead then to

Â =
4π

c

∫
d3x

ĵ

r
. (6.98)
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The magnetic field will be

Ĥ = rot Â =
4π

c
rot

∫
d3x

ĵ

r(x)
. (6.99)

Exercise 6.10 Show that, if f is a function,

rot (f ~V ) = f rot ~V + (grad f)× ~V .

�

The rot operator acts only on r, which represents the point at which the field

is to be measured. It can consequently be introduced into the integral. The

average current is integrated, and can be taken as constant. Thus, rot ĵ = 0

and rot
(

ĵ
r

)
= grad

(
1
r

)
× ĵ = ĵ× r

r3
. We thus arrive at

Ĥ =
4π

c

∫
d3x ĵ× r

r3
. (6.100)

This is the Biot-Savart law.

6.7 Electromagnetic Waves

§ 6.22 The wave equation Let us go back to the wave equation (6.41) in

the Lorenz gauge. We shall actually consider only the sourceless case,

Aα = 0 , (6.101)

and have in mind (for nomenclature, for example) the most important of

electromagnetic waves, light waves. The Lorenz condition does not entirely

fix the gauge. If we use the radiation gauge (6.42)

div ~A = 0 ; A0 = φ = 0, (6.102)

only the vector potential remains, and for it Eq.(6.101) can be written

∆ ~A− 1

c2

∂2 ~A

∂t2
= 0 . (6.103)
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What about the fields ~E and ~H ? Besides the inevitable ~H = rot ~A, we have

from (6.36) that

~E = − 1

c

∂ ~A

∂t
.

It is easy to see that both ~E and ~H satisfy that same equation. Thus, the

electromagnetic potential, the electric field and the magnetic field all obey

the same equation.

Exercise 6.11 Verify the statement above, by applying the operators rot and ∂
∂t to

(6.103). �

Furthermore, that equation is the same for each component of ~A, ~E and
~H. It is consequently enough to examine the equation as holding for one

component, as for a function f(~x, t):

1

c2

∂2f(~x, t)

∂t2
−∆f(~x, t) = 0 . (6.104)

§ 6.23 Plane waves A solution of the electromagnetic wave equation is said

to be a plane wave when the fields ( ~A, ~E, ~H) depend only on one of the space

coordinates: for example, when the function above is f(~x, t) = f(x, t). The

wave equation becomes

∂2f(x, t)

∂t2
− c2 ∂

2f(x, t)

∂x2
= 0 , (6.105)

which is the same as[
∂

∂t
− c ∂

∂x

] [
∂

∂t
+ c

∂

∂x

]
f(x, t) = 0 . (6.106)

It is convenient to make a change of coordinates so that each of the above

bracketed expression becomes a simple derivative. Such coordinates are

ξ = t− x

c
; ζ = t+

x

c
,

or

t = 1
2

(ζ + ξ) ; x
c

= 1
2

(ζ − ξ).

In that case,

∂

∂ξ
= 1

2

(
∂
∂t
− c ∂

∂x

)
; ∂

∂ζ
= 1

2

(
∂
∂t

+ c ∂
∂x

)
.
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The wave equation acquires the aspect

∂2f(ξ, ζ)

∂ξ∂ζ
= 0.

The solution has, consequently, the form

f(x, t) = f(ξ, ζ) = f1(ξ) + f2(ζ) = f1

(
t− x

c

)
+ f2

(
t+

x

c

)
, (6.107)

where the single-argument functions f1 and f1 are arbitrary. Let us examine

the meaning of this solution. Suppose first f2(ζ) = 0, so that f(x, t) =

f1(ξ) = f1

(
t− x

c

)
. Fix the plane x = constant: on that plane, the field

changes with time at each point. On the other hand, at fixed t, the field is

different for different values of x. Nevertheless, the field will have the same

value every time the variables t and x
c

satisfy the relation t− x
c

= a constant,

that is, when

x = K + ct.

If the field has a certain value at t = 0 at the point x, it will have that same

value after a time t at a point situated at a distance ct from x. Take that

value of the field: we can say that that value “propagates” along the axis

Ox with velocity c. We say, more simply, that the field propagates along the

axis Ox with the velocity of light. The solution f1

(
t− x

c

)
represents a plane

wave propagating with the velocity of light in the positive sense of Ox. The

same analysis leads to the conclusion that the solution f2

(
t+ x

c

)
represents

a plane wave propagating in the negative sense of Ox with the velocity of

light. The general solution is therefore a superposition of two plane waves,

one advancing along Ox, the other traveling in the inverse sense.

The condition for the radiation gauge (6.102) is here simply

∂Ax
∂x

= 0.

In this gauge, the component Ax is constant in space. The wave equation

says then that ∂2Ax
∂t2

= 0, or ∂Ax
∂t

= constant. This would say that the electric

field Ex = constant, not a wave. ~E can only have components orthogonal

to the direction of propagation. Furthermore, Ax = 0 if we are looking

for wave solutions. It follows that the electromagnetic potential is always
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perpendicular to the axis Ox, that is, to the direction of the plane wave

propagation.

Consider a plane wave progressing along Ox. All the field variables de-

pend only on
(
t− x

c

)
. From the first of relations

~E = − ∂ ~A

∂ct
and ~H = rot ~A

we obtain

~E = − 1

c

∂ ~A

∂ξ
. (6.108)

The second is

Hk = εk
ij ∂

∂xi
Aj(t− x/c) = εk

1j ∂

∂x
Aj(t− x/c) = − 1

c
εk

1j ∂

∂ξ
Aj(ξ)

∴ Hk = εk
1jEj(ξ) ∴ Hz = Ey ; Hy = − Ez ; Hx = 0 . (6.109)

These relations can be put together by using the unit vector along the direc-

tion of propagation, ~n = (1, 0, 0). Then we verify that

~H = ~n× ~E. (6.110)

In a plane wave, the electric and the magnetic fields are orthogonal to each

other and to the direction of propagation. These are transversal waves. We

see from (6.109) that ~E and ~H have the same absolute values.

The energy flux of a plane wave field will be given by the Poynting vector

(6.62)
~S =

c

4π
~E ×

(
~n× ~E

)
=

c

4π
E2~n =

c

4π
H2~n. (6.111)

The energy flux is carried by a plane wave along its direction of propagation.

The energy density (6.60) will be

W =
1

8π

(
~E2 + ~H2

)
=

1

4π
~E2 =

1

4π
~H2

so that
~S = c W~n. (6.112)

As said below Eq.(6.62) the momentum density is ~S/c2. For a plane wave,

this is W~n/c. Thus, for an electromagnetic plane wave, the relation between

the energy W and the momentum W/c is the same as that for particles

traveling at the velocity of light, Eq.(1.97).
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§ 6.24 Monochromatic plane waves Let us now consider solutions closer

to our simplest intuitive idea of wave: suppose the above field is a periodic

function of time. This means that all the quantities characterizing the field

— the components of ~A, ~E and ~H — involve time in the forms cos(ωt + α)

and/or sin(ωt + α). In that case, much can be said in a purely qualitative

discussion. The unique time multiplier ω will be the wave frequency. In

applications to Optics it appears as the light frequency. Now, light with a

single frequency means light with a single color, and for this reason such

waves are called monochromatic. For expressions of the form

f = a cosωt+ b sinωt (6.113)

the second time derivative will always satisfy ∂2f
∂t2

= − ω2f . The wave equa-

tion gives then, for the space part,

∆f +
ω2

c2
f = 0 . (6.114)

Take now a wave traveling along the Ox axis in the positive direction. We

have seen that in that case the wave will depend only on the variable ξ = t− x
c
.

To fix the ideas, lets us consider the quantity ~A. Instead of (6.113), we can

use
~A = ~A0e

−iωξ = ~A0e
−iω(t−x/c), (6.115)

with ~A0 a constant complex vector.

Exercise 6.12 Verify that (6.115) satisfies Eq.(6.114). �

Fields ~E and ~H will have analogous expressions. At fixed time and given an

initial value of the field, the wave comes back to that value at a distance x

= λ given by

λ =
2πc

ω
. (6.116)

This “length of one wave” is the wavelength. And, given the above-defined

unit vector ~n along the propagation direction, the wave vector ~k is defined as

~k =
ω

c
~n. (6.117)

Representation (6.115) can then be rewritten as

~A = ~A0 e
i(~k·~r−ωt). (6.118)
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The expression (~k · ~r − ωt) is the wave phase. We can actually introduce a

four-vector

k =
(ω
c
, ~k
)

=
ω

c
(1, ~n) (6.119)

which will be such that kαx
α = (ωt− ~k · ~r). We see that kα is a null vector,

or a light-like vector: kαk
α = 0. This comes also from the fact that

~A = ~A0 e
−ikαxα (6.120)

must be a solution of the wave equation. Taking all this into Eqs.(6.108,

6.110), we obtain
~E = ik ~A ; ~H = i~k × ~A. (6.121)

§ 6.25 Doppler effect The behavior of the 4-vector (6.119), when seen

from different reference frames, leads to an important effect. Suppose a wave

(such as a light beam) is emitted from a (source) frame KS with a 4-vector

k(S) = ωS
c

(1, ~n) towards another (receptor) frame KR in the direction of

~n. Suppose ~v is the velocity of the source, or of KS, which moves towards

KR along the axis 0x. The latter will see k(R) = ωR
c

(1, 1, 0, 0). As the

distance separating KS and KR, as well as the unit vector ~n, lie along 0x,

k(S) = ωS
c

(1, 1, 0, 0).

K
R

K S

vn

Figure 6.1: Scheme for the Doppler effect.

By the transformation laws for four-vectors,

k0
(S) = γ

[
k0

(R) −
v

c
k1

(R)

]
.

ωS
c

= γ
[ωR
c
− v

c

ωR
c

]
∴ ωS = γωR

[
1− v

c

]
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∴ ωR = ωS

√
1− v2/c2

1− v
c

= ωS

√
1 + v

c

1− v
c

To consider the case in which the source, instead of moving towards the

receptor, moves away from it (always along 0x), it is enough to invert the

sign of v above. We have thus the two opposite cases:

ωR = ωS

√
1 + v

c

1− v
c

> ωS (blue shift) .

and

ωR = ωS

√
1− v

c

1 + v
c

< ωS (red shift) .

The terminology, as usual, takes from Optics: a light ray emitted by an

approaching source is seen with its frequency displaced towards higher values

(bluer for visible light).
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Chapter 7

Dirac Fields

7.1 Dirac Equation

§ 7.1 The first attempts to extend Quantum Mechanics to the relativistic

case made use of the same conversion rules (3.27) and (3.28) through which

the Schrödinger equation had been found. In the relativistic case the mo-

mentum is given by Eq.(1.100) as a fourvector p = (E/c,p) such that pµp
µ

= E2
c2
− p · p = m2c2. The two rules can be put together into a covariant set

as

pµ ⇒ i~
∂

∂xµ
.

Notice the signs:

p0 =
H

c
⇒ i~

∂

∂x0
; x0 = x0 = ct ; pj ⇒ i~

∂

∂xj
= −i ~ ∂

∂xj
=

~
i
∇j .

There is, however, a problem: the relativistic Hamiltonian does not lend itself

to such a simple “translation”, since

H =
√
~p 2c2 +m2c4 ⇒

√
m2c4 − ~2c2~∇2 .

This is a non-local operator: once expanded, it requires the knowledge of

arbitrarily high–order derivatives of the wavefunction. One can think of

using H2 instead of H, and the result is the Klein–Gordon equation:

− ~2 ∂
2

∂t2
ψ(~x, t) = − ~2c2~∇2ψ(~x, t) +m2c4ψ(~x, t) . (7.1)
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As previously said, this equation is, in a certain sense, “compulsory”, as it

states that the field is an eigenstate of the Poincaré group invariant opera-

tor PµP
µ with eigenvalue m2c2. Every field corresponding to a particle of

mass m must satisfy this condition. Of course, once we use H2, we shall

be introducing negative energy solutions for a free system: there is no rea-

son to exclude H = −
√

p2c2 +m2c4. We have above (in our toy model of

Section 3.1) separated the fields into components of positive and negative

frequencies, ready to interpret the latter as related to antiparticles. This,

of course, because we now know the solution of the problem. At that time,

negative-energy solutions caused great discomfort and led Dirac to a quest

which led him, in the long run, to quite unexpected results.

Comment 7.1 Summing up, this problem led to

(i) the conversion of a non–local problem into a local one,

(ii) the discovery of antimatter, and

(iii) the uncovering of the wealth of statistics in Physics.

§ 7.2 He started by seeking a new way to “extract the square root” of the

operator H2. He looked for an equation in which squaring ∂
∂t

and ~∇ were not

necessary. In other words, he looked for a linear, first-order equation both in

t and ~x. He began with an equation for the square root√
~p2c2 +m2c4 = c

→
α ·

→
p + βmc2, (7.2)

where ~α = (α1, α2, α3) and β are constants to be found. Taking the square,

one arrives at the conditions

(a) α1
2 = α2

2 = α3
2 = β2 = 1;

(b) αk β + β αk = 0 for k = 1, 2, 3; (7.3)

(c) αiαj + αjαi = 0 for i, j = 1, 2, 3, but i 6= j.

