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A preliminary note

Cosmology has definitively left its position as a chapter of Philosophy to be-
come a part of Astronomy. This is more or less true since Laplace, but since
his times colossal developments have taken place. It is nowadays a preferred
arena for applications of the whole of Fundamental Physics. Gravitation does
provide the background, but most informations are mediated by the electro-
magnetic interaction. Weak and strong interactions contribute in one of the
most important achievements of the dominating model, the nucleosynthesis
of light elements.

Being no astronomers, our presentation has an inevitable theoretical–
physicist bias. Gravitation — a lot; Thermodynamics — yes, some; Field
Theory — a little, but almost no Astronomy. The mentioned bias will fre-
quently lead to look at Cosmology as an source of motivating examples,
through which learning some General Relativity is specially agreeable.

The aim of Physical Cosmology is to describe the Universe in large scale
using as far as possible Physics as we know it. That knowledge comes from
experiments and observations made basically on Earth and its neighborhood,
the solar system. This means that daring extrapolations are inevitable, and
that we should be prepared for some surprises. It is remarkable, anyhow, that
at least a part of “terrestrial” Physics — atomic spectroscopy, for example —
hold strictly both far away in space for billions of light–years and long back
in time for billions of years. Success has been so overwhelming that the idea
of a possible surprise had actually receded to the outskirts of cosmological
thought. And then, in the last few years, surprise did turn up. Observational
data of the last few years have given compelling evidence for a large cosmo-
logical constant. They mean, in reality, that the dominating contribution to
gravitation in large scales has an unknown origin. It is, consequently, good
time for a review of our supposed knowledge.

These notes,1 prepared with a one–term course in view, are intended as a
short guide to the main aspects of the subject. The reader is urged to refer

1 The present is a slightly revised version of the first, rough version dated of 2000. It
owes many corrections to our colleagues A.L. Barbosa, R.R. Cuzinatto and L.G. Medeiros.
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to the basic texts we have used, each one excellent in its own approach:

• J. V. Narlikar, Introduction to Cosmology (Cambridge University Press,
Cambridge, 1993).

• S. Weinberg, Gravitation and Cosmology (J. Wiley, New York, 1972).

• L.D. Landau and E.M. Lifschitz, The Classical Theory of Fields (Perg-
amon Press, Oxford, 1975).

• P. Coles and G. F. R. Ellis, Is the universe open or closed? (Cambridge
University Press, 1997).

• Ya. B. Zeldovich and I. D. Novikov, Relativistic Astrophysics II: The
Structure and Evolution of the Universe (University of Chicago Press,
Chicago, 1981).

• A. D. Dolgov, M. V. Sazhin and Ya. B. Zeldovich, Basics of Modern
Cosmology (Editions Frontière, Gif-sur-Ivette, 1990).

• P.J.E. Peebles, Principles of Physical Cosmology (Princeton University
Press, Princeton, 1993).

• E. Harrison, Cosmology (Cambridge University Press, 2nd. ed. 2001).

• A. Liddle, An Introduction to Modern Cosmology (J. Wiley, Chichester,
2nd.ed., 2003).

• S. Dodelson, Modern Cosmology (Academic Press, San Diego, 2003).

The last reference contains an ample discussion of the recent developments
concerning the anisotropies in the Cosmic Microwave Background. Other
references not in book form—mostly reviews on that same subject—will be
given in the text.

Units and constants from General Physics, Astronomy and Particle Physics
are given in Appendix A. The notation and conventions used in the text are
summarized in Appendix B, which includes also some formulae from Special
Relativity. Appendix C is a formulary on relativistic ideal gases.
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Chapter 1

Physical Cosmology: Object
and Method

The object of Cosmology is to describe the Universe in large scales. As its
very concept includes the notion that nothing exists outside it, the Universe
is taken to be an isolated physical system whose evolution is determined by
the interplay of its parts. Though much of such interplay may take the form
of collective effects, it ultimately comes from interactions between basic con-
stituents. Four fundamental interactions are known in present-day Physics.
Two of them (the strong and the weak interactions) are of very short, sub-
nuclear range, and can only be responsible for evolution in very small scales.
Electromagnetism has long range, but the two–signed charges in its sources
tend to compensate each other and arrange themselves to produce medium–
scale neutrality. Only gravitation has a long range and the same sign for
all localized sources. Evolution of the Universe in large scales is therefore
governed by this dominating uncompensated long–range interaction, gravi-
tation.

Gravitation, as described by General Relativity, is governed by Ein-
stein’s equations. The most general form of Einstein’s equations includes
a cosmological–constant Λ–term:

Rµν − 1
2
R gµν − Λgµν =

8πG

c4
Tµν . (1.1)

The basic idea of Physical Cosmology is to introduce the energy content of
the present–day Universe through its energy–momentum and find the solu-
tion. It is then possible to proceed towards the past or towards the future.
Present–day values are used in this way as starting data (they are indicated
by the subscript 0, as in t0, a0, H0, etc).

Einstein’s are, however, involved non–linear equations, ten of them and
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very difficult to solve. In order to find some solution, it is necessary to im-
pose some extra conditions, usually amounting to symmetries, which simplify
the equations and reduce their numbers. In Cosmology, the symmetries cus-
tomarily supposed are homogeneity and isotropy, both considered on 3–space.
Notice that what we usually call “Universe” is the space part, the 3–space, or
“space section” of spacetime. The Universe is considered to be homogeneous
and isotropic. Homogeneity means invariance under displacements from one
point to any other, so that all points in 3-space are equivalent. Isotropy
around a point means invariance under rotations: all directions taken from
that point are equivalent.

Comment 1.0.1 The introductory considerations above serve as guidelines, and should
be qualified. Gravitation, as described by General Relativity, is not an attractive inter-
action in some absolute sense. Certain dynamical effects, as a second–acceleration, can
produce repulsion. And the cosmological constant, positive (and dominant!) by recent
measurements, does originate a universal repulsive force.

Comment 1.0.2 What has been said above does not mean that weak, strong and elec-
tromagnetic interactions are of no interest to Cosmology. There are many sub–nuclear
aspects which are “universal”. For example, the abundance of the lightest elements seem
to be the same everywhere — that is, “universal”. Their synthesis is consequently a
cosmological problem. The electromagnetic cosmic microwave background is also “uni-
versal”. Furthermore, almost all information of cosmological interest is brought to us via
electromagnetic waves. In the cosmic drama, gravitation provides the stage–set, however
Caligari–like, but the other interactions do much of the talking.

Comment 1.0.3 It should be said that much of the terminology used in what follows
(“closed” or “open” Universe, “critical density”, etc) became standard in the course of the
historical development of the theory. During most of this development, the cosmological
constant was firmly believed to be zero. These names are no more suitable if Λ 6= 0. The
same is true of notation. It will become clear in the few next pages that introducing 3Λ
instead of simply Λ in (1.1) would simplify the ensuing equations. We shall, however, stick
to these commonly used nomenclatures to avoid a clash with the current literature.

2



Chapter 2

The Standard Model

2.1 Introduction

The Standard Cosmological Model has scored a number of fundamental suc-
cesses. It was believed for some time to be the definitive model, and expected
to provide the final answers to all the big questions of Cosmology. It has later
been found to have some problems, but remains, as the name indicates, the
standard reference with respect to which even alternative models are dis-
cussed and presented. Besides some difficulties intrinsic to the model (as the
so–called “cosmic coincidence”, and the horizon problems), there are ques-
tions of more general nature. For instance, there is no generally accepted
theory for the origin of the large inhomogeneities as the galaxies and their
clusters. Anyhow, it is the best thing we have, and its presentation is a must.

The Model is based on Friedmann’s solution of the Einstein equations.
This solution represents a spacetime where time, besides being separated
from space, is position–independent. And space—the space section of space-
time, which is clearly defined in that solution— is homogeneous and isotropic
at each point.

Comment 2.1.1 Once again we are using an inevitably simplified language which would
need qualification. Instead of “time is position–independent”, for example, we should
have said: “there exists a coordinate system in which coordinate time is independent of
the coordinates describing position in the space sector”. Actually, not every spacetime
solving Einstein’s equations allows an overall separation of time and space. And counting
“time” involves always a lot of convention: it is enough to recall that any monotonous
increasing function of an acceptable time is another acceptable time.

3



2.2 Simplifying Assumptions

§ 2.2.1 Let us examine the Standard Model underlying assumptions.

• In any interval ds2 = g00dx
0dx0 + gijdx

idxj, the second term in the
right–hand side represents the 3-dimensional space. If the time com-
ponent g00 of the metric depends on space coordinates x1, x2, x3, time
will depend on space position. We shall suppose that this is not the
case: g00 will be assumed to be space–independent. Coordinates can
be chosen so that the time piece is simply c2dt2, in which case t will be
the “coordinate time”. As it will be the same at every point of space,
we say that there exists a “universal time”.

• The “Universe”, that is, the space section, will be supposed to respect
the Cosmological Principle, or Copernican Principle. We shall state this
principle as follows: the Universe is homogeneous as a whole. Homo-
geneous means looking the same at each point. Once this is accepted,
imposing isotropy around one point (for instance, that point where we
are) is enough to imply isotropy around every point. This means in par-
ticular that space has the same Gaussian curvature around each point.
Due to isotropy, there is an osculating 3-sphere at a generic point p. If
it has radius L, the Gaussian curvature at p is equal to ±1/L2.

Comment 2.2.1 It is simpler to consider 2-dimensional surfaces. In that case we
look for two orthogonal circles tangent at a point p. If they have radii ρ1 and ρ1,
the Gaussian curvature is CG = 1/(ρ1ρ2). It may happen that the osculating circles
touch the surface at different faces (think of a horse’s saddle centered at p). One
of the radii is then negative, and so is the Gaussian curvature. Isotropy at p will
mean |ρ1| = |ρ2| = some L. Homogeneity will mean that L is the same for all points
p. There is a general characterization of Gauss curvature in terms of the Riemann
curvature (see, for instance, Weinberg [2]), which holds for spaces of any dimension
(for the 4-dimensional case, see Appendix B, Section B.2.1).

Geometry textbooks (the classical by Eisenhart [12], or the excellent
modern text by Doubrovine, Novikov and Fomenko [13]) will teach
us that there are only 3 kinds of 3–dimensional spaces with constant
curvature:

1. the sphere S3, a closed space with constant positive curvature;

2. the open hyperbolic space S2,1, or (a pseudo–sphere, or sphere
with imaginary radius), whose curvature is negative; and

3. the open euclidean space E3 of zero curvature (that is, flat, with
L→∞).

4



These three types of space are put together with the help of a parameter
κ: κ = + 1 for S3, κ = − 1 for S2,1 and κ = 0 for E3. The 3–
dimensional line element is then, in convenient coordinates,

dl2 =
dr2

1− κr2
+ r2dθ2 + r2 sin2 θdφ2 . (2.1)

The last two terms are simply the line element on a 2-dimensional
sphere S2 of radius r — a clear manifestation of isotropy. Notice that
these symmetries refer to space alone, and nothing forbids the “radius”
L being time-dependent.

• The energy content is given by the energy-momentum of a perfect fluid:

Tµν = (p+ ρc2) uµuν − p gµν . (2.2)

Here uµ is the four-velocity related to a line of flux and ρ = ε/c2 is the
mass equivalent of the energy density ε.

§ 2.2.2 Perfect fluid A perfect fluid is such that an observer following
a line of flux will, at each point, see the fluid as isotropic. The pressure
p and the energy density ε = ρc2 are those of matter (the visible matter
and that which is not visible, usually called “dark matter”) and radiation,
besides the so-called “dark energy” and “dark pressure” which parametrize
the cosmological constant term appearing in Eq.(1.1). The name “dust” is
used for a perfect fluid with p = 0. An isotropic fluid will have an energy-
momentum tensor density with components

T00 = ε = ρc2

Tij = p δij

Ti0 = 0

T0i = 0. (2.3)

This is a tensor density, that is, the values refer to an infinitesimal element
of the fluid. The expressions above give the components as seen from a
frame solidary with that element, moving with it. Seen from an external,
“laboratory” frame, that element will have a 3-velocity ~v, corresponding to
a contraction factor γ = (1 − ~v2/c2)−1/2, and a 4-velocity u = γ(1, ~v/c). In
such a frame, the same energy-momentum tensor density has the form (2.2),
which reduces to (2.3) when ~v = 0. The signs turning up depend on the
metric signature adopted. Recall that in our conventions the Lorentz metric
is η = diag(1,−1,−1,−1).

5



An important point on nomenclature: in some contexts, the words “per-
fect” and “ideal” are used interchangeably for a fluid with no interaction
between its constituents. This is not the case here: the “perfect” fluid can
have interactions between constituents, provided it remains isotropic for a
“comoving” observer.

Comment 2.2.2 An observer is any timelike worldline, one whose tangent velocity uµ

satisfies u2 = uµuµ > 0 in our conventions. It is convenient to attach to it a Lorentzian
frame (tetrad) field. Of the four members of the tetrad {ha}, one is timelike, h0. A
coordinate system {xµ} is assimilated to a trivial tetrad, {ha

µ} = ∂xµ

∂ya , where {ya} is
a coordinate system on the tangent Minkowski space (preferably the cartesian system).
To attach a frame to a timelike line of velocity field uµ means to take u = h0, that is,
uµ = h0

µ. Seen from such a frame, a tensor T whose components are T ρσ...
µν... in the

coordinate system {xµ} will have components T ab...
cd... = ha

ρh
b
σ . . . hc

µhd
ν . . . T ρσ...

µν....
For example, the velocity itself will be seen as ua = ha

µuµ = ha
µh0

µ = δa
0 . The energy-

momentum of a perfect fluid Tµν = (p+ρc2) uµuν−p gµν will then be seen with components
T ab = (p + ρc2) δa

0δb
0 − p ηab, just (2.3).

Comment 2.2.3 A real fluid will have timelike flux lines. Contractions of Eq.(2.2) pro-
vide (for real perfect fluids):

the trace T = gµνTµν = ε− 3p;

source energy density ε = Tµνuµuν .

By the way, constractions of Eq. (1.1) are also of interest:

Ricci scalar R = gµνRµν = −4 Λ− 8πG
c4 T = −4 Λ− 8πG

c4 (ε− 3p)

and further Rµνuµuν = 1
2R + Λ + 8πG

c4 ε = −Λ + 4πG
c4 (ε + 3p).

Comment 2.2.4 Formula (2.2) can be alternatively written

Tµν = ε uµuν − p [gµν − uµuν ] . (2.4)

The expression Pµν = gµν − uµuν , which appears multiplying the pressure, has the mixed
tensor version P ν

µ = δν
µ − uµuν and many interesting features: (1) it is a projector, that

is, PµνP ν
ρ = Pµρ; (2) it is transversal to the lines of flux, Pµνuν = 0; (3) it has a fixed

squared trace PµνPµν = 3. Pµν defines, at each point of a curve of velocity uν , a 3-
space which is transversal to the curve. In a perfect fluid, the contribution of pressure to
energy-momentum is purely transversal. Notice that TµνPµν = − 3p.

§ 2.2.3 The “convenient” coordinates used above can be arrived at as fol-
lows. A 3–space with constant nonvanishing curvature can always be defined
in terms of 4–space cartesian coordinates (x0, x1, x2, x3) as

±x2
0 + x2

1 + x2
2 + x2

3 = ±1

The upper signs refer to spaces with positive curvature, the lower signs to
spaces with negative curvature. When we say “constant” curvature, we mean
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constant in space itself. The 3–space curvature can depend on the 4-th (here,
0-th) coordinate, which is time for us. For the upper sign, new coordinates
can be introduced as the natural generalization of spherical coordinates:

x0 = cosχ; x1 = sinχ cos θ; x2 = sinχ sin θ cosφ; x3 = sinχ sin θ sinφ .

The 3-space line element then becomes

dl2 = dχ2 + sin2 χ
(
dθ2 + sin2 θdφ2

)
.

Introducing r = sinχ leads to (2.1) with κ = 1. For the lower sign, which
leads to (2.1) with κ = − 1, it is enough to use coshχ and sinhχ instead of
cosχ and sinχ. For vanishing curvature (κ = 0), it is enough to notice that
(2.1) is just dx2 + dy2 + dz2 in spherical coordinates.

Other coordinate systems can be eventually used, if more convenient to
exhibit some special feature.

§ 2.2.4 In cosmologists jargon, the sphere S3 is said to be “finite, but un-
bounded”. This closed space has a finite volume, but has no boundary. The
other spaces are “infinite”, because they have infinite volume.

§ 2.2.5 Copernicus has taught us that we are in no special position in the
Universe. If no observer whatsoever is in special position, homogeneity fol-
lows. Looking at scales large enough, distribution of matter in space seems
isotropic to us. These observations are at the origin of the ideas of homo-
geneity and isotropy. By “large enough”, we mean regions of linear size of
order 1026 cm, larger than galaxy clusters (see table 2.1). This is actually a
modelling procedure. It is clear that the homogeneity of matter distribution
is only a rough approximation. There is evidence for the existence of agglom-
erates still larger than galaxy clusters, and of large empty regions. What we
do is to take “cells” of volume ≈ 1078 cm3 and smear their matter content
so as to have a “continuum”, or a “gas” distribution. More impressive is
the background radiation, remarkably isotropic (to one part in 10000) if our
local motions (of Earth, Sun and Galaxy) are discounted.

stars galaxies clusters
mass 1033 g 1044 g 1047 g
size 1011 cm 1023 cm 1025 cm

Table 2.1: Typical masses and sizes of some astronomical objects
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2.3 The spacetime line element

§ 2.3.1 We can now put together all we have said. Instead of a time–
dependent radius, it is more convenient to use fixed coordinates as above,
and introduce an overall scale parameter a(t) for 3–space, so as to have the
spacetime line element in the form

ds2 = c2dt2 − a2(t) dl2. (2.5)

Thus, with the high degree of symmetry imposed, the metric is entirely fixed
by the sole function a(t). Using (2.1),

ds2 = c2dt2 − a2(t)

[
dr2

1− κr2
+ r2dθ2 + r2 sin2 θdφ2

]
. (2.6)

This is the Friedmann–Robertson–Walker (in short FRW) interval [1, 2].

§ 2.3.2 There are other current parameterizations for the 3-space. For ex-
ample, Landau & Lifshitz [3] prefer

ds2 = c2dt2 − a2(t)

dr2 +


sin2 r (if κ = +1)
r2 (if κ = 0)

sinh2 r (if κ = −1)

(dθ2 + sin2 θdφ2
) .

(2.7)
In order to have r = sinχ or sinhχ as in §2.2.3, or still as eventual arguments
of sin and sinh as just above, it is more convenient to take by convention the
variable r as dimensionless. In that case the expansion parameter a(t) has
the dimension of length. This is advisable in any approach putting together
the three possible values of κ.

§ 2.3.3 Expression (2.1) represents, we repeat, the interval on 3–dimensional
space. Besides being scaled by a2(t) in (2.6), it differs from the interval on
E3, which is

dl2 = dx2 + dy2 + dz2 = dr2 + r2dθ2 + r2 sin2 θdφ2 (κ = 0) (2.8)

(included in (2.6) and (2.7) as the case κ = 0) by the presence of curvature. In
the euclidean case, it is more convenient to use cartesian coordinates (x, y, z).

The path leading from a given metric to the detailed expression of Eq.(1.1)
is given in Appendix B, section B.2. We shall first state the Friedmann equa-
tions, which result from (2.6), and discuss some of its general consequences.
Some detail on how these equations are arrived at will be given in Sections
2.6 and 2.7.
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2.4 The Friedmann equations

§ 2.4.1 Up to this point, the dynamical equations (1.1) have not been used.
The above line element is a pure consequence of symmetry considerations.
The extreme simplicity of the model is reflected in the fact that those 10
partial differential equations reduce to 2 ordinary differential equations (in
the variable t) for the scale parameter.

In effect, once (2.2) and (2.6) are used, equations (1.1) reduce to the two
Friedmann equations for a(t):

ȧ2 =

[
2

(
4πG

3

)
ρ+

Λc2

3

]
a2 − κc2 ; (2.9)

ä =

[
Λc2

3
− 4πG

3

(
ρ+

3p

c2

)]
a(t) . (2.10)

The second equation determines the concavity of the function a(t). This
has a very important qualitative consequence when Λ = 0. In that case, for
normal sources with ρ > 0 and p ≥ 0, ä is forcibly negative for all t and the
general aspect of a(t) is that of Figure 2.1. It will consequently vanish for
some time tinitial. Distances and volumes vanish at that time and densities
become infinite. This moment tinitial is taken as the beginning, the “Big
Bang” itself. It is usual to take tinitial as the origin of the time coordinate:
tinitial = 0. If Λ > 0, there is a competition between the two terms. It may
even happen that the scale parameter be 6= 0 for all finite values of t (see,
for example, solution (2.24) below).

1.2 1.4 1.6 1.8 2 2.2 2.4
t

4.5

5

5.5

6

6.5

7

a

Figure 2.1: Concavity of a(t) for Λ = 0.
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§ 2.4.2 Taking the time derivative of (2.9) and using (2.10), we find

dρ

dt
= − 3

ȧ

a

(
ρ+

p

c2

)
or

dε

dt
= − 3

ȧ

a
(ε+ p) , (2.11)

which is equivalent to
d

da
(εa3) + 3 p a2 = 0. (2.12)

This equation reflects the energy–momentum conservation: it can be alter-
natively obtained from T µν

;ν = 0.

Comment 2.4.1 We have written Einstein’s equation (1.1) with the term Λgµν (usually
called “the cosmological term”) in the left-hand side. This seems to give it a “kinematical”
role, but is a matter of convention. Nobody really knows its nature. It is equivalent
to suppose, in the right hand side, a fluid with the exotic equation of state p = − ε =
− ρ/c2. In this case Eq.(2.11) enforces ε = constant. The cosmological term is consequently
equivalent to a source with constant energy εΛ = c4Λ

8πG . We shall repeatedly come back to
this “dark energy”.

§ 2.4.3 Equation (2.11) is sometimes called the “adiabaticity condition”.
The first law of Thermodynamics,

dE = TdS − pdV

written in terms of the energy and entropy densities ε = E/V and s = S/V
assumes the form

dε = Tds+ (Ts− ε− p)dV
V

.

Notice that V = V0
a3

a3
0

implies dV
V

= 3
a
da. Equation (2.11) becomes, in

consequence,
1

s

ds

dt
= − 3

a

da

dt
or

d

dt
ln[sa3)] = 0.

This means sa3 = s0a
3
0, or

d

dt
S = 0.

The Friedmann expansion is adiabatic.

Comment 2.4.2 Use of E = εV and V (t) = V0
a3
0

a(t)3 shows that Eq.(2.11) is just dE
dt =

− pdV
dt , consistent with the above result. Other expressions of interest are dE = 3pV da

a

and dE = − 3pV dz
1+z .
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§ 2.4.4 It is convenient to introduce two new functions, in terms of which
the equations assume simpler forms. The first is the Hubble function

H(t) =
ȧ(t)

a(t)
=

d

dt
ln a(t) , (2.13)

whose present-day value is the Hubble constant

H0 = 100 h km s−1 Mpc−1 = 3.24× 10−18 h s−1 .

The parameter h, of the order of unity, encapsulates the uncertainty in
present-day measurements, which was very large (0.45 ≤ h ≤ 1) up to 1999.
Recent values, more and more confirmed and accepted by consensus, are
h = 0.72± 0.07.1 The second is the deceleration function

q(t) = − äa

ȧ2
= − ä

ȧH(t)
= − 1

H2(t)

ä

a
. (2.14)

Equivalent expressions are

Ḣ(t) = −H2(t) (1 + q(t)) ;
d

dt

1

H(t)
= 1 + q(t) . (2.15)

Notice that a constant H implies q = − 1. The present–day value q0 = q(t0)
has been called the deceleration parameter, because the first matter+radiation
models showed a decreasing expansion. Data seemed consistent with q0 ≈ 0
up to 1999. Recent data have brought forward the great surprise: preferred
values are now q0 = − 0.67 ± 0.25, negative. The “deceleration” keeps this
name for historic reasons, but is actually an acceleration: the rate of expan-
sion is increasing.

The Hubble constant and the deceleration parameter are basically inte-
gration constants, and should be fixed by initial conditions. As previously
said, the present–day values are used as “initial”.

§ 2.4.5 There are a few other basic numerical parameters, internal to the
theory. The most important is the critical mass density, a simple function of
the Hubble constant:

ρcrit =
3H2

0

8πG
= 1.878× 10−26 h2 kg ×m−3 . (2.16)

1 For recent values of parameters, see W.L. Freedman & M.S. Turner, Rev.Mod.Phys.
75 (2003) 1433. Data from the Wilkinson Microwave Anisotropy Probe (WMAP) are
directly available from http://lambda.gsfc.nasa.gov.
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We shall see later why this density is critical: in the Λ = 0 case, the Universe
is finite or infinite if (the mass equivalent of) its energy content is respectively
larger or lesser than ρcrit. Still another function can be defined, the baryon
density function

Ωb(t) =
ρbaryon(t)

ρcrit

=
8πGρbaryon(t)

3H2
0

. (2.17)

Now, the Λ = 0 Universe is finite (closed) or infinite (open) if the present
value Ωb0 = Ωb(t0) (the “baryon density parameter”) is respectively > 1 or
≤ 1. Observational data give

0.0052 ≤ Ωb0 h
2 ≤ 0.026 (2.18)

for the matter contained in visible objects. There is a strong evidence for the
existence of invisible matter, usually called “dark matter”. This is indicated
by an enlarged parameter

Ωm =
ρm

ρcrit

= Ωb0 + Ωdark + Ωγ + ... (2.19)

encompassing all kinds of matter (visible, radiation, invisible and who knows
else). The present-day value Ωm0 is in principle measurable through its grav-
itational effects, and is believed to be at most ≈ 0.3. In any case matter,
visible or dark, seems insufficient to close the Universe.

2.5 Particular models

The Standard model has not been attained in one night. Several models have
paved the way to it. Some of them can nowadays be seen as special cases.

Einstein static model Historically the first model of modern Cosmology:
a(t) = 1/Λ2 is constant, κ = +1, Λ = 4πGρ/c2, p = 0; everything
is constant in time; this model showed that no static solution existed
without a Λ 6= 0; nevertheless, the solution was shown to be unstable
by Eddington;

Milne model a(t) = t, κ = −1, ε + p = 0; this last “equation of state”
is equivalent to a cosmological constant (see Comment 2.4.1, page 10)
and, consequently, to an empty Universe;

de Sitter Universe a(t) = eHt, κ = 0, H a constant; empty, steady–state,
constant curvature; shall be examined in detail later on (Chapter 4);

12



Einstein–de Sitter model a(t) = C t2/3, κ = 0, Λ = 0; when only dust is
considered, C is a constant; this is the simplest non-empty expanding
Universe; Ω = Ω0 = 1; gives for the Universe an age 2/(3H0) (age
will be defined in Section 2.8.3); see more in Section 3.2, in particular
subsection 3.2.2;

Λ = 0 models with ordinary matter and radiation; these are the “historic”
models: the Universe expands indefinitely for κ = − 1 and κ = 0; if
κ = + 1, it expands up to a maximum radius (placed, for us, in the
future) and then contracts back towards the “Big Crunch”.