These conditions cannot be met if αk and β are real or complex numbers.

They can be satisfied, however, if they are matrices, with the number “1”

replaced by the identity matrix I wherever it appears. In that case, as the
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equation corresponding to (7.2) is the matrix equation (the “Hamiltonian

form” of the Dirac equation)

Hψ(~x, t) = i~
∂

∂t
ψ(~x, t) =

~
i
c
→
α ·

→
∇ ψ(~x, t) + βmc2ψ(~x, t), (7.4)

the wavefunction will be necessarily a column-vector, on which the matrices

act. Notice that, once conditions (7.3) are satisfied, ψ will also obey the

Klein-Gordon equation which is, as said, mandatory. We must thus look at

(7.4) as an equation involving four matrices (complex, n × n for the time

being) and the n-vector ψ. As H should be hermitian, so should αk and β

be: α†k = αk, β
† = β. Take one of them (the reasoning which follows holds

for each one). Being hermitian, it has real eigenvalues and there exists a

similarity transformation which diagonalizes it. By condition (a) in (7.3),

these eigenvalues can be either + 1 or − 1. Furthermore, conditions (a) and

(b) say that

trαk = tr (β2αk) = tr (βαkβ) = −trαk → trαk = 0;

tr β = tr (βα2
k) = tr (αkβαk) = −tr β → tr β = 0.

The sum of the eigenvalues vanishes, so that there must be an equal number

of eigenvalues +1 and − 1. Consequently, the number of eigenvalues is even:

n is even. The first possibility would be n = 2, but there are not four 2× 2

matrices which are hermitian, independent and distinct from the identity.

There are only three [for example, the Pauli matrices (2.23)].

§ 7.3 The minimal possible value of n for which the αk’s and β can be

realized is 4. We shall make the choice

αi =

(
0 σi

σi 0

)
; β =

(
σ0 0

0 − σ0

)
, (7.5)

where the σi’s are the Pauli matrices, σ0 = I is the 2 × 2 identity matrix

and “0” is the 2× 2 matrix with all entries equal to zero.

Comment 7.2 Notice that the argument holds as long as four matrices are needed. If

m = 0, β disappears and three 2×2 matrices (say, again the Pauli matrices) suffice. In

this case the particle is described by a Weyl spinor, or Pauli spinor.
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§ 7.4 It is good to keep in mind that any other set of matrices obtained from

that one by similarity will also satisfy (7.3) and can be used equivalently.

Each such a set of matrices is called a “representation”. The above choice

will be called the “Dirac representation”. Equation (7.4) is now

i~
∂

∂t
ψ(~x, t) =

(
mc2 I ~

i
c
→
σ ·

→
∇

~
i
c
→
σ ·

→
∇ −mc2 I

)
ψ(~x, t), (7.6)

where ψ(~x, t) =


ψ1

ψ2

ψ3

ψ4

. The hermitian conjugate ψ† =
(
ψ∗1 ψ

∗
2 ψ
∗
3 ψ
∗
4

)
will obey the hermitian conjugate of the above equation,

− i~
∂

∂t
ψ†(~x, t) = ψ†(~x, t)

(
mc2 I − ~

i
c
→
σ ·

←
∇

− ~
i
c
→
σ ·

←
∇ −mc2 I

)
. (7.7)

Notice that, due to the order inversion inbuilt in hermitian conjugation,

(AB)† = B†A†, the gradient
←
∇ now “attacks” ψ† from its right side.

Let us now multiply the equation (7.6) for ψ on the left by ψ†, multiply

the equation (7.7) for ψ† on the right by ψ, and subtract the results. The

result is

i~
∂

∂t

[
ψ†(~x, t)ψ(~x, t)

]
=

=
~
i
c ψ†(~x, t)

(
0

→
σ ·(

←
∇ +

→
∇)

→
σ ·(

←
∇ +

→
∇) 0

)
ψ(~x, t), (7.8)

that is,

i~
∂

∂t

[
ψ†ψ

]
=

~
i
c div

[
ψ†
→
α ψ

]
. (7.9)

This expression is reminiscent of the continuity equation which, in non-

relativistic Quantum Mechanics, states the conservation of probability:

∂ρ

∂t
+ div

→
j= 0, (7.10)

where

ρ = ψ†ψ (7.11)
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is the density of probability and

jk = c ψ†αk ψ (7.12)

is the k-th component of the probability current. From this continuity equa-

tion (and Gauss theorem) we obtain

∂

∂t

∫
d3x ψ†(~x, t)ψ(~x, t) = 0. (7.13)

§ 7.5 Up to this point, all we have said is that the αk’s and β are hermitian

matrices with vanishing trace. But the above continuity equation should be

put into the covariant form ∂µ j
µ = 0 and this would require something else

of them:
→
α = (α1, α2, α3), up to this point only a notation, must actually be

such that ψ†ψ and c ψ†αkψ constitute a Lorentz four-vector: ρ must be the

temporal component and jk the space components. Furthermore, it suggests

that cαk be a velocity. This hint will be corroborated below.

§ 7.6 It is clear, above all, that the Dirac equation (7.4) must be covariant.

Before going into that, let us try to grasp something of the physical meaning

of the equation. We shall see later that it describes particles of spin 1
2
.

For that reason, we shall frequently take the liberty of referring to ψ as

the “electron wavefunction” and talk of the electron as if it were the only

particle in view. Let us examine the case of the electron at rest. As
→
p = 0,

the equation reduces to

i~
∂

∂t
ψ(~x, t) = βmc2ψ(~x, t). (7.14)

The de Broglie wavelength λ = ~/p is infinite and ψ must be uniform over

all the space, as ~p ψ = 0 ⇒
→
∇ ψ(~x, t) = 0. This is also coherent with the

interpretation of c
→
α as the velocity. Using the Dirac representation,

i~ ∂
∂t
−mc2 0 0 0

0 i~ ∂
∂t
−mc2 0 0

0 0 i~ ∂
∂t

+mc2 0

0 0 0 i~ ∂
∂t

+mc2




ψ1

ψ2

ψ3

ψ4

 = 0.

(7.15)
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There are four independent solutions,

ψ1 = e−
i
~mc

2t


1

0

0

0

 ; ψ2 = e−
i
~mc

2t


0

1

0

0

 ;

(7.16)

ψ3 = e+ i
~mc

2t


0

0

1

0

 ; ψ4 = e+ i
~mc

2t


0

0

0

1

 .

We have thus a first drawback: ψ3 and ψ4 are solutions with negative en-

ergy. In quantum theory they are interpreted as wavefunctions describing

antiparticles (positrons).

§ 7.7 The electron has an electric charge, and consequently couples to the

electromagnetic field. We shall introduce in (7.4) an electromagnetic field

through the minimal coupling prescription:

pµ ⇒ pµ −
e

c
Aµ, with pµ = i~

∂

∂xµ
.

The result is

i~
∂

∂t
ψ(~x, t) =

[
c~α ·

(
~p− e

c
~A
)

+ βmc2 + eφ
]
ψ(~x, t), (7.17)

where A0 = φ. Recall that an electric point–charge in an electromagnetic

field has the interaction energy HI = − e
c
~v · ~A + eφ, which appears above

under the form HI = − e
c
c~α · ~A + eφ. This validates the interpretation of

matrix c ~α as the velocity in this theory: c ~α will be the velocity operator.

7.2 Non-Relativistic Limit: Pauli Equation

§ 7.8 In order to examine the non-relativistic limit, we suppose the mass

term βmc2 to be much larger than the other energies involved. As the
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positive-energy and negative-energy components will have different behav-

ior, it will be convenient to introduce the two 2−component columns

L̃ =

(
ψ1

ψ2

)
; S̃ =

(
ψ3

ψ4

)
. (7.18)

Using ψ =

(
L̃

S̃

)
in (7.17),

i~
∂

∂t

(
L̃

S̃

)
=

(
[mc2 + eφ]I c

→
σ ·(

→
p − e

c

→
A)

c
→
σ ·(

→
p − e

c

→
A) [− mc2 + eφ]I

)(
L̃

S̃

)
(7.19)

or (
i~ ∂

∂t
L̃

i~ ∂
∂t
S̃

)
=

(
[mc2 + eφ]L̃+ c

→
σ ·(

→
p − e

c

→
A)S̃

c
→
σ ·(

→
p − e

c

→
A)L̃+ [− mc2 + eφ]S̃

)
(7.20)

Now: the larger part of the energy will be concentrated in mc2; then, the

strongest time–variation will be dominated by this term. This means that,

if we look for solutions of the form(
L̃

S̃

)
= e−

i
~mc

2t

(
L

S

)
, (7.21)

most of the time variation will be isolated in the exponential, and

(
L

S

)
will vary slowly with t. The equation then becomes

i~
∂

∂t

(
L

S

)
=

(
eφL+ c

→
σ ·(

→
p − e

c

→
A)S

c
→
σ ·(

→
p − e

c

→
A)L+ [eφ− 2mc2]S

)
. (7.22)

Consider the equation for S:

i~
∂

∂t
S = c

→
σ ·(

→
p − e

c

→
A)L+ [eφ− 2mc2]S. (7.23)

Let us proceed to still another approximation: as S vary slowly, we neglect

i~ ∂
∂t
S. As also eφ� 2mc2, we arrive at the expression

S ≈
→
σ ·(

→
p − e

c

→
A)

2mc
L. (7.24)
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We see that S (“small”) is indeed very small in comparison to L (“large”):

S/L is of the order v/c. The components ψ3 and ψ4 are for that reason called

the “small components” of the Dirac wavefunction, ψ1 and ψ2 being the

“large components”. Because it associates in this way two Pauli spinors, one

large and one small, the 4-component representation is called the “bispinor

representation”. Taking the above approximated S into the equation for

i~ ∂
∂t
L, we find

i~
∂

∂t
L =

[→
σ ·(

→
p − e

c

→
A)
→
σ ·(

→
p − e

c

→
A)

2m
+ eφ

]
L. (7.25)

This can be put into a more readable form by using the identity σi σj =

δij + i εijk σ
k, which leads to

(
→
σ · →a) (

→
σ · ~b) =

→
a · ~b+ i

→
σ ·
(→
a × ~b

)
. (7.26)

Let us first look at the vector–product term. As
→
p = ~

i

→
∇, then[

(
→
p − e

c

→
A)× (

→
p − e

c

→
A)
]
i
L = εi

jk

(
~
i
∂j −

e

c
Aj

)(
~
i
∂k −

e

c
Ak

)
L

= −~
i

e

c
εi
jk (∂jAk)L = −~

i

e

c
Bi L .

The magnetic field ~B (in vacuum, = our previous ~H) turns up. Adding now

the scalar–product term,[→
σ ·(

→
p − e

c

→
A)
] [→
σ ·(

→
p − e

c

→
A)
]

=
(→
p − e

c

→
A
)2

− e~
c

→
σ · ~B. (7.27)

The equation becomes the 2−component Pauli equation

i~
∂

∂t
L =


(→
p − e

c

→
A
)2

2m
− e~

2mc

→
σ · ~B + eφ

L, (7.28)

which describes a spin–1
2

electron: L = exp[ i~mc
2t]

(
ψ1

ψ2

)
. Under a rota-

tion, as shown in Exercise 2.7, it transforms as a member of the representation

j = 1
2
.
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7.3 Covariance

In the Hamiltonian form (7.4) of the Dirac equation, time and space play
distinct roles. To go into the so-called “covariant form”, we first define new
matrices, the celebrated Dirac’s “gamma matrices”, as

γ0 = β ; γi = βαi. (7.29)

Multiplying the equation by β
c

on the left, we find i~γµ ∂ψ
∂xµ

= mcψ, or

(i~γµ∂µ −mc)ψ(x) = (γµpµ −mc)ψ = 0. (7.30)

Of current use is Feynman’s “slash” notation: we write 6p = γµpµ, 6∂ = γµ∂µ,
and so on, and the above equation is written diversely as

(i~ 6∂ −mc)ψ = 0 (7.31)

or
(6p−mc)ψ = 0. (7.32)

In the presence of an electromagnetic field,

( 6p− e

c
6A−mc)ψ = 0, (7.33)

where, of course, 6A = γµAµ. In terms of the gamma matrices, conditions
(7.3) acquire a compact form,

γµγν + γνγµ = {γµ, γν} = 2 ηµν I. (7.34)

Comment 7.3 Rewrite conditions (7.3) in the equivalent form

(e) β2 = I ↔ γ0γ0 + γ0γ0 = 2 I

(f) αk γ0 + γ0 αk = 0 for k = 1, 2, 3; (7.35)

(g) αiαj + αjαi = 2 δij I for i, j = 1, 2, 3.

Multiply (g) by γ0 on both sides and use (f) to commute the αk’s with γ0 and obtain

γiγj + γjγi = − 2 δij I. (7.36)

Together with (e), this is just (7.34). By the way, (7.34) is the operation table of a

particular example of “Clifford algebra”.
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The right-hand side exhibits the Lorentz metric times the unit 4× 4 matrix
I. And, in the middle, there is a first: an anticommutator comes forth. For
i = 1, 2, 3 the matrix γi is antihermitian [because (γi)† = (βαi)† = (αi)†β† =
αiβ = − βαi = − γi], whereas γ0 (= β) remains hermitian. Other properties
are (γi)2 = − I and (γ0)2 = I. In the Dirac representation the γ’s have the
forms

γi =

(
0 σi

−σi 0

)
; γ0 =

(
I 0
0 −I

)
. (7.37)

This is also called the “Pauli—Dirac representation” of the gamma matrices.
As we have emphasized, any other set of matrices γµ obtained from those by a
similarity transformation is equally acceptable. As a rule, for each particular
problem there is a special representation which is the best suited. We shall
see later many other matrices of interest, such as those representing change
of parity and charge conjugation. They are obtained from the γ’s, and differ
from one representation to the other. The details are of purely technical
interest and the subject goes under the nickname “gammalogy”. Instead of
examining the many possible cases, we shall here concentrate in the Dirac
representation.

Comment 7.4 The Dirac equation becomes real in the “Majorana representation”. The

solutions are then superpositions of real functions. The γ’s are given by γµMajorana =

UγµDiracU
−1, with U = U−1 = 1√

2

(
I σ2

σ2 −I

)
.

Comment 7.5 The “chiral representation” is of interest in approaching neutrinos and

the violation of CP invariance: γµchiral = UγµDiracU
−1, with U = 1√

2

(
I −I
I I

)
.

Notice (6 p)2 = γµpµγ
νpν = 1

2
{γµ, γν}pµpν = ηµνpµpν I = pµpµ I (the

identity matrix I is frequently left unwritten in standard notation). It follows
that the Dirac equation can be seen as coming from a factorization of the
Klein-Gordon equation:

(pµpµ −m2c2)ψ = [γµpµ +mc][γνpν −mc]ψ = 0. (7.38)

This comes, of course, from the conditions (7.3) or (7.34), which have been
imposed just to attain this objective. It follows also that a solution of the
Dirac equation is a solution of the Klein-Gordon equation though, of course,
the Klein-Gordon equation can have solutions which do not satisfy the Dirac
equation.
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Let us now examine the Lorentz covariance of (7.30). Recall that, in order

to start talking about invariance, covariance, etc, the field ψ(x) = ψ(
→
x, t)

must belong to (the carrier space of) a linear representation of the Lorentz
group, so that a matrix U(Λ) must exist such that the field ψ′(x′), seen in
another frame (that frame in which xα

′
= Λα′

β x
β, pα

′
= Λα′

β p
β, etc) is

related to ψ(x) by ψ′(x′) = U(Λ)ψ(x). What we shall do is to determine
U(Λ) so as to ensure the covariance of the equation. In other words, we shall
find the representation to which ψ(x) belongs.

Multiplying the equation on the left by U(Λ) and substituting ψ(x) =
U(Λ)−1 ψ′(x′), we arrive at[

U(Λ) γαpα U(Λ)−1 −mc
]
ψ′(x′) = 0.

In order to identify this with
[
γα
′
pα′ −mc

]
ψ′(x′) = 0, it will be necessary

that
U(Λ) γα U(Λ)−1 = γα

′
Λα′

α, (7.39)

or
γβ
′
= Λβ′

α U(Λ) γα U(Λ)−1. (7.40)

This means that the set {γα} must constitute a 4-vector of matrices, and that
U(Λ) acts on the space of such matrices, as the representative of Λ. Notice
however that, as the Minkowski metric tensor is invariant under Lorentz
transformations,

ηab = Λc
a Λd

b ηcd, (7.41)

if we take into account the relation (7.34) between the gamma matrices and
the spacetime metric, we conclude that γβ does not change under such trans-
formation either. In other words, like Eq. (7.41) for ηab, the transformation
(7.40) must actually be written without the “primes”:

γβ = Λβ
α U(Λ) γα U(Λ)−1. (7.42)

In fact, the meaning of Eq. (7.39) is that the Lorentz transformation in
the spinor indices of γα is equivalent to the inverse Lorentz transforma-
tion in the 4-vector index of γα. The “total” Lorentz transformation of γα,
therefore, as given by Eq. (7.42), implies that γα is invariant under Lorentz
transformations.

For later convenience we shall write the transformation equation in the
form

ψ′(x′) = U(Λ)ψ(x) = e−
i
4
ωαβσαβψ(x), (7.43)

and look for matrices σαβ apt to do the job. The ωαβ’s are the Lorentz
group parameters of the transformation Λ. We are here paying tribute to a
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notation which became standard for historical reasons. The generators will
actually turn out to be 1

2
σαβ. And the double index leads to double counting,

rendering necessary an extra 1
2

factor. The factor 1
4

in the exponent owes
its origin to these two 1

2
factors. Now, for the specific case of the vector

representation,

U(Λ) = exp

[
− i

2
ωαβMαβ

]
, (7.44)

where the matrix representative of the Lorentz group generators in the vector
representation is

(Mαβ)µλ = − (Mβα)µλ = − (Mαβ)λ
µ = i(ηαλδ

µ
β − ηβλδ

µ
α). (7.45)

For an infinitesimal transformation, the group element is

Λµ
λ ≈

[
I − i

2
δωαβMαβ

]µ
λ = δµλ − i

2
δωαβ(Mαβ)µλ = δµλ − δω

µ
λ. (7.46)

The right-hand side of (7.39) will then be

γβ
′
Λβ′

ε ≈ γε − i
2
δωαβ(Mαβ)εβ′γ

β′ .

On the other hand, for the spinor representation,

U(Λ) ≈ I − i
4
δωαβσαβ,

and, to the first order, we find for the left-hand side of (7.39):

UγµU−1 ≈ γµ − i
4
δωαβ[σαβ, γ

µ].

It is consequently necessary that

[1
2
σαβ, γ

ε] = (Mαβ)εδ γ
δ. (7.47)

Clearly, σαβ must be antisymmetric in the two indices, and the first idea
coming to the mind does work: the matrices

σαβ = i
2

(γαγβ − γβγα) = i
2

[γα, γβ] (7.48)

satisfy condition (7.47). In effect:

1. Separating the product γαγβ into its symmetric and antisymmetric
parts, γαγβ = 1

2
{γα, γβ}+ 1

2
[γα, γβ], we arrive at the useful identity

γαγβ = ηαβ − i σαβ. (7.49)
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2. From this, [σαβ, γε] = i[γαγβ, γε].

3. The result follows then from using (7.34) twice:

[σαβ, γε] = i(γαγβγε − γεγαγβ)

= i(−γαγεγβ + 2γαηβε + γαγεγβ − 2γβηαε)

= 2i(γαηβε − γβηαε).

More than that, the σαβ’s are such that

[1
2
σαβ,

1
2
σγδ] = i (ηβγ

1
2
σαδ − ηαγ 1

2
σβδ + ηαδ

1
2
σβγ − ηβδ 1

2
σαγ), (7.50)

which shows that 1
2
σαβ is a Lorentz generator. As each matrix Mαβ, each

matrix 1
2
σαβ is a generator of a representation of the Lie algebra of the

Lorentz group. The Mαβ’s generate the vector representation, the 1
2
σαβ’s

generate the bispinor representation. Expression (7.47) is the infinitesimal
version of (7.39). It states again that the gamma’s constitute a 4–vector.
Thus, covariance of the Dirac equation requires that the Dirac field ψ(x)
belong to the bispinor representation U(Λ) generated by the above 1

2
σαβ’s.

The form of the multiplication table (7.50) is general: any set of Lorentz
generators will satisfy it. It characterizes the Lie algebra of the Lorentz group.
It is clear, however, that the particular form of the matrices σαβ depend on
the “representation” we are using for the matrices γ. In the Pauli-Dirac
“representation” we are using, the σαβ’s are particularly simple:

σij =

(
εijk σk 0

0 εijk σk

)
; σ0i = i αi =

(
0 iσi

iσi 0

)
. (7.51)

Notice that U(Λ) is not, in general, unitary. From the hermiticity properties
of the γ’s,

(γi)† = − γi and (γ0)† = γ0, (7.52)

we get
(σij)

† = σij and (σ0j)
† = −σ0j. (7.53)

Consequently, in this “representation”, U(Λ) will be unitary for the rotations,
but not for the boosts.

Comment 7.6 Actually, there can be no unitary representation for all the members of

the Lorentz group with finite matrices. This comes from a general result from the theory

of groups: a non-compact group has no finite unitary representations.
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A useful property comes from (7.52): sandwiching a gamma matrix be-
tween two γ0 yields the hermitian conjugate, a property that propagates to
the σαβ:

γ0γαγ0 = γα† → γ0σαβγ
0 = σ†αβ . (7.54)

Applying the latter order by order in the expansion of U, a result of interest
in future calculations comes out:

U−1(Λ) = γ0U
†(Λ)γ0 . (7.55)

Before finishing this section, let us consider the specially important ex-
amples of Lorentz transformations which are rotations. Take the particular
case of a rotation of an angle φ around the axis Oz, generated by

Jz = J3 = J12 = 1
2
σ12 = 1

2

(
σ3 0
0 σ3

)
. (7.56)

In this case,

ψ′(x′) =

(
L̃′(x′)

S̃ ′(x′)

)
= e−

i
2
φσ12

(
L̃(x)

S̃(x)

)
. (7.57)

Given the (diagonal) form of σ12, the transformation will act separately on
L̃(x) and S̃(x), and for each one we shall have the behavior of a Pauli spinor

under rotations. The expression for the rotation of an angle
→
α acting on a

Pauli spinor χ(x) is

χ′(x′) = e−i
→
α ·
→
J χ(x) = e−

i
2

→
α ·→σχ(x) (7.58)

=

[
cos
| →α |

2
− i

→
α · →σ
| →α |

sin
| →α |

2

]
χ(x). (7.59)

For the case of an angle ϕ around the axis Oz,

χ′(x′) =
[
cos

ϕ

2
− i σ3 sin

ϕ

2

]
χ(x). (7.60)

A complete rotation in configuration space, ϕ = 2π leads to χ′(x′) = −χ(x).
A double rotation (ϕ = 4π) will be necessary to bring the wavefunction back
to its initial value. Both L̃(x) and S̃(x) in (7.57) are Pauli spinors. We shall
see later that the presence of two spinors comes from the fact (mentioned
previously) that, in a relativistic theory, particles and antiparticles come up
in a joint venture.

The probability density is conserved and covariant. Indeed, from (7.11)
and (7.12), the current is

jµ(x) = c ψ†(x)γ0γµψ(x). (7.61)
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In another frame, it will be (using successively (7.55), (7.39) and (7.61))

j′µ(x′) = c ψ′†(x′)γ0γµψ′(x′) = c ψ†(x)U †γ0γµUψ(x)

= c ψ†(x)γ0γ0U †γ0γµUψ(x) = c ψ†(x)γ0U−1γµUψ(x)

= c ψ†(x)γ0Λµ
νγ

νψ(x) = c Λµ
νψ
†(x)γ0γνψ(x) = Λµ

νj
ν(x) .

That is, the density current transforms as it should — as a Lorentz 4-vector.
In consequence, the continuity equation

∂µj
µ(x) = 0 (7.62)

is invariant.

7.4 Lagrangian Formalism

The matrix γ0 (= γ0 in our convention) has, as it could be guessed from
its origin, a role rather different from the other γ matrices. We have seen
its relationship to hermitian conjugacy. It plays actually other special roles.
For example, the hermitian conjugate function ψ†(x) appears most of times
in the combination ψ†(x)γ0. This is so frequent that another definition of
“conjugate function” becomes convenient. We call

ψ(x) = ψ†(x)γ0 (7.63)

the “adjoint wavefunction”. The current (7.61) is then written

jµ(x) = c ψ(x)γµψ(x). (7.64)

The adjoint function changes under a Lorentz transformation according to

ψ
′
(x′) = ψ′†(x′)γ0 = [Uψ(x)]†γ0 = ψ(x)†U †γ0 = ψ(x)†γ0γ0U

†γ0,

so that
ψ
′
(x′) = ψ(x)U−1, (7.65)

where use has been made of Eq. (7.55).
Having introduced the adjoint function, it is easy to see now that the

Dirac equation (7.30) comes from the Lagrangian density

L = i
2
~c
[
ψ γµ ∂µψ − (∂µψ) γµ ψ

]
−mc2 ψ ψ, (7.66)

by variation with respect to ψ. Variation with respect to ψ leads to the
equation for the adjoint field,

i~(∂µψ) γµ + mc ψ = 0, (7.67)

176



also usually written in the form

ψ
[
i~
←
6∂ + mc

]
= 0, (7.68)

a parody of the equation for ψ, which is[
i~
→
6∂ − mc

]
ψ = 0. (7.69)

From the Lagrangian above it follows the canonical energy-momentum
tensor (4.51)

θµν = i
2
~c
[
ψ γµ ∂νψ − (∂νψ) γµ ψ

]
, (7.70)

and the current [for any charge, as given in (4.70)]

Jµ = c ψ γµ ψ . (7.71)

To obtain the spin density (4.59), we first get the Lorentz transformations

δψ(x) = − i
4
σαβ ψ(x)δωαβ; δψ(x) = i

4
ψ(x)σαβ δω

αβ. (7.72)

Then, we get

Sµαβ = −1
4
~c ψ(x)(γµσαβ + σαβγ

µ) ψ(x) = −1
4
~c ψ(x){γµ, σαβ} ψ(x) .