2.6 The flat Universe

§ 2.6.1 Let us, as an exercise, examine in some detail the particular flat
case, κ = 0. The Friedmann–Robertson–Walker line element is simply

ds2 = c2dt2 − a2(t)dl2 , (2.20)

where dl2 is the Euclidean 3-space interval. In this case, calculations are
much simpler in cartesian coordinates. The metric and its inverse are

(gµν) =


1 0 0 0
0 −a2(t) 0 0
0 0 −a2(t) 0
0 0 0 −a2(t)

 ;

(gµν) =


1 0 0 0
0 −a−2(t) 0 0
0 0 −a−2(t) 0
0 0 0 −a−2(t)

 .

Of the metric derivatives appearing in the Christoffel symbols
◦
Γα

βν , only
those with respect to x0 are nonvanishing. Consequently, only Christoffel
symbols with at least one index equal to 0 will be nonvanishing. For example,
◦
Γk

ij= 0. Actually, the only Christoffels 6= 0 are:

◦
Γk

0j = δk
j

1

c

ȧ

a
;

◦
Γ0

ij = δij
1

c
a ȧ.

The nonvanishing components of the Ricci tensor are

R00 = − 3

c2
ä

a
= 3

H2(t)

c2
q(t) ;
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Rij =
δij
c2

[aä+ 2ȧ2] =
δij
c2

a2H2(t)[2− q(t)] .

In consequence, the scalar curvature is

R = g00R00 + gijRij = − 6

[
ä

c2a
+

(
ȧ

ca

)2
]

= 6
H2(t)

c2
[q(t)− 1] .

The nonvanishing components of the Einstein tensor Gµν =Rµν − 1
2
Rgµν are

G00 = 3

(
ȧ

ca

)2

; Gij = − δij
c2

[ȧ2 + 2aä] .

§ 2.6.2 Sourceless case De Sitter caused a commotion at the beginnings
of General Relativity, when he showed that there are far-from-trivial solutions
without matter and/or radiation sources, provided a cosmological constant
is present. Let us consider the flat de Sitter solution. The Einstein equations
are then

G00−Λg00 = 3

(
ȧ

ca

)2

−Λ = 0 ; Gij −Λgij = − δij
c2

[ȧ2 + 2aä−Λc2a2] = 0 .

Subtracting 3 times one equation from the other, we arrive at the equivalent
set

ȧ2 − Λc2

3
a2 = 0 ; ä− Λc2

3
a = 0 . (2.21)

These are just the Friedmann equations (2.9) and (2.10) for the case ρ = 0,
p = 0, κ = 0. They are the same as

H2(t) =
Λc2

3
; H2(t) q(t) = − Λc2

3
, (2.22)

or to

H2(t) =
Λc2

3
; q(t) = − 1 . (2.23)

Both parameter–functions are actually constants, so that H0 =
√

Λc2

3
and q0

= −1. Deceleration is negative, that is, actually an acceleration. Of the two
solutions, a(t) = a0e

±H0(t−t0), only

a(t) = a0 e
H0(t−t0) = a0 e

q
Λc2

3
(t−t0) (2.24)

would be consistent with pure expansion. Expansion is a fact well estab-
lished by observation. This is enough to fix the sign, and the model implies
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an everlasting exponential expansion. This kind of solution is said to be “in-
flationary”. We shall meet it again in Section 4.4 and in Chapter 5, dedicated
to inflation. Notice that the scalar curvature is R = − 4 Λ, as is always the
case in the absence of sources (compare with what has been said in Comment
2.2.3, page 6).

Notice that (2.24) gives a non-vanishing initial value for a(t). We shall
use notation A = a(0) = a0 e

−H0t0 and eventually write

a(t) = A eH0t . (2.25)

2.7 The general case

§ 2.7.1 When κ 6= 0, the metric corresponding to (2.6) is, now keeping the
Friedmann–Robertson–Walker coordinates,

(gµν) =


1 0 0 0

0 − a2(t)
1−κr2 0 0

0 0 −a2(t) r2 0
0 0 0 −a2(t) r2 sin2 θ

 . (2.26)

The only nonvanishing Christoffel symbols are

Γi
0i = 1

c
H(t) ; Γ1

11 =
κr

1− κr2
; Γ2

12 = Γ3
13 =

1

r
;

Γ0
11 =

a2(t)

c(1− κr2)
H(t) ; Γ0

22 =
a2(t)r2

c
H(t) ; Γ0

33 =
a2(t)r2 sin2 θ

c
H(t)

Γ1
22 = − r (1− κr2) ; Γ1

33 = − r (1− κr2) sin2 θ ;

Γ2
33 = − sin θ cos θ ; Γ3

23 = cot θ .

The nonvanishing components of the Ricci tensor and the Ricci scalar are

R0
0 =

3

c2
ä

a
; Ri

i =
1

c2

[
ä

a
+

2ȧ2 + 2κc2

a2

]
; R =

6

c2

[
ä

a
+
ȧ2 + κc2

a2

]
.

Finally, the Einstein tensor components:

G0
0 = − 3

c2
ȧ2 + κc2

a2
; Gi

i = − 1

c2

[
2
ä

a
+
ȧ2 + κc2

a2

]
.

These expressions lead, once used in Einstein’s equations, to the Friedmann
equations (2.9) and (2.10).
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2.8 Kinematic results

The Standard Model has two kinds of results. Those of the first kind may
be called “kinematical”, because they come from the Friedmann–Robertson–
Walker line element only and, consequently, from the symmetries it sum-
marizes. Those of the second kind are “dynamical”: they presuppose the
insertion of detailed expressions for ρ and for p which determine, through
the Friedmann equations, the time behaviour of the scale parameter. Let us
examine first some of the kinematic consequences of the model.

2.8.1 The red–shift

The red-shift z is given by

1 + z =
a(t0)

a(t)
. (2.27)

This formula represented the first great success of the model. For a light
ray ds = 0, so that, from (2.5), dl = c dt

a(t)
. Suppose we observe light coming

from a distant galaxy at fixed θ and φ. If it is emitted at a point with radial
coordinate r1, the coordinate distance down to us will be

d(r1) =

∫ r1

0

dr√
1− κr2

=


arcsin r1 (κ = 1)

r1 (κ = 0)

arcsinh r1 (κ = −1) .

(2.28)

But this is also

d(r1) =

∫ t0

t1

cdt

a(t)
, (2.29)

where t1 and t0 are respectively the emission and the reception times. It is
sometimes convenient to use the definition of H(t) in the form da = aH(a)dt,
and write the above formula as

d(r1) =

∫ t0

t1

cdt

a(t)
=

∫ a0

a1

da

a2H(a)
. (2.30)

Consider a wave maximum which departs at t1 from a point of coordinate
r1 and arrives here at t0; and the next maximum with depart from that same
point at t1 + δt1 (so that δt1 is the wave period at emission) and arrival at
t0 + δt0 (so that δt0 is the wave period at reception). Suppose (a fantasticaly
good approximation for any observable object) we can neglect the expansion
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of the Universe during one wave period, so that the distance can be considered
the same for the two peaks. Then,

d(r1) =

∫ t0

t1

cdt

a(t)
=

∫ t0+δt0

t1+δt1

cdt

a(t)
=

∫ t0

t1

cdt

a(t)
−
∫ t1+δt1

t1

cdt

a(t)
+

∫ t0+δt0

t0

cdt

a(t)
.

It follows that ∫ t1+δt1

t1

cdt

a(t)
=

∫ t0+δt0

t0

cdt

a(t)
.

As the wave periods δt1 and δt0 are small in comparison with the time scales
involved,

δt1
a(t1)

=
δt0
a(t0)

.

In terms of the frequency, we obtain the law

ν1

ν0

=
a(t0)

a(t1)
, (2.31)

or
ν(t) a(t) = constant. (2.32)

The red–shift is defined as z = λ0−λ1

λ1
= ν1

ν0
− 1, from which follows (2.27).

Hubble’s discovery, in 1929, of a consistent red–shift of light coming from dis-
tant galaxies is one of the greatest landmarks in Cosmology. This has, since
then, been systematically and extensively confirmed for larger and larger
numbers of objects. The astrophysicist analyses the spectrum from some
distant object, recognizes the lines emitted by some atom (say, Calcium) and
compares with those found in laboratory. She/he finds a systematic shift of
the lines, given by (2.27) or (2.32).

Equation (2.32) is important for another reason. The cosmic radiation
background has a Planck distribution. This would not be the case if the
frequencies evolved according to another law (see section 3.7).

2.8.2 Hubble’s law

If the distance between two objects is l(t0) today, it was

l(t) = l(t0)
a(t)

a(t0)

at some t < t0. This distance will change in time according to

l̇(t) = v(t) = l(t0)
a(t)

a(t0)

ȧ(t)

a(t)
,
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which we write
v(t) = H(t) l(t). (2.33)

At present time, this recession velocity is given by Hubble’s law

v(t0) = H0 l0. (2.34)

The velocity of recession v between two objects is proportional to their
distance. In the “static” form (2.34), the law holds for objects rather close
to us, for which H(t) ≈ H0. For larger distances the time-dependent form
(2.33) must be used.

The first observation that distant galaxies do tend to exhibit redshifts was
made by V.M. Slipher in 1914.2 The linear law was established by Hubble
from 1929 on. Figure 2.2 shows his 1936 data on galaxies, restrited to a
few Megaparsecs (1 Mpc = 3.24 × 106 light-years). Figure 2.3 shows 1996
data using far away supernovae of type Ia, whose proper luminosity is fairly
known.

Figure 2.2: Hubble’s data (1936). Notice that the distances did not span
more than a few Mpc. And that the law fails for short distances. Source:
burro.astr.cwru.edu.

2 Nearby galaxies can exhibit blueshifts. The best example is that of Andromeda
(M31): is at a distance of 0.7 Mpc and moves towards us at a speed of 100 km per second.
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Figure 2.3: Velocities of supernovae (A. Reise, W. H. Press and R. P. Kir-
shner, 1996) at distances of hundreds of Mpc. Source: eqseis.geosc.psu.edu.

2.8.3 Age of the Universe

From (2.13) in the form dt = 1
a

da
H

, we can calculate the total time from initial
time ti (which we take as = 0),∫ t0

0

dt =

∫ a0

ai

da

aH[t(a)]
. (2.35)

This “age of the Universe” must be larger than the ages of its somehow
structured constituents. It would be a disaster for the model if Earth, for
example, were found to be older than the Universe. The formula shows a
strong dependence on the behaviour of H(t). We shall see later that a dust–
filled Universe, for example, gives an age = 2/(3H0). This would mean 6.5
billion years for h = 1 and 9.0 billion years for the favored value h = 0.72.
Each model gives, of course, a different age. What we can say is that different
energy-momentum contents and parameter values lead to ages in the range 5
— 20 billion years. The present-day favored value, coming from observations,
is 13.0± 0.5 Gyr (1 Gigayear = one billion years).

There are independent methods to determine the ages of stars, of cer-
tain star clusters and of the Earth. There are, for the time being, large
uncertainties in these numbers, but the numbers seem consistent.
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2.8.4 Energy and red-shift

Given an equation of state in the form p = p(ρ), equation (2.12) can be
integrated to give

1 + z =
a0

a(t)
= e

1
3

R ε
ε0

dε
ε+p(ε) . (2.36)

For example, for a pure radiation content the equation of state is p = 1
3
ε, so

that
εγ(z) = ε0 (1 + z)4 . (2.37)

The energy density of dust matter, with p = 0, will behave according to

εdust(z) = ε0 (1 + z)3 . (2.38)

Recall that Eq.(2.12) is a mere consequence of energy conservation. These
results are independent of the parameters κ and Λ.

The relationship between z and the Hubble function is easily found by
taking time derivatives in Eq.(2.12):

dz

dt
= − H(t)(1 + z),

which integrates to

1 + z = e
−

R t
t0

H(t)dt
. (2.39)

Notice that, from (2.36) and (2.39), a new form of the energy conservation
condition turns up:

1

3

∫ ε

ε0

dε

ε+ p(ε)
= −

∫ t

t0

H(t)dt .

2.9 Friedmann equations, simpler version

§ 2.9.1 In terms of H(t), the Friedmann equations (2.9, 2.10) can be written

H2 = 2

(
4πG

3

)
ρ− κc2

a2
+

Λc2

3
; (2.40)

Ḣ =
ä

a
−H2 = − 4π G

(
ρ+

p

c2

)
+
κc2

a2
, (2.41)

the same as the set

H2(t)q(t) =
4π G

3

(
ρ+ 3

p

c2

)
− Λc2

3
; (2.42)

ȧ(t) = H(t) a(t) ,
dρ

dt
= −3H(t)

(
ρ+

p

c2

)
. (2.43)
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§ 2.9.2 It is convenient (see Comment 2.4.1, page 10) to attribute to Λ an
energy density

εΛ =
c4Λ

8πG
, (2.44)

usually called “dark energy” density. The mass equivalent is, of course,
ρΛ = εΛ/c

2. We can use εs for the total energy density which is introduced
as source in Einstein’s equation, including detected matter + radiation +
undetected matter (“dark matter”), and ps for the corresponding pressures.
Eqs. (2.40), (2.41) take then the forms

H2(t) =
8πG

3c2
[εs + εΛ] − κc2

a2(t)

Ḣ(t) =
κc2

a2(t)
− 3

2

8πG

3c2
[εs + ps] .

We shall see later (in chapter 4) that there are non-trivial solutions of Ein-
stein’s equations with a cosmological constant and no matter sources (εs = 0,
ps = 0). The solution with positive Λ is equivalent to that generated by a
source with the exotic equation of state pΛ = − εΛ (see Section 4.4). We can
therefore define the total (matter + cosmological) energy ε = εs + εΛ and
pressure p = ps + pΛ and rewrite the above equations as (the t-dependence
of a(t) will be left implicit from now on)

H2 =
8πG

3c2
ε− κc2

a2
(2.45)

Ḣ =
κc2

a2
− 3

2

8πG

3c2
[ε+ p] . (2.46)

Alternatively,

H2 =
8πG

3c2
ε− κc2

a2

Ḣ +H2 = − 8πG

3c2
ε+ 3p

2
.

Notice that Ḣ + H2 = ä/a = − qH2 and the last equation is just another
form of Eq.(2.10). Taking derivatives and comparing the equations, we get
again Eq.(2.12), which we rewrite

ε̇+ 3H (ε+ p) = 0

or

a dε+ 3 (ε+ p) da = 0. (2.47)
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§ 2.9.3 Actually, the Friedmann equations acquire their most convenient
form in terms of dimensionless variables, obtained by dividing by H2

0 . We
have then [see Eqs.(2.17), (2.19) and (2.44)]:

Ωb(t) =
ρ(t)

ρcrit

; Ωs =
ρs

ρcrit

(2.48)

ΩΛ =
Λc2

3H2
0

=
ρΛ

ρcrit

; Ωκ(t) = − κc2

a2H2
0

. (2.49)

Only the last one is really new.

§ 2.9.4 It is always good to have numeric expressions at hand, allowing easy
tests of order–of–magnitude. The above expressions are

ΩΛ = 2.86× 1055 h−2 Λ (cm2) ; Λ = 3.5× 10−56 h2 ΩΛ (cm−2) ;

Ωκ(t) = − κ

a2(t)
8.57× 1055 h−2 .

§ 2.9.5 With the total matter mass-equivalent density ρs introduced in Eq.(2.19),
the first Friedmann equation (2.40) becomes

H2

H2
0

=
ρs

ρcrit

− κc2

a2H2
0

+
Λc2

3H2
0

≡ Ωs(t) + Ωκ(t) + ΩΛ, (2.50)

which gives on present-day values the constraint 1 = ρs0

ρcrit
- κc2

a2
0H2

0
+ Λc2

3H2
0

, or

Ωs0 + Ωκ0 + ΩΛ = 1. (2.51)

Expression Ca = κc2

a2
0

has the sense of a Gaussian curvature. The scheme

of Figure 2.4 shows the possible domains of curvature in terms of Ωs0 and
ΩΛ. Figure 2.5 shows real experimental points. Data coming from super-
novae and from the cosmic microwave background are consistent only in the
superposition of the two bands there shown.

§ 2.9.6 Another form of the above equation gives its present–day value in
terms of other parameters:

κc2

a2
0

=
Λc2

3
+H2

0 (Ωs0 − 1). (2.52)

Other, analogous manipulations lead to

q0 =
Ωs0

2
− ΩΛ +

3

2

ps0

ρcritc2
.
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Figure 2.4: Domains of curvature. The line represents zero curvature cases.

There is general agreement about the present–day negligible value of the last
term, so that

q0 ≈
Ωs0

2
− ΩΛ . (2.53)

§ 2.9.7 Equation (2.52) is used to discuss the relation between curvature and
matter content. If ρs0 > ρcrit, that is, if Ωs0 > 1, the present–day Gaussian
curvature is positive, like that of a sphere. In the opposite case, the sign
depends on the value of Λ. If Λ = 0, then it follows that κc2/a2

0 < 0 like that
of a hyperboloid branch. That is, of course, the reason for the value ρcrit being
called “critical”. If the mass density ρ is larger than ρcrit, the gravitational
field it engenders is strong enough to make of the Universe a self–bound,
closed system. If ρ is smaller than ρcrit, as present–day observational data
say it is [4], the gravitational field is not strong enough to make of the
Universe a bound system.

On the other hand, equation(2.51) and the scheme shown in Figure 2.4
provide the simplest plots of observational data. The recent results on super-
novae [14], shown in Figure 2.5, give a domain of possible values for ΩΛ and
Ωs (the total amount of matter, visible and dark) which is a strip between
two straight lines: one going from point (0, 0) to point (0.9, 1.1), the other
from (0, 0.7) to (0.3, 1.1). A wide range of values is still possible. Neverthe-
less, the still more recent data from the background radiation [15] gives a
rather narrow strip along the κ = 0 line. The intersection of both strips is
centered at the point (ΩΛ = 0.7, Ωs = 0.3). These are, since April 2000, the
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favoured values. Dark energy dominates the energy content. This dominance
of the cosmological term, whose real physical origin is unknown (hence the
epithet “dark”), is one of the greatest problems of contemporary Cosmology.

§ 2.9.8 Equation (2.47) is particularly interesting to analyse the energy be-
havior with expansion. As seen in section 2.8.4, it is necessary to add an
extra-cosmological input, an equation of state. It is convenient to introduce
the “barotropic” equation

p = (γ − 1) ε, (2.54)

with γ a parameter3 ranging from γ = 0 (for “dark energy”, or the cosmolog-
ical constant) through γ = 1 (for dust, a zero pressure “gas”) and γ = 4/3
[for ultrarelativistic (UR) gases] to γ = 5/3 [ideal non-relativistic gas (NR)
with p = nkT and energy equipartition, ε = 3

2
nkT ] (see table 2.2).

CONTENT γ w exponent n in ε = ε0(1 + z)n

dust 1 0 3
radiation 4/3 1/3 4
UR gas 4/3 1/3 4

NR ideal gas 5/3 2/3 5
dark energy 0 -1 0

Table 2.2: Values for the barotropic parameterization of the equation of state
p = (γ − 1) ε = w ε.

Equation (2.12) or (2.47), a dε+3 (ε+p) da = 0, has then the general solution

ε2
ε1

= e
− 3

R a2
a1

γ(a)d ln a
.

If γ is supposed constant,

ε2
ε1

=

[
a1

a2

]3γ

,

which gives ε(t)a3(t) = constant for dust, ε(t)a4(t) = constant for an ultra-
relativistic gas and ε(t)a5(t) = constant for an ideal non-relativistic gas. The
latter, as we shall see later (Section 3.2), is totally unrealistic because the
energy densities above are relativistic and contain the particle masses.

3 The notation w = γ − 1 is also very frequent in the literature.
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§ 2.9.9 In terms of H(t), equation (2.41) becomes

Ḣ

H2
0

= − 3

2

ρ+ p/c2

ρcrit

+
κc2

a2H2
0

. (2.55)

Let us choose for time and length the units

H−1
0 = 3.086× 1017 h−1 [sec] = 0.9798× 1010 h−1 [years] ;

c

H0

= 9.258× 1025h−1 [m] . (2.56)

These units are natural in Cosmology. The first is of the same order of
magnitude of the Universe age, in whatever model; the second, of its “causal
size” (distance which light would travel during the age). Their use imply, of
course, also c = 1. The equations acquire the simpler forms

H2 =
ρ

ρcrit

− κ

a2
+

Λ

3
= Ωs(t) + Ωκ(t) + ΩΛ (2.57)

Ḣ = − 3

2
H2 +

3

2

(
ΩΛ −

p

ρcritc2

)
− 1

2

κ

a2
. (2.58)

Notice that the density is absent in the last expression. In fact, it is hidden
in the first term of the right–hand side.

§ 2.9.10 Notice, by the way, that matter and radiation are not in thermal
equilibrium with each other at present time. There was, however, thermal
equilibrium before the time of hydrogen recombination. In order to establish
contact to thermalize two media, some interaction, however tiny, must exist
between them. At temperatures higher than ≈ 3000 oK there is no neutral
hydrogen: protons and electrons move freely. Photons couple to these charges
by Compton scattering. For kT much smaller than the masses of e− and
p, the cross–section is a constant proportional to the inverse square mass.
Thus, it is the electrons which stop the photons. The cross–section involved4

is Thomson’s [16]:

σT =
8πr2

e

3
= 0.665 barn = 0.665× 10−24 cm2 .

4 Here some well-known quantities of electrodynamics are worth remembering: the
fine structure constant α = e2

4πε0~c = 7.297× 10−3 = 1
137.036 ; the electron Compton length

λCe = h
mec ≈ 2.42 × 10−10 cm; and the “classical electron radius” re = αλCe = e2

4πε0mec2

= 2.817 × 10−13 cm. Some authors define the Compton length with ~ intead of h. The
necessary Particle Physics data are given in Appendix A, section A.4.
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The mean free path of a photon will be

λγ =
1

neσT

≈ 1.5× 1023 1

ne

(cm). (2.59)

The calculation of ne is a rather intricate problem which we shall discuss
later. For the time being, let it only be said that the electrons do stop the
photons very effectively. After recombination there is only neutral hydrogen.
The cross–section photon–hydrogen is practically zero, so that the photon
mean free path becomes practically infinite. This means that the photons
become free. This is the origin of the background radiation.

§ 2.9.11 Matter and radiation density and pressure are introduced in the
energy–momentum tensor (2.2) through their expressions for ideal gases.
Interactions are only taken into account through the “chemical” reactions
supposed to take place in due conditions. As examples, a weak Thomson
scattering lies behind thermal equilibrium before recombination, and pair
production will be responsible for a huge number of electrons and positrons
when kT is higher than ≈ 0.5MeV .

§ 2.9.12 The values Λ = 0, κ = 0 lead to very simple solutions and are
helpful in providing a qualitative idea of the general picture. They will be
used as reference test cases. We shall exhibit later the exact analytic general
solution for H(z) and an implicit solution for a(t). Nevertheless, in order to
get a firmer grip on the relevant contributions and the role of each term, let
us shortly review the so-called “thermal history” of the Universe.
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Figure 2.5: Data on ΩΛ × Ωm, taken from of the Boomerang project report
[15]. The northwest-to-southeast band comes from the cosmic microwave
background, while the other band comes from previous supernova studies [14].
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Chapter 3

Thermal History

3.1 Overview

§ 3.1.1 If we leave aside the cosmological constant, the present–day energy
content of the Universe consists of matter (visible or not) and radiation,
the last constituting the cosmic microwave background. The energy density
of the latter is very small, much smaller than that of visible matter alone.
As repeatedly announced, we take this content and help ourselves of the
equations to travel back into the past, that is, toward higher red-shifts. A
very simplified scheme is given in Table 3.1, whose numbers are very rough
(model-dependent) and which we now proceed to describe from bottom to
top. We start by studying what would happen if only matter (essentially in
the form of nucleons) and radiation are taken into account. The equations of
state for an ideal gas of nucleons and for a black-body are used and compared.
Energy densities increase according to Eqs.(2.37) and (2.38). Temperature
increases as we proceed to the past. Now, it comes from the equations
of state that radiation energy increases faster than matter energy with the
temperature. Thus, though matter dominates the energy content of the
Universe at present time, this dominance ceases at a “turning point” time
(also called “the changeover”) given below [equation (3.36)]. At that point
radiation takes over. At about the same time, hydrogen — the most common
form of matter — ionizes. The photons of the background radiation establish
contact with the electrons (via Thomson scattering), and the whole system
is thermalized: above that point, there exists a single temperature. And,
above the turning point, the dominating photons increase progressively in
number while their concentration grows by contraction. The opportunity for
interactions between them becomes larger and larger. When they approach
the mass of an electrons, pair creation sets up as a stable process. Radiation
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is now more than a gas of photons: it contains more and more electrons and
positrons. Concomitantly, nucleosinthesis stops. As we insist in going up the
temperature ladder, the photons, which are more and more energetic, break
the composite nuclei. The nucleosynthesis period is the most remote time
from which we have reasonably sure information nowadays.

Hic sunt leones
? p∓, n,

hadron era n̄, π0,∓

dominate
z ≈ 1012; kT ≈ 1GeV energy content

kT ≈ 1GeV e∓, µ∓

lepton era dominate
energy content

kT ≈ 4 MeV nucleo–
z ≈ 2 ×1010; synthesis
kT ≈ 0.5MeV e∓ annihilation

kT ≈ 0.5MeV radiation
radiative era dominates

z ≈ 107; kT ≈ 2eV energy content

t ≈ 104 years turning point radiation ceases
z ≈ 104; (3233) (or cross-over) to dominate
kT ≈ 3× 103 oK electrons
kT ≈ 10eV recombination & protons

z ≈ 103 (1089) time combine into microwave
t ≈ 5× 105 years hydrogen background

(t ≈ 3.79× 105 years) formed

galaxies ?
clusters ?

matter era

Table 3.1: Rough scheme of the thermal history. Temperatures, red-shifts and
time values — shown in the left column — are model-dependent. Some data
from WMAP (2003; http://lambda.gsfc.nasa.gov) are icluded (underlined).