(7.73)
As the canonical energy-momentum tensor θµν is not symmetric, the spin
tensor is not separately conserved. What is conserved in this case is the
total angular momentum density

Jµαβ = Sµαβ + Lµαβ,

with
Lµαβ = xα θ

µ
β − xβ θµα

representing the orbital angular momentum density.

7.5 Parity

Another special role reserved to γ0 is related to the parity transformation.
To keep on with a notation which became usual, we shall use

Λ(P ) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (7.74)
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for the matrix representing the parity transformation in cartesian coordinates
on spacetime, and P = U(Λ(P )) for its representative acting on bispinors.
Repeating what has been done to impose Lorentz covariance on the Dirac
equation, if we define

ψ′(x′) = Pψ(x),

we arrive at the same condition (7.39) for U(Λ(P )):

P γα P−1 = γβ
′
Λ

(P )
β′

α. (7.75)

Comment 7.7 From the signs in (7.74), γβ
′
Λ
(P )
β′

α = γ0δα0 − γiδαi = (γ0)†δα0 + (γi)†δαi =

(γα)†. Use then the first equality in (7.54) to find the solution below.

The solution is any matrix of the form

P = eiϕ γ0, (7.76)

with ϕ an arbitrary phase. Notice that P is unitary, and satisfies an equation
analogous to (7.55), that is

P−1 = γ0 P
†γ0. (7.77)

Thus, in spinor space, the parity transformation is represented by

ψ′(x′) = P ψ(x) = ψ′(− →x, t) = eiϕ γ0ψ(x). (7.78)

This is a first example of a property which turns up frequently: operators
acting on the Dirac bispinors are represented by complex 4× 4 matrices (we
shall see some exceptions later). These will be linear combinations of any
set of complex 4 × 4 matrices forming a basis for their algebra (recall: an
algebra is a vector space on which a binary internal operation — here the
matrix product — is defined; and a basis for a vector space of dimension d
is any set of d members which are linearly independent).

Actually, any 4 × 4 matrix may be expanded on a basis of 16 matrices.
The algebra generated by the γ matrices — which is an example of the so
called Clifford algebra — is the complete algebra of these 4× 4 matrices. To
see that, we need to introduce the notation

γ5 ≡ γ5 = i γ0γ1γ2γ3 =
i

4!
εαβγδ γ

αγβγγγδ. (7.79)
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In the Pauli-Dirac representation, γ5 is given by

γ5 = γ5 =

(
0 I
I 0

)
. (7.80)

Some of its properties are
{γ5, γα} = 0, (7.81)

and
[γ5, σαβ] = 0. (7.82)

This last property propagates from the spinor generators to the whole rep-
resentation U(Λ):

[γ5, U(Λ)] = 0. (7.83)

Notice that (7.81) says that γ5 inverts parity:

P γ5 = − γ5 P . (7.84)

This means that, if ψ is a state with definite parity, say Pψ = +ψ, then γ5ψ
will have opposite eigenvalue: Pγ5ψ = −γ5ψ.

It can then be shown that the following 16 matrices form a basis for the
4× 4 matrices:

ΓS = I (7.85)

ΓVµ = γµ (7.86)

ΓTµν = σµν (7.87)

ΓAµ = γ5 γµ (7.88)

ΓP = γ5. (7.89)

7.6 Charge Conjugation

As we have said and repeated, the description of the electron by the wavefunc-
tion (or field) ψ(x) cannot be dissociated from its antiparticle, the positron.
If we take a certain positive-energy spinor to describe the electron, the small
components will describe a negative-energy “piece” of it. This leads to a
difficulty in the sign of the total field energy, which is solved by the adop-
tion of the anticommutative quantization rules. These lead to well-defined
expressions for the energy and the charge. The positrons appear as particles
with positive energy, but charges opposite to those of the electron. Thus, in
the presence of an electromagnetic field, the electron satisfies

[i ~ γµ∂µ −
e

c
γµAµ −mc]ψ(x) = 0, (7.90)
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whereas the positron will satisfy

[i ~ γµ∂µ +
e

c
γµAµ −mc]ψc(x) = 0. (7.91)

Notice that in everything we have done up to now the charge sign has played
no role. We could exchange the above equation, ascribing the first to the
positron and the second to the electron. The sign of the charge is conven-
tional — only the relative sign is meaningful. What we are going to show
is the existence of a correspondence which, to each solution of one of them,
provides a solution of the other. To each electron corresponds a particle
which differs from it only by the sign of the charge. The operation C describ-
ing this correspondence is called charge conjugation. It gives the positron
wavefunction ψc(x) from the electron wavefunction ψ(x), and vice-versa:

ψc(x) = C ψ(x).

It is, like parity, an involution: C2 = I. This operation is not given by a
simple action of a matrix on ψ(x): there is no 4× 4 matrix leading one into
the other solution of the two equations above. Notice that we want only to
change the relative sign between the kinetic term and the charge term. The
complex conjugate of (7.90) is[

i γµ∗(~ ∂µ − i
e

c
Aµ) +mc

]
ψ∗(x) = 0 . (7.92)

To arrive at a solution of (7.91), we should find a matrix taking γµ∗ into
(− γµ). It is traditional to write such a matrix in the form Cγ0:

(Cγ0)(γµ∗)(Cγ0)−1 = − γµ .

If this matrix exists, then

ψc ≡ C ψ = Cγ0 ψ∗,

which would be the desired solution. Now, it so happens that the matrix
does exist, and its explicit form depends on the γ-representation used. Let
us proceed in the Pauli-Dirac representation, in which ψc ≡ C ψ = Cγ0 ψ∗ =
Cγ0 (γ0)T ψ T = C ψ T . Furthermore, as γ0γµ†γ0 = γµ, or γ0γµ∗γ0 = γµT , C
must have the effect C−1γµC = − γµT . As γ1 and γ3 are already equal to
minus their transposes, C must simply commute with them. As γ0 and γ2

are equal to their transposes, C must anticommute with them. Then, up to
a phase which will not interest us,

C = i γ2γ0.

Notice that C = − C−1 = − C† = − CT . Given now a solution ψ(x) of
(7.90), its charge conjugate is

ψc = i γ2 ψ∗ = i γ2 γ0 ψ T .
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7.7 Time Reversal and CPT
The Klein-Gordon equation, being quadratic in the time variable, is automat-
ically invariant under time reversal. Such an invariance reflects our intuitive
notion by which, if we look backwards at the motion picture of the evolution
of a particle without any energy dissipation, we would see it retrace, though
in inverse order, all the points prescribed by the same equation of motion,
with inverse initial velocity. In other words, the equation of motion itself
must be invariant under time reversal.

Let us take the Dirac equation in its Hamiltonian form (7.17) (with ~ =
c = 1), in the presence of an external electromagnetic field:

i
∂

∂t
ψ(~x, t) =

[→
α ·(−i

→
∇ −e

→
A) + βm+ eφ

]
ψ(~x, t). (7.93)

A look at the wave equations ~A = ~j and φ = ρ, will tell us that

→
A
′(~x,− t) = −

→
A (~x, t) and φ′(~x,− t) = φ(~x, t).

We shall look for an operation T implementing time reversal:

ψ′(~x,−t) = T ψ(~x, t) .

One can verify that a simple matrix operation will not do the work. The first
member of the above Dirac equation, as well as the usual treatment of the
Schrödinger equation, suggest the use of the complex-conjugate equation. In
effect, what we shall look for (and find) is a 4× 4 matrix T such that

ψ′(~x, t′ = −t) = T ψ(~x, t) = Tψ∗(~x, t) .

Taking the inverse of this expression into the complex conjugate of (7.93),
we get

i
∂

∂t′
ψ′(~x, t′) =

[
T
→
α
∗
T−1 · (i

→
∇′ + e

→
A′) + Tβ∗T−1m+ eφ′

]
ψ′(~x, t′) .

To obtain the Dirac equation with reversed time, T must commute with β
and α2, while anticommuting with α1 and α3. Up to another phase which
we shall not discuss,

T = − iα1α3 = iγ1γ3.

Thus,
T ψ(~x, t) = ψ′(~x,− t) = iγ1γ3ψ∗(~x, t).
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The time-reversal operation is anti-unitary, and was introduced by Wigner
(“Wigner time reversal”).

Let us now examine the successive application of the operations T , C and
P :

PCT ψ(~x, t) = PCiγ1γ3ψ∗(~x, t) = Piγ2[iγ1γ3ψ∗(~x, t)]∗,

or
ψPCT (x′) ≡ PCT ψ(~x, t) = ieiφγ5ψ(~x, t) .

What we have just seen is a particular case of a very general theorem of
the theory of relativistic fields, which says that every possible state for a
system of particles is also possible for a system with antiparticles, though
with reversed space and time. This CPT theorem states that CPT is an
invariance of any Lorentz covariant system which is causal and local.
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Chapter 8

Gauge Fields

8.1 Introduction

The study of free fields is essential to introduce the basic notions and methods
but has, by itself, small physical content. The attributes of a system can
only be discovered by studying its responses to exterior influences. The
characteristics of the system supposedly described by the field only can be
found and measured via interactions with other systems. In the spirit of
field theory, according to which everything must be ultimately described
through the mediation of fields, that would mean interactions with other
fields. Furthermore, a free field can, due to the symmetries imposed, require
the presence of another. A complex scalar field, for instance, has a charge
that, if interpreted as the electric charge, calls for (or is the cause of, or still
is the source of) another field, the electromagnetic field.

The problem of how to introduce interactions in a relativistic theory has
been the object of long discussions. The old notion of potential presented
great difficulties. There are still problems in the classical theory (with a finite
number of degrees of freedom!). We shall not be concerned with those ques-
tions. In field theory, the simplest, straightest way to introduce interaction
in a coherent way is provided by the Lagrangian formalism. What is done
in practice is to write a total Lagrangian formed by two pieces. The first —
the kinematical part — is the sum of the free Lagrangians of all the fields
involved. The second has terms representing the interactions supposed to be
at work. This takes the general form

L = Lfree + Lint. (8.1)

It is then necessary to calculate the consequences and compare with experi-
ment. In a nutshell: trial and error! For the above referred to complex scalar

184



plus electromagnetism case, the total Lagrangian is (5.22):

L = [∂µ − iAµ]φ∗ [∂µ + iAµ]φ−m2φ∗φ− 1
4
FµνF

µν . (8.2)

This Lagrangian is the starting point of the electrodynamics of charged scalar
mesons (such as π± and K±). Actually, experiment provides an a priori
guideline, by establishing conservation laws for the system to be described.
Such laws reflect symmetries of the candidate Lagrangian. The above La-
grangian has, besides the Poincaré invariance, an invariance under the gauge
transformations

φ′(x) = eiα(x)φ(x) ; (8.3)

φ′∗(x) = e−iα(x)φ∗(x) ; (8.4)

A′µ = Aµ − ∂µα(x) . (8.5)

Basically, two criteria are used when looking for a Lagrangian: symmetry
and (if not redundant) simplicity. We select the simplest combination of fields
respecting the symmetries related to the conservation laws. The fields are
previously chosen as members of linear representations of the Lorentz group
and, to get Lint as a scalar, only their contractions are allowed. Quantum
theory adds other requirements, because not every Lint leads to well-defined
values for the ensuing calculated quantities. Many lead to infinite values for
quantities known to be finite. Actually all of them lead to infinities, but
there is a well-established procedure to make them finite (to “renormalize”
them). When this procedure fails, Lint is said to be “non-renormalizable” and
discarded. This requirement is extremely severe, and eliminates all but a few
field combinations. For example, amongst the many Lagrangians conceivable
to represent the interaction of a real scalar field with itself, such as

λφ3, λφ4, λφn, cos[αφ], eαφ, etc,

only λφ4 is entirely acceptable in 4−dimensional spacetime (λ and α are
“coupling constants”), as leading to a consistent quantum theory. All the
other lead to incurable infinities. Thus, the Lagrangian for a self–interacting
real scalar field must be

L = 1
2
∂µφ ∂

µφ− m2

2
φ2 − λ

4!
φ4 (8.6)

(the numerical factor 4! is merely conventional, but convenient in calcula-
tions). For other fields the same happens: almost all thinkable Lagrangians
lead to unacceptable quantum theories.
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A Dirac field in the presence of an electromagnetic field can be obtained
from the free Lagrangians by the minimal coupling prescription:

L = i
2

[
ψγµ{∂µ − i

e

c
Aµ}ψ − ({∂µ + i

e

c
Aµ}ψ)γµψ

]
−mψψ− 1

4
FµνF

µν , (8.7)

or

L = i
2

[
ψγµ∂µψ − (∂µψ)γµψ

]
−mψψ − 1

4
FµνF

µν +
e

c
ψγµAµψ . (8.8)

This is the starting point of electrodynamics proper. The interaction La-
grangian is

Lint =
e

c
ψγµψAµ = jµAµ . (8.9)

For charged self–interacting scalar mesons, the minimal coupling prescrip-
tion yields the Lagrangian

L = [∂µ − iAµ]φ∗ [∂µ + iAµ]φ−m2φ∗φ− λ
4!
|φ∗φ|2 − 1

4
FµνF

µν , (8.10)

which is the same as

L = ∂µφ
∗ ∂µφ−m2φ∗φ− λ

4!
|φ∗φ|2 − 1

4
FµνF

µν + AµAµφ
∗φ− JµAµ . (8.11)

The pion-nucleon coupling is the celebrated Yukawa interaction

Lint = gψγ5ψφ . (8.12)

The γ5 is necessary if we want that parity be preserved — recall that the
pion field is not a scalar, but a pseudo-scalar (at the time of its first proposal,
as not even the existence of the pion was known, the γ5 was “overlooked”).