§ 3.1.2 But we can go on with our journey into the past. At temperatures
around 100 MeV muons begin to be formed by pairs. Then pions appear,
and a mesons (ρ, ω) with masses in the hundreds of MeV . Around 1 GeV ,
nucleons make their appearance. These nucleons have nothing to do with
those with which we have started. They are extra nucleons, belonging to
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the radiation. Below 1 GeV stands a period dominated by e∓ and µ∓, the
so–called lepton era. Above that, baryons dominate to define the hadron era.
Still above, honestly, we know nothing. It is frequently claimed that quarks
and gluons become free at very high temperature. Laboratory experiments
seem to indicate that such “deconfinement” does not happen at energies be-
low 150 GeV . Theory is not of any more help. The theory which describes
successfully other aspects of these quark–gluon interactions, Quantum Chro-
modynamics, has not (yet ?) provided a mechanism for neither confinement
nor deconfinement. Of course, the domain of very high energies is a favorite
for speculation. For the time being, it stands beyond the scope of Physical
Cosmology.

Comment 3.1.1 As a backslash, Cosmology may eventually come to provide informa-
tion on basic Physics. Whether or not our universal constants (c, e, ~, G, ...) are really
constants—have always had their present-day values—is a fascinating question. This is
becoming more and more interesting with the development of high-precision cosmologi-
cal measurements. See J. Magueijo, J.D. Barrow and H.B. Sandvika, Is it e or is it c?
Experimental Tests of Varying Alpha, arXiv:astro-ph/0202374 (2002) and J.D. Barrow,
Cosmological Bounds on Spatial Variations of Physical Constants, arXiv:astro-ph/0503434
(2005).

§ 3.1.3 It is an instructive exercise to repeat the above in the natural order
of time, that is, taking Table 3.1 from top to bottom. There is an initial pe-
riod on which we know next to nothing. Then follows a period in which the
energy content of the Universe is dominated by the hadronic component of
the radiation. Hadrons are, by definition, particles able to interact strongly.
The equation of state of hadron–dominated radiation is, consequently, un-
known. After that comes the lepton era, and toward the end of that period
nucleosynthesis of light elements (deuterium, helium, lithium) takes place.
Despite their subsequent recycling by the stars, these elements do bring us
news of that time. Positrons vanish at the end of this era, and radiation in
form of photons dominate. When the Universe was about 10 thousand years
old, the matter which is nowadays present surpasses radiation, and domi-
nates since then. This brings to the limelight one of the greatest mysteries of
Cosmology. This matter was quite negligible at the beginning. It was there,
as the lifetime of the proton is many orders of magnitude larger than any
age we can possibly attribute to the Universe.1 There was, consequently, a
tiny excess of matter at the beginning, which in the long run has assumed

1 Proton lifetime ≥ 2.1 × 1029 years, according to S. Eidelman et al (Particle Data
Group), Phys.Lett. 592 (2004) 1. For data on Particle Physics, see the Particle Data
Group site, http://pdg.lbl.gov. The Universe age is nowadays believed to be (13.7±0.2)×
1010 years.
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the control. The origin and the amount of that excess is one of the great
unsolved problems.

§ 3.1.4 We shall talk of the radiation-dominated era and of the matter-
dominated era. Recent data indicate that the cosmological term actually
dominates all, at least in the present stage. It is also believed to have dom-
inated during the “initial period on which we know next to nothing” (see
Chapter 5). Consequently, statements that radiation or matter “dominated”
must be qualified. In the radiation-dominated era the energy content of ra-
diation is more important then the energy content of non-relativistic matter,
and vice-versa.

Let us now see how the above eras and periods come out from the equations.

3.2 Matter–dominated era

3.2.1 General aspects

§ 3.2.1 All during this period kT << 1 GeV , so that protons are non-
relativistic. Matter pressure is supposed to be given by the ideal non–
degenerate gas expression pb = nbkTb. It appears in Friedmann’s equations
only in the combination

ρb + pb/c
2 = nb [m+ kTb/c

2] =
nb

c2
[mc2 + kTb] .

Matter is overwhelmingly formed by neutrons and protons. As for them
mc2 ≈ 1 GeV , we see that pb is quite negligible in the prevailing non-
relativistic regime. Dust pervades the Universe. Putting p = 0, the equations
(2.57) and (2.58) become very simple for the reference test case Λ = 0, κ = 0:

Ḣ = − 3

2
H2 = − 3

2

ρb

ρcrit

. (3.1)

The general solution is
1

H (t)
=

3

2
t+ C . (3.2)

3.2.2 The dust singular Universe

§ 3.2.2 Let us here make an exercise, studying what is called “the dust
Universe”. It is an unrealistic model which supposes matter domination all
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the time. We fix at the “beginning” Ht=0 =∞, then the integration constant
C vanishes and the exact solution is

H(t) =
2

3t
(dust).

This means that
da

a
=

2

3

dt

t
(dust).

The expressions relating the Hubble function, the expansion parameter, the
red-shift, and the density follow immediately (we reinsert H0 for conve-
nience):

H2

H2
0

= (1 + z)3 (3.3)

a(t)

a(t0)
=

(
t

t0

)2/3

; (3.4)

1 + z =

(
t0
t

)2/3

=

(
2

3H0 t

)2/3

; (3.5)

ρb

ρcrit

=
H2

H2
0

Ωb0 = (1 + z)3 Ωb0 . (3.6)

Using the value (2.16) of the critical density, we find

ρb = 1.878× 10−26 (1 + z)3 Ωb0 h
2 [kg m−3] (3.7)

Dividing by the proton mass, the number density is

nb = 11.2× (1 + z)3 Ωb0 h
2 [m−3] (3.8)

Actually, Ωb0 = 1 in the reference case we are considering. This gives a
few nucleons per cubic meter at present time. The age of the Universe can
be got from (3.5), by putting z = 0. One obtains t0 = 2/(3H0), which is
≈ 6.5 × 109 years, a rather small number. Always in the reference case,
this dust–dominated Universe is just the Einstein–de Sitter Universe. The
general profile of a(t)/a0 is shown in Figure 3.1.

There are, anyhow, serious flaws in this exercise-model: it supposes that
matter dominates down to t ≈ 0. This is far from being the case: radiation
dominates at the early stages. Furthermore, the protons cannot, of course,
be non-relativistic at the high temperatures of the ”beginning”.
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Figure 3.1: a(t)/a0 for the Einstein–de Sitter Universe. Time is measured in
units 1/H0.

3.2.3 Matter–domination: κ = 0,Λ = 0

§ 3.2.3 A bit less unrealistic would be to fix the constant C in Eq.(3.2)
by present-day values. This would be valid for the period not too far from
present time, where matter at least dominates over radiation. This model
remains unrealistic because all the evidence points nowadays to the domi-
nance of the cosmological term, which is neglected. Let us anyhow take it as
another exercise and fix the integration constant by the present value

1

H (t0)
=

1

H0

=
3

2
t0 + C .

The solution will now be

H(t) =
H0

1 + 3
2
H0(t− t0)

. (3.9)

Integrations of da
a

= H(t)dt leads then to

a(t) = a0 [1 +
3

2
H0(t− t0)]2/3 (3.10)

1 + z =
a0

a(t)
=

1

[1 + 3
2
H0(t− t0)]2/3

. (3.11)

Equation (3.6), and its consequeces keep holding. The age of the Universe is
basically the same: we look for the time t corresponding to z →∞, and find
t0− t = 2/(3H0). Finally, for time ranges t0− t small in comparison to H−1

0 ,
we find a linear relation between red-shif and time:

z ≈ H0 (t0 − t) . (3.12)
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This expression is valid for nearby objects. As to (3.9) and (3.11), they hold
from the turning point down to present times (provided, we insist, κ = 0 and
Λ = 0).

3.2.4 Matter–domination: κ = 0,Λ 6= 0

§ 3.2.4 Recent evidence for κ = 0 and a nonvanishing cosmological constant
at present time gives to this case a prominent role.

Let us insert (2.39) into (3.6), to get

ρ = ρ0 e
− 3

R t
t0

H(t)dt

and then insert this expression into (2.40):

H2 = 2

(
4πG

3

)
ρ0 e

− 3
R t

t0
H(t)dt

+
Λc2

3
. (3.13)

This gives, as it would be expected, (2.51) for the present case with Ωk0 = 0:

H2
0 = 2

(
4πG

3

)
ρ0 +

Λc2

3
.

Equation (3.13) in an involved integral equation for H(t). It is simpler to
make it into a differential equation, by taking its time derivative. One gets
(3.1) corrected for Λ 6= 0:

dH

dt
=

3

2

(
Λc2

3
−H2

)
.

Integration leads to a more involved solution,

H(t) =

√
Λc2

3

(√
Λc2

3
+H0

)
e3

q
Λc2

3
(t−t0) −

(√
Λc2

3
−H0

)
(√

Λc2

3
+H0

)
e3

q
Λc2

3
(t−t0) +

(√
Λc2

3
−H0

) . (3.14)

This expression for H(t) gives H = H0 when t→ t0 and tends to (3.9) when
Λ→ 0. To have it in terms of parameters more accessible to observation, we
may use Λc2/3 = H2

0ΩΛ to rewrite it as

H(t) = H0

√
ΩΛ

(√
ΩΛ + 1

)
e3H0

√
ΩΛ(t−t0) −

(√
ΩΛ − 1

)(√
ΩΛ + 1

)
e3H0

√
ΩΛ(t−t0) +

(√
ΩΛ − 1

) . (3.15)
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To get the relation with z, we notice that (2.40), which is the same as

H2 = 2

(
4πG

3

)
ρ0(1 + z)3 +

Λc2

3
= H2

0

[
Ωb(1 + z)3 + ΩΛ

]
,

gives

H2 − Λc2

3
= 2

(
4πG

3

)
ρ0(1 + z)3

and therefore

H2
0 −

Λc2

3
= 2

(
4πG

3

)
ρ0 ,

which together imply
H2 − Λc2

3

H2
0 − Λc2

3

= (1 + z)3 .

Alternatively,

(1 + z)3 =
H2 −H2

0 ΩΛ

H2
0 (1− ΩΛ)

. (3.16)

Remember that in the present case Ωb + ΩΛ = 1. It remains to use (3.14) to
obtain

1 + z =

(
4

Λc2

3

)1/3
e

q
Λc2

3
(t−t0)[(√

Λc2

3
+H0

)
e3

q
Λc2

3
(t−t0) +

(√
Λc2

3
−H0

)]2/3
,

(3.17)
which is the same as

1 + z = (4 ΩΛ)1/3 eH0
√

ΩΛ(t−t0)[(√
ΩΛ + 1

)
e3H0

√
ΩΛ(t−t0) +

(√
ΩΛ − 1

)]2/3
. (3.18)

Comment 3.2.1 The scale parameter a(t)/a0 is just the inverse. A few manipulations
lead to

a(t) = a0

{
cosh

[
3
2
H0

√
ΩΛ(t− t0)

]
+

1√
ΩΛ

sinh
[
3
2
H0

√
ΩΛ(t− t0)

]}2/3

. (3.19)

See another form below, Comment 4.5.1, page 85.

This relationship is expected to be valid during the whole matter-dominated
period, that is, from the turning point to present time. We can anyhow cal-
culate the age the Universe would have if matter had dominated all time, by
fixing t→ 0 when z →∞. The denominator above then vanishes for

t0 =
1

3H0

√
ΩΛ

ln
1 +
√

ΩΛ

1−
√

ΩΛ

. (3.20)
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This corresponds to t0 = 0.964 H−1
0 = 2.975 × 1017 seconds = 9.44 × 109

years. Once this expression for t0 is put in (3.18), it becomes

1 + z =

(
4 ΩΛ

1− ΩΛ

)1/3
eH0

√
ΩΛt[

e3H0
√

ΩΛt − 1
]2/3

. (3.21)

We insist that this formula is not expected to hold in reality — it would be
valid only if the matter content dominates over radiation all along.

= 1ΩΛ

= 0ΩΛ

ΩΛ = 0.7

Figure 3.2: Non-relativistic matter plus cosmological constant, with κ = 0:
comparison of three behaviors.

Figure 3.2 is the result of an exercise in model behavior. Start at the
same lower left point, at one-tenth of H−1

0 , which is the time unit used. The
lower curve shows the expansion of a pure (non-relativistic) matter Universe.
The upper curve shows how Universe driven only by the comological con-
stant would evolve. The medium curve is the closest to present-day data: it
represents a Universe in which 30% of the source energy comes from (non-
relativistic) matter and 70% consists of ‘dark energy”.
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3.3 Radiation–dominated era

3.3.1 General aspects

§ 3.3.1 For photons the temperature behaves as a frequency. This comes
from the equations for the black–body radiation, which give an average en-
ergy per photon < hν >∝ kT . In effect, the energy density is eγ ∝ (kT )4,
whereas the number density is nγ ∝ (kT )3. As the red–shift gives < hν > =
< hν0 > (1 + z), kT must have that same behaviour,

Tγ = Tγ0 (1 + z).

For example, hydrogen recombination takes place at T = Tγ = Tb ≈ 3000oK.
This, with the present–day value Tγ0 = 2.725 ± 0.002 oK measured for the
background radiation, means (1+z) = 1.1×103. Using the equation of state
for the blackbody radiation,

eγ =
48π

h3 c3
ζ(4) (kT )4 ,

the mass-equivalent density ργ = eγc
2 is given by

ργ

ρcrit

= 4.46× 10−7 T 4
γ h

−2 = 2.46× 10−5 (1 + z)4 h−2. (3.22)

The number appearing as a factor is actually the present-day value of the
radiation contribution to Ωs0,

Ωγ0 = 2.46× 10−5 h−2 . (3.23)

Equation (3.22) is consequently the same as

Ωγ = Ωγ0(1 + z)4. (3.24)

3.3.2 Radiation–domination: κ = 0,Λ = 0

§ 3.3.2 Consider again in the reference case κ = 0, Λ = 0 (see page 40 below
for the more important case Λ 6= 0). Because eγ = 3 pγ and ργ = eγ

c2
, we have

Ḣ = − 2 H2 = − 2
ργ

ρcrit

= − 2 Ωγ0(1 + z)4 .

Automatically, in units (2.56),

H2 = Ωγ0(1 + z)4 . (3.25)
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Solving the differential equation is only necessary to fix the relation between
the time parameter and the red–shift. The solution is

H(t) =
1

2t
(radiation dominated) . (3.26)

It is far more reasonable to have Ht=0 = ∞ at the “beginning” here than
in the dust model. We shall see later that radiation does dominate (at least
with respect to matter) at times early enough. On the other hand, these
equations are not expected to meet present–day values. Thus, these formulae
are expected to hold much before the turning point given below. Thus, for
example, the above result implies a much too small age for the Universe:
t0 = 1/(2H0) ≈ 4.9 × 109 years. As it is, the only thing we can say about
the expansion parameter is that it has the form

a(t) = C t1/2 (radiation dominated) , (3.27)

with a constant C to be determined. We shall take its value so as to make
connection at the turning point [see Eq.(3.38) below].

If we at any rate took seriously this model up to present time, we would
have

t

t0
=

1√
Ωγ0(1 + z)2

;
a(t)

a0

=

√
2
√

Ωγ0H0 t . (3.28)

To have at hand some numerical expressions (time in seconds, κ = 0, Λ =
0):

t =
2.2× 1019

(1 + z)2
; 1 + z =

4.68× 109

√
t

. (3.29)

Before recombination (that is, for higher z’s) there is thermal equilibrium
between matter and radiation, because electrons are free and the mean free
path of the photons is very small. An estimate of the energy per photon at
a certain z can be obtained from kTγ0 = 2.3× 10−10MeV , which leads to

kTγ = kTγ0(1 + z) = 2.32× 10−10(1 + z) MeV. (3.30)

For example, an energy of 4MeV corresponds to z ≈ 2× 1010.
In Kelvin degrees, the last equation above is

Tγ = 2.7× (1 + z) . (3.31)

Let us make a simple order–of–magnitude estimate concerning recombina-
tion. If we take for the hydrogen recombination temperature T ≈ 3000oK,
we find z ≈ 1100 for the recombination time. Equation (3.8) gives then
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nbR ≈ 1.5× 1010 h2 Ωb0 [cm−3]

for the number density of protons at that time. Suppose now the medium
to be neutral as a whole. After recombination, each proton has one elec-
tron to neutralize it. Before recombination, the number of free electrons is
equal to that of protons. We can consequently use the above expression for
the electrons in (2.59) to get an idea of the photon mean free path before
recombination:

λγ ≈ 1013 h2 Ωb0 [cm]. (3.32)

§ 3.3.3 By what has been seen, the thermalized state before recombination
makes of Tγ, or its corresponding red–shift, a very convenient time parameter.
We shall retain for later use the expressions

nγ = 2.0287× 107T 3
γ

oK−3m−3 = 4.22× 108(1 + z)3m−3 ; (3.33)

pγ

c2ρcrit

= 7.× 10−8 T 4
γ h

−2 = 3.7× 10−6 (1 + z)4 h−2; (3.34)

ργ

ρb

= 2.46× 10−5 (1 + z) Ω−1
b0 h

−2 . (3.35)

At recombination time,
ρb

ργ

' 37 Ωb0 h
2 .

The scale parameter, and consequently the red–shift, behave quite differently
in a matter–dominated Universe (3.5) and in a radiation–dominated one
(3.28). Eq.(3.35) shows that radiation becomes dominant at high enough
z’s.

The turning point, or change of régime, or changeover, takes place when
ργ ' ρb, or

1 + z ' 4.065× 104 Ωb0 h
2 . (3.36)

This corresponds to

ttp ' .9× 10−8 Ω−2
b0 H

−1
0 = 2.75× 109 Ω−2

b0 sec = 90.6 Ω−2
b0 years. (3.37)

§ 3.3.4 To give some numbers: if we use for Ωb0 the highest value in Eq.
(2.18), Ωb0 = 0.026h−2, and take for h the favored value h = 0.7, the
changeover time is ttp ' 64570 years (corresponding to z ≈ 2366). If we
include all kinds of matter in Ωb0, so that Ωb0 = Ωs = 0.3, then matter
takes over much sooner, at ttp ' 1940 years (z ≈ 13650; in units of H−1

0 :
H0ttp ≈ 2× 10−7). We shall see that hydrogen recombination takes place at
z ≈ 1100. Only for the lowest value for Ωb0 in Eq. (2.18), Ωb0 = 0.0052h−2,
does the turning point falls after recombination (z ≈ 230).
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§ 3.3.5 We can use the turning point to get an estimate of the constant C in
(3.27). In effect, combining that equation with (3.36) and (3.37) we obtain

a(t) = 0.082 a0

√
H0 h

−2 t1/2 (radiation dominated, κ = 0,Λ = 0). (3.38)

Figure 3.3 shows the scale parameter around the turning point.

5·10
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Radiation and dust modelsa t a 0/

H 0
t

Figure 3.3: a(t)/a0 for radiation and dust dominated Universes, showing the
turning point.

We have above (page 31) alluded to the problem of the excess of matter
at the beginning of the Universe, which is actually the matter nowadays
present. This excess is customarily indicated by its relation to radiation.
More precisely, a parameter η is defined by

η =
nγ

nb

. (3.39)

From (3.33) and (3.8),

η = 3.7× 107 (Ωb0h
2)−1 . (3.40)

WMAP gives 1.64× 109 (notice that its notation is inverse to ours). Solving
the “great mystery” of page 31 means explaining this number.

3.3.3 Radiation–domination: κ = 0,Λ 6= 0

§ 3.3.6 Recent evidence makes of this case the most important also for the
radiation era. The expression for the second Friedmann equation which is
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the simplest to integrate is

Ḣ = 2
Λc2

3
− 2 H2 = 2 ΩΛH

2
0 − 2 H2.

The main difficulty is choosing convenient integration constants. We shall
suppose that H(ti) = Hi at some “initial” time ti. The solution is found2 to
be3

H(t) =
√

ΩΛH0 tanh

[
arctanh

Hi√
ΩΛH0

+ 2
√

ΩΛH0(t− ti)
]
,

which is4 the same as

H(t) =
√

ΩΛH0

Hi +
√

ΩΛH0 tanh
[
2
√

ΩΛH0(t− ti)
]

√
ΩΛH0 +Hi tanh

[
2
√

ΩΛH0 (t− ti)
] .

Introducing H̄(t) = H(t)/H0 and H̄i = Hi/H0,

H̄(t) =
√

ΩΛ

H̄i +
√

ΩΛ tanh
[
2
√

ΩΛH0(t− ti)
]

√
ΩΛ + H̄i tanh

[
2
√

ΩΛH0 (t− ti)
] .

If H̄i >> 1, t >> ti, this results in

H(t) =

√
ΩΛH0

tanh
[
2
√

ΩΛH0 t
] , (3.41)

which gives back (3.26) when ΩΛ → 0. Actually, as this result is only mean-
ingful before the turning point, necessarily H0t < 1.8 × 10−8Ω−2

s . For such
values tanh

[
2
√

ΩΛH0 t
]
≈ 2
√

ΩΛH0 t is an excellent approximation and so
is (3.26). This means that, in what concerns H(t), the presence of the cos-
mological constant is irrelevant.

If we suppose that the expansion parameter vanishes at t = 0, Eq.(3.41)
leads5 to

a(t) =

√
sinh[2

√
ΩΛH0t] (radiation dominated, κ = 0,Λ 6= 0). (3.42)

The relation between time and red-shift is given by the first Friedmann
equation,

2 by using
∫

dx
1−x2 = arctanh x

3 remember ΩΛ = Λc2

3H2
0

4 because tanh(x + y) = tanh x+tanh y
1+tanh x tanh y

5 because 1
tanh x = d

dx ln sinhx
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H̄2(t) = ΩΛ + Ωγ0 (1 + z)4.

The solution for ΩΛ 6= 0,Ωγ0 6= 0, κ 6= 0 will be given after we have studied
the de Sitter spacetimes — see equation (4.52).

Comment 3.3.1 Causal domains for cosmic lumps The constituents of a inhomo-
geneity (galaxy, agglomerate) should be causaly related at the time of its creation. This
restricts the possible age of present-day matter lumps, or the time of its formation. Only
to illustrate the argument in rough brushstrokes, let us apply it to a typical galaxy. In
order of magnitude, the mass will be

Mgal ≈ 1011Msun = 2× 1044g.

The matter mass density is nearly [see Eq.(3.7)]

ρb ≈ 2× 10−29(1 + z)3Ωb0h
2 g cm−3.

This is actually a minimum; with dark matter, it would be circa 70 times larger. The
volume containing the matter which is in a galaxy will, consequently, be

V ≈ Mgal

ρb
=

1073

(1 + z)3Ωb0h2
cm3.

This means that a causal correlation must be possible in distances of at least

L = V 1/3 ≈ 101/3 1024

(1 + z)[Ωb0h2]1/3
cm.

Let us choose the maximal value (= 0.026) for Ωb0h
2, so that L is minimal: L ≈ 7× 1024

(1+z)

cm at least; this should be . ct, so that t . 2 × 1014

(1+z) sec. If we now use Eq.(3.29),

1 + z = 6.8×109
√

t
, so that

√
t . 2× 1014

6.8×109 ≈ 105

3 and

t . 109sec, 1 + z & 2× 105.

With dark matter, L and t will be smaller by a factor 1
701/3 ≈ 0.014 and 1 + z ≈ 1.6 ×

106. This rough, model-dependent estimate gives a time a bit before recombination time.
Despite its crudeness, it at least indicates that it is difficult to place too early the origin
of inhomogeneities.

3.4 The thermalized Universe

§ 3.4.1 Let us now go back to the general equations (2.57) and (2.58). Ther-
malization makes the whole system dependent of a single temperature. Much
of the discussion can be made in terms of energies, by using (3.30) and notic-
ing that, if T is in Kelvin degrees (oK), then kT is given in MeV ’s as

kT (MeV ) = 8.617× 10−11 T (oK) .
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It is frequently more convenient to use the variable z. Recall that, from
Eqs.(2.13) and (2.27),

(1 + z)H(z) = − dz

dt
. (3.43)

Extracting Ωs0 from (2.51) and using (2.50) for baryonic matter plus radia-
tion,

H2(z)

H2
0

= Ωγ0 (1+ z)4 +Ωκ0 (1+ z)2 +ΩΛ +(1+ z)3(1−Ωγ0−Ωκ0−ΩΛ) .

(3.44)

We shall use the time unit H−1
0 = 1 and write

H2(z) = Ωγ0(1+z)4+Ωκ0 (1+z)2+ΩΛ+(1+z)3(1−Ωγ0−Ωκ0−ΩΛ) . (3.45)

Comment 3.4.1 This holds, it is good to keep in mind, if radiation provides all the
pressure. We can take in the energy density ε the separate contributions of the supposed
constituents, say, ε = εb+εNb+εγ for baryonic matter, non-baryonic matter and radiation.

An interesting case is that of pure baryonic dust. The colossal proton lifetime (> 1029

years, see footnote page 30) is a strong evidence for strict baryon-number conservation. If
Nb = nbV is the number of baryons in volume V = V0a

3/a3
0, then dNb

dt = V dnb

dt +nb
dV
dt = 0

implies
dnb

da
+ 3

nb

a
= 0 ∴

d

da
(nba

3) = 0. (3.46)

For baryon dust pb = 0 and εb = nbmbc
2. Taken into the energy conservation expression

(2.12), this leads to an independent conservation of the whole non-baryonic energy content:

d(εNb + εγ)
da

+ 3
εNb + εγ + pNb + pγ

a
= 0 .

If all matter is supposed to be baryonic, the radiation energy content is conserved:

dεγ

da
+ 3

εγ + pγ

a
=

dεγ

da
+

4
a

εγ = 0 ∴
d

da
(εγa4) = 0.

Thus, in this most simple case, the energies of matter and radiation are separately con-
served.

Equation (3.23) gives Ωγ0 << 1, so that a good approximation for the
κ = 0 case is

H2(z) = Ωγ0(1 + z)4 + ΩΛ + (1 + z)3(1− ΩΛ) . (3.47)

Notice that the reference (κ = 0, Λ = 0) case

H2 = Ωγ0(1 + z)4 + (1− Ωγ0)(1 + z)3
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reduces to (3.3) when the last term dominates the right-hand side, and
slightly corrects (3.25) when the first term dominates.

Things are not that simple for the expansion parameter, or for the relation
between z and t. Using 1 + z = a0/a, Eq.(3.45) can be written—in units
(2.56)—as

a
da

dt
=
√

Ωγ0a4
0 − κa2 + ΩΛ a4 + a3

0(1− Ωγ0 + κa−2
0 − ΩΛ) a, (3.48)

whose solution is given by

t = t0 +

∫ a(t)

a(t0)

y dy√
Ωγ0a4

0 − κy2 + ΩΛ y4 + y
(
1− Ωγ0 − ΩΛ + κa−2

0

)
a3

0

.