The basic question is: supposing we know the symmetries of a given sys-
tem, is there a systematic procedure to obtain a Lagrangian? A positive
answer is given by gauge theories. Given a free Lagrangian and a symmetry
group, they teach us how to obtain the total Lagrangian, which is symmetric
(and renormalizable!). The procedure actually generalizes that used to intro-
duce the electromagnetic field in (8.8) and (8.10), which are Lagrangians of a
gauge theory. In both, Aµ represents the gauge potential. The difference, in
the case of more involved groups like SU(2), SU(3), SU(5), etc, comes essen-
tially from the non-commutativity of their transformations, which engenders
self-interactions of the gauge field. Given a symmetry group, we have be-
forehand to decide (by experimental observation) whether or not the charges
involved create a field. If they do not, the Lagrangian is the simplest scalar
formed from all the multiplets necessary to classify the particles involved.
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8.2 The Notion of Gauge Symmetry

Gauge theories involve a symmetry group (the gauge group) and a prescrip-
tion (the minimal coupling prescription) to introduce coupling (that is, inter-
actions) between fields in such a way that the symmetry is preserved around
each point of spacetime. They account for three of the four known funda-
mental interactions of Nature (gravitation, at least for the time being, stands
apart). Namely:

Electrodynamics. Describes the electromagnetic interaction of all physical
particles; the gauge group is U(1), and the gauge potentials represent
the photons; it is the theory showing the best agreement with experi-
mental data.

Weinberg–Salam Theory. It is a gauge theory for electromagnetic and
weak interactions; the group is SU(2) ⊗ U(1), and the gauge poten-
tials are given by Aµ, corresponding to the photon, and three massive
fields W+

µ , W−
µ and Z0

µ, corresponding to the experimentally detected
homonym particles; the symmetry is broken, in a way such that the
bosons W+

µ , W−
µ and Z0

µ acquire masses; it is not really a unified the-
ory, as it keeps two distinct, independent coupling constants; it has an
impressive experimental record.

Chromodynamics. It is a gauge theory for the 8-dimensional SU(3)-color
group, and supposed to describe the interactions between the quarks.
The gauge potentials are related to the gluons; favored by a good phe-
nomenological evidence, though not completely established. Neither
quarks nor gluons have been observed in free state. Despite great ef-
forts, nobody has as yet been able to explain this “color confinement”
within the theory.

Take, to fix the ideas, a scalar field endowed with supplementary degrees
of freedom (internal, alien to spacetime). If these degrees of freedom assume
N values, the field will actually be a set φ of N fields, φ = {φi}. The behavior
must be well-defined, that is, φ must belong to some representation of the
group, called the “gauge group”. For simplicity, one supposes that only
linear representations are at work. This means that each group element will
be represented by an N×N matrix U , and the corresponding transformation
will be given by

φi(x)→ φ′i(x) = Uij φj(x). (8.13)

Notice that the gauge transformation is a transformation at a fixed spacetime
point x. The number N depends on the representation, and i, j = 1, 2, . . . , N .
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The group element U will have the form

U(α) = exp[αaTa], (8.14)

where αa, with a = 1, 2, . . . , d = group dimension = number of generators}
is the set of group parameters, and each Ta is the matrix representing the
generator of transformations along αa in the representation to which φ be-
longs. In any representation, the representatives of the generators will satisfy
the same commutation rules

[Ta, Tb] = f cab Tc. (8.15)

The f cab’s are the structure constants of the group.
For an infinitesimal transformation, the parameters δαa are small enough

so that higher orders are negligible with respect to the first. In this case,

φ′i(x) = [exp(δαa T
a)]ij φj(x) ≈ (I + δαa T

a)ij φj(x), (8.16)

that is,
δ̄φi(x) ≡ φ′i(x)− φi(x) = (δαa T

a)ij φj(x). (8.17)

In matrix language,
δ̄φ(x) = δαa T

a φ(x). (8.18)

8.3 Global Transformations

As long as we suppose constant δαa, things are simple. Denoting by L = L[φ]
the lagrangian of the field φ, its invariance will be written as

δL =
∂L

∂φi(x)

δ̄φi(x)

δαa
+

∂L
∂∂µφi(x)

δ̄(∂µφi(x))

δαa
= 0. (8.19)

Taking the derivative of (8.17), we find

δ̄∂µφi = δαc (Tc)ij ∂µφj, (8.20)

so that
∂L
∂φi

(Tc)ij φj +
∂L
∂∂µφi

(Tc)ij ∂µφj = 0 (8.21)

for each generator Tc. Using the Lagrange derivative

δL
δφ

=
∂L
∂φ
− ∂µ

∂L
∂∂µφi

,
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this is the same as

δL
δφ

(Tc)ij φj +

(
∂µ

∂L
∂∂µφi

)
(Tc)ij φj +

∂L
∂∂µφi

(Tc)ij ∂µφj = 0,

or
δL
δφ

Tcφ+ ∂µ

[
∂L
∂∂µφ

Tcφ

]
= 0. (8.22)

The Noether current will be just

Jµc = − ∂L
∂∂µφi

δφi
δαc

= − ∂L
∂∂µφi

(Tc)ijφj = − ∂L
∂∂µφ

Tcφ, (8.23)

so that
δL
δφ

Tcφ = ∂µJ
µ
c . (8.24)

The conservation of current comes then directly from the equations of mo-
tion δL

δφ
= 0. Such transformations, with spacetime-independent parameters,

will be the same for all events and are consequently called global trans-
formations. In the representation of φ it is always possible (almost always:
the symmetry group must be semi–simple) to define an internal scalar prod-
uct φiφ

i which is invariant under the group transformations. The invariant
Lagrangian will then be

L[φ] = 1
2

[(∂µφi)
†(∂µφi)−m2 φ†iφ

i ]. (8.25)

8.4 Local Transformations

Suppose now that the parameters in (8.14) are event-dependent, that is,
functions of the point in spacetime. Under such local transformations the
Lagrangian is no more invariant. There is now a new term in δ̄(∂µφi): taking
again the derivative of (8.17), we obtain, instead of (8.20),

δ̄∂µφi(x) = δαc(x) (Tc)ij ∂µφj(x) + ∂µδα
c(x)(Tc)ij φj(x). (8.26)

The Lagrangian variation is now

δL = δαc
[
∂L
∂φ

Tcφ+
∂L
∂∂µφ

Tc∂µφ

]
+

∂L
∂∂µφ

Tcφ(∂µδα
c). (8.27)

The term inside the brackets is the variation by global transformations (8.21),
under which the Lagrangian is invariant. Thus, by (8.23),

δL = − Jµc (∂µδα
c). (8.28)
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All this is reminiscent of what we have seen in Section 5.2, when dis-
cussing the complex scalar fields. Also there we had found a breaking in the
Lagrangian invariance when the parameters became point–dependent. Terms
in the derivatives of the parameters broke the invariance. How did we fare in
that case? We have recalled the gauge indeterminacy of the electromagnetic
potential, and found that it was possible to use that freedom to compensate
the parameter derivative by a gauge transformation. This, of course, provided
the electromagnetic potential Aµ were present. We were forced to introduce
Aµ if we wanted to restore the invariance. There, we have done it through
the minimal coupling prescription, by which the derivative is modified. That
is what we shall do here: we shall define a new covariant derivative,

Dµφ = ∂µφ+ Aµφ, (8.29)

with the obvious difference that Aµ must, now, be a matrix

Aµ = Aaµ Ta. (8.30)

Consequently,

(Dµφ)i = ∂µφi + Aaµ (Ta)ijφj =: (Dµ)ijφj =: Dµφi, (8.31)

where we have profited to exhibit some usual notations. Let us calculate the
variation of this covariant derivative:

δ̄[Dµφi] = δ̄(∂µφi) + δ̄Aaµ (Ta)ijφj + Aaµ (Ta)ij δ̄φj = δαc(Tc)ij∂µφj

+ (∂µδα
c)(Tc)ijφj + δ̄Aaµ(Ta)ijφj + δαcAaµ(Ta)ij(Tc)jkφk.

Introducing again Dµφ instead of ∂µφ, subtracting the added term, using the
commutation rules and rearranging the terms, we arrive at

δ̄[Dµφi] = δαc(Tc)ijDµφj + [δ̄Acµ + ∂µδα
c − δαdf cdeAeµ](Tc)ikφk.

This variation will come back to the form (8.20),

δ̄(Dµφi) = δαc(Tc)ijDµφj, (8.32)

if the second term vanishes, that is, provided Aµ transforms according to

δ̄Acµ = −(∂µδα
c + f cedA

e
µδα

d) =: − Dµ(δαc). (8.33)

Notice that (8.32) attributes to the covariant derivative (as (8.20) gave to the
usual derivative) the same behavior the fields have under transformations.
That is where the name covariant derivative comes from. Under a global
transformation, the usual derivative is already automatically covariant.
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8.5 Local Noether Theorem

According to the minimal coupling prescription, the original Lagrangian
(8.25) has to be modified by the change

∂µφi → Dµφi
It then becomes

L′ ≡ L′[φ] = 1
2

[(Dµφi)†(Dµφi)−m2 φ†iφ
i ]. (8.34)

We are supposing a real φi. As we want (8.13) to be a unitary transformation,
the generator matrices must be anti-hermitian, T †a = − Ta (if we want to use
hermitian matrices for the generators Ta, it is necessary to add a factor i in
the exponent of (8.14)). In consequence,

(Dµφ)†i = ∂µφ
†
i − Aaµ φ

†
j (Ta)ji. (8.35)

Imposing (δL′/δφ†i ) = 0, the equation of motion comes out as

(DµDµφ)i +m2φi = 0. (8.36)

The Lagrangian variation will be, now,

δL′ = ∂L′

∂φi
δαc(Tc)ijφj +

∂L′

∂Dµφi
δαc(Tc)ij(Dµφ)j + hc ,

with “hc” meaning the “hermitian conjugate”. Equivalently,

δL′ = δαc
[
δL′

δφi
(Tc)ijφj +

(
D†µ

∂L′

∂Dµφ

)
i

(Tc)ijφj+(
∂L′

∂Dµφ

)
i

(Tc)ij(Dµφ)j

]
+ hc, (8.37)

where we have added the second term and subtracted it by absorption into the
Lagrange derivative (δL′/δφi). Writing now explicitly the covariant deriva-
tives, the last two terms give

∂µ

[
∂L′

∂Dµφi
(Tc)ijφj

]
− Aaµ

[
∂L′

∂Dµφ

]
i

(Ta)ij(Tc)jkφk

+Aaµ

[
∂L′

∂Dµφ

]
i

(Tc)ij(Ta)jkφk

= ∂µ

[
∂L′

∂Dµφ
Tcφ

]
− Aaµ

[
∂L′

∂Dµφ

]
[Ta, Tc]φ

= ∂µ

[
∂L′

∂Dµφ
(Tc)φ

]
− Aaµ

[
∂L′

∂Dµφ

]
f bacTbφ

= − (∂µJ
µ
c − f bacAaµJµb) ≡ − (∂µJ

µ
c + f bcaA

a
µJ

µ
b)

= −DµJ
µ
c,
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where

Jµc = − ∂L′

∂Dµφ
Tcφ (8.38)

(compare with (8.23)). The variation of the Lagrangian is then

δL′ = δαc
[
δL′

δφ
Tcφ−DµJµc

]
. (8.39)

For the solutions of the field equation, that is, for δL′/δφ = 0, the invariance
of the lagrangian gives, for each component in the algebra,

DµJµc = ∂µJ
µ
c + f bcaA

a
µJ

µ
b = 0. (8.40)

In terms of the matrices Jµ := JµcT
c and Aµ := AaµTa, the covariant

divergence becomes
DµJµ = ∂µJ

µ + [Aµ, J
µ]. (8.41)

This is the same expression found above, if we can use the cyclic property
(f bac = f cba = facb) of the structure constants, valid if the group is semi–
simple. In this case, the conservation law assumes the form

DµJµ = ∂µJ
µ + [Aµ, J

µ] = 0. (8.42)

This covariant derivative differs from that of (8.29). The covariant deriva-
tive of a quantity depends on how the quantity is represented: φ is a column
vector and there Dµ acts as a matrix on a column. The current Jµ is a ma-
trix, and Dµ acts on it through a commutator. We shall see that the same
happens to Aµ. The covariant derivative depends also on the spacetime in-
dices, in a way quite analogous to the usual differentials. In the case above
we have a divergence.