(3.49)

Comment 3.4.2 Equation (3.48) provides a clear vision of the expansion parameter con-
cavity, to be compared with that in the absence of cosmological constant shown in 2.1: its
second time-derivative is independent of κ and exhibits a competition in the signs:

ä = ΩΛa− Ωγ0a
4
0 a−3 − 1

2 Ωm0a
3
0 a−2

where Ωm0 represents pure matter. The first term in the right hand side represents an
acceleration, the other two are decelerations caused by the attractive gravity engendered
by normal sources. We can estimate the point at which acceleration takes over, or ä
changes its sign: ä = 0 is the same as ΩΛ = Ωγ0(1 + z)4 + 1

2 Ωm0(1 + z)3

For the present-day favored values ΩΛ = 0.7,Ωm0 = 0.3,Ωγ0 = 2.2× 10−5, this would
mean z ≈ 0.67 or a(t) ≈ 0.598a0.
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a t
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=  0.7ΩΛ

= 0ΩΛ

Figure 3.4: Numerical solutions for κ = 0: ΩΛ = 0 and ΩΛ = 0.7.
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Figure 3.5: Time versus red-shift with κ = 0 and ΩΛ = 0.7.

Numerical solutions are shown in the Figures. As a(t) and κ only appear
in the forms a(t)/a0 and κ/a2

0, we can put a0 = 1 and consider relative values.
This means that what is numerically solved is

t− t0 =

∫ a(t)

1

x dx√
Ωγ0 − κx2 + ΩΛ x4 + x (1− Ωγ0 − ΩΛ + κ)

.

A good approximation its

t− t0 =

∫ a(t)

1

x dx
√
x
√

ΩΛ x3 − κx+ (1− ΩΛ + κ)
.

For the reference value κ = 0, Figure 3.4 shows the resuls both for ΩΛ = 0
and for the present–day favoured value ΩΛ = 0.7. They should be compared
with those for dust and radiation given before. Figure 3.5 shows the time
(t0−t) in units of H−1

0 as a function of z. The turning point [Eq.(3.36)] takes
place for z in the interval ≈ 103–104.

§ 3.4.2 It will be of interest for later use to have the Friedmann equations
for the thermalized period in a simpler notation. Equation (3.45) can be
written as

ȧ2 + κc2

a2
= Ωγ0

a4
0

a4
+ ΩΛ +

a3
0

a3

(
1− Ωγ0 +

κc2

a2
0

− ΩΛ

)
. (3.50)

This is just equation (2.45) for dust plus radiation with κ 6= 0 and Λ 6= 0.
Equation (2.46), for the time-derivative of H, is

Ḣ =
κc2

a2
− 2 Ωγ0

a4
0

a4
− 3

2

a3
0

a3

(
1− Ωγ0 +

κc2

a2
0

− ΩΛ

)
. (3.51)
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We should keep in mind that time is being measured in units of H−1
0 . In

the right-hand side of (3.50), the first term is the radiation contribution and
the third is that of nonrelativistic matter (or dust). It will be convenient to
introduce in those terms the notations

γc2 = Ωγ0a
4
0 (3.52)

Mc2 =

(
1− ΩΛ −

γc2

a4
0

− κc2

a0
2

)
a0

3. (3.53)

The equations take on the forms

ȧ2 + κc2

a2
=
γc2

a4
+ ΩΛ +

Mc2

a3
; (3.54)

Ḣ =
κc2

a2
− 2

γc2

a4
− 3

2

Mc2

a3
. (3.55)

The general solution (3.49) is very complicated. It is actually an implicit
expression giving time t in terms of elliptic integrals in the expansion param-
eter a. We shall postpone further discussion of this topic to the chapter on
de Sitter solutions (section 4.5).
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3.5 An interlude: chemical reactions

§ 3.5.1 Thermodynamics of chemical reactions is of fundamental importance
to Cosmology. Hydrogen ionization–neutralization, so important to the con-
stitution of the microwave background, can be seen as a chemical reaction
with neutral hydrogen, electrons and the ion H+ as reactants. Also the pro-
cesses involved in nucleosynthesis are reactions, and so are the formation of
particle–antiparticle pairs leading to the intricate composition of radiation
at very very high temperatures. A parenthesis on some general aspects of
chemical reactions is in good place here.6

We begin with a short journey into Thermodynamics, and that for two
reasons. One is obvious: chemical equilibrium is a particular kind of thermo-
dynamic equilibrium. The second is that thermodynamics helps, by analogy,
to clarify some statements we have rather hurriedly made above.

In this Section we apply the thermodynamics of chemical reactions to get
Saha’s equation for ionization processes. We use it to get an estimate of the
hydrogen recombination temperature. Application to nucleosynthesis and to
the composition of high–temperature black–body radiation are left to later
Sections.

A caveat: Thermodynamics, as we shall use it, supposes equilibrium.
This means that the equations must be applied with care. We shall try to
use them only in conditions for which there are good reasons to suppose that
equilibrium is established. For example, to calculate the temperature of half–
ionization for Hydrogen. At half–ionization, there is a huge number of free
electrons to interact with the radiation photons and establish equilibrium.
Near total recombination would mean a small number of free electrons and
doubtful equilibrium. In that case, chemical kinetics should be used, or
out–of–equilibrium Thermodynamics. Calculations, involving the Boltzmann
equation, are then much more elaborate.

Comment 3.5.1 When the system is out of equilibrium, it is not enough to consider the
number densities of each species involved (ne for electrons, nγ for photons, np for protons,
nH+ for hydrogen ions, ... ), as we are going to do in what follows. Correlations of particles
2–by–2, 3–by–3, etc, must be taken into account. This means that distribution functions
for pairs, triads, etc, of particles become relevant, besides the single–particle distributions
which the number densities represent. The complete description involves actually corre-
lations to all orders. The general theory for all that does exist in principle, but involves
an infinite set of equations, one for each level of correlation: one equation for the distri-
bution of pairs, another for the distribution of triads, and so on. This infinite “hierarchy”

6 In that topic, we shall follow mainly chapter X of Landau & Lifshitz [18], but chapter
9 of McQuarrie [19] is highly commendable.
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of equations (called the BBGKY hierarchy)7 is furthermore complicated by the fact that
the equations are coupled (single and pair distributions appear in the equation for triads,
and so on for the higher orders). The whole thing is far from being practical, and the
art of out–of–equilibrium Statistical Mechanics consists in finding useful approximations.
Mostly, these consider systems in which interactions and correlations, though present, are
small. The main objective is to get everything written in terms of single–particle distri-
butions. A number of equations turn up for the different types of approximation made:
the Vlasov equation (when a mean field approximation is supposed), the Master equation
(when the interaction coupling constants involved are small, as in the weak interactions
which we will consider below), the Landau equation (when the pair distribution can be
obtained from the single particle distribution and small collision terms). They all present
a difficulty: most realistic interactions between particles, atoms and molecules are repre-
sented by potentials including a hard core, and in that case a weak coupling only gives
a reliable approximation for dilute systems, when all constituents spend most of their
time in the small tails of each other’s potentials. Dilute systems are described by the
best known of all such “kinetic equations”, the Boltzmann equation. It is expected to
hold, for example, at the end of the hydrogen recombination period, when the photons
are no more sufficiently coupled to the electrons to ensure thermodynamical equilibrium.
We shall see that a Planck distribution for the cosmic microwave is expected from a pure
equilibrium treatment (actually, plus some extra assumptions). Some of the very small
departures from that distribution, as temperature fluctuations, can be attributed to that
non-equilibrium phase, and are approached via the Boltzmann equation.8

3.5.1 Some considerations on Thermodynamics

§ 3.5.2 Let us begin with heat. It has been a great achievement of human
mind to understand that an infinitesimal quantity δQ of heat transferred to
a physical system is not the differential of anything. That there exists no
such a thing as a function “heat” Q of which δQ is a differential. And a still
greater prowess to perceive that δQ/T is the exact differential of a function,
entropy. Thus, it is possible to write TdS = δQ. The same is true of the
mechanical work δW = F · dx, which is easier to understand. Suppose we
displace the force from a point a to a point b, and want to know the work
done. We take the integral

∫ b

a
δW , expecting to find W (b)−W (a). However,

the integral of F ·dx is clearly a line integral
∫

γab
F ·dx, where γab is a curve

joining a to b. The problem is that there are many such curves and each
one gives a different result. Thus, the work necessary to take the force from
one point to another depends to the chosen trajectory. Consequently, even
if we had chosen some initial value W (a) for W at the point a, it would be
impossible to attribute a unique value to W at b. W is not (by far !) a single–
valued function. Perception of this point has led to the modern concept of

7 For Bogoliubov-Born-Green-Kirkwood-Yvon. A remarkable description of all these
questions is given by R. Balescu, Statistical Dynamics, Imperial College Press, 1997.

8 See Dodelson, op.cit. page iv.
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differential form. We would nowadays say that W is not a function of points,
but a functional W [γ] on the space of curves γ linking a to b. We would
also say that δW , like δQ, is not an exact form. Such non–exact differential
forms may, in some cases, be integrable with the help of an integrating factor
or denominator. This is the case of δQ, for which the temperature is an
integrating denominator. The integral of dS between two states leads to a
well–defined entropy variation. The same happens for thermodynamic work,
for which the pressure is an integrating denominator: dV = - δW/p. The
minus sign comes from the fact that the work done on the system by applying
a pressure to it would lead to a negative dV . All this will lead to the usual
expression of the first law of Thermodynamics. If we furnish heat δQ and
work δW to a system, its energy will vary according to

dE = δQ+ δW = TdS − pdV .

This can be generalized to the case in which also particles are supplied to
the system, causing a variation dN in their number:

dE = δQ+ δW = TdS − pdV + µdN .

The chemical potential µ is the energy which must be furnished to the system
in order that it increases the number of particles by one.

Comment 3.5.2 Now a parenthesis inside the parenthesis. We have previously “inte-
grated” the differential dl, as if an interval function “l” existed. Well, clearly an integral
such as

∫
γ

dl =
∫

γ

√
dx2 + dy2 + dz2 depends on the curve along which it is taken. And

here comes the simple explanation: we have, in each case, used a preferred curve, the
shortest one. We have in all cases been in 3–space, on which the notion of distance as an
infimum,

d(a, b) = inf
γab

∫
γab

√
gijdxidxj

has a sense because the metric, restricted to 3–space, is definite–positive and a geodesic is
the shortest path. It would not make sense on 4–dimensional spacetime, on which metric
is not definite–positive and the infimum does not exist.

The above expression of the first principle makes of the energy a “thermo-
dynamic potential”, in the sense that physical quantities are obtained from
it by derivation. Pressure, for example, is minus the derivative of the energy
with respect to the volume at constant S and N :

p = −
(
∂E

∂V

)
S,N

.
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This means that the energy is the convenient potential when the independent
variables are S, V and N . In some more detail, the first principle should
actually be written

dE = T (S, V,N) dS − p(S, V,N) dV + µ(S, V,N) dN . (3.56)

We may have reasons, theoretical or experimental, to prefer other variables
(entropy, for instance, is difficult to measure directly). And this leads us
into the lore of thermal potentials. Changing the variables lead to different
potentials, one for each set of variables. In each case, equilibrium takes place
when the potential is minimum. Thus, minimizing the potential gives the
condition for equilibrium.

The change of variable is made by a Legendre transformation, which
corresponds to adding some product to the previous potential. Thus, if we
wish to have T , V and N as independent variable, we subtract ST from E.
Clearly,

d(E − ST ) = −SdT − pdV + µdN .

This (T , V , N) potential is the Helmholtz free energy A = E − TS.

dA = −S(T, V,N) dT − p(T, V,N) dV + µ(T, V,N) dN .

If, furthermore, we want p instead of V as independent variable, we add pV .
What appears is the Gibbs potential G(P, T,N):

dG = d(E − ST + pV ) = −S(T, p,N) dT + V (T, p,N) dp+ µ(T, p,N) dN .
(3.57)

Some authors call G simply the thermodynamic potential. It is the most
convenient potential when considering chemical reactions: the independent
variables are the rather easily measurable quantities T , p and N .

3.5.2 Chemical equilibrium

§ 3.5.3 Adding sodium oxide to sulfuric acid is a rather expensive method
to produce water:

Na2O +H2SO4 −→ H2O +Na2SO4 .

As long as we add material in the left–hand side, the process is a produc-
tion reaction, with the arrow pointing to the right. Some time after we
stop adding anything, the system attains a kind of equilibrium, the chemi-
cal equilibrium in which the relative number of molecules of each species is
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kept constant. The reaction then proceeds both ways with the same velocity,
which is indicated as

Na2O +H2SO4 ←→ H2O +Na2SO4 .

There is a standard way to indicate reactions as equalities. An equilibrium
chemical reaction like

2H2 +O2 ←→ 2H2O ,

for example, is written in the symbolic form

2H2 +O2 − 2H2O = 0 ,

with all terms in the left–hand side. Thus, a chemical reaction involving the
reatants Ai has a general symbolic form∑

i

νi Ai = 0. (3.58)

The numbers νi fix the reagent proportions in order to maintain equilibrium.
Suppose a system involving one or more reactions. Both the total number

of particles N and the numbers Ni of each species can vary. Furthermore,
the study of chemical reactions is usually made with the pressure p and the
temperature T under external control, that is, as the independent variables.
In consequence, the thermal potential appropriate to examine chemical equi-
librium is the Gibbs potential G(p, T,N). In the present case, what we have
is a mixture of ideal gases, and

dG = − SdT + V dp+
∑

i

µidNi .

where µi is the chemical potential of the component Ai, given by

µi =

(
∂G

∂Ni

)
T,p

.

Chemical equilibrium, a particular case of thermal equilibrium, is attained
for those Ni’s which minimize the Gibbs potential. The Ni’s are not inde-
pendent: one of them can be written in terms of the others by using the con-
straint (3.58). This means that the concentrations must vary consistently:
an increase in the concentration of one of the species implies an increase
in the others, keeping the proportion fixed by the numbers νi. Suppose a
variation dN1 of the first species. In order to keep (3.58) valid, the other
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concentrations must vary proportionally, according to dNi = νi

ν1
dN1. Thus,

the condition for equilibrium is(
∂G

∂N1

)
T,P

=
∑

i

(
∂G

∂Ni

)
T,P

∂Ni

∂N1

=
∑

i

µi
νi

ν1

= 0 ,

which leads to ∑
i

νi µi = 0 . (3.59)

This is the chemical equilibrium condition. Substituting the µi’s for all the
reagents leads to the law of mass action.

For a gas of particles with mass m and chemical potential µ, it is conve-
nient to introduce the fugacity variable z = eµ/kT and the thermal wavelength
λ, whose non–relativistic expression is

λ = ~
√

2π

mkT
=

√
h2

2πmkT
. (3.60)

A non-degenerate (that is, with no quantum effects) ideal non–relativistic
gas has then the pressure and the number density given by

p = gkT
z

λ3

and
n = N/V = g

z

λ3

Here, g is the number of values assumed by the internal degrees of freedom
(for example electrons, with their spin 1/2, will have g = 2). These are the
detailed (“grand-canonical”) forms of the pressure and density which lead to
the well–known Clapeyron equation pV = NkT . From them, two equivalent
expressions can be written for the chemical potential:

µ = kT ln

(
pλ3

gkT

)
= kT ln

(
nλ3

g

)
.

These expressions are expected to hold for small values of z. By the way, the
expression nλ3 is the degeneracy index. It is the number of particles inside a
cube whose sides are the thermal wavelength. Quantum effects are negligible
when nλ3 << 1 and important otherwise. When z = n

g
λ3 is small, the

particle wavefunctions do not overlap and quantum effects (boson or fermion
statistics) are negligible. The above formula are valid in that case, when
z << 1 and provided kT << mc2.
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Consider a mixture of ideal non–relativistic reacting gases (or a mixture
of small relative concentrations ci = Ni/N of solutes in a liquid). For each
species Aj, the partial pressure and the number density will have the forms

pj = cjp = gj kT
zj

λ3
j

= gj kT
eµj/kT

λ3
j

;

n̄j = gj
zj

λ3
j

= gj
eµj/kT

λ3
j

.

The typical chemical potential follows:

µj = kT ln

[
cjpλ

3
j

gj kT

]
= kT ln

[
cjnλ

3
j

gj

]
= kT ln

[
njλ

3
j

gj

]
.

As each thermal wavelength is λj = ~
√

2π
mjkT

, so that λ3
j =

[
h2

2πmjkT

]3/2

,

µj = kT ln

[
nj

gj

(
h2

2πmjkT

)3/2
]

= kT ln

[
nj

gj

]
+

3

2
kT ln

[
h2

2πmjkT

]
.

Then, (3.59) takes the form

∑
j

νj ln

[
cjpλ

3
j

gj kT

]
= 0 ,

or ∏
j

z
νj

j =
∏

j

[
cjpλ

3
j

gj kT

]νj

=
∏

j

[
njλ

3
j

gj

]νj

= 1 ,

or still ∏
j

c
νj

j = p−
P

i νi

∏
j

[
h3

(2πmj)3/2gj kT 5/2

]− νj

.

It is customary to introduce “zero” indices to recall that we are concerned
with equilibrium values. The law of mass action is then written∏

i

cνi
0i = p−

P
i νi

∏
i

pνi
0i = Kc(p, T ) .

The c0i’s are the concentrations at equilibrium; pi = cip = Nip/N are the
partial pressures, p0i their equilibrium values; Kc(p, T ) and Kp(T ) =

∏
i p

νi
0i

are called the “chemical equilibrium constants”. The important point is that
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they are functions only of p and T , and independent of the initial concentra-
tions.

Take for illustration the simplest of all cases: a mixture of two ideal
non-relativistic gases A1 + A2 far from degeneracy, giving two other species
A3 + A4 with analogous characteristics:

A1 + A2 ←→ A3 + A4.

Then we must have
µ1 + µ2 = µ3 + µ4.

Thus, the equilibrium condition for reaction A1 + A2 ←→ A3 + A4 takes
the form

n1

g1

(
h2

2πm1kT

)3/2
n2

g2

(
h2

2πm2kT

)3/2

=
n3

g3

(
h2

2πm3kT

)3/2
n4

g4

(
h2

2πm4kT

)3/2

,

that is,

n1n2

n3n4

=
g1g2

g3g4

(
m1m2

m3m4

)3/2

.

In this simple case, the chemical equilibrium constant (which coincides with
right–hand side above) is independent of both pressure and temperature.

For relativistic gases (see Appendix C) things are by far more complicated.
To begin with, the thermal wavelength has a fairly involved expression: its
cube is

Λ3(β) = 2 π2 βmc2
e−βmc2

K2(βmc2)

(
~c
mc2

)3

,

where β = 1/kT is the inverse temperature and K2(x) is the modified Bessel
function of second order. This reduces to (3.60) in the non-relativistic case,
and to

ΛUR(β) = π2/3 β ~c

in the ultra-relativistic limit. In particular, ultrarelativistic gases have high
degeneracy indices nλ3 (≈ 0.76 for photons, ≈ 0.57 for electrons), so that
the use of complete quantal expressions for p and n is necessary.
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3.5.3 Ionization: the Saha formula

§ 3.5.4 A hot gas in equilibrium is composed of all the excited states of the
atom or molecule plus photons, in different concentrations. It is as if a series
of chemical reactions were simultaneously at work between different species,
each species being one of the excited states.

Say, for atomic hydrogen,

H ←→ H+ + e− ,

with H and H+ representing neutral and ionized hydrogen.
The chemical potentials are related by the equilibrium condition

µH = µ+ + µe− .

A hydrogen atom is a bound state. In the fundamental level, its chemical
potential is that given by the usual expression for a free atom minus its
binding energy E1 = 13.6 eV . Using that value and the above expressions
for the other chemical potentials, we find

nH

gH

[
h2

2πmHkT

]3/2

e−
E1
kT =

[
n1

g1

(
h2

2πmHkT

)3/2
][

ne

ge

(
h2

2πmekT

)3/2
]
.

From this follows the Saha equation for hidrogen ionization,

n1ne

nH

=
g1ge

gH

[
2πmekT

h2

]3/2

e− E1/kT . (3.61)

The numerical expression is [5]

n1ne

nH

= 2.4× 1015T 3/2e−1.58×105/T = 2.4× 1015T 3/210−6.86×104/T , (3.62)

with T expressed in oK and the number densities in cm−3.

3.5.4 Recombination time

§ 3.5.5 Let us examine the problem of cosmological interest. The detailed
calculations are involved, for reasons given below, but we can easily get a
rough estimate of the temperature of half–ionization, in which n1 = ne =
nH/2. The above equation becomes

nH

4
= 2.4× 1015T 3/210−6.86×104/T , (3.63)
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Use now (3.8),

nH = 11.4× (1 + z)310−6 Ωb0 h
2 [cm−3]

to obtain
1.6× (1 + z)3 Ωb0 h

2 = 1021T 3/210−6.86×104/T

Use then (3.31), which is

Tγ = 2.7× (1 + z) ,

to get
3.15× T 3

γ Ωb0 h
2 = 1020T 3/210−6.86×104/T .

Now we make our boldest bid: we suppose Tγ = T . This seems a good
assumption for half–ionization: there are already lots of free electrons to
“stop” the photons, so that to suppose a thermalized medium is reasonable.
After taking log10, we arrive at

10 log[3.15 Ωb0 h
2]− 20 + 15 log T = 686000/T,

which lends itself to simple numerical analysis. We obtain rather close values
for the two extreme values of Ωb0 h

2, Ωb0 h
2 = 0.026 and Ωb0 h

2 = 0.0052:

T ≈ 3430 oK .

This is the temperature at which half the hydrogen is ionized. Actually,
ionization is a more complex process, involving all the hydrogen levels. The
atom can go from the fundamental state into the first excited state with
emission of a photon whose energy is the difference between the energies of
the levels; it can then go to the third level; or it can go directly from the first
to the third and so on. The detailed analysis involves a hierarchy of coupled
Saha equations. Also the change of regime from radiation–dominated to
matter–dominated must be taken into account. All this is solved numerically
by huge programs. Hydrogen is found to be neutral at T ≈ 3000 oK, or
z ≈ 1100, close to the WMAP value given in the Table of page 29.

Comment 3.5.3 Notice that, as cj = nj/n, the chemical constant is cH

c1ce
= nHn

n1ne
.

Comment 3.5.4 Helium atoms, with two electrons, are still more complicated. Saha’s
formula must be used in a way analogous to that described above, but also allowing for
Helium 2nd ionization.
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3.6 Nucleosynthesis

§ 3.6.1 In very rough words, nuclei are formed by protons and neutrons kept
together by strong interactions mediated by mesons, mainly pions. Astro-
physicists have a very good theory for their formation: Starting from the
lighter elements (deuterium, tritium, helium–3, helium–4 ), they are able
to show how the heavier nuclei are formed in the natural furnaces of the
cosmos, the stars. The problem which remains is the constitution of the ini-
tial blocks, the lighter elements. No star has a temperature high enough to
produce them.

Consider the deuterium case. The nuclear reaction producing it is

n+ p→ d+ γ .

A large number of neutrons is necessary. Now, neutrons are unstable parti-
cles. They last less than 15 minutes (lifetime = 889 sec), and decay according
to

n→ p+ e− + ν̄e .

This decay is favoured by the disponibility of phase space: the mass difference
between neutrons and protons is

∆Enp = mn −mp = 1.3MeV .

Only at temperatures (kT) corresponding to that energy (T ≈ 1.5×1010 oK)
will the electrons have enough kinetic energy to make of the above reaction
an equilibrium reaction

n+ νe ←→ p+ e−.

The highest temperatures in the centers of the hottest stars are of the order of
108 oK. In consequence, stars cannot produce deuterium by lack of neutrons.

Where could we arrive at such fantastic temperatures ? Gamow stepped
in with the answer: in the Big Bang. At times remote enough, the Universe
attains temperatures as high as we may wish. And this is the most compelling
argument in favour of the Standard Model. Gamow, Alpher and Herman
showed that the Universe could produce the lightest elements. Actually,
they at first used a dust–filled model and found too much He. They added
a quantity of radiation in order to break the excess. That radiation would,
however, remain as a background. Given the quantity of radiation necessary
to leave a good amount of He, they estimated the temperature that the
cosmic radiation background should have today. This background has been
found later, at a temperature close to the predicted one.

Arguing from luminosity considerations, we can arrive at the conclusion
that no more than 1% of the present-day Helium can possibly come from
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the stars. There is another reason to look for a cosmic origin for He: its
abundance, indicated by the parameter

Y =
nHe

nHe + nH

,

seems to be universal, that is, the same (Y ≈ 0.23) everywhere. There are
independent methods to determine this abundance in the Sun, in globular
clusters of stars and, through the emission lines, in distant objects.

Comment 3.6.1 In what concerns the Sun, there is a well–known puzzle, the “solar
neutrino puzzle”. The neutrinos produced by the supposed chain of reactions would pass
through Earth with a flux six times larger than the detected flux. Now, the latter is bi-
ased: detectors are prepared to detect electron-neutrinos. There is now strong evidence
that neutrinos oscillate, that is, a good fraction of the solar electron-neutrinos have be-
come muon-neutrinos when arrive at Earth. As a result, a much smaller flux would be
detectable. 9

Comment 3.6.2 Gamow, at that time (around 1947), did not use the expression “Big
Bang”. This name was invented later by Hoyle, as a mocking joke. A hot primeval Universe
was then supported only by a few cosmologists (Lemaitre, Whittaker). The temperature
predicted was ≈ 5.5 oK. There were large errors in the measured cosmological parameters,
due to a systematic error in the distance calibration. Hubble himself gave a value 5.5
times higher for his constant. Furthermore, at that time Gamow was actually interested
in realizing the nucleosynthesis of all elements in the Big Bang. His theory was presented
as an alternative to star nucleosynthesis. It was later recognized that stars are better to
produce the heavier elements.

Helium production is governed by a series of reactions. First deuterium
must be formed through the reaction given above,

p+ n←→ d+ γ . (3.64)

Once enough deuterium d = H2 is available, the other light elements (He3,
He4, H3) are produced, the main reactions being

d+ d←→ He3 + n←→ H3 + p ;H3 + d←→ He4 + n.

The equilibrium approach leads to some order–of–magnitude results, help-
ful in controlling the much more involved (and almost purely numerical) ki-
netic approach. There is some doubt concerning heavier elements. Some
people believe that the Big Bang is responsible for the creation of all light

9 See F. Wilczek, The Standard Model transcended, Nature 394 (1998) 13; S.F. King,
Neutrino Oscillations: Prospects and Opportunities at a Neutrino Factory, arXiv:hep-
ph/0105261 v2; K. Hagiwara et al. (Particle Data Group), Phys.Rev. D66 (2002) 010001
(URL: http://pdg.lbl.gov).
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nuclei up to Li7, while other people think that cosmological nucleosynthesis
stops at He4. The calculations are subtle and laborious. Including Li7 pro-
cessing, there are 12 crucial nuclear cross–sections involved. Our aim here is
only to describe qualitatively what is done.10

3.6.1 Equilibrium approach

§ 3.6.2 Consider for instance the deuterium-production reaction above, who-
se equilibrium condition is

µp + µn ←→ µd + µγ .

As long as we can use the non-relativistic expression

µp,n,d = kT ln
np,n,dλ

3
p,n,d

gp,n,d

for the chemical potentials, it follows that

nd =
gd

gpgn

(
λpλn

λd

)3

e− µγ/kT =
gd

gpgn

npnnh
3

(
md

mpmn

1

kT

)3

e− µγ/kT .

Well, photons have vanishing chemical potential. We can use this, provided
we take into account separately the binding energies involved. It is simpler
to simulate them through a photon chemical potential. In that case, the
photon chemical potential must be µγ = ∆Enp − Bd, the neutron–proton
mass difference (≈ 1.3 MeV) minus the deuteron binding energy (≈ 2.2
MeV). We arrive thus at

nd =
gd

gpgn

npnnh
3

(
md

mpmn

1

kT

)3

e− Enp/kT eBd/kT .

Analogous treatment must be given to the other equations. A hierarchy of
coupled equations turns up. The numbers so obtained are rough estimates
which serve, as said, to control the more involved kinetics.

10A review can be found in D.N. Schramm and M.S. Turner, Rev.Mod.Phys. 70 (1998)
303. A more recent summing up is S. Eidelman et al., Physics Letters B592 (2004) 1,
arXiv:astro-ph/0406663.
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3.6.2 Kinetic approach

§ 3.6.3 A more detailed description can be obtained through a kinetic anal-
ysis, taking into account the reaction rates in each case. The reaction rate
R for a reaction like

n+ e+ −→ p+ ν̄e

is the number of reactions per second, roughly velocity/(mean free path):

R(n→ p) = ve nn σne .

Actually, as each factor depends on the energy (or temperature, or still the
momenta), the real expression is given by an integration. In the kinetic
approach, the abundance of neutrons

Xn =
nn

nn + np

,

for example, would be given as a function of time by a master equation (or
gain-loss equation) like

d

dt
Xn = Xp R(p→ n)−XnR(n→ p) = (1−Xn) R(p→ n)−XnR(n→ p).

(3.65)
Variation in neutron abundance is the abundance of protons times the rate of
proton to neutron transformation (this represents the gain) less the neutron
abundance times the rate of its disappearance (which represents the loss).

The reaction rates are provided by the theories describing elementary par-
ticles interactions. In the case, the Electroweak Theory of Glashow, Weinberg
and Salam. Actually, the precision required is not so great at present time.
Electrodynamics, and the old “V – A” theory for weak processes are enough.
As we are no more supposing equilibrium, all the reactions must be taken
into account simultaneously. Thus, in order to calculate the neutron–proton
abundance ratio, the three weak processes

n+ e+ ←→ p+ ν̄ ; n+ ν ←→ p+ e− ; n←→ p+ e− + ν̄

are considered. Of course, the expressions involved are rather complicated.
Besides the pure weak–interaction transition probability, there are factors
taking into account the suppression due to the presence of fermions. An
example of rate is

R(n+ ν ←→ p+ e−) =

g2
V + 3g2

A

2π3~7

∫
ve(∆np + pνc)

2 p2
νdpν

(e−pνc/kTν + 1) (e−(
√

∆np+pν)/kTe + 1)
.
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Here, gV = 1.4×10−49 erg cm3 and gA = 1.18 gV are the weak (vector and ax-
ial) coupling constants. A set of equations like (3.65) is written, one for each
reaction. This system is then solved numerically. A detailed account of all
the processes involved, with the expressions coming from Weak–Interaction
Theory, is given in Weinberg’s book [2].

As said above, Gamow, Alpher and Herman proceeded phenomenologi-
cally. They at first found too much deuterium, leading to too much Helium.
To break the excess of deuterium, they have found necessary to add a well–
chosen amount of radiation in reaction (3.64). The resulting Helium abun-
dance is then in reasonable agreement with the observed value, but a gas of
photons remains, which is the origin of the cosmic radiation background. As
the amount of photons had been fixed by the necessary amount of deuterium,
they were able to say how much there would be of it today and estimate the
temperature.11

A last point: the neutrinos decouple during these reactions. In a way
analogous to the photons during recombination, their mean free path becomes
very very large. A neutrino background is predicted, whose detection is a
very difficult task.

11 G. Gamow, Phys.Rev 70 (1946) 572; R.A. Alpher, H. Bethe and G. Gamow, Phys.Rev
73 (1948) 803. The old, classical review on star nucleosynthesis is E.M. Burbidge, G.R.
Burbidge, W.A. Fowler & F. Hoyle, Rev.Mod.Phys. 29 (1957) 547.
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3.7 The cosmic microwave background

The spectrum of the cosmic microwave background, as we receive it today, is
remarkably close to a Planck spectrum.12 This fact gives important informa-
tion on its emission, as well as on the processes it suffers (or not) during its
travel in space and time. This section has two topics. In the first we analyze,
guided by Weinberg’s treatment of the subject, the background formation
and its subsequent evolution. The idea is to apply the celebrated 1917 Ein-
stein’s paper on stimulated emission13 to the case. In the second topic, we
try to understand something about the intricate composition of black–body
radiation at very high temperatures, in order to get some ideas on the very
early Universe.

3.7.1 Conditions for a Planck spectrum

§ 3.7.1 Suppose again a light ray leaving the source with frequency ν1 at
the moment t1 and arriving to us at time t0. It has eventually traversed
a large amount of (ionized or not) primeval, intergalactic and interstellar
medium. We shall actually concentrate into what happens before and during
recombination, up to the so called “surface of last scattering”. Let us consider
the number density N (ν, t) of photons with frequency in the interval (ν, ν +
dν) in the light ray. Photons will be absorbed by the medium along its travel.
Let A(ν, t) be the absorption rate per time unit for photons of frequency ν.
This rate is c/(photon mean free path), and is such that Ṅ = −AN . If
some particles, atoms or molecules are the most efficient “absorbers”, then
A = c naσγa, where na is the concentration of the absorbers and σγa is the
absorption cross–section.

There is here a small complication with respect to what would happen
in an laboratory experiment: in the cosmological case, the frequency varies
during the process. The photon received with frequency ν0 will have had the
frequency ν(t) at time t. Fortunately that variation is known, given by Eq.
(2.32). Thus, the loss of flux of the light ray is, here,

d

dt
N (t) = −A

(
ν0

a0

a(t)
, t

)
N (t). (3.66)

12 Up to the 5-th digit. Anisotropies found at that level constitute one of the most
important discoveries of the last years. See: W. Hu & S. Dodelson, Cosmic Microwave
Background Anisotropies, Annu.Rev.Astron.Astrophys. 40 (2002) 171-219; A. Lasenby,
CMB anisotropies: recent measurements and interpretation, Capetwon Conference, 2002;
obtainable from E-mail adress a.n.lasenby@mrac.cam.ac.uk.

13 Which can be found in B.L. van der Waerden’s anthology: Sources of Quantum
Mechanics, Dover, New York, 1967.
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The solution is
N (t0) = e−τ N (t1), (3.67)

where τ is the optical depth

τ =

∫ t0

t1

A

(
ν0

a0

a(t)
, t

)
dt. (3.68)

This is the fraction of the photons that were present at t1 which will have
been stopped at t0. As A(ν, t) has dimension (time)−1, τ is dimensionless.

All this supposes the medium to be purely absorptive—it is as if we had
considered only the loss term in (3.65). In principle (here enters Einstein’s
paper), it will also emit radiation (“induced emission”). Let Γ(ν, t) be the
number of emitted photons per unit time, per unit volume and per unit
frequency interval at the frequency ν. These photons will be added to the
light ray at a rate given by

Ω(ν, t) =
Γ(ν, t) c3

8πν2
. (3.69)

Equations (3.66) and (3.68) are corrected to

d

dt
N (t) =

[
Ω

(
ν0
a(t0)

a(t)
, t

)
− A

(
ν0
a(t0)

a(t)
, t

)]
N (t) (3.70)

and

τ =

∫ t0

t1

[
A

(
ν0
a(t0)

a(t)
, t

)
− Ω

(
ν0
a(t0)

a(t)
, t

)]
dt. (3.71)

If the medium is by itself in thermal equilibrium, Ω(ν, t) and A(ν, t) are
related by Einstein’s formula

Ω(ν, t) = e−
hν(t)

kTm(t) A(ν, t). (3.72)

Tm(t) is the medium temperature (if the medium is not in thermal equilib-
rium, some effective temperature must be introduced). It follows that

τ =

∫ t0

t1

[
1− e−

hν0a(t0)
kTm(t)a(t)

]
A

(
ν0
a(t0)

a(t)
, t

)
dt. (3.73)

A few comments:

• to take into account photon scattering, a term
∫ t0

t1
Σ (ν(t), t) dt should

be added to (3.73), Σ (ν(t), t) being the scattering rate for a photon of

frequency ν0
a(t0)
a(t)

at time t; it is difficult to take scattering into account
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for the background; after recombination, Thomson scattering (here,
valid because hν ≈ kT � mc2), in particular, produces small effects;
for the other possibilities, we suppose scattering to be far less important
than absorption;

• notice again that the frequency is, at each time t, given by ν(t) =

ν0
a(t0)
a(t)

;

• notice that Ω ≤ A and e−τ < 1, unless Tm(t) < 0; the latter case may
occur when there is some population inversion in the medium; the ray
is then amplified; such a maser effect has been observed in the Galaxy;

• the strongest assumption made has been, to the moment, that the
medium is in thermal equilibrium.

Up to this point everything would hold for any light ray traversing inter-
galactic or interstellar media. Consider now the cosmic background. Indicate
by N (ν0, t) dν0 the photon number density at time t which, at time t0, would
have frequencies in the interval between ν0 and ν0 + dν0. If neither absorp-
tion nor emission took place, N (ν0, t) would be proportional to a−3(t). The
change in the number of photons in a volume proportional to N (ν0, t)a

3(t),
due to spontaneous emission, will be

Γ

(
ν0

a0

a(t)
, t

)
a3(t)

a0

a(t)
dν0 .

The rate of change of N (ν0, t)a
3(t) dν0 due to stimulated emission and ab-

sorption is [
Ω

(
ν0
a(t0)

a(t)
, t

)
− A

(
ν0
a(t0)

a(t)
, t

)]
N (ν0, t)a

3(t) dν0,

analogous to (3.70). Thus, with spontaneous emission, stimulated emission
and absorption, the time variation will be given by

d
dt

[N (ν0, t)a
3(t)] =

Γ(ν0
a0

a(t)
, t)a2(t)a0 +

[
Ω

(
ν0
a(t0)

a(t)
, t

)
− A

(
ν0
a(t0)

a(t)
, t

)]
N (ν0, t) a

3(t).

If we use equation (3.69),
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d
dt

[N (ν0, t)a
3(t)] =

8πν2
0a

3
0

c3
Ω

(
ν0

a0

a(t)
, t

)
+

[
Ω

(
ν0
a(t0)

a(t)
, t

)
− A

(
ν0
a(t0)

a(t)
, t

)]
N (ν0, t) a

3(t).

The solution is, for an arbitrary t1 (an integration constant),

N (ν0, t) a
3(t) = N (ν0, t1) a

3(t1) e
−

R t
t1

dt′
h
A

“
ν0

a(t0)

a(t′) ,t′
”
−Ω

“
ν0

a(t0)

a(t′) ,t′
”i

+
8πν2

0a
3
0

c3

∫ t

t1

dt′ Ω

(
ν0
a(t0)

a(t′)
, t′
)
e
−

R t
t′ dt′′

h
A

“
ν0

a(t0)

a(t′′) ,t′′
”
−Ω

“
ν0

a(t0)

a(t′′) ,t′′
”i
.

Detailing 3.7.1 The above differential equation has the form

d

dt
f(t) = g(t) + h(t)f(t) ,

whose solution is

f(t) = f(t1)e
R t

t1
dt′h(t′) +

∫ t

t1

dt′g(t′)e
R t

t′ dt′′h(t′′)

with t1 some constant. In effect we find, taking the derivative of this expression,

d

dt
f(t) = f(t1)h(t)e

R t
t1

dt′h(t′) + g(t) +
∫ t

t1

dt′g(t′) h(t) e
R t

t′ dt′′h(t′′)

= g(t) + h(t)
[
f(t)−

∫ t

t1

dt′g(t′) e
R t

t′ dt′′h(t′′) +
∫ t

t1

dt′g(t′) e
R t

t′ dt′′h(t′′)

]
= g(t) + h(t)f(t) .

We have made repeated use of the formula for the derivative of an integral with respect
to a parameter:

d

da

∫ S(a)

R(a)

f(x, a)dx = f [S(a), a]
dS

da
− f [R(a), a]

dR

da
+
∫ S(a)

R(a)

df(x, a)
da

dx .

The first term in the right–hand side gives the number of photons left
over from times before t1; the second, the number of photons emitted since
t1. Take t1 remote enough for all background radiation to have been emitted
after t1. And take t = t0. The first term drops out, and the present density
of photons per unit frequency interval turns up as

nγ0(ν0) ≡ N (ν0, t0)

=
8πν2

0

c3

∫ t0

t1

dt Ω

(
ν0
a(t0)

a(t)
, t

)
e
−

R t0
t dt′

h
A

“
ν0

a(t0)

a(t′) ,t′
”
−Ω

“
ν0

a(t0)

a(t′) ,t′
”i
. (3.74)
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If, furthermore, the medium is in thermal equilibrium, (3.72) will lead to

nγ0(ν0) =
8πν2

0

c3
×

∫ t0

t1

dt A

(
ν0
a(t0)

a(t)
, t

)
e−

hν0a0
kTm(t)a(t) e

−
R t0

t dt′

"
1−e

− hν0a0
kTm(t′)a(t′)

#
A

“
ν0

a(t0)

a(t′) ,t′
”
. (3.75)

The expression

P (t0, t; ν0) = e
−

R t0
t dt′

"
1−e

− hν0a0
kTm(t′)a(t′)

#
A

“
ν0

a(t0)

a(t′) ,t′
”

(3.76)

is the probability, account taken of stimulated emission, that a photon of
frequency ν0

a(t0)
a(t)

, present at time t, survive up to time t0. If only hydrogen
— ionized and not — is taken into consideration, its general aspect is given
in Figure 3.6. It vanishes before the onset of recombination and is equal to 1
after neutralization. The width of the increasing region measures how much
the recombination process lasts or, in the language used nowadays, how much
recombination is “delayed”. A very steep curve means that recombination
takes place in a very short interval of time.

t1 t2
t

0.2

0.4

0.6

0.8

1

P

Figure 3.6: General aspect of P (t0, t; ν0).

Thus, the proper energy density is given by

ργ0(ν0)dν0 =
8πh

c3
ν3

0dν0

∫ t0

t1

dt e−
hν0a0

kTm(t)a(t) A

(
ν0
a(t0)

a(t)
, t

)
P (t0, t; ν0) .

(3.77)
As

d

dt
P (t0, t; ν0) =

[
1− e−

hν0a0
kTm(t)a(t)

]
A

(
ν0
a(t0)

a(t)
, t

)
P (t0, t; ν0) ,
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we arrive at the final expression

ργ0(ν0)dν0 =
8πh

c3
ν3

0dν0

∫ t0

t1

dt
1

e
hν0a0

kTm(t)a(t) − 1

d

dt
P (t0, t; ν0) . (3.78)

If recombination takes place in a very short time interval, recombination time
will have a well–defined value tR, P is well approximated by a Heaviside step
function P (t0, t; ν0) = Θ(t− tR) and d

dt
P (t0, t; ν0) = δ(t− tR). In this case of

“instantaneous recombination”,14 the distribution reduces then to Planck’s
form:

ργ0(ν0)dν0 =
8πh

c3
ν3

0dν0
1

e
hν0

kTγ0 − 1
, (3.79)

with

Tγ0 =
Tm(tR)a(tR)

a0

. (3.80)
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Figure 3.7: Simulation showing the effect of delaying in recombination: when
function P (t0, t; ν0) differs more and more from a step-function, the distri-
bution differs more and more from a Planck distribution (continuum line).

The cosmic radiation background has been discovered by Penzias and
Wilson in the sixties at a particular wavelength (λ = 7.35 cm), and has since

14 The possibility of detecting effects of a “delayed recombination” (two cases are il-
lustrated in Figure 3.7) is discussed by V. Mukhanov, CMB-slow, or How to Estimate
Cosmological Parameters by Hand, arXiv.org/astro-ph/0303072, Section 5. The WMAP
project (D.N. Spergel et al., ApJS, 148 (2003) 175 - arXiv:astro-ph/0302209 v3) gives: for
recombination (“decoupling”), z = 1088 and t = 372 kyears; for the width of the period
in which our function P increases (“thickness of surface of last scatter”), ∆z = 194 and
∆t = 115 kyears.
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Figure 3.8: Planck distribution u(x) = x3

ex−1
, for x = hν/kT . Also are shown

the Rayleigh-Jeans (u = x2) and the Wien (u = x3e−x) laws.

then been found to respect formula (3.79) very closely (to five decimal digits).
The distribution is shown in Figure 3.8, in terms of the variable x = hν/kT .
The maximum at x = 2.82 corresponds to a wavelength λ = 0.14 cm. Some
luck was involved: at ground level, only a limited “window” is detectable, at
the left of the maximum (between the two straight lines which cut the curve
in the Figure). Actually, only radiation in the so–called microwave domain
of wavelengths can attain Earth’s surface — and this is the reason for the
sanctioned name for the background. The maximum itself, and the whole
portion to its right, is screened by atmosphere absorption. Of course, since
the time of discovery, much more has been detected by satellite probes. The
extreme left region, corresponding to λ > some tens of centimeters, is hidden
below the emission of radio–galaxies.

Comment 3.7.1 Radio astronomers measure commonly what they call the energy flux,
φ(ν) = ρ(ν)c/4π, in erg cm−2 Hz−1 sec−1 sterad−1.

Notice an overwhelmingly important point: Only photons in thermal con-
tact with matter have Planck’s distribution. This is clear from Einstein’s de-
duction of Planck’s formula in his 1917 paper. Nowadays, the photons of the
thermal background have no contact with matter. Their mean free path is
larger than any conceivable “size” of the Universe. How is it that a Planck
distribution is observed? The Standard model explains this beautifully. The
photons were in contact with matter (essentially, with the free electrons) be-
fore recombination. They had, consequently, a Planck distribution. After
recombination, matter is practically neutral and the photon mean free path
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acquires a very large value. Their distribution evolves in time ever after,
but always respecting condition ν(t)a(t) = constant, condition (2.32). This
condition, a consequence of the symmetries of homogeneity and isotropy, has
a miraculous property: it ensures the preservation of the functional form of
Planck’s distribution. A different relationship between frequencies and the
scale parameter would lead to a continuous deformation of the distribution
with time and no Planck distribution would be observed.

§ 3.7.2 Summing up: the cosmic microwave background will have a strict
Planck form for the spectrum if the following conditions are satisfied:

• there is little absorption after recombination;

• photon scattering is irrelevant after recombination;

• the relevant medium is in thermal equilibrium or, at least, it is possible
to attribute an effective temperature to it.

Observations show a strict Planck spectrum, which is furthermore isotro-
pic, up to the fourth decimal case. Each one of these conditions holds con-
sequently to that level of accuracy. Recent higher-precision data exhibit vi-
olations both in the form and isotropy. Such deformations and anisotropies
provide information of the utmost importance on the conditions prevailing
before, during and after the recombination period (which has been above
supposed to be very short, actually instantaneous).15

For example, the supposed thermal equilibrium can be expected to fail
at the end of the recombination period, when the photons mean free paths
become too large to allow them to retain their role of thermalizers. An out-
of-equilibrium approach becomes necessary. Fortunately the densities are
small enough to make the use of Boltzmann’s equation possible.

Though no consensual theory exists for the origin of present-day large
inhomogeneities (galaxies, their agglomerates and possible still larger ob-
jects), it is a general belief that they cannot have been formed much before
recombination (see Comment 3.3.1). If they are formed later, the back-
ground radiation will provide “radiographs” of them, which will manifest in
anisotropies.

Some at least of the matter lumps are believed to come from density
fluctuations, which engender fluctuations in the gravitational field, that is,

15 Fluctuations of the CMB temperature around its mean value are studied for example
by S. Weinberg, Phys.Rev D (2001) 123511 and 123512, from which earlier references can
be traced.
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in the metric. The latter will lead to fluctuations in the radiation background
(Sachs-Wolfe effect16).

Matter lumps, above all the hot ones, will always include free electrons,
however short-lived. Such electrons will scatter the background photons,
leadind to further information (rescattering, or Sunyaev-Zel’dovich effect17).

3.7.2 High–temperature black body

§ 3.7.3 We intend here to show why the radiation–dominated Universe is a
complicated affair at very high energies. At very high temperatures, radia-
tion is a composite system formed by photons and all kinds of particles and
antiparticles.

Let us again use Section 3.5 to consider the electron–positron pair crea-
tion–annihilation process

γ + γ ←→ e+ + e− . (3.81)

The pair creation cross section is, in order of magnitude,18

σγγ→e+e− =
π

2

[
e2

mec2

]2

= 1.247× 10−25cm2.

We can use (3.33), which is

nγ = 422 (1 + z)3cm−3 . (3.82)

If we measure kTγ in MeV ’s,

1 + z = 4.3× 109 kTγ [MeV ] .

Consequently,
nγ = 3.37× 1031 (kTγ [MeV ])3cm−3 . (3.83)

The threshold for pair–creation is ≈ 0.5MeV . For kTγ of that order, there
is a huge number of photons:

nγ ≈ 4.2× 1030 γ/cm3.

16 See for example V. Mukhanov, CMB-slow, or How to Estimate Cosmological Param-
eters by Hand, arXiv.org/astro-ph/0303072.

17 For review on this subject, see: J.E. Carlstrom, G. P. Holder and E. D. Reese,
Cosmology with the Sunyaev-Zel’dovich effect, Annu. Rev. Astron. Astrophys. 40 (2002)
643–680.

18See, for example, Berestetskii, Lifshitz and Pitaevskii [28].
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The pair–creation optical length will be

τpair = nγ σγγ→e+e− = 5.25× 105 cm−1 .

The corresponding pair–creation mean free path is

λpair =
1

nγ σγγ→e+e−
= 1.9× 10−6 cm.

This means that, on the average, each photon will traverse this distance
before meeting another photon and producing a pair, or that it will travel
only during λpair/c = ≈ 10−16 sec before creating an electron and a positron.
We can imagine a cylinder of base σγγ→e+e− and height λpair: one e− (or one
e+) will be created in every volume of that size. But that volume is just
1/nγ, so that the number density of created e−’s is the same as that of the
photons, ne± ≈ 4.2 × 1030 cm−3. How does this number compare with the
density, at that time, of those electrons which exist today ? In the usual
travel backwards in time, the latter are produced by hydrogen ionization
and, if matter is neutral as a whole, are in the same number as protons,
consequently given by equation (3.8):

ne− = 11.4× (1 + z)310−6 Ωb0 h
2 [cm−3] ≈ 1021 Ωb0 h

2 [cm−3] .

This is much less than the density of pair–produced electrons ≈ nγ previ-
ously found. Thus, at kT ≈ 0.5MeV , the electrons of nowadays are quite
negligible. Only those belonging to the radiation count. This means that, at
that time, the density of electrons equals that of positrons. If the system is
in thermal equilibrium, these densities are given by Statistical Mechanics as

ne− =
2

h3

∫
d3p

e−βµ(−)eβ [
√

p2c2+m2c4−mc2] + 1

and

ne+ =
2

h3

∫
d3p

e−βµ(+)eβ [
√

p2c2+m2c4−mc2] + 1

in terms of the chemical potentials µ(−), µ(+). If these two distributions are
equal, then necessarily these chemical potentials are also equal,

µ(−) = µ(+) . (3.84)

The chemical potential is the minimal energy variation when a particle is
created. In a black body, the number of photons is ill–defined. Photons of
nearly zero energy can exists in great numbers and can be created without
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energy variation. This means that the photon chemical potential µγ in a
black body is zero. The condition of chemical equilibrium for reaction (3.81)
is

µ(−) + µ(+) = 2 µγ ,

which says that µ(−) + µ(+) = 0. Combined with (3.84), this gives

µ(−) = µ(+) = 0 . (3.85)

The densities are consequently

ne− = ne+ =
2

h3

∫
d3p

eβ [
√

p2c2+m2c4−mc2] + 1
.

These integrals have relatively simple expressions in the two limits kT >>
mc2 and kT << mc2 (see Appendix C). When kT >> mc2,

ne− = 0.183
τ 3

λ3
C

,

where τ = kT
mc2

and λC = ~c
mc2

is the Compton wavelength. This is to be
compared with the density of photons,

nγ = 0.244
τ 3

λ3
C

=
4

3
ne− .

Notice, nevertheless, that at such high energies (recall, we have supposed
kT >> mc2) the cross–section also is energy–dependent and the analysis is
more complicated. A numerical treatment becomes necessary. The qualita-
tive result, however, remains: the electrons have a number density compara-
ble to that of the photons.

The same reasoning, with analogous results, can be applied to pair pro-
duction of more massive particles at higher temperatures. Provided we sup-
pose thermal equilibrium, a black–body at very high temperature kT contains
pairs of all particles and antiparticles with masses lesser than kT . When the
masses are much smaller than kT , the concentrations of each kind of particle
is of the same order of magnitude of that of the photons. The Universe is
dominated by this intricate soup of particle–antiparticle pairs. As the densi-
ties increase with kT , interactions between these particles become more and
more important. At present there is no known way to take such interactions
into account in the equation of state.

This picture of the primeval Universe enhances the puzzle mentioned at
the end of Section 3.3. All kind of present–day existing matter was quite
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negligible at that time, in comparison with matter contained in radiation.
But it was already there, a small amount of dust, and remained to dominate
the large scale behaviour from the “turning point” on.

Well, the Standard Model, despite all its achievements, is surely not the
final description of our Universe. It faces some other problems, which will be
examined later. Before tackling them, it is of interet to study the de Sitter
solutions of Einstein’s equation.
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Chapter 4

de Sitter spacetimes

4.1 Introduction

de Sitter spacetimes are hyperbolic spaces of constant curvature. They are
solutions of vacuum Einstein’s equation with a cosmological term. There are
two different kinds of them (see Figure 4.1): one with positive scalar Ricci
curvature, and another one with negative scalar Ricci curvature.

We shall denote by R the de Sitter pseudo-radius, by ηαβ (α, β, · · · =
0, 1, 2, 3) the Lorentz metric of the Minkowski spacetime, and ξA (A,B, . . . =
0, . . . , 4) will be the Cartesian coordinates of the pseudo-Euclidean 5–spaces.
There are two types of spacetime named after de Sitter:

1. de Sitter spacetime dS(4, 1): hyperbolic 4-surface whose inclusion
in the pseudo–Euclidean space E4,1 satisfies

ηAB ξ
AξB = ηαβ ξ

αξβ −
(
ξ4
)2

= −R2 . (4.1)

It is a one-sheeted hyperboloid with topology R1 × S3, and — within
our conventions — negative scalar curvature. Its group of motions is
the pseudo–orthogonal group SO(4, 1)

2. anti–de Sitter spacetime dS(3, 2): hyperbolic 4-surface whose in-
clusion in the pseudo–Euclidean space E3,2 satisfies

ηAB ξ
AξB = ηαβ ξ

αξβ +
(
ξ4
)2

= R2 . (4.2)

It is a two-sheeted hyperboloid with topology S1 × R3, and positive
scalar curvature. Its group of motions is SO(3, 2). With the notation
η44 = s, both de Sitter spacetimes can be put together in

ηAB ξ
AξB = ηαβ ξ

αξβ + s
(
ξ4
)2

= sR2 , (4.3)

where we have the following relation between s and the de Sitter spaces:
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AdSdS

Figure 4.1: De Siter (dS) space is like a deformed cylinder, with a single sheet
which is topologically non-trivial. Anti-de Sitter space has two unconnected
sheets, each one topologically trivial. Both kinds tend asymptotically to the
same 4-dimensional cone-space, dS space from outside, AdS from inside. Of
course, two dimensions have been excluded to make the picture possible.

s = −1 for dS(4, 1)

s = +1 for dS(3, 2).

4.2 The de Sitter line element

§ 4.2.1 Let us find now the line element of the de Sitter spaces. The most
convenient coordinates are the stereographic conformal. The passage from
the Euclidean ξA to the stereographic conformal coordinates xα (α, β, · · · =
0, 1, 2, 3) is done by the transformation:

ξα = Ωxα ; ξ4 = R(1− 2Ω), (4.4)

(a sign in the last expression would have no consequence for what follows)
with Ω(x) a function of xα which we shall determine. Two expressions
preparatory to the calculation of the line element can be immediately ob-
tained by taking differentials:

dξα = xαdΩ + Ωdxα , (4.5)
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and (
dξ4
)2

= 4R2dΩ2. (4.6)

Let us introduce ρ2 = ηαβ x
αxβ and rewrite the defining relation (4.3) as

Ω2ρ2 + s
(
ξ4
)2

= sR2 . (4.7)

Equating (ξ4)
2

got from (4.4) and (4.7), we find

Ω =
1

1 + s ρ2

4R2

. (4.8)

Notice that from this expression it follows that

dΩ = − s
Ω2

2R2
ρdρ = −s Ω2

4R2
2ηαβ x

αdxβ , (4.9)

from which another preparatory result is obtained:

2ηαβ x
αdxβ = − s

4R2

Ω2
dΩ . (4.10)

Now, the de Sitter line element is

dΣ2 = ηAB dξ
AdξB = ηαβ dξ

αdξβ + s
(
dξ4
)2

,

or, by using (4.5),

dΣ2 = ηαβ (xαdΩ + Ωdxα)
(
xβdΩ + Ωdxβ

)
+ s

(
dξ4
)2

.

Expanding and using (4.6),

dΣ2 = ηαβx
αxβdΩ2 + 2ηαβx

αdxβΩdΩ + Ω2ηαβdx
αdxβ + s 4R2dΩ2 .

Now, using (4.10),

dΣ2 = Ω2ηαβdx
αdxβ +

[
ρ2 − s

4R2

Ω

]
dΩ2 + s 4R2dΩ2 ,

and then (4.8),

dΣ2 = Ω2ηαβdx
αdxβ +

[
− s 4R2

]
dΩ2 + s 4R2dΩ2 ,

so that finally
dΣ2 = gαβdx

αdxβ , (4.11)

where the metric gαβ is

gαβ = Ω2 ηαβ =
1[

1 + s ρ2

4R2

]2 ηαβ . (4.12)

The de Sitter spaces are, therefore, conformally flat, with the conformal
factor given by Ω2(x).
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§ 4.2.2 The Christoffel symbol corresponding to a conformally flat metric
gµν with conformal factor Ω2(x) has the form

◦
Γα

βν=
[
δα
β δ

σ
ν + δα

ν δ
σ
β − ηβνη

ασ
]
∂σ ln Ω(x) . (4.13)

Taking derivatives in (4.8), we find for the de Sitter spaces

◦
Γα

βσ= − s Ω
2R2

[
δα
βηγσ + δα

σηγβ − ηβσδ
α
γ

]
xγ . (4.14)

The Riemann tensor components can be found by taking the following

steps. First, take the derivative of the de Sitter connection
◦
Γα

βσ:

∂ρ

◦
Γα

βσ= − s Ω
2R2

[
δα
βηγσ + δα

σηγβ − ηβσδ
α
γ

]
δγ
ρ+

◦
Γα

βσ ∂ρ ln Ω

= − s Ω
2R2

[
δα
βηρσ + δα

σηρβ − ηβσδ
α
ρ

]
− sxρ

2R2Ω

◦
Γα

βσ

= − s Ω
2R2

[
δα
βηρσ + δα

σηρβ − ηβσδ
α
ρ

]
+ xρxγ

4R4

[
δα
βηγσ + δα

σηγβ − ηβσδ
α
γ

]
= − s Ω

2R2

[
δα
βηρσ + δα

σηρβ − ηβσδ
α
ρ

]
+ xρxγ

4R4Ω2

[
δα
βgγσ + δα

σgγβ − gβσδ
α
γ

]
= − s Ω

2R2

[
δα
βηρσ + δα

σηρβ − ηβσδ
α
ρ

]
+ 1

4R4Ω2

[
δα
βxσxρ + δα

σxβxρ − gβσx
αxρ

]
.

Indicating by [ρσ] the antisymmetrization (without any factor) of the in-
cluded indices, we get

∂ρ

◦
Γα

βσ − ∂σ

◦
Γα

βρ= − s Ω
2R2

(
δα
[σηρ]β − ηβ[σδ

α
ρ]

)
+ 1

4R4Ω2

(
xβδ

α
[σxρ] − xαgβ[σxρ]

)
= − s Ω

R2 δ
α
[σηρ]β + 1

4R4Ω2

(
xβδ

α
[σxρ] − xαgβ[σxρ]

)
.

This is the contribution of the derivative terms.
The product terms are

◦
Γα

λρ

◦
Γλ

βσ= Ω2

4R4

[
δα
ληγρ + δα

ρ ηγλ − ηλρδ
α
γ

] [
δλ
βηsσ + δλ

σηsβ − ηβσδ
λ
s

]
xγxs;

◦
Γα

λρ

◦
Γλ

βσ −
◦
Γα

λσ

◦
Γλ

βρ = 1
4R4Ω2

[
xβδ

α
[ρxσ] + xαx[ρgσ]β + Ω2ρ2gβ[ρδ

α
σ]

]
.

A provisional expression for the curvature is, therefore,

◦
Rα

βρσ = ∂ρ

◦
Γα

βσ − ∂σ

◦
Γα

βρ +
◦
Γα

λρ

◦
Γλ

βσ −
◦
Γα

λσ

◦
Γλ

βρ

= − s Ω
R2 δ

α
[σηρ]β + 1

4R4Ω2

(
xβδ

α
[σxρ] − xαgβ[σxρ]

)
+ 1

4R4Ω2

[
xβδ

α
[ρxσ] + xαx[ρgσ]β + Ω2ρ2gβ[ρδ

α
σ]

]
.
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The first two terms in the last line just cancel the last two in the line above
them. Therefore,

◦
Rα

βρσ = − s Ω
R2 δ

α
[σηρ]β + 1

4R4Ω2 Ω
2ρ2gβ[ρδ

α
σ]

= − s Ω
R2ηβ[ρδ

α
σ] +

1
4R4 Ω

2ρ2ηβ[ρδ
α
σ]

=
[
− s Ω

R2 + 1
4R4 Ω

2ρ2
]
ηβ[ρδ

α
σ]

= s Ω
R2

[
s

4R2 Ωρ
2 − 1

]
ηβ[ρδ

α
σ]

Using (4.8), we find that the bracketed term is = −Ω. We get finally

◦
Rα

βρσ = − s Ω2

R2ηβ[ρδ
α
σ] = − s

R2

[
δα
σgβρ − δα

ρ gβσ

]
. (4.15)

The Ricci tensor will be

◦
Rµν = 3 s

R2 gµν (4.16)

and the scalar curvature,
◦
R =

12 s

R2
. (4.17)

§ 4.2.3 We can now make contact with the cosmological term. From the
expressions above, we find that

◦
Rµν −

1

2
gµν

◦
R +

3 s

R2
gµν = 0. (4.18)

Comparison with (1.1) shows that de Sitter spaces are solutions for the
sourceless Einstein’s equations with a cosmological constant

Λ = − 3 s

R2
. (4.19)

We find again relation (B.20). Notice the relationships to the de Sitter and
the anti-de Sitter spaces:

s = −1 for the de Sitter space dS(4, 1) −→ Λ > 0
s = +1 for the anti-de Sitter space dS(3, 2) −→ Λ < 0 .

Notice further that, in terms of R, the dark energy density parameter is

ΩΛ =
Λc2

3H2
0

= − s

H2
0

c2

R2
. (4.20)

For the de Sitter space and using H−1
0 as the unit of time, ΩΛ is simply c2

R2 .
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Comment 4.2.1 We have been using carefully two coordinate systems. The most conve-
nient system for cosmological considerations is the so–called comoving system, in which the
Friedmann equations, in particular, have been written. In that system the scale parameter
appears in its utmost simplicity. We shall use it for the de Sitter case below, starting at
§4.4.1. The stereographic coordinates are of special interest for de Sitter spaces. We could
perform a transformation between the two systems, but that is not really necessary: we
have only taken scalar parameters from one system into the other. The only exception,
Eq. (4.18), is a tensor which vanishes in a system and, consequently, vanishes also in the
other.

Expression (4.12) for the metric is very different from the original one. De Sitter has
found it in another coordinate system, in the form

ds2 =
(

1− Λ
3

r2

)
c2dt2 − r2(dθ2 + sin2 θdφ2)− dr2

1− Λ
3 r2

. (4.21)

There are many other metric coordinates expressions, each of interest for a different aim.1

4.3 On the cosmological constant

The origin of the cosmological constant, or of the corresponding dark energy,
remains a (fittingly dark) mystery. We shall here only briefly comment on
some of its aspects: first, the significance of its presence; second, its effect on
the motion of a relativistic particle; third, on the non-relativistic limit.

4.3.1 Presence in the Universe

§ 4.3.1 A first point: the Einstein equations with a cosmological constant

Gµν = Rµν −
1

2
gµνR = 8πG

c4

[
Tµν + c4

8πG
Λgµν

]
, (4.22)

takes on, with the energy-momentum Tµν = (p+ ε) uµuν − p gµν of a perfect
fluid, the form

Gµν = 8πG
c4

[([
p− c4

8πG
Λ
]

+
[
ε+ c4

8πG
Λ
])

uµuν −
(
p− c4

8πG
Λ
)
gµν

]
. (4.23)

We see that the cosmological-constant term c4

8πG
Λ adds positively to the

energy density and negatively to the pressure. Let us interpret εΛ = c4

8πG
Λ as

the energy density associated to the cosmological constant. The Friedmann
equations (2.9), (2.10) can then be rewritten as

ȧ2 = 8πG
3c2

[
(ε+ εΛ) a2 − 3κc4

8πG

]
; (4.24)

1 A few, included that given below, are given by R.C. Tolman, Relativity, Thermody-
namics and Cosmology, Dover, New York, 1987, § 142.
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ä = − 4πG
3c2

[(ε+ εΛ) + 3(p− εΛ)] a(t) . (4.25)

Their aspect corroborate the statement above: εΛ appears added to ε and
subtracted from p. When Λ > 0 (a de Sitter-like contribution), it represents
at the same time a positive energy and a negative pressure. The opposite
would occur if Λ < 0 (anti-de Sitter case). By the way, this shows also
why the cosmological term can be important, despite the smallness of Λ: it
appears multiplied by c4

8πG
, a very very large factor.

Comment 4.3.1 The observational data give Λ = 3.52 × 10−56 ΩΛh2 [cm−2]; if we take
the present-day favored values ΩΛ = 0.75 and h = 0.7, Λ is very small indeed: Λ ≈
1.32× 10−56 [cm−2]. Nevertheless, the effective energy density is

εΛ = ρΛc2 =
Λc4

8πG
=

Λc2

3
3

4πG

c2

2
≈ 10.5× (ΩΛh2)

eV

mm3
≈ 3.8

eV

mm3
.

This is an impressive number: each cubic millimeter of the Universe contains, according
to the most recent data, 3.8 eV in the form of dark energy. As an order-of-magnitude
reminder, each electron in the fundamental state of an hydrogen atom has a binding
energy = − 13.6 eV.

4.3.2 Effect on test particles

§ 4.3.2 A positive scalar curvature tends to make curves to close to each
other. A negative curvature does just the contrary. The relative signs in
(4.17,4.19) show that the cosmological constant has the opposite effect: Λ > 0
leads to diverging curves, Λ < 0 to converging ones. This actually depends
on the initial conditions. Let us look at the geodetic deviation equation,

D2Xα

Du2
=

◦
R

α
βρσU

βUρXσ . (4.26)

Using Eq.(4.15),

D2Xα

Ds2
= − s

R2

[
δα
σgβρ − δα

ρ gβσ

]
UβUρXσ

= − s
R2 [δα

σ − UαUσ]Xσ = − s
R2 h

α
σX

σ . (4.27)

We have recognized the transversal projector hα
σ. By the geodesic equation,

the component of X along U will have vanishing contributions to the left-
hand side. Consequently, only the transversal part X⊥ will appear in the
equation, which is now

D2Xα
⊥

Ds2
+ s

R2 X
α
⊥ =

D2Xα
⊥

Ds2
+

◦
R
12
Xα
⊥ =

D2Xα
⊥

Ds2
− Λ

3
Xα
⊥ = 0 . (4.28)

Negative Λ leads to oscillatory solutions. Positive Λ can lead both to con-
tracting and expanding congruences. If two lines are initially separating,
they will separate indefinitely more and more.
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4.3.3 Local effects

§ 4.3.3 For another purpose, let us recast the Friedmann equations (2.9),
(2.10) in the forms (

ȧ

a

)2

− 8πG

3
ρ =

Λ

3
c2 − kc2 (4.29)

ä

a
=

Λ

3
c2 − 4πG

3
(ρ+

3p

c2
) . (4.30)

Consider then the following simple model. Take a small space region bounded
by a sphere of radius “r0”. The distance between the centre and any point
on its surface is determined by the physical distance a(t)r0, which satisfies
the equation

d2(ar0)

dt2
=

Λ

3
ar0 −

4πG

3
(ρ+

3p

c2
)ar0 . (4.31)

or
d2(ar0)

dt2
=

Λ

3
c2 ar0 −

GM

(ar0)2
≡ FΛ + FN , (4.32)

where

M =
4π

3
(ρ+

3p

c2
)(ar0)

3 (4.33)

is the total mass inside the sphere.
The second term of (4.32) is the ordinary Newtonian force

FN = − GM

(ar0)2
.

The first term, caused by the cosmological constant Λ, is also a gravitational
force, but with the rather unusual form

FΛ =
Λ

3
c2 ar0 .

This field of force is global and homogeneous. The intensity of the force
depends on the distance between the interacting particles as (ar0). The
further away are the particles, the larger is the force.

Comment 4.3.2 Analogous results comes from the Newtonian limit for the interval

ds2 = c2dt2
(

1− 2m

r
− Λ

3
r2

)
−

[
dr2

1− 2m
r −

Λ
3 r2

+ r2
(
dθ2 + sin2 θdϕ2

)]
, (4.34)

which describes the Schwartzschild-de Sitter case: a source point-mass with a cosmological
constant (c = 1).
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4.4 de Sitter inflationary solution

§ 4.4.1 The space sections of de Sitter spacetimes are homogeneous and
isotropic. Friedmann equations (2.9-2.11) hold consequently for de Sitter
cosmology, with vanishing ρ and p:

ȧ2 =
Λc2

3
a2 − κc2 ; (4.35)

ä =
Λc2

3
a(t) . (4.36)

With κ = 0, we have just (2.21), whose solution is

a(t) = A e
√

Λ
3

c t. (4.37)

Comment 4.4.1 We can look for a solution of the general form

a(t) = Aeαt + Beβt .

The equations imply (ȧ)2 = a ä, which requires α = β. Thus, the general expression

reduces to a(t) = c eαt. But then ȧ/a = α = H = ±
√

Λc2

3 = ± c
R . If the constant H

is taken to be positive, the above solution is the only one. The deceleration function is
constant, actually an acceleration, as q = − 1 follows from (2.15). When κ 6= 0, it follows
directly from the Friedmann equations that q(t) = a2(t)

κR2−a2(t) .

§ 4.4.2 Let us repeat once again: a solution of type (4.37) is called “in-
flationary”. More precisely, it is called “inflationary of exponential type”,
to differentiate it from other explosive solutions. There are two supposedly
equivalent simplest scenarios for exponential inflation:

1. no sources, and cosmological constant. Eq.(4.37) shows then that for
inflation necessarily Λ > 0 if κ = 0.

2. no cosmological constant, source with special equation of state

p = − ε (4.38)

Eq.(2.11) shows then that ε and p are constant. Eq.(B.14) shows that
T > 0 and (B.20) that R < 0. It is as if there was an effective cosmo-
logical constant Λ = 8πGT/(4c4) = 8πGε/c4. Or we may say that a
cosmological constant is equivalent to a source fluid with an effective
pressure (4.38). This would also agree with (4.17). This brings the
problem back to a pure de Sitter case.
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Notice that Λ > 0 is essential for de Sitter inflation. Consequently, we
must have, from (4.19), the sign s = − 1. Therefore, only the de Sitter space
dS(4, 1) can lead to inflation. Expression (4.37) becomes more suggestive:

a(t) = A e
c
R t. (4.39)

Another requirement: in the standard treatment we have largely considered
solutions with initial value a(0) = 0. Notice, however, that there is no
inflation if the initial value of a(t) is zero.

§ 4.4.3 For κ 6= 0 the solution is given by

a(t) = A cosh

[√
Λ

3
c(t− t0)

]
±
√
A2 − 3κ/Λ sinh

[√
Λ

3
c(t− t0)

]
. (4.40)

Only the upper sign can lead to the inflationary solution when κ = 0. Using
(4.19), that case becomes

a(t) = A cosh

[√
− s c(t− t0)

R

]
+
√
A2 + s κR2 sinh

[√
− s c(t− t0)

R

]
.

(4.41)
Again: only the case DS(4,1), s = −1, which can lead to the inflationary
solution when κ = 0. Consequently, the solution allowing for inflation is the
DS(4,1) case

a(t) = A cosh

[
c(t− t0)
R

]
+
√
A2 − κR2 sinh

[
c(t− t0)
R

]
, (4.42)

or

a(t) = A cosh
[√

ΩΛH0(t− t0)
]

+

√
A2 − κ c2

H2
0 ΩΛ

sinh
[√

ΩΛH0(t− t0)
]
.

(4.43)
Notice that κ = +1 imposes A ≥ R. Finally, the equivalent expression

a(t) = 1
2

[(
A−
√
A2 − κR2

)
e−

c t
R +

(
A+
√
A2 − κR2

)
e

c t
R

]
(4.44)

exhibits clearly the inflationary behavior when κ = 0.

§ 4.4.4 If we introduce the function

f(t) =
(
A+
√
A2 − κR2

)
e

c t
R (4.45)
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and use the relation

A−
√
A2 − κR2 =

κR2

A+
√
A2 − κR2

(κ 6= 0), (4.46)

solution (4.44) takes on the form

a(t) = 1
2

[
f(t) +

κR2

f(t)

]
. (4.47)

Summing up, the solution is

Λ =
3

R2
6= 0, κ 6= 0 :

{
a(t) = 1

2

[
f(t) + κR2

f(t)

]
f(t) =

(
A+
√
A2 − κR2

)
e

c t
R .

(4.48)

The Friedmann–Robertson–Walker form of the inflationary de Sitter line
element will consequently be

ds2 = c2dt2 − 1
4

[
f(t) +

κR2

f(t)

]2 [
dr2

1− κr2
+ r2(dθ2 + sin2 θdφ2)

]
. (4.49)

4.5 Beyond de Sitter: adding radiation

4.5.1 Radiation–domination: κ 6= 0,Λ 6= 0

§ 4.5.1 Let us go back to a more realistic view. From all the evidence we
have today, the Universe has had an initial stage — the radiation–dominated
era of Section 3.3 — during which, besides the cosmological term, ultrarela-
tivistic matter or radiation provided a significant contribution as a source in
Einstein’s equations.

This era lies entirely in the thermalized period described in Section 3.4,
from which we learn which extra terms are to be added to the Friedmann
equations (4.35, 4.36). We shall preserve the notation of the previous para-
graphs and introduce notation (3.52),

γ =
Ωγ0H

2
0a

4
0

c2
,

with Ωγ0 given by Eq.(3.23) and a0 the present-day value of the expansion
parameter. The equations turn out to be

ȧ2 + κc2

a2
− c2

R2
− γ c2

a4
= 0 (4.50)
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Ḣ − κc2

a2
+

2γc2

a4
= 0 . (4.51)

Just as in the case without radiation, there are many solutions, inflationary
and not. The solution which reduces to (4.44) in the absence of radiation
(γ = 0) is

a(t) =
1
2

r
e

2 c t
R (A+

√
A2−κR2)

2
+e−

2 c t
R R2(κ2R2−4 γ) (A+

√
A2−κR2)

−2
+2 κR2 . (4.52)

§ 4.5.2 Let us repeat function (4.45) and write the solution as

f(t) =
(
A+
√
A2 − κR2

)
e

c t
R

a(t) = 1
2

√
(f + κR2f−1)2 − 4 γR2f−2. (4.53)

We see immediately that, when γ = 0, this expression reduces indeed to
(4.47) and, equivalently, (4.52) reduces to (4.44). The value at t = 0 is√

A2 κ2R2 −
(
A−
√
A2 − κR2

)2
γ

κR
,

which reduces dutifully to A when γ = 0. The solution above involves, be-
sides the cosmological constant and κ, two other quantities: the initial value
A and the present-day value a0 (hidden in γ) of the expansion parameter.

§ 4.5.3 The case κ = 0 is given by

a(t) =

√
e

2 c t
R A2 − γR2

4A2
e−

2 c t
R . (4.54)

Comment 4.5.1 With the above notation, the solution for matter plus cosmological
constant (with κ = 0) of Comment 3.2.1, page 35, becomes

a(t) = a0

{
cosh

[
3
2

c

R
(t− t0)

]
+
R
c

sinh
[
3
2

c

R
(t− t0)

]}2/3

. (4.55)

Notice that the integration constant used is the present-day value a0, not to the initial
value A.

Comment 4.5.2 To add also matter to the above case, it is convenient to use parameter
(3.53) (recall that we are using H−1

0 as the unit of time),

Mc2 = (1− ΩΛ − Ωγ0 − Ωκ) a0
3 =

(
1− c2

R2
− γc2

a4
0

− c2 κ

a0
2

)
a0

3.

Then, the equations are, instead of (4.50–4.51), the complete case (3.54–3.55),

ȧ2 + κc2

a2
− c2

R2
− γc2

a4
− Mc2

a3
= 0 and Ḣ − κc2

a2
+

2 γc2

a4
+

3 Mc2

2 a3
= 0, (4.56)
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or

ä(t)− c2

R2
a +

γ c2

a3
+

M c2

2 a2
= 0. (4.57)

Equation (4.55) solves the case γ = 0, κ = 0,M 6= 0. As then a0 =
(

Mc2

1− c2

R2

)1/3

,

a(t) =

{√
M

R2 − c2
cR cosh

[
3
2

c

R
(t− t0)

]
+

√
M

R2 − c2
R2 sinh

[
3
2

c

R
(t− t0)

]}2/3

.

(4.58)
Equation (4.52) solves the case γ 6= 0, κ 6= 0,M = 0.

§ 4.5.4 The Friedmann–Robertson–Walker form of the inflationary de Sitter
line element will now, with radiation, be

ds2 = c2dt2

− 1
4

[(
f +

κR2

f(t)

)2

− 4 γR2f−2

] [
dr2

1− κr2
+ r2(dθ2 + sin2 θdφ2)

]
. (4.59)

4.6 Beyond de Sitter: adding matter

4.6.1 Nonrelativistic matter: Λ 6= 0, κ = 0

Dismissing any scruples about avoiding repetition, the general set of equa-
tions to be solved in the thermalized (or pre-recombination) period is

ȧ2 + κc2 − γc2

a2
− Mc2

a
− a2c2

R2
= 0

ä+
γc2

a3
+
Mc2

2 a2
− ac2

R2
= 0.

The usual technique is to solve — if possible — the second-order equation,
getting a solution dependent on two arbitrary constants. The first-order
equation is then used on that solution to fix the value of κ. The other
constant remains, and can be used to fix the initial value a(0) = A. In the
absence of radiation and with κ = 0,

ȧ2 − Mc2

a
− c2 a2

R2
= 0

ä+
Mc2

2 a2
− c2 a

R2
= 0.
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A general solution is

a(t) =

(
M R2

4(R2 − c2)

) 1
3
(
c−R
K

e−
3 c t
2R + e

3 c t
2R K (c+R)

) 2
3

for any value of the constant K. K can then be chosen so as to give a(0) = A.
Two possibilities turn up,

K =

√
A3

R2M

(
1±

√
1 +
R2M

A3

)√
R− c
R+ c

.

The lower sign leads, in the M → 0 limit, to a non-inflationary solution
Ae− ct/R. The second leads to the usual inflationary solution. Introducing
another convenient function, this solution is

j(t) =

√
A3

R2M

(
1 +

√
1 +
R2M

A3

)√
R− c
R+ c

e−
3 c t
2R

a(t) =

(
M R2

4(R2 − c2)

) 1
3
(
c−R
j(t)

+ (c+R) j(t)

) 2
3

.

In the Λ→ 0 limit, this tends to

a(t) =

(
A3/2 +

3

2

√
Mct

) 2
3

.

In this case Mc2 =
(
1− c2

R2 − γc2

a4
0
− c2 κ

a0
2

)
a0

3 = a3
0, so that we get back the

usual “matter-dominated” solution when A→ 0:

a(t) = a0

(
3

2
c t

) 2
3

.