Equation (8.42) is not a real conservation law. The current is not con-
served (∂µJ

µ 6= 0), it has only vanishing covariant divergence. This is exactly
the concern of the second Noether theorem. It does not lead directly to a
conserved quantity. It is a constraint imposed on the current to ensure the
invariance of the modified Lagrangian.

The modified Lagrangian,

L′[φ] = L′[φi,Dµφj] (8.43)

will depend on Aaµ only through Dµφ. The current (8.38) can then take a
simpler form. From (8.31) for fixed values of a and µ,

(Ta)ijφj =
∂(Dµφ)i
∂Aaµ

, (8.44)

so that

Jµa = − ∂L′

∂Aaµ
. (8.45)
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8.6 Field Strength and Bianchi Identity

Unlike usual derivatives, covariant derivatives do not commute: it is easy to
check that

[Dµ,Dν ]φ = F a
µν Ta φ, (8.46)

where
F a

µν = ∂µA
a
ν − ∂νAaµ + fabcA

b
µA

c
ν . (8.47)

The matrix
Fµν = TaF

a
µν = ∂µAν − ∂νAµ + [Aµ, Aν ] (8.48)

is the field strength. If the group is abelian, fabc = 0, and the last term does
not exist. If, furthermore, the group has only one generator, the expression
above reduces to that holding for the electromagnetic field. Matrix (8.48),
thus, generalizes the electromagnetic field strength to the non-abelian case.

We can write (8.33) in matrix form:

δ̄Aµ = −∂µδα + [δα,Aµ], (8.49)

with δα = Taδα
a. It is then easy to find that

δ̄Fµν = [δα, Fµν ], (8.50)

which is the same as
δ̄F c

µν = δαaf cabF
b
µν . (8.51)

This is the infinitesimal form of

F ′µν = eα
a(x)TaFµνe

−αb(x)Tb . (8.52)

This means that F is covariant. We see that, in the abelian case, Fµν is
simply invariant. This is the case, in particular, of electromagnetism. In the
general case, Fµν behaves as a matrix — it is not invariant, but covariant.
On the other hand, (8.49) is the infinitesimal version of

A′µ = eα
aTaAµe

−αbTb + eα
aTa∂µe

−αbTb , (8.53)

which shows that Aµ is not strictly covariant. This is the expression for the
gauge transformation of Aµ in the general non-abelian case.

We have seen that the expression of the covariant derivative changes
in each case. Acting on a Lorentz scalar, which is furthermore a column
vector in internal space, it has the form (8.29). Acting on a Lorentz vector
which is furthermore a matrix in internal space, it can assume two forms,
corresponding to the divergence and the rotational in usual vector analysis.
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That corresponding to the divergence we have seen in (8.41). As to the
rotational, it has exactly the form given in (8.48): the field strength is the
covariant derivative of the potential. This generalizes the relation B = rotA
of electromagnetism. It is frequent to write symbolically

Fµν = DµAν , (8.54)

meaning by that just (8.48). The kind of derivative (divergence or rotational)
depends on the resultant indices (contracted or not), and the name covariant
derivative is used for both. This is a physicists’ practice, which actually
mixes up two quite distinct mathematical notions, that of exterior derivative
and that of coderivative (the derivative of the dual).

Gauge theories are very near to differential geometry, and the most ap-
propriate language to treat them is that of differential forms. Well, also a
tensor like Fµν has its covariant derivatives, with and without contraction.
One of them is

DρFµν = Ta [∂ρF
a
µν + fabcA

b
ρF

c
µν ] = ∂ρFµν + [Aρ, Fµν ]. (8.55)

From the very definition of Fµν we obtain, by using the Jacobi identity

[Ta, [Tb, Tc]] + [Tc, [Ta, Tb]] + [Tb, [Tc, Ta]] = 0, (8.56)

the following identity:

DρFµν +DνFρµ +DµFνρ = 0. (8.57)

The indices are exchanged cyclically from term to term. This Bianchi iden-
tity generalizes to the non-abelian case the so-called first pair of Maxwell’s
equations. Recall that those equations do not follow from the electromagnetic
Lagrangian, and in this sense are not dynamical.

8.7 Gauge Lagrangian and Field Equation

Concerning the Lagrangian for the gauge field itself, it is possible to show
that, in order to be gauge–invariant, it can depend on the potential Aµ only
through the field strength Fµν . Its simplest expression is (formally) the same
as that of the electromagnetism:

LG = −1
4
F a

µνFa
µν . (8.58)

We could think of using the dual of Fµν , defined as

F̃a
µν

= 1
2
εµνρσFaρσ. (8.59)
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It so happens that F̃a
µν
F̃ a

µν is proportional to the above LG, so that it adds
nothing to dynamics. And also that Fa

µνF̃ a
µν is an exact differential (the

divergence of a certain current), which does not contribute to the equations
of motion. Actually,

C =

∫
d4xFa

µνF̃ a
µν (8.60)

contains information on the topology involved. It is an invariant number,
which allows to classify the gauge fields into families. Its values are topolog-
ical numbers, analogous to that seen for the sine-Gordon field of section 4.4.

The total Lagrangian of the system will then be (8.58) plus (8.43):

L = L′[φi,Dµφj]− 1
4
F a

µνFa
µν . (8.61)

The corresponding Euler-Lagrange equation is

∂µF
aµν + fabcA

b
µF

cµν = Jaν , (8.62)

where use has been made of (8.45), and of the cyclic property already men-
tioned,

fabc = fcab = fbca, (8.63)

valid for semisimple groups. On such groups (which, by definition, have no
invariant abelian subgroup), there exists a metric, the Killing-Cartan metric

γab = f cadf
d
bc , (8.64)

which can be used to rise and lower internal indices. We have used it implic-
itly every time some lower internal index appeared as in (8.58). A Lie group
is a differential manifold, and γab is a metric on that group manifold, which
has the special property of being invariant under the group transformations.
In this sense, all those expressions are scalar products in internal space, in-
variant under the group transformations. The Lagrangian, an invariant, can
only have indices contracted in this way.

The field equations (8.62) are called the Yang-Mills equations. They gov-
ern the field mediating all known interaction–mediating fields, if we exclude
the case of gravitation. They can be written in matrix form as

∂µF
µν + [Aµ, F

µν ] = Jν . (8.65)

The left-hand side is the second form of the covariant derivative of F µν , to
which we have alluded above. This equation generalizes (the second pair of)
Maxwell’s equations to the non-abelian case with several internal degrees of
freedom. If, by analogy with (8.45), we define

jνa = − ∂LG
∂Aaν

(8.66)
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as the current of the gauge field itself, we shall have

jνa = AbµfabcF
cνµ. (8.67)

In matrix form, it is

jν = T ajνa = [Aµ, F
νµ] = −[Aµ, F

µν ]. (8.68)

The Yang-Mills equations become

∂µF
µν = jν + Jν , (8.69)

from which
∂ν(j

ν + Jν) = 0. (8.70)

We see here what happens concerning current conservation. It is not only Jµ

(the external source current) which is to be considered, but the total current,
including the gauge field current jµ itself. The meaning of the “self-current”
jµ is important: the gauge field can be its own source. This effect comes
from the non-linear character of the theory, which is a consequence of the
non-abelian character of the gauge group. Non-abelian gauge fields, even
in the absence of external sources, are highly non-trivial, because they are
self-producing. They are never actually “free”, as they are always, at least,
in interaction with each other. In the quantum case, the quanta of the gauge
fields carry themselves the charges of the theory (as if the photons carried
electric charges).

This interpretation, though satisfactory from the point of view of the
conservation law, is not without difficulties. The problem is that the to-
tal current jν + Jν is not gauge-covariant. This is reflected in the charges
themselves, which are given by

Q =

∫
V

d3x∂µF
µ0 =

∫
V

d3x∂iF
i0 =

∫
∂V

d2σiFi0. (8.71)

As F is covariant (see (8.52)), the charge will change, under a gauge trans-
formation, as

Q⇒ Q′ =

∫
∂V

d2σi U(x)Fi0U
−1(x). (8.72)

Thus, only if we suppose that U(x) = eα
a(x)Ta becomes constant on a far

enough spacelike surface ∂V , can we extract U from inside the integral and
get covariant charges, that is, charges satisfying

Q′ = U Q U−1. (8.73)
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This imposes a limitation on the local gauge invariance. The charges
only make sense if the transformations become global (that is, constant) at
∂V . The latter can be placed, if we like, at space infinity. This problem
is quite analogous to that of General Relativity, in which the total energy-
momentum (which plays there the role of the above current) is not covariant
and, as a consequence, the energy (one of the corresponding charges) can
only be defined for asymptotically flat spaces.

The energy-momentum tensor of a gauge field will have the same form of
that of the electromagnetic field:

Θµν = Fa
µρF aν

ρ − 1
4
ηµνFa

ρσF a
ρσ. (8.74)

8.8 Final Remarks

Let us repeat ourselves a bit. The field φ above can belong to any linear
representation of the gauge group G. For each representation a covariant
derivative is defined: take the generators T a in some representation, and use
(8.31). In a singlet representation, the second term in (8.31) vanishes and
the covariant derivative reduces to the usual derivative. A singlet field does
not “feel” the gauge potential. A representation of special significance is the
adjoint representation, a matrix d× d (d = dim G) representation in which
the generators are matrices whose entries are the structure constants [see
Eq.(2.16) for a variant],

(Ta)
c
b = f cab . (8.75)

In this case, the indices i, j, k, . . . used above, vary with the same range as
the indices a, b, c, . . . . If φ belongs to the adjoint representation, it will be
a matrix φ = Taφ

a instead of a column, and the covariant derivative has the
form

Dµφ = ∂µφ+ [Aµ, φ]. (8.76)

The fields Aµ and Fµν , in particular, belong to the adjoint representation.
The expressions (8.47) and (8.48) give the covariant derivative of a vector
field in the adjoint representation. The left-hand side of (8.57) is the ex-
pression of the covariant derivative of Fµν (there, Dµ is given by (8.55)).
Thus, the true covariant derivative of an antisymmetric second-order tensor
in the adjoint representation is the cyclic sum in (8.57). Besides those covari-
ant derivatives, there are the covariant coderivatives or, roughly speaking,
the derivatives of the dual fields. The Yang-Mills equations state that the
covariant coderivative of the field strength equals the source current.
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The reader may think that we are exchanging the roles. After all, it is
the dual who seems to be derived in (8.57), as there a cyclic sum is at work;
whereas only the field, and not its dual, appears in (8.62). The reason for
this apparent contradiction is a certain opposition between the nomencla-
tures used by physicists and mathematicians. Physicists are used to write
everything in terms of components, while mathematicians view φ, A = Aµdx

µ

and F = 1
2
Fµνdx

µ ∧ dxν as differential forms and write things in invariant
language, with no components in sight. Differential forms inhabit integrands.
In the integration sign, also the measure is written in invariant form, so as
to have the same expression in any coordinate system. Instead of

∫
d4x,

mathematicians write ∫ √
|g| d4x =

∫
J d4x.

This is symbolic, but the jacobian determinant J, whose presence is com-
pulsory in invariant language, contains a Levi-Civita symbol εµνρσ. There
is, thus, a difference of a Levi-Civita symbol between physicists and mathe-
maticians (and many other, of which we shall say nothing). For example, in
mathematical language the action (8.58) is written (with the measure always
omitted)

LG = −1

2

∫
tr(F ∧ F̃ ), (8.77)

with the dual in the scene. This is the reason to say that the Bianchi identity
states the vanishing of the covariant derivative of Fµν , whereas the sourceless
Yang–Mills equation states the vanishing of its covariant coderivative.

The best experimentally verified of all gauge theories is the Weinberg-
Salam model, a theory whose gauge symmetry is broken. In the process of
symmetry breaking, the Lagrangian remains invariant, but the lowest-energy
state (the fundamental state) is not symmetric under gauge transformations
(this is called “spontaneous breakdown” of a symmetry). Thus, even electro-
dynamics is a subtheory of a symmetry-broken theory. Notice that in (8.58)
there is no mass term: the quanta of the gauge field have zero masses. This
changes in a broken theory and the particles (the “gauge bosons”) emerging
in the Weinberg-Salam theory have, with the exception of the photon, masses
between 90 and 100 Gev. They are the W+, W− and Z0, experimentally dis-
covered in the eighties. And all that is perhaps related to what is nowadays
the central question of Elementary Particle Physics, the confinement prob-
lem. Chromodynamics is a gauge theory for the group SU(3), supposed to
account for the interactions between quarks. It has a very good phenomeno-
logical record, but nobody knows why free quarks are not found in Nature.
They are supposed to be confined to the interior of the particles by the very
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gauge field which mediates their interaction. There is a large evidence for
that, but it has been impossible up to now to demonstrate quark confinement
using the theory. Also the gauge quanta (“gluons”) are never seen in free
state (a phenomenon called “shielding”), another property which should be
deduced from the theory. Actually, the calculations are very, very compli-
cated, and it is not known whether the theory explains these properties or
not.

The structure of gauge theories is fairly geometric. Only the dynamic part
(Lagrangian and Yang-Mills equations) is actually Physics. All the characters
above have their mathematical counterparts, sometimes with different names.
As an interchange of names become more and more frequent in the physical
literature, we give a short glossary:

Physics Name Mathematics Name
gauge potential connection
field strength curvature
gauge group structure group
internal space fiber
external space (spacetime) base manifold
spacetime + internal space fiber bundle

Locally, around each point of spacetime, the complete space (base + fiber) is a
direct product of both spaces. But fiber bundles, globally, are not necessarily
the direct product of the base manifold and the fiber. The simplest examples:
a torus is the (global) direct product of two circles; a cylinder is a (global)
direct product of a circle and a straight line; the Möbius band is a direct
product locally, but not globally.
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Chapter 9

Gravitational Field

9.1 General Concepts

All elementary particles feel gravitation the same. More specifically, particles
with different masses experience a different gravitational force, but in such a
way that all of them acquire the same acceleration and, given the same initial
conditions, follow the same path. Such universality of response is the most
fundamental characteristic of the gravitational interaction. It is a unique
property, peculiar to gravitation: no other basic interaction of Nature has it.

Due to universality, the gravitational interaction admits a description
which makes no use of the concept of force. In this description, instead of
acting through a force, the presence of a gravitational field is represented
by a deformation of the spacetime structure. This deformation, according
to General relativity, preserves the pseudo-riemannian character of the flat
Minkowski spacetime, the non-deformed spacetime that represents absence of
gravitation. In other words, the presence of a gravitational field is supposed
to produce curvature, but no other kind of spacetime deformation.

A free particle in flat space follows a straight line, that is, a curve keeping
a constant direction. A geodesic is a curve keeping a constant direction on
a curved space. As the only effect of the gravitational interaction is to bend
spacetime so as to endow it with curvature, a particle submitted exclusively
to gravity will follow a geodesic of the deformed spacetime.

This is the approach of Einstein’s General Relativity, according to which
the gravitational interaction is described by a geometrization. It is important
to remark that only an interaction presenting the property of universality can
be described by such a geometrization.
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9.2 The Equivalence Principle

Equivalence is a guiding principle, which inspired Einstein in his construction
of General Relativity. It is firmly rooted on experience.∗ In its most usual
form, the Principle includes three sub–principles: the weak, the strong, and
that which is called “Einstein’s equivalence principle”. Let us shortly list
them with a few comments.

• The weak equivalence principle states the universality of free fall,
or the equality inertial mass = gravitational mass. It can be stated in
the form:

In a gravitational field, all pointlike structureless particles follow one
same path. That path is fixed once given (i) an initial position x(t0)

and (ii) the correspondent velocity ẋ(t0).

This leads to an equation of motion which is a second-order ordinary
differential equation. No characteristic of any special particle, no par-
ticular property appears in the equation. Gravitation is consequently
universal. Being universal, it can be seen as a property of space itself.
It determines geometrical properties which are common to all particles.
The weak equivalence principle goes back to Galileo. It raises to the
status of fundamental principle a deep experimental fact: the equality
of inertial (mi) and gravitational (mg) masses of all bodies. If these
masses were not equal, Newton’s second law would be written as

~F = mi ~a,

whereas the law of gravitation would be

~F = mg ~g,

with ~g the acceleration produced by a gravitational field. The acceler-
ation at a given point would then be

~a =
mg

mi

~g.

and would be different for different bodies. Along the history, many
different experiments have been performed to test for this difference,
all of them yielding a negative result.

∗ Those interested in the experimental status will find an appraisal in C. M. Will, The

Confrontation between General Relativity and Experiment, arXiv:gr-qc/0510072 16 Out

2005. Theoretical issues are discussed by B. Mashhoon, Measurement Theory and General

Relativity, gr-qc/0003014, and Relativity and Nonlocality, gr-qc/0011013 v2.
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• The strong equivalence principle (Einstein’s lift) says that

gravitation can be made to vanish locally through an appropriate
choice of frame.

It requires that, for any and every particle, and at each point x0, there
exists a frame in which ẍµ = 0.†

• Einstein’s equivalence principle requires, besides the weak prin-
ciple, the local validity of Poincaré invariance — that is, of Special
Relativity. It can be stated in the form:

Every law of physics reduces locally to that of Special Relativity
through an appropriate choice of frame.

This invariance is, in Minkowski space, summed up in the Lorentz
metric. The requirement suggests that the above deformation caused
by gravitation is a change in that metric.

Forces equally felt by all bodies were known since long. They are the in-
ertial forces, whose name comes from their turning up in non-inertial frames.
Examples on Earth (not an inertial system!) are the centrifugal force and the
Coriolis force. Universality of inertial forces has been the first hint towards
General Relativity. A second ingredient is the notion of field. The concept
allows the best approach to interactions coherent with Special Relativity. All
known forces are mediated by fields on spacetime. Now, if gravitation is to
be represented by a field, it should, by the considerations above, be a uni-
versal field, equally felt by every particle. It should change spacetime itself.
And, of all the fields present in a space, the metric — the first fundamental
form, as it is also called — seemed to be the basic one. The simplest way
to change spacetime would be to change its metric. Furthermore, the metric
does change when looked at from a non-inertial frame, where the inertial
forces are present. The gravitational field, therefore, is represented by the
spacetime metric. In the absence of gravitation, the spacetime metric reduces
to the Minkowski metric.

† A precise, mathematically sound formulation of the strong principle can be found in R.

Aldrovandi, P. B. Barros & J. G. Pereira: The equivalence principle revisited, Foundations

of Physics 33 (2003) 545-575 — arXiv:gr-qc/0212034.
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9.3 Pseudo-Riemannian Metric

Each spacetime is a 4-dimensional pseudo–riemannian manifold. Its main
character is the fundamental form, or metric. For example, the spacetime
of special relativity is the flat Minkowski spacetime. Minkowski space is the
simplest, standard spacetime, and its metric, called the Lorentz metric, is
denoted

η(x) = ηabdx
adxb. (9.1)

It is a rather trivial metric. Up to the signature, the Minkowski space is an
Euclidean space, and as such can be covered by a single, global coordinate
system. This system — the cartesian system — is the father of all coordinate
systems, and just puts η in the diagonal form

η =


+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (9.2)

The Minkowski line element, therefore, is

ds2 = ηabdx
adxb = dx0dx0 − dx1dx1 − dx2dx2 − dx3dx3

or
ds2 = c2dt2 − dx2 − dy2 − dz2. (9.3)

On the other hand, the metric of a general 4-dimensional pseudo-rieman-
nian spacetime will be denoted by

g(x) = gµνdx
µdxν . (9.4)

We are using indices µ, ν, λ, . . . for the pseudo-riemannian spacetime, and
a, b, c, . . . for the Minkowski spacetime. Like the Minkowski metric, it has
signature 2. Being symmetric, the matrix g(x) = (gµν) can be diagonalized.
Signature concerns the signs of the eigenvalues: it is the number of eigenval-
ues with one sign minus the number of eigenvalues with the opposite sign.
It is important because it is an invariant under changes of coordinates and
vector bases. In the convention we shall adopt this means that, at any se-
lected point P , it is possible to choose coordinates {xµ}, in terms of which
gµν takes the form

g(P ) =


+|g00| 0 0 0

0 −|g11| 0 0
0 −|g22| 0

0 0 0 −|g33|

 . (9.5)
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9.4 The Notion of Connection

In a general pseudo-riemannian spacetime, the ordinary derivative of a ten-
sor is not covariant under a general coordinate transformation xµ → x′µ. In
order to define a covariant derivative, it is necessary to introduce a “compen-
sating field”, that is, a connection which we will denote by Γ. The covariant
derivative of a function φ (tensor of zero degree) is the usual derivative,

Dµφ = ∂µφ,

which is automatically covariant.
Now, take a first order “contravariant” tensor φν . Its covariant derivative

will be given by
Dµφ

ν = ∂µφ
ν + Γνλµφ

λ. (9.6)

The covariant derivative of a “covariant” vector φν , on the other hand, is

Dµφν = ∂µφν − Γλνµφλ. (9.7)

The metric tensor, in particular, will have the covariant derivative

Dµgρσ = ∂µgρσ − Γλρµgλσ − Γλσµgρλ. (9.8)

Let us take now a third order mixed tensor φνρσ. Its covariant derivative will
be given by

Dµφ
ν
ρσ = ∂µφ

ν
ρσ + Γνλµφ

λ
ρσ − Γλρµφ

ν
λσ − Γλσµφ

ν
ρλ. (9.9)

The rules to writing the covariant derivative are fairly illustrated in these
examples. Notice the signs: positive for upper indices, negative for lower
indices.

Under a general coordinate transformation xµ → x′µ, in order to yield
an appropriate behavior to the covariant derivative, the connection Γ must
transform according to

Γµνλ =
∂xµ

∂x′α
∂x′γ

∂xν
∂x′β

∂xλ
Γ′αγβ +

∂xµ

∂x′α
∂2x′α

∂xν∂xλ
. (9.10)

This non-covariant behavior of the connection Γ makes of the covariant
derivative a well-behaved, a really covariant object.

When the covariant derivative of a tensor is zero on a domain, this tensor
is said to be “self–parallel” on the domain, or parallel–transported. An in-
tuitive view of this notion can be get by noting that it exactly translates to
curved space the idea of a straight line as a curve with maintains its direction
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along all its length. If the metric is parallel–transported, Dµgρσ = 0, and the
equation above gives the metricity condition

∂µgρσ = Γλρµgλσ + Γλσµgρλ = Γσρµ + Γρσµ = 2 Γ(ρσ)µ, (9.11)

where the symbol with lowered index is defined by Γρσµ = gρλΓ
λ
σµ and the

compact notation for the symmetrized part

Γ(ρσ)µ = 1
2
{Γρσµ + Γσρµ}, (9.12)

has been introduced. The analogous notation for the antisymmetrized part

Γ[ρσ]µ = 1
2
{Γρσµ − Γσρµ} (9.13)

is also very useful.

9.5 Curvature and Torsion

A connection defines covariant derivatives of general tensorial objects. It
goes actually a little beyond tensors. A connection Γ defines a covariant
derivative of itself. This gives, rather surprisingly, a tensor, the Riemann
curvature tensor of the connection:

Rκ
λρσ = ∂ρΓ

κ
λσ − ∂σΓκλρ + ΓκνρΓ

ν
λσ − ΓκνσΓνλρ. (9.14)

It is important to notice the position of the indices in this definition. Au-
thors differ in that point, and these differences can lead to differences in the
signs (for example, in the scalar curvature defined below). We are using
all along notations consistent with the differential forms. There is a clear
antisymmetry in the last two indices,

Rκ
λρσ = − Rκ

λσρ.

Other tensors can be obtained from the Riemann curvature tensor by
contraction. The most important is the Ricci tensor

Rλσ = Rρ
λρσ = ∂ρΓ

ρ
λσ − ∂σΓρλρ + ΓρνρΓ

ν
λσ − ΓρνσΓνλρ . (9.15)

A further contraction with the metric tensor gives the scalar curvature

R = gµνRµν . (9.16)

Another important property of connections is their torsion tensor, which
is defined by

T λµν = Γλνµ − Γλµν = 2Γλ[νµ]. (9.17)
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Notice that what exists is the curvature and torsion of a connection. Many
connections are defined on a given space, each one with its curvature and tor-
sion. It is common language to speak of “the curvature of space” and “torsion
of space”, but this only makes sense if a certain connection is assumed to be
included in the very definition of that space.

9.6 The Levi-Civita Connection

There are, actually, infinite connections on a manifold, infinite objects behav-
ing according to (9.10). And, given a metric, there are infinite connections
satisfying the metricity condition. One of them, however, is special. It is
given by

◦
Γ
λ
ρσ = 1

2
gλµ[∂ρgσµ + ∂σgρµ − ∂µgρσ]. (9.18)

It is the single connection satisfying the metricity condition

◦
Dµgρσ ≡ ∂µgρσ −

◦
Γ
λ
ρµgλσ −

◦
Γ
λ
σµgρλ = 0, (9.19)

and which is symmetric in the last two indices. This symmetry has a deep
meaning as it means that torsion is vanishing. Connection (9.18) is called
the Levi–Civita connection. Its components are also called the Christoffel
symbols. It has, as said, a special relationship to the metric and is the only
metric–preserving connection with zero torsion. Standard General Relativity
works only with such a connection.