Notice that that “usual” case given in Eq.(3.4) is normalized to today’s values
and does not suppose overall thermalization — it simply supposes dust to be
the only source.

4.6.2 Nonrelativistic matter: Λ = 0, κ 6= 0

The equations are in this case

ȧ2 + κc2 − Mc2

a
= 0

ä+
c2M

2 a2
= 0.
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The first equation is ȧ =
√

Mc2

a(t)
− κc2, equivalent to∫
ada√

Ma− κa2
= c

∫
dt.

Case κ = 0 can be used as a test: integration gives a3/2−A3/2 = 3
2

√
Mct,

just the result of the previous section.

Case κ > 0, actually κ = 1: the integral takes up the form∫ a

A

√
y dy√

1− y
M

=
√
Mc

∫ t

0

dt.

Integration gives a(t) in an implicit way:

c t =
√
MA− A2 −

√
Ma− a2 + M

[
arcsin

(√
a
M

)
− arcsin

(√
A
M

)]
.

(4.60)

A sketch is given in Figure 4.2.
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Figure 4.2: General aspect of the expansion parameter for pure dust, with
κ = +1.

Case κ < 0, actually κ = − 1: integration now gives

c t =
√
Ma+ a2 −

√
MA+ A2 +M ln

[√
A+
√
A+M

√
a+
√
a+M

]
. (4.61)
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Notice that, when M → 0, a(t) = A + ct. When M > 0, a function of a(t)
turns up:

e

q
a
M

+( a
M )

2√
a
M

+
√

1 + a
M

=
e

q
A
M

+( A
M )

2√
A
M

+
√

1 + A
M

e
ct
M .

This can be rewritten as

F (x) =
e
√

x+x2

√
x+
√

1 + x
(4.62)

F [a(t)/M ] = F [A/M ] e
ct
M . (4.63)

Function F (x) is actually very simple and monotonic, and so is a(t) (see
Figure 4.3).
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Figure 4.3: Function (4.62) and the expansion parameter for pure dust, with
κ = − 1.

We have above solved Friedmann’s equations with a dust source (M 6= 0),
choosing solutions of inflationary type. Actually, only the cases with either
Λ 6= 0 or κ 6= 0 have been presented. The case with both Λ 6= 0 and κ 6= 0 is
much more involved. It is as involved as the general case including radiation.

4.7 General: Λ 6= 0, γ 6= 0,M 6= 0, κ 6= 0

This case, we once more repeat, is described by

ȧ2 + κc2 − γc2

a2
− Mc2

a
− c2

R2
a2 = 0.

89



It is convenient to part from the usual technique and proceed directly from
this first order equation, which is equivalent to

a(t)ȧ =

√
c2 a4

R2
+ γc2 +Mc2a− κc2a2

or

c dt

R
=

a da√
a4 + γR2 +MR2a− κR2a2

.

The solution is implicit, and involves an intricate elliptic integral:

c

R

∫ t

0

dt =
c

R
t =

∫ a

A

a da√
a4 + γR2 +MR2a− κR2a2

.

The procedure2 to arrive at the solution is long and rather cumbersome.
Let us go step by step:

1. rewrite the integral above in terms of the roots {ri} of the denominator:∫
a da√

a4 + γR2 +MR2a− κR2a2
=

∫
a da√

(a− r1)(a− r2)(a− r3)(a− r4)
.

2. introduce some constants, in terms of which the roots will be expressed
later on:

W =
√
R2 (27M4 + 144 κ M2 γ + 128 κ2 γ2)− 256 γ3 − 4 κ3R4 (M2 + 4 κ γ)

V = 3
√

3R3W −R4
(
2κ3R2 − 27M2 − 72κ γ

)
U =

κR2

3
− V

1
3

12 (2
1
3 )
− R

2 (κ2R2 + 12 γ)

6 (2
2
3
) V

1
3

3. the roots will then be:

r1 =

q
κR2

2
−U−

s
U− MR2

4

√
κR2

2 −U

; r2 =

q
κR2

2
−U+

s
U− ML2

4

√
κR2

2 −U

r3 = −
q

κR2

2
−U−

s
U+ MR2

4

√
κR2

2 −U

; r4 = −
q

κR2

2
−U+

s
U+ MR2

4

√
κR2

2 −U

4. Solutions will be implicit, and involve elliptic functions [32] of two
kinds:

2 It has been discussed at length by Coquereaux and Grossmann [29] for closed Uni-
verses, and by Dabrowski and Stelmach [30] for the open case. We shall here follow the
simpler, unified approach given in Ref. [31].
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• the elliptic integral of first kind with parameter m and amplitude
φ:

F [φ,m] =

∫ φ

0

1√
1−m sin2 θ

dθ

• the elliptic integral of third kind with parameter m, characteristic
n and amplitude φ:

Π[φ, n,m] =

∫ φ

0

1

(1− n sin2 θ)
√

1−m sin2 θ
dθ

5. the characteristic and the parameter turning up wil be:

n =
r2 − r4
r1 − r4

; m =
r1 − r3
r2 − r3

n

6. the amplitude turning up will be

φ(a) = arcsin

√
a− r2

n(a− r1)

7. the implicit solution will then be

ct

2R
=
r1F [φ,m]− (r1 − r2) Π[φ, n,m]√

(r2 − r3)(r1 − r4)
.

We see from their definititons that both elliptic functions vanish when φ = 0,
that is, when a = r2. An exceptional case appears when r1 = r2 and φ(a) =
arcsin 1. A detailed checking shows that this corresponds to R → ∞. For
all other values of L, the initial value is fixed, A = a(0) = r2. Anyhow, it
is clear that the roots are generically distinct. The solution above holds in
that case.
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Chapter 5

Inflation

5.1 Introduction

From the considerations made so far, it may appear that the standard cos-
mological model explains all features of the present, as well as of the early
Universe. However, this is in fact not the case [1]. Despite presenting a lot
of successes, the standard cosmological model presents also a lot of different
problems. The major successes of the model are:

• It explains the Hubble redshift–distance relation in terms of the ex-
pansion of the Universe, with the inverse Hubble constant H−1

0 ≈ 1010

years, determined by observations of distant galaxies, agreeing closely
with the ages determined for stars and galaxies by completely different
observations.

• It predicts the hot Big Bang early phase of the Universe in which non-
equilibrium processes take place, explaining the 3 K Cosmic Microwave
Background Radiation (CMWBR) and the nucleosynthesis of light el-
ements, with predict abundance agreeing well with observations.

The major problems of the standard model are: the expansion law prob-
lem, the horizon problem, the flatness problem, the cosmological constant
problem, and the monopole problem. In the following we are going over
some of the above mentioned problems. In this chapter we will use unities
for which the velocity of light c = 1.
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5.2 Problems of the standard model

5.2.1 Expansion law and the equation of state

In a homogeneous and isotropic model, general relativity allows to find ex-
plicitly the expansion law of the Universe if the energy density ρ and the
pressure p are known. The energy density ρ can be defined by the parameter
Ω, and the pressure p is given by the equation of state

p = p(ρ) .

As we have already seen, the expansion of the Universe is described by the
scale factor a(t), which characterizes distance between objects as a function
of time. The spacetime interval can be written as in Eq.(2.7),

ds2 = dt2 − a2(t)
[
dr2 + f(r)(dθ2 + sin2 θdφ2)

]
, (5.1)

where f(r) depends on the topological properties of the Universe as a whole:

For a spatially flat Universe f(r) = r2

For a closed Universe f(r) = sin2 r
For an open Universe f(r) = sinh2r .

We recall that r is a dimensionless parameter, whereas a(t) has dimension of
length.

The a(t) dependence is described, in the isotropic and homogeneous case,
by the Friedmann equations:(

da

dt

)2

− 8πGε

3
a2 = −κ

2
(5.2)

d2a

dt2
= −4πG

3
(ε+ 3p) a . (5.3)

If the dependence p = p(ρ) is known, then all three unknown functions a, ρ
and p can be found. By combining Eqs.(5.2) and (5.3), we get law (2.11) for
the energy density variation in the expanding Universe,

dε

dt
= − 3H(ρ+ p) . (5.4)

Therefore, we see that the change in the energy density is caused by two
factors: by the expansion of the Universe, and by the work of the pressure
forces.
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Let us now review the different expansion laws corresponding to different
equations of state. We consider only the case in which κ = 0. For an ideal
relativistic gas,

p =
ρ

3
.

In this case, the scale factor depends on t as

a(t) = a0

(
t

t0

)1/2

.

In the Friedmann cosmology, this expansion law is assumed to be valid from
the “beginning” to about 1011s, when non-relativistic particles began to dom-
inate the energy density. After this moment, the expansion is determined by
the non-relativistic gas state, for which p� ρ. With good accuracy one can
then put p = 0, which leads to the following expansion law:

a(t) = a1

(
t

t1

)2/3

.

One of the main difficulties of the classical cosmology is connected with the
very slow growth of the scale factor: a ∼ t1/2 or a ∼ t2/3. If one starts
with the size we know the Universe has today, and go back in time for small
values of t, the scale factor a(t), or the size of the Universe at these times, is
still very large. Therefore, the classical Friedmann model as it stands cannot
be extrapolated to very early stages. Something different from the above
ordinary expansion laws might have occurred in the early Universe.

5.2.2 The horizon problem

One can take any physical system and choose an “initial time” ti. The state
of the system at any later time is affected both by the state at ti (the initial
conditions) and by the subsequent evolution. At any finite time after ti there
are causal limits on how large a scale can be affected by the subsequent
evolution (limited ultimately by the speed of light, but really by the actual
propagation speeds in that particularly system, which can be much slower).
So there are always sufficiently large scales which have not been affected by
the subsequent evolution, and on which the state of the system is simply a
reflection of the initial conditions.

As with any system, the causal “horizon” of the Universe grows with
time. Today, the region with which we are just coming into causal contact
(by observing distant points in the Universe) is one “causal radius” in size,
which means objects we see in opposite directions are two causal radii apart
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and have not yet come into causal contact. One can calculate the number of
causal regions that filled the currently observed Universe at other times. At
the Grand Unification epoch, for example, there were around 1080 causally
disconnected regions in the volume that would evolve into the part of the
Universe we currently can observe.

Let us consider this question in more details. The Universe became trans-
parent to the relic radiation after hydrogen recombination, when protons
and electrons bound into neutral hydrogen atoms which almost do not in-
teract with long-wave photons. The hydrogen recombination temperature is
3.000 K, which corresponds to a time tr ≈ 1012 − 1013s, or equivalently, to
zr ≈ 103. Since that time, relic radiation almost did not interact with any-
thing. Disregarding for a moment the expansion of the Universe, the size of
the causally connected region at the moment of recombination (the horizon
size) can roughly be set equal to c× tr. Therefore, parts of the sky separated
by an angular distance larger than

θ = (1 + zr)
tr
t0
≈ 10−2

should not “be aware” of each other. Nevertheless, the relic radiation is
identical everywhere. This mystery of the Friedmann cosmology is called the
horizon problem.

Actually, the horizon problem is a little bit more involved because the
exact formula for the horizon size must take into account the expansion of
the Universe. Let us then consider a light ray coming from a point (a particle
or a galaxy) of the space to the observer. Let us go back to the spacetime
interval of Eq.(5.1),

ds2 = c2dt2 − a2(t)
[
dr2 + f(r)(dθ2 + sin2θ dφ2)

]
.

Considering a radial trajectory (dθ = dφ = 0), and remembering that light
rays propagate along null geodesics (ds = 0), the equation describing the ray
propagation is

dr =
cdt

a(t)
.

The physical distance l = a(t)r between the source and the observer is,
therefore,

l = a(t)

∫ t

0

c dt′

a(t′)
.

For the radiation-dominated age,

a(t) ∼ t1/2 ,
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and consequently
l = 2ct = H−1 .

For the matter-dominated age,

a(t) ∼ t2/3 ,

which implies
l = 3ct = 2H−1 .

We see that l ∼ t in both cases, and therefore the physical distance l grows
faster than the scale factor. As a consequence, any particle will be inside the
horizon in the future. This means that we are able to see different particles
— or regions of the Universe — which have never been in causal contact.
Nevertheless, the radiation coming from these regions are quite similar. Why
would these regions have identical properties?

5.2.3 The flatness problem

The “critical density” ρc is defined by the condition κ = 0, which implies

H2 ≡
(
ȧ

a

)2

=
8πG

3
ρc . (5.5)

Therefore, a Universe with κ = 0 has ρ = ρc, and is said to be flat. When the
parameter Ω ≡ ρ/ρc is close to unity, the ρ term dominates in the Friedmann
equation, and the Universe is nearly flat. If Ω deviates significantly from
unity the κ term (the “curvature term”) is dominant.

The Flatness Problem arises from the fact that Ω = 1 is an unstable
point in the evolution of the Universe. Because ρ ∝ a−3 or a−4 throughout
the history of the Universe, the ρ term in the Friedmann equation falls away
much more quickly than the κ/a2 term as the Universe expands, and the
κ/a2 comes to dominate. In fact, if at the Planck time

Ω− 1 ' O(1) ,

the Universe would either collapse within 10−43s (if it is closed), or it would
expand so fast that no stars could form (if it is open). In the latter case,
matter density in 1010 years would be much smaller than that observed (ρ0 ≈
10−29g/cm3). This behaviour is illustrated in Fig.5.1

Despite the strong tendency for the equations to drive the Universe away
from the critical density, the value of Ω today is remarkably close to unity,
even after 15 Billion years of evolution. Today the value of Ω is within an
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Figure 5.1: The parameter Ω(a) tends to evolve away from unity as the Uni-
verse expands.

order of magnitude of unity, and that means that at early times ρ must have
taken values that were extremely closely to ρc. Let us estimate the necessary
fine tuning of Ω. Using the expressions H = ȧ/a and ρc = 3H2/8πG, we can
rewrite the equation (2.57) (with Λ = 0) in the form

H2(1− Ω) = −κc
2

a2
. (5.6)

With this equation one can now express Ω as a function of the redshift z and
of its present-day value Ω0:

1− Ω

Ω
=

1− Ω0

Ω0

1

(1 + z)n
, (5.7)

where n = 1 for the matter-dominated Universe, and n = 2 for the radiation
dominated Universe. One can then estimate how close to unity Ω should
have been at early stages, assuming that (1 − Ω0)/Ω0 ≈ 1. The results are
presented in the table below.

Age of the Universe Period |1− Ω|
2.1010 years Contemporary ≤ 1
105 years Recombination 10−3

1 s Beginning of Nucleonsynthesis 10−16

10−5s Quark-Gluon Plasma 10−21

10−10s Electro-Weak Transition 10−26

tPl ≈ 10−43s Universe Creation 10−60
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Note that the earlier time, when the initial conditions are fixed, the closer
Ω must be to unity in order to obtain the presently observed Universe. The
necessity fine tuning is astonishingly small.

These considerations can also be illustrated by comparing the horizon
size at the time of the birth of the Universe with the curvature radius in the
Friedmann model. The curvature radius R of the homogeneous and isotropic
Universe is defined as the trace of the three-dimensional curvature tensor:

κ

a2
=

1

R2
.

We see, therefore, that it is equal to the scale factor: R = a. Since the
horizon size is equal to ct and a ≈ (t/t0)

1/2, then ct � R for t � t0. This
means that the Universe was almost exactly flat when it was born.

The basic conclusion is that the classical Friedmann model can not be
extrapolated to very early stages. Any attempt to apply this model to times
near the Planck time leads to wrong results. This means that the law that
governs the scale-factor changes might have been completely different for
small t. At that period, a(t) must have grown very fast with time. As we
are going to see later, if this is in fact the case, the flatness problem can find
a reasonable solution.

5.2.4 The cosmological constant problem

The de Sitter solution of Einstein’s equation plays an important role in the
theory of the early Universe, and consequently in the solutions of the flatness
and horizon problems. The de Sitter metric is a homogeneous and isotropic
solution of Einstein’s equation in vacuum, but with the so called cosmolog-
ical term. The cosmological constant was first introduced into the gravity
equations with the purpose of obtaining a stationary solution which would
comply with the cosmological models of the epoch. The idea was to compen-
sate the attraction of matter by a repulsive Λ-term. After the discovery of
the expansion of the Universe by Hubble, however, this idea was promptly
rejected.

Today, it is a general belief that the expansion of the Universe at the
early stages was produced by a Λ-term, or by an equivalent state of mat-
ter. Experience has since long shown that the contemporary value of the
cosmological constant is either very small or equal to zero. Quite recently,
observations of supernovae Ia, however, have change the situation as these
results indicate a non-vanishing value for the cosmological constant [14]. On
the other hand, quantum field theory as well as analysis of phase transitions
in the early Universe predict a very large value for it. Even if it is not zero,
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as the recent observations seem to indicate, there is still a tremendous con-
tradiction between the predictions and observations. This contradiction is
known as the cosmological constant problem.

5.3 The machinery of inflation

5.3.1 Cosmic inflation

The proposed answer to most of these problems is the Inflationary Uni-
verse [35, 36, 37]. This model is based on the supposition that, for a tem-
porary period around the GUT epoch (that is, the epoch in which the GUT
symmetry was spontaneously broken down), the dynamics of the Universe
changed dramatically. As the word inflation suggest, during a short period
of time the Universe might have experienced a very rapid expansion, which
can be described by the following sequence:

t < t1 : Scale factor a(t) ∼ t1/2

t1 < t < t2 : Scale factor a(t) ∼ exp(αt)
t2 < t : Scale factor a(t) ∼ t1/2

As we are going to see, for a flat space (k = 0), an inflationary solution
can be obtained in the absence of sources, but in the presence of a positive
cosmological constant. Alternatively, as a cosmological constant is equivalent
to some kind of matter which satisfies the exotic equation of state

p = − ρ ,

one can say that such a matter is also able to generate inflation. Inde-
pendently of what may have cause it, the expansion law is supposed to be
exponential,

a(t) ∼ exp(αt) ,

and the relevant spacetime in the short inflationary period becomes a de
Sitter spacetime [17]. What is this time range? How do we find α? Is
there an alternative model to inflation? These questions, as well as the
fundamentals of the inflationary model will be discussed next.

It was after Guth’s original paper [35] that Cosmic Inflation became a
hope for the solution for the deep mysteries of the Universe. Despite its
striking success, there are key unanswered questions about the foundations
of inflation which do not allow us to say with certainty that we are in the
right track. However, no alternative theory exists which makes of Inflation
the only (and consequently the best) available model we have.
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Comment 5.3.1 Recently [38], an alternative theory to Inflation has been proposed
which is based on a time-varying speed of light. According to this proposal, a very large
speed of light in the early Universe could also resolve the same problems Inflation can do.

Over the years numerous inflationary “scenarios” have been proposed.
Our goal here is to introduce the basic ideas that underlie all the scenarios.
The essentially new idea which allows to solve the above-mentioned problems
is to introduce negative pressure. This can be achieved by changing the
equation of state from p = ρ/3 to

p = − ρ . (5.8)

Remembering that the energy-momentum tensor of a homogeneous fluid is

T µν = (p+ ε) uµuν − p gµν , (5.9)

the above equation of state represents a fluid for which

T µν = ρ gµν . (5.10)

Substituting in Einstein’s equation

Rµν −
1

2
gµνR = 8πGTµν , (5.11)

we see that it is equivalent to

Rµν −
1

2
gµνR− Λ gµν = 0 , (5.12)

which is the vacuum Einstein’s equation but with a cosmological term

Λ = 8πGρ .

One may say, therefore, that a cosmological constant is equivalent to a source
fluid with an effective pressure given by (5.8), which brings the problem back
to a pure de Sitter case.

Let us then take the Friedmann equations (2.9) and (2.10) with p = ρ = 0
(alternatively we could have chosen p = −ρ and Λ = 0):

ȧ2 =
Λ

3
a2 − κ (5.13)

ä =
Λ

3
a . (5.14)

From Eq.(2.11) we see that ρ and p are constant. This means that the energy
decrease due to expansion is compensated by the work of pressure forces.
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For a flat space (κ = 0), the solution to the Friedmann equations is

a(t) = a0 exp

[√
Λ

3
t

]
. (5.15)

A solution of this type is called inflationary. Notice that Λ > 0 is essential
for inflation, otherwise the solution would be oscillatory. Consequently, we
must have, from (4.19), the sign s = −1. Therefore, only the de Sitter
space dS(4,1) can lead to inflation. In terms of the de Sitter “radius” R, the
solution (5.15) becomes quite suggestive:

a(t) = a0 exp [t/R] . (5.16)

A non-vanishing cosmological constant, or equivalently a fluid with the
equation of state (5.8), leads to a new phenomenon of gravitational repulsion.
This repulsion might serve as the initial push that led to the inflationary
expansion of the Universe. It is sufficient for this that the equation of state
(5.8) was only approximately valid and only for a finite period. Of course,
it remains to explain the physical origin of this equation, as well as when
and why the exponential expansion stopped, and the p = −ρ law changed
to p = ρ/3. It should be remarked that, though the form of this equation
is exotic, it “naturally” appears in many cases. These are, for example,
phase transitions from symmetric to symmetric-broken phases in primordial
plasmas, scalar field dynamics with very specific initial conditions, or theories
with dimensions D > 4 [39].

5.3.2 Solving the problems

The introduction of an inflationary period in the early Universe, in which
the Universe inflated exponentially for a short period of time, has a profound
effect on the cosmological problems. Let us then address each one of them.
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Figure 5.2: During inflation, Ω = 1 is an attractor

Flatness
The flatness problem is characterized by the tendency of the κ term to

dominate the ρ term in the Friedmann equation (2.9). However, during
inflation, H = ȧ/a does not depend on time, and consequently

| 1− Ω |≈ exp[−2Ht] .

The difference between the expansions

a(t) ∼ t1/2 and a(t) ∼ t2/3

and
a(t) ∼ exp[−2Ht]

is that in the first case Ω → ∞ for t → ∞, while in the second Ω → 1 for
t→∞. This behaviour is illustrated in Fig.5.2. Consequently, no fine tuning
on Ω is necessary in the inflationary scenario.

Horizon
A period of exponential inflation radically changes the causality structure

of the Universe. During inflation, each causally connected region is expanded
exponentially. A suitable amount of inflation allows the entire observed Uni-
verse to come from a region that was causally connected before inflation.
The horizon problem will be solved if the causally connected region, which
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at the moment of the “creation” of the Universe had the size

l ≈ m−1
Pl = 10−33cm ,

was inflated up to the necessary size of 10−3cm. This region expands later
to reach the present horizon size.

Homogeneity
Of course “solving” the Horizon problem does not guarantee a successful

picture. Bringing the entire observable Universe inside one causally con-
nected domain in the distant past can give one hope that the initial condi-
tions of the standard model can be explained by physical processes. Still,
one must determine exactly what the relevant physical processes manage to
accomplish. While the result of inflation is clearcut in terms of the flatness,
it is much less so in terms of the homogeneity. The good news is that a
given inflation model can actually make predictions for the spectrum of in-
homogeneities that are present at the end of inflation. However, there is
nothing intrinsic to inflation that predicts that these inhomogeneities are
small. Nonetheless, the mechanics of inflation can be further adjusted to
give inhomogeneities of the right amplitude. Interestingly, inflation has a
lot to say about other aspects of the early inhomogeneities, and these other
aspects are testing out remarkably well in the face of new data.

Monopoles
The original Monopole problem occurs because GUTs produce magnetic

monopoles at sufficiently high temperatures. In the standard model these
monopoles “freeze out” in such high numbers as the Universe cools that they
rapidly dominate over other matter (which is relativistic at that time). In-
flation can get around this problem if the reheating after inflation does not
reach temperatures high enough to produce the monopoles. During infla-
tion, all the other matter (including any monopoles that may be present)
is diluted to completely negligible densities. The ordinary matter is created
by the reheating process at the end of inflation. The key difference is that
in a non-inflationary model the matter we see has in the past existed at all
temperatures, right up to infinity at the initial singularity. With the intro-
duction of an inflationary epoch, the matter around us has only existed up
to a finite maximum temperature in the past (the reheating temperature).
If this temperature is on the low side of the GUT temperature, monopoles
will not be produced and the Monopole Problem is evaded.
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Cosmological constant
A very important open question is linked with the cosmological constant

problem [40, 41, 42]. Why the cosmological constant is extremely close to
zero today (at least from a particle physicist’s point of view) is perhaps
the deepest problem in theoretical physics. Interestingly, current data is
suggesting that there is a non-zero cosmological constant today. Despite not
directly contradicting with inflation, the inflationary model does not solve
the cosmological constant problem, which remains as an open problem.

5.4 Mechanisms for producing inflation

5.4.1 Scalar fields in cosmology

Scalar fields play a very important role in several branchs of Physics. For
example, gauge theories with spontaneously broken symmetry demand the
existence of scalar fields in order to ensure renormalizability. From the cos-
mological point of view, its main interest comes from the fact that it can
naturally lead to the equation

p = −ρ (5.17)

The lagrangian of a complex scalar field has the following form

L = |∂µΦ|2 − V (Φ) , (5.18)

where the potential V (Φ), in the case of non-interacting particles, is

V0(Φ) = m2|Φ|2 . (5.19)

The potential of the Higgs field, on the other hand, is

VH(φ) =
λ

4

(
Φ2

0 − |Φ|2
)2

. (5.20)

As a source of gravitation, we are interested in the energy-momentum
tensor of the scalar field Φ. Let us write it down for the simpler case of a
real scalar field, for which the lagrangian is

L =
1

2
gµν∂µΦ∂νΦ− V (Φ) . (5.21)

The energy-momentum tensor is defined as [43]

Tµν =
2√
−g

δL
δgµν

, (5.22)
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with L =
√
−gL. Therefore, for the case of the lagrangian (5.21) we obtain

Tµν = ∂µΦ∂νΦ−
1

2
gµν

[
gλρ ∂λΦ ∂ρΦ− V (Φ)

]
, (5.23)

where we have used the identity

δ
√
−g

δgµν
= −
√
−g gµν .

5.4.2 A simple example

As a simple non-realistic example, let us consider the case of a non-interacting
scalar field. For a weak gravitational field, and in the case of a homogeneous
field depending on time only, Tµν has the form

T00 ≡ ρ =
1

2

(
Φ̇2 +m2Φ2

)
(5.24)

Tij ≡ pδij =
1

2

(
Φ̇2 −m2Φ2

)
δij . (5.25)

It follows from these expressions that, if at some moment t a homogeneous
field Φ(t) satisfies the conditions

Φ̇ = 0 and Φ = 0 , (5.26)

the condition p = −ρ is fulfilled at that moment. A scalar field with these
properties is called “Inflaton” because of its hability to induce an inflationary
expansion of the Universe.

Let us discuss now the physical meaning of the conditions Φ̇ = 0 and
Φ 6= 0. The equation of motion of a homogeneous field is

d2Φ

dt2
= −∂V (Φ)

∂Φ
. (5.27)

This is a second order differential equation which is solved with two arbitrary
initial conditions. In order to understand its physical meaning, we choose
Φ̇ 6= 0 and Φ = 0.

Now, Eq.(5.27) is identical to the equation of motion of a massive point
particle in classical mechanics. The field Φ plays the role of the coordinate
of the particle, and V (Φ) is the potential in which the particle moves. The
potential V = m2Φ2/2 is the potential of a harmonic oscillator with frequency
m. The initial conditions Φ̇ = 0 and Φ = Φ1 means that the particle was
initially shifted to the distance Φ1 from the equilibrium point, and did not
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move. Of course, this initial state is not stable. As soon as the external forces
cease to hold, the particle starts moving. The motion of the particle, or in
other words, the time dependence of the field Φ is described by the simple
oscillator formula:

Φ(t) = Φ0 cos(mt+ ψ) .

The initial conditions determine the phase ψ of the oscillations. It is easy
to see that the condition p = −ρ is valid, in this simple case, for a moment
after every half-period.

5.4.3 The inflationary scenario

First of all, it should be remarked that the notion of equation of state in
this case is rather ambiguous since the system is not relaxed and p is not
determined by ρ. The relation between p and ρ changes with time and there
is no dynamical equation which would describe the evolution of p and ρ once
their initial values are given. For that the equation of motion of the field Φ
is necessary, which means that the correct form of the potential V (Φ) must
be known.

Historically, the first inflationary model based on scalar field dynamics
used special properties of the Higgs potential (5.20), and in particular its
temperature dependence. At nonzero temperature, the Higgs potential is
modified in the following way:

V (Φ, T ) =

(
bT 2 − λ

2
Φ2

0

)
Φ2 +

λ

4
Φ4 +

λ

4
Φ4

0 . (5.28)

At high temperatures the potential has one minimum at Φ = 0. At smaller
temperatures an additional minimum in the potential appears. While the
temperature goes down, this minimum becomes deeper than that at Φ = 0.
Thus, the point Φ = 0 becomes unstable and the system evolves to the state
with nonvanishing average value of the field, that is < Φ >6= 0.

The time the system remains in the metastable state Φ = 0 depends on
the value of the constants λ and Φ0. During this period, the ordinary matter
density of the Universe decreases as T 4, while the energy density of the scalar
field Φ remains constant:

ρ0 ≡ ρ(Φ = 0) = λ
Φ4

0

4
. (5.29)

Now, for the case of the Higgs potential (5.28), one can prove that

Tµν =
Φ4

0

4
gµν .
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This energy-momentum tensor acts effectively like a cosmological constant. If
the system remains at the point Φ = 0 long enough, then ρ0 becomes greater
than the energy density of all other forms of matter, and the Universe starts
to expand exponentially:

a(t) ≈ exp(Ht) , H =

√
λ Φ2

0

2mPl

. (5.30)

Since the energy density of relativistic matter scales as exp(−4Ht), and
that of nonrelativistic matter scales as exp(−3Ht), the energy density of
other forms of matter soon becomes negligible. The Universe then becomes
as isotropic and homogeneous as vacuum can be, and its expansion is deter-
mined by the vacuum-like energy (5.29). Note that we are implicitly assuming
that there is a nonvanishing cosmological constant

Λ =
λΦ4

0

32πm2
Pl

.

Note also that it is strictly canceled out by the energy of the condensate
when < Φ >= Φ0.

According to this picture, the inflaton was trapped inside a classically
stable local minimum of the inflaton potential, and only quantum tunnel-
ing processes could end inflation. The scalar field tunneling from Φ = 0
to Φ = Φ1 (see Fig. 5.3) leads to a phase transition of first order, quite
analogous to the boiling of water and formation of bubbles in the overheated
fluid. Formation of the bubbles of new phase corresponds to a tunneling
transition from point Φ0 to point Φ1 (see Fig. 5.3). The estimates of tran-
sition probabilities prove that inflation can be sufficiently long to yield the
necessary inflation. After tunneling the field approaches a stable equilibrium
point according to the equation:

Φ̈ + 3HΦ̇ + V ′(Φ) = 0 . (5.31)

This model, proposed by Guth, however, suffers the following shortcom-
ing. The field Φ quickly approaches its equilibrium. Thus, the bubble size
was very small and the visible part of the Universe should contain many bub-
bles. This leads to large inhomogeneities because the energy density contrast
inside a bubble and on its border is huge (basically, all energy is in its wall).
Linde [44] and Albrecht and Steinhardt [45] modified this scenario getting
rid of the trouble. The potential they proposed is very flat around Φ1 so
the rate of variation of the field Φ is small in comparison with the rate of
expansion of the Universe (see the dashed line in the Fig. 5.3):

Φ̇

Φ
� H0 =

ȧ

a
.
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The expansion of the Universe for Φ = 0 and Φ = Φ1 differ only slightly. This
means that the bubble of the new phase < Φ >= Φ1 expands exponentially,
and its border goes far outside the present-day horizon. Our Universe, in this
model, is a small part of a gigantic bubble. That is why it looks isotropic
and homogeneous. This kind of solution for the the original inflation model
is called slow roll inflation, sometimes also called new inflation. Essentially
all current models of inflation make use of the slow roll mechanism.

The bubbles of the new phase are formed predominantly in the state
where the potential of the field Φ is flat (see Fig. 5.3), and grows very
slowly. As the field approaches Φ0, the potential becomes steeper and the
field starts to move faster. Having reached the equilibrium point, the field
begins to oscillate around it. The oscillations are damped by friction caused
by the expansion of the Universe (see Eq. 5.31), and by particle production.
In this process, the energy of the field is transformed into particles. If the
expansion of the Universe is slower than the rate of particle production and
the rate of reactions between them, then these particles are thermalized and
we come back to the standard cosmological model. Therefore, the scalar field
not only causes inflation, but produces all the matter in the Universe.

5.5 Final remarks

It is far from clear what the Inflaton actually is, and where its potential
comes from. It is pretty easy to suppose the existence of a scalar field with
the properties we wish; whether Nature has provided such a field is a ques-
tion to be answered by experiments. In this connection, it could be said
that inflation gives us a set of predictive signatures which lie within scope
of realistic tests. Thus we should know in the foreseeable future whether we
should continue to embrace inflation and build upon its successes or return
to the drawing boards for another try [46].
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Figure 5.3: Scalar field tunneling from Φ = 0 to Φ = Φ0.
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Chapter 6

Formal developments

More theoretically–minded cosmologists – and that includes some of the most
illustrious — present their works in a more sophisticated mathematical frame-
work. This chapter is devoted to some frequently used formal notions.

6.1 Fundamental observers

On a pseudo–Riemannian spacetime S, there exists always a family of world–
lines which is preferred. They represent the motion of certain preferred ob-
servers, the fundamental observers and the curves themselves are called the
fundamental world–lines. The 4-velocities along these lines are uµ = dxµ

ds
.

Proper time coincides with the line parameter and satisfies u2 = uµuµ = 1.

The time derivative of a tensor T ρσ...
µν... is d

ds
T ρσ...

µν... = d
dxλT

ρσ...
µν...

dxλ

ds
=

(T ρσ...
µν...),λ u

λ. This is not covariant. The covariant time derivative (some-
times called “the absolute derivative”) is

D

Ds
T ρσ...

µν... = (T ρσ...
µν...);λ u

λ.

For example, the acceleration is

aµ =
D

Ds
uµ = uµ

;νu
ν .

Using the Christoffel connection, it is easily seen that uµa
µ = 0. This property

is analogous to that found in Minkowski space, but here only has an invariant
sense if acceleration is covariantly defined, as above.

At each point p, and under a condition given below, a fundamental ob-
server has a 3-dimensional space which it can consider to be “hers/his own”:
its rest–space. Such a space is tangent to S and, as time runs along the fun-
damental world–line, orthogonal to that line at p (orthogonal to a line means
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orthogonal to its tangent vector, here uµ). At each point of a world–line,
that 3-space is determined by the projectors

hµν = gµν − uµuν .

Clearly hµνu
ν = 0. A projector is an operator P satisfying P 2 = P . In

the case, the projectors are actually hµ
ν = gµρhρν . They satisfy hµ

νh
ν
λ =

hµ
νg

νρhρλ = hµ
νg

νρ(gρλ − uρuλ) = hµ
λ. Notice that hµνhµν = hµ

µ = 3.
The energy–momentum tensor of a fluid is here, instead of (B.4),

Tµν = (p+ ε)uµuν − p gµν = ε uµuν − p hµν . (6.1)

The energy density and the pressure can be extracted from Tµν by noticing
that ε = Tµνu

µuν and p = 1
3
Tµνh

µν . It is convenient to introduce the notations

u(µ;ν) = 1
2

(uµ;ν + uν;µ) u[µ;ν] = 1
2

(uµ;ν − uν;µ)

for the symmetric and antisymmetric parts of uµ;ν . There are a few important
notions to be introduced:

• the vorticity tensor
ωµν = hρ

µh
σ

νu[ρ;σ] ;

it satisfies ωµν = ω[µν] = - ωνµ and ωµνu
ν = 0; it is frequently indicated

by its magnitude ω2 = 1
2
ωµνω

µν ≥ 0.

• the expansion tensor

Θµν = hρ
µh

σ
νu(ρ;σ) ;

its transversal trace is the volume expansion; Θ = hµνΘµν = Θµ
µ = uµ

;µ;
in the Friedmann model, Θ turns up as related to the Hubble expansion
function by Θ = 3H(t).

• σµν = Θµν − 1
3

Θ hµν = σ(µν) is the symmetric trace–free shear tensor;
it satisfies σµνu

ν = 0 and σµ
µ = 0 and its magnitude is defined as

σ2 = 1
2
σµνσ

µν ≥ 0.

Decomposing the covariant derivative of the 4-velocity into its symmet-
ric and antisymmetric parts and rearranging the terms, a rather involved
expression results for it:

uµ;ν = ωµν + σµν + 1
3
Θhµν − aµuν . (6.2)
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6.2 Landau–Raychaudhury equation

With the above characterizations of the energy density and the pressure, the
Einstein equations reduces to the Landau–Raychaudhury equation:

d

ds
Θ + 1

3
Θ2 + 2

(
σ2 − ω2

)
− aµ

;µ +
4πG

c4
(ε+ 3p)− Λ = 0 . (6.3)

Notice that

Rµνu
µuν =

4πG

c4
(ε+ 3p)− Λ . (6.4)

Detailed examination shows that, actually, only when ωµν = 0 there exists
a family of 3-spaces everywhere orthogonal to uµ. In that case, there is a
well–defined time which is the same over each 3-space.

From the above equation, we can see the effect of each quantity on ex-
pansion: as we proceed along a fundamental world–line, expansion

• decreases (an indication of attraction) with higher values of

expansion itself

shear

energy content

• increases (an indication of repulsion) with higher values of

vorticity

second-acceleration

cosmological constant .
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Appendix A

Physical Constants, Units and
Observation Data

Taken mainly from [4], [6] and [16].

A.1 Units and constants

1. units
1 year ≈ 3.15× 107 sec .

1MeV = 1.6× 10−13 Joule ; 1 Joule = 6.25× 1012MeV .

1pc = 3.26 light years = 3.08× 1018cm; 1 Mpc = 3.0857× 1022m

In High-Energy Physics, commonly used system is ~ = c = 1, which
leads to 1 m = 5.06× 1012 MeV−1; 1 cm2 = 2.56× 1021MeV−2; 1 MeV
= 1.786× 10−30 kg

for cross-sections, 1 barn = 10−24 cm2 = 2.56 × 10−3MeV−2= 2.56 ×
103 GeV−2;

1 GeV−2 = 3.90625× 10−4barn = 3.90625× 10−28cm2.

2. temperature measured in eV or MeV

1eV = 11627 oK ; kT [MeV ] = 8.617× 10−11 T [oK]

for present–day BBR:

Tγ0 = 2.725± 0.002 oK

kTγ0 = 2.3× 10−10 MeV
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at any time.

kTγ = 2.3× 10−10 (1 + z) MeV

or
1 + z = 4.3× 109 kTγ [MeV ]

3. radio waves: wavelength and frequency

300m←→ 1MHz

4. constants

Newton gravitational constant

G = 6.67390× 10−11 m3 × kg−1 × s−2 = 0.67× 10−11 N×m2 × kg−2

Boltzmann constant (written simply k in the text)

kB = 1.3806568× 10−23 J × oK−1 = 8.6× 10−5 eV × oK−1

Avogadro number and gas constant

NA = 6.023× 1023 ;R = NAkB = 8.314× 107 erg× oK−1.

Useful values

kB

c2
= 1.5362× 10−40 J

oK×m2
sec2

c~ = 3.16× 10−26J ×m ; (c~)3 = 3.16× 10−77J3 ×m3

(
kB

c~
)3 = 8.3285× 107 oK−3 ×m−3

kB

c~
= 436.706 oK−1 ×m−1 = 4.367oK−1 × cm−1

4πG

3
= 2.795× 10−10 N×m2 × kg−2
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A.2 Astronomy and Cosmology

1. Earth

mass M⊕ = 5.97223 (±0.00008)× 1024kg ≈ 6× 1027 g

equatorial radius R⊕ = 6.378× 106 m

surface gravity acceleration g = GM/R2
⊕ = 9.7 m sec−2

average orbit radius ≈ 1.5× 1013 cm ; Cf. for Pluto, average orbit
radius ≈ 5.5× 1014 cm

2. The Sun

mass M� = 1.98843 (±0.00003)× 1030kg ≈ 2× 1033 g

radius R� ≈ 7× 1010 cm

luminosity L� ≈ 4× 1033 erg × sec−1

3. our Galaxy

mass ≈ 1.4× 1011M�

disc diameter ≈ 30 kpc

thickness ≈ 1 kpc

sun is at ≈ 10 kpc from the centre

sun complete orbit in 200× 106 years

differential velocity

if on the galactic plane, Population I (younger)

if outside the galactic plane, Population II (older)

4. Hubble constant

H0 = 100 h [km sec−1 Mpc−1] = 3.24× 10−18 h[sec−1] ;

1

H0

= 3.086× 1017 h−1 sec = 0.9798× 1010 h−1 years .

c

H0

= 9.258× 1027 h−1 cm = 3× 105 h−1 Mpc .

5. critical mass density

ρcrit =
3H2

0

8πG
= 1.878× 10−29 h2 [g × cm−3]

= 1.878× 10−26 h2 [kg ×m−3] = 1.054× 10−5h2 [GeV × cm−3]
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6. Planck time, length and energy:

tP = (
~G
c5

)1/2 = 10−45s ;LP = ~/cMP ≈ ×10−35m ;

eP = MP c
2 = (c~/G)1/2c2 ≈ 1019GeV

7. baryon density

Ωb =
8πG

3

ρb

H2
0

=
ρb

ρcrit

;

0.0052 ≤ Ωbh
2 ≤ 0.026 ;

nb = 11.4× Ωb h
2 (1 + z)3 [m−3]

ρb = 1.82× 10−26 Ωb h
2 (1 + z)3[kg m−3]

8. relation to photon density

Ωbh
2 = 0.004η10 ; η = η10 × 10−10

9. cosmological constant effective mass density

ρΛ =
Λc2

8πG
; ΩΛ =

Λc2

3H2
0

= 2.84× 1051 Λ h−2 [m2].

cosmological constant effective energy density:

εΛ = ρΛc
2 =

Λc4

8πG
=

Λc2

3

3

4πG

c2

2
≈ 10.5× (ΩΛh

2)
eV

mm3
.

useful values:

• Λ = 3.52× 10−56 ΩΛh
2 [cm−2];

if (present-day favored values) ΩΛ = 0.75 and h = 0.7, then

Λ = 1.32× 10−56 [cm−2];
√

ΩΛ = 0.866

H0

√
ΩΛ = 1.96× 1016 [sec−1];

H0
√

ΩΛ

c
= 9.35× 10−29 [cm−1]

• Λc2

3
= 1.05× 10−35 ΩΛh

2 [sec−2]

•
√

Λc2

3
=
√
− s c2

R2 = 3.24× 10−18
√

ΩΛ h [sec−1]

• R = =
√

3
Λ

= 1.50× 1028 [cm] ≈ 5× 103 [Mpc]
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10. deceleration parameter:

q = − äa
ȧ2

=
d

dt

1

H
− 1 ; q0 =

Ω0

2
− ΩΛ .

11. a convenience sometimes used:

Ωk(t) = − kc2

a2H2
0

12. dimensions are as follows:

[k] = [0]; [a] = L; [Λ] = L−2;

[ρ] = ML−3; [H0] = T−1.

A.3 Statistical Physics & Fluids

13. Black body radiation

Stefan-Bolzmann constant

σ =
π2

60

k4

~3c2
= 5.67× 10−5gsec−3oK−4 .

nγ =
2ζ(3)

π2

(
k

c~

)3

T 3

nγ = 2.0287× 107T 3[oK3m−3] ; at T = 2.725oK,nγ0 = 410γ/cm3

nγ = 4.10× 108(1 + z)3m−3 = 4.10× 102(1 + z)3cm−3;

pγ =
2ζ(4)

π2

1

(c~)3
(kT )4 = 2.52× 10−16 T 4 J ×m−3

eγ =
4σ

c
T 4 = 3 pγ = 7.56× 10−16T 4 × J ×m−3

= 4.72× 10−9 T 4Mev × cm−3

ργ =
π2

15

1

~3c3
(kTγ)

4 =
eγ

c2
= 8.42× 10−33 T 4 × kg ×m−3

14. sound velocity: c2s =
(

∂p
∂ρ

)
S
; for air as an ideal gas at T ≈ 300oK with

particles of mc2 ≈ 30GeV , cs =
√

kT
mc2

c ≈
√

300×8.6×10−5eV
30×109eV

c ≈ 3 × 102

m/s.
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A.4 Particle Physics

15. photon mass: mγ < 6× 10−17 [eV] = 1.0710× 10−52 [kg]

16. protons and nuclei
me

mp

= 5.45× 10−4.

proton mass: mP = 1.6726231× 10−27 [kg]

proton lifetime: τP > 1.6× 1025years;

proton radius1: rP = 0.805f = 0.805× 10−13 cm, or 0.862f = 0.862×
10−13 cm.

nuclear matter density: 7.22× 1017 [kg ×m−3]

17. electrons:

mass me = 0.510998902(21)MeV
c2

= 9.10938188(72)× 10−31[kg]

fine structure constant α = e2

4πε0~c
= 7.297× 10−3 = 1

137.036

classical electron radius re = e2

4πε0mec2
= 2.817× 10−13 cm

Compton lengths:

{
for the electron : h

mec
≈ 2.42× 10−10 cm

for the proton : h
mP c
≈ 1.32× 10−13 cm

18. Thomson cross–section [from ([16])]

σT =
8πr2

e

3
= 0.665 barn = 0.665× 10−24 cm2

19. some other cross–sections [from ([28]), p. 309]

σγγ→e+e− =
π

2

[
e2

mec2

]2

= 1.247× 10−25cm2;

σγγ→pp̄ =
π

2

[
e2

mpc2

]2

= 3.71× 10−32cm2;

1 On the lack of agreement on this value, see [27].
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Appendix B

Notation and conventions

B.1 Special Relativity

B.1.1 Introduction

When the scene is Minkowski space, there is a (cartesian) coordinate system
in which the Lorentz metric is given by

η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (B.1)

The signature (+,−,−,−) has been chosen. η defines the interval ds, given
in those cartesian coordinates as

ds2 = ηabdx
adxb = dx0dx0 − d~x · d~x (B.2)

Concerning indices, we shall use α, β, . . . µ, ν, . . . = 0, 1, 2, 3 and i, j, k, . . . =
1, 2, 3. The first latin letters a, b, c, . . . will sometimes run in the range
0, 1, 2, 3, 4.

B.1.2 Lorentz transformations

Let K be a reference inertial frame and K ′ another inertial frame moving
with velocity ~v along its x–axis. Call γ = 1q

1− v2

c2

the relative contraction

parameter. The measures of an infinitesimal length, in K and K ′, are related
by

dx = γ(dx′ + vdt′) ; dt = γ[dt′ +
v

c2
dx′]
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Velocities are related by

vK =
vK′ + v

1 +
vK′v
c2

.

K
K’

~v
⇒

B.1.3 Particle Mechanics

Four–velocities:

u0 =
1√

1− v2

c2

; ~u =
~v/c√
1− v2

c2

; u2 = ηabu
aub = 1. (B.3)

Take the interval (B.2) between two neighboring points on the trajectory
γ of a particle. ds is the infinitesimal time along the curve γ(s) and the
particle four-velocity is the vector ua = dxa

ds
, tangent to γ. u2 = 1 follows from

the definition. Taking d
ds

of this expression, we have that the acceleration
a = du

ds
is always orthogonal to the velocity and, consequently, to the curve:

du
ds
· u = 0.

B.1.4 Fluid Mechanics

Energy–momentum tensor of a perfect fluid in Minkowski space is

T ab = (p+ ε)uaub − p ηab, (B.4)

where ε (= ρc2, with ρ the mass – or equivalent mass – density) is the energy
density field and p is the pressure field. Notice

T 00 =
ε+ p v2

c2

1− v2

c2

. (B.5)

120



B.2 General Relativity

B.2.1 Introduction

The basic, mediating field is a spacetime Riemannian metric gµν , for which
we take the signature (+,−,−,−) and which defines the interval

ds2 = gµνdx
µdxν . (B.6)

The metric gµν defines a unique torsionless connection
◦
Γ, whose components

is the system {xµ} are the Christoffel symbols

◦
Γλ

µν=
gλρ

2
[∂µgρν + ∂νgµρ − ∂ρgµν ] . (B.7)

A connection define covariant derivatives of tensors. A useful device is the
colon and semicolon notation for usual and covariant derivatives. For exam-
ple:

Vµ,ν = ∂νVµ

Vµ;ν = ∂νVµ−
◦
Γλ

µνVλ

V µ
;ν = ∂νV

µ+
◦
Γµ

λνV
λ

Notice that we use the last index in
◦
Γµ

λν as the derivative index.
The curvature of this connection will have as components those of the

Riemann tensor

◦
Rα

βµν = ∂µ

◦
Γα

βν − ∂ν

◦
Γα

βµ +
◦
Γα

λµ

◦
Γλ

βν −
◦
Γα

λν

◦
Γλ

βµ . (B.8)

Because
◦
Γλ

µν is symmetric in the two lower indices, the covariant rota-
tional is independent of it:

V[µ;ν] = Vµ;ν − Vν;µ = ∂νVµ − ∂µVν .

The curvature Riemann tensor appears in the double covariant derivative
of any vector field:

Vµ;ν;ρ − Vµ;ρ;ν =
◦
Rσ

µνρ Vσ.

The Ricci tensor and the scalar curvature are defined as

◦
Rµν =

◦
Rα

µαν (B.9)
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◦
R = gµν

◦
Rµν . (B.10)

For 4–dimensional spaces, the Gaussian curvature is

K = −
◦
R

12
. (B.11)

A space has positive (negative) Gauss curvature when R is negative (pos-
itive). The Einstein tensor is defined as

◦
Gµν =

◦
Rµν −

1

2

◦
R gµν .

A Riemannian space with metric ηµν is flat if all the components of the
corresponding Riemann tensor are zero. In that case also ηµν is said to be
flat. A Riemannian space is conformally flat if the metric can be put into
the form gµνx) = f(x)ηµν , where f is a scalar function and ηµν is flat.

We shall frequently forget the “◦” notation in the rest of this section. It
is understood that the connection used is the Christofell symbol.

B.2.2 Field equation

1. Standard Einstein’s equation

Rµν −
1

2
gµνR =

8πG

c4
Tµν (B.12)

Tµν is the source energy-momentum tensor, G is Newton’s constant,
and c is the velocity of light in vacuum.

For a homogeneous fluid,

T µν = (p+ ε)uµuν − pgµν , (B.13)

whose contraction with the metric is

T = ε− 3p. (B.14)

Contraction of Standard Einstein’s equation with the metric leads to

R = −8πG

c4
T . (B.15)

2. Einstein’s equation with a cosmological constant Λ:

Rµν −
1

2
gµνR− Λgµν =

8πG

c4
Tµν . (B.16)
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Contraction gives

R = − 4 Λ +
8πG

c4
T (B.17)

and the Gaussian curvature

K =
Λ

3
− 2πG

3c4
T (B.18)

3. Sourceless Einstein’s equation with cosmological constant

Rµν −
1

2
gµνR− Λgµν = 0 (B.19)

Contraction with the metric gives

R = − 4Λ. (B.20)

B.2.3 Particle Dynamics

The interval (B.6) ensures that, like in special–relativistic kinematics, the
velocity uµ = dxµ

ds
is a unit vector: u2 = uµu

µ = gµνu
µuν = 1. Acceleration,

however, is different from that of Special Relativity. The object duµ

ds
is not a

well-behaved (that is, is not covariant) under general changes of coordinates.

Notice that dV λ

ds
= uµ ∂V λ

∂xµ . To obtain a covariant object, it is necessary to
change the last derivative into the covariant derivative

∂V λ

∂xµ
+

◦
Γλ

ρµ V
ρ.

Acceleration is therefore given by

aλ =
duλ

ds
+

◦
Γλ

µν u
µuν . (B.21)

A pointlike, spinless inert particle under the only effect of an external
gravitational field is postulated to follow a geodesic, a curve whose tangent

vector (velocity) at each point is parallel–transported by
◦
Γ. The equation

determining this curve is the geodesic equation:

duλ

ds
+

◦
Γλ

µν u
µuν =

d2xλ

ds2
+

◦
Γλ

µν
dxµ

ds

dxν

ds
= 0. (B.22)

Dynamics reduces to kinematics on a curved space: the above equation
just says the the particle goes free, with null acceleration, on the curved
space.
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B.2.4 Tetrad formalism

The Riemannian metric of any spacetime can always be written in the form

gµν = ηab h
a
µh

b
ν (B.23)

where η is the flat metric of Minkowski space.
There is always a basis on flat space in which the metric η is a constant

matrix. We shall suppose η to be written in that basis. Indices a, b, c, . . .
are lowered and raised by η and its inverse. Indices µ, ν, ρ, . . . are lowered
and raised by g and its inverse. On Riemann space, the set of vectors {ea =
ha

µ∂µ} form a basis for vectors (contravariant vectors) at each point. This
set of 4 vector fields is called a tetrad field, a four–leg field, or still a vierbein
field. Its dual {ωa = ha

µdx
µ} form a basis for covectors (covariant vectors)

at each point. The basis members constitute a Lie algebra of commutation