The curvature of a Levi-Civita connection,

◦
R
κ
λρσ = ∂ρ

◦
Γ
κ
λσ − ∂σ

◦
Γ
κ
λρ +

◦
Γ
κ
νρ

◦
Γ
ν
λσ −

◦
Γ
κ
νσ

◦
Γ
ν
λρ , (9.20)

has some special symmetries in the indices, which can be obtained from the
detailed expression in terms of the metric:

◦
Rκλρσ = −

◦
Rκλσρ =

◦
Rλκσρ, (9.21)

as well as ◦
Rκλρσ =

◦
Rρσκλ. (9.22)

In these expressions,

◦
Rκλρσ = gκµ

◦
R
µ
κλρσ = ∂ρ

◦
Γκλσ − ∂σ

◦
Γκλρ +

◦
Γκνρ

◦
Γ
ν
λσ −

◦
Γκνσ

◦
Γ
ν
λρ , (9.23)

where
◦
Γµρσ = gµν

◦
Γνρσ. As a consequence, the Ricci tensor is also symmetric:

◦
Rµν =

◦
Rνµ. (9.24)
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In consequence of these symmetries, the Ricci tensor (9.15) is essentially the
only contracted second-order tensor obtained from the Riemann tensor. The
scalar curvature will be now

◦
R = gµν

◦
Rµν . (9.25)

9.7 Geodesics

As we have already seen, the action describing a free particle of mass m in
the Minkowski spacetime is

S = −mc
∫ b

a

ds, (9.26)

where
ds = (ηabdx

adxb)1/2. (9.27)

In the presence of gravitation, that is, in a pseudo-riemannian spacetime, the
action describing a particle of mass m is still that given by Eq. (9.26), but
now with

ds = (gµνdx
µdxν)1/2. (9.28)

We see from this expression that the metric tensor modifies the line element.
Taking the variation of S, the condition δS = 0 yields the equation of motion

duρ

ds
+
◦
Γ
ρ
µν u

µ uν = 0, (9.29)

where uρ = dxρ/ds is the particle four-velocity. The solution of this equation
of motion, called geodesic equation, gives the trajectory of the particle in the
presence of gravitation.

An important property of the geodesic equation is that it does not involve
the mass of the particle, a natural consequence of universality. Another im-
portant property is that it represents the vanishing of the covariant derivative
of the four-velocity uρ along the trajectory of the particle:

uλ
◦
Dλu

ρ ≡
◦
Duρ

ds
= 0. (9.30)

This is a consequence of the General Relativity approach to gravitation, in
which the gravitational interaction is geometrized, and in which the concept
of force is absent. According to this approach, gravitation produces a cur-
vature in spacetime, and the gravitational interaction is achieved by letting
(spinless) particles to follow the geodesics of this spacetime.
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9.8 Bianchi Identities

A detailed calculation gives the simplest way to exhibit curvature. Consider a
vector field U , with components Uα, and take twice the covariant derivative,

getting
◦
Dγ

◦
DβU

α. Reverse then the order to obtain
◦
Dβ

◦
DγU

α and compare.
The result is ◦

Dγ

◦
DβU

α −
◦
Dβ

◦
DγU

α = −
◦
R
α
εβγU

ε. (9.31)

Curvature turns up in the commutator of two covariant derivatives:

[
◦
Dγ,

◦
Dβ]Uα = −

◦
R
α
εβγU

ε. (9.32)

A detailed calculation leads also to some identities. One of them is

◦
R
κ
λρσ +

◦
R
κ
σλρ +

◦
R
κ
ρσλ = 0 . (9.33)

Another one is ◦
Dµ

◦
Rκλρσ +

◦
Dσ

◦
Rκλµρ +

◦
Dρ

◦
Rκλσµ = 0 (9.34)

Notice, in both cases, the cyclic rotation of three of the indices. These
expressions are called respectively the first and the second Bianchi identities.

Now, as the metric has zero covariant derivative, it can be inserted in the
second identity to contract indices in a convenient way. Contracting with
gκρ, it comes out

◦
Dµ

◦
Rλσ −

◦
Dσ

◦
Rλµ +

◦
Dρ

◦
R
ρ
λσµ = 0.

A further contraction with gλσ yields

◦
Dµ

◦
R−

◦
Dσ

◦
R
σ
µ −

◦
Dρ

◦
R
ρ
µ = 0,

which is the same as ◦
Dµ

◦
R− 2

◦
Dσ

◦
R
σ
µ = 0,

or ◦
Dµ

[ ◦
R
µ
ν − 1

2
δµν

◦
R
]

= 0. (9.35)

This expression is the “contracted Bianchi identity”. The tensor thus “co-
variantly conserved” will have an important role. Its totally covariant form,

Gµν =
◦
Rµν − 1

2
gµν

◦
R, (9.36)

is called the Einstein tensor. Its contraction with the metric gives the scalar
curvature (up to a sign).

gµνGµν = −
◦
R. (9.37)

209



When the Ricci tensor is related to the metric tensor by

◦
Rµν = λ gµν , (9.38)

where λ is a constant, it is usual to say that we have an Einstein space. In

that case,
◦
R = 4λ and Gµν = −λgµν . Spaces in which

◦
R is a constant are

said to be spaces of constant curvature. This is the standard language. We
insist that there is no such a thing as the curvature of space. Curvature is a
characteristic of a connection, and many connections are defined on a given
space.

9.9 Einstein’s Field Equations

The Einstein tensor (9.36) is a purely geometrical second-order tensor which
has vanishing covariant derivative. It is actually possible to prove that it
is the only one. The energy-momentum tensor is a physical object with the
same property. The next stroke of genius comes here. Einstein was convinced
that some physical characteristic of the sources of a gravitational field should
engender the deformation in spacetime, that is, in its geometry. He looked
for a dynamical equation which gave, in the non-relativistic, classical limit,
the newtonian theory. This means that he had to generalize the Poisson
equation

∆V = 4πGρ (9.39)

within riemannian geometry. The Gµν has second derivatives of the metric,
and the energy-momentum tensor contains, as one of its components, the
energy density.

He took then the bold step of equating them to each other, obtaining
what we know nowadays to be the simplest possible generalization of the
Poisson equation in a riemannian context:

Rµν − 1
2
gµνR = 8πG

c4
Tµν . (9.40)

This is the Einstein equation, which fixes the dynamics of a gravitational
field. The constant in the right-hand side was at first unknown, but he fixed
it when he obtained, in the due limit, the Poisson equation of the newtonian
theory. The tensor in the right-hand side is the symmetric (or Belinfante-
Rosenfeld) energy-momentum tensor (4.65) of a matter field, which is the
source of the gravitational field.

Contracting (9.40) with gµν , we find

R = − 8πG
c4

T , (9.41)
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where T = gµνTµν . This result can be inserted back into the Einstein equa-
tion, to give it the form

Rµν = 8πG
c4

[
Tµν − 1

2
gµνT

]
. (9.42)

Consider the sourceless case, in which Tµν = 0. It follows from the above
equation that Rµν = 0 and, therefore, that R = 0. Notice that this does not
imply Rρ

σµν = 0. The Riemann tensor can be nonvanishing even in the ab-
sence of source. Einstein’s equations are non-linear and, in consequence, the
gravitational field can engender itself. Absence of gravitation is signalled by
Rρ

σµν = 0, which means a flat spacetime. This case — Minkowski spacetime
— is a particular solution of the sourceless equations. Beautiful examples of
solutions without any source at all are the de Sitter spaces.

In reality, the Einstein tensor (9.36) is not the most general parallel-trans-
ported purely geometrical second-order tensor which has vanishing covariant
derivative. The metric has the same property. Consequently, it is in principle
possible to add a term Λgµν to Gµν , with Λ a constant. Equation (9.40)
becomes

Rµν − (1
2
R + Λ)gµν = 8πG

c4
Tµν . (9.43)

From the point of view of covariantly preserved objects, this equation is as
valid as (9.40). In his first trial to apply his theory to cosmology, Einstein
looked for a static solution. He found it, but it was unstable. He then
added the term Λgµν to make it stable, and gave to Λ the name cosmological
constant. Later, when evidence for an expanding universe became clear, he
called this “the biggest blunder in his life”, and dropped the term. This
is the same as putting Λ = 0. It was not a blunder: recent cosmological
evidence claims for Λ 6= 0. Equation (9.43) is the Einstein’s equation with a
cosmological term. With this extra term, Eq. (9.42) becomes

Rµν =
8πG

c4

[
Tµν − 1

2
gµνT

]
− Λgµν . (9.44)

Finally, it is important to mention that Einstein’s equations can be de-
rived from an action functional, the so called Hilbert-Einstein action,

S[g] =

∫ √
−g R d4x, (9.45)

where g = det(gµν).

9.10 The Schwarzschild Solution

Suppose we look for a solution of the Einstein equations which has spherical
symmetry in the space section. This would correspond to central potentials
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in Classical Mechanics. It is better, in that case, to use spherical coordinates
(x0, x1, x2, x3) = (ct, r, θ, φ). This is one of the most studied of all solutions,
and there is a standard notation for it. The interval is written in the form

ds2 =

(
1− 2GM

c2 r

)
c2dt2 − r2(dθ2 + sin2 θdφ2)− dr2

1− 2GM
c2 r

. (9.46)

Introducing the Schwarzschild radius

RS =
2GM

c2
, (9.47)

the interval acquires the form

ds2 =

(
1− RS

r

)
c2dt2 − r2(dθ2 + sin2 θdφ2)− dr2

1− RS
r

. (9.48)

This is the solution found by K. Schwarzschild in 1916, soon after Einstein
had presented his final version of General Relativity. It describes the field
caused, outside it, by a symmetrically spherical source. We see that there
is a singularity in the metric components at the value r = RS. Its value for
a body with the mass of the Sun would be RS ≈ 3 km. For a body with
Earth’s mass, RS ≈ 0.9 cm. For such objects, of course, there exists to real
Schwarzschild radius. It would be well inside their matter distribution, where
Tµν 6= 0 and the solution is not valid.
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spacelike, 17
timelike, 17

invariant
Casimir, 50

involution, 180
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and Euler–Lagrange equations, 91
and Hamilton principle, 90
and symmetry, 89
general aspects, 85
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Lagrangian properties
invariance, 89
locality, 90
low order, 89
reality, 89
simplicity, 89

Laplace equation, 152
law

Biot-Savart, 155
Coulomb, 152
Newton, 3

Lie
algebra

of a group, 41
equation, 110

light cone, 16
future and past, 17

linear
representation, 58

Liouville equation, 69
Lorentz

contraction, 21
force law, 33, 147
group, 19

generators, 64
metric, 15
tensor, 27
transformation, 26, 55, 64, 75

pure, or boost, 20
vector, 24, 27

Lorentz group
representation

bispinor, 174
nonunitary if finite, 174
vector, 174

Lorenz
gauge, 142

Lorenz gauge, 128

magnetostatics, 153
Majorana

representation, 171
Maxwell’s tensor, 34
mediating field, 126
metric, 13

Killing-Cartan, 51, 195
Lorentz, 15
notion of, 13

minimal coupling
prescription, 147

Minkowski space, 15, 55
momentum

of a particle, 31

Noether
current, 102, 189
first theorem, 99
second theorem, 110

norm, 13
normal modes

and Fourier analysis, 71
normal coordinates, 70
null

interval, 17
vector, 24

orthogonality, 13

parity transformation, 38
for Dirac fields, 177

particle dynamics, 29
Pauli equation, 167
Pauli matrices, 52
Pauli—Dirac

representation, 171
Pauli–Lubanski operator, 62
Poincaré

group, 20, 26, 55, 63
transformation, 26, 55

Poisson
brackets, 69
equation, 152

Poynting vector, 146
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principle
equivalence, 202
Fermat, 29
Hamilton, 29, 90
of causality, 36
of determinism, 8
of inertia, 8, 36
of relativity, 8, 36

Proca equation, 127, 142
proper

length, 21
time, 18

quantization
vibrating line, 77

quantization rules
for fields, 79

radiation
gauge, 143

rank, 51, 61
red shift, 161
relativity

galilean, 36
general, 37
special, 36

representation
adjoint, 48, 51, 197
fundamental, 48
linear, 45, 58
Lorentz vector, 125
spinor, 53
tensor, 54
vector, 50

representation of gammas
chiral, 171
Majorana, 171
Pauli—Dirac, 171

rotations, 48

scalar field
complex, 120

real, 117
scalar product, 13
Schrödinger, 117
Schrödinger equation, 76
sine-Gordon equation, 113
SO(3), 46

and SU(2), 48
soliton, 114
space

Fock, 77
Minkowski, 55

spacelike
interval, 17
vector, 24

spacetime
classical, 7
Minkowski, 15
special relativistic, 12

spin
density tensor, 107
of a particle, 61
operator, 63

spinor
Pauli,Weyl, 53

state
in Classical Mechanics, 67
in Quantum Mechanics, 76

SU(2)
and SO(3), 48

symmetry
and conserved charge, 103
gauge, 108, 109
internal, 108
Lorentz, 106
on spacetime, 104
translation, 104

tensor, 6
Lorentz, 27

theorem
Noether

217



first, 99
second, 110

time dilation, 19
time reversa

for Dirac fields, 181
time reversal, 39

Wigner, 182
timelike

nterval, 17
vector, 24

topological
conservation law, 113, 195
number, 115, 195

transformation
groups of, 38

transversality condition, 143
twin paradox, 19

U(N), 46

variation, 94, 95
action, 99
of action, 100

vector
contravariant, 135
covariant, or covector, 135
fields, 28
Lorentz, 24, 27
null, 24
representation, 125
spacelike, 24
timelike, 24
under rotations, 6

vector field, 125
vibrating line, 74

classical continuum, 72
quantum, 77

wave
electromagnetic, 155
equation, 155
monochromatic plane, 159

phase, 160
plane, 156
propagation, 157
transversal, 158
tvector, 159

wavefields, 79
wavelength, 159
Weinberg–Salam theory, 187
Wentzel–Pauli Lagrangian, 127
Wigner time reversal, 182
world line, 17

Yang-Mills equation, 195
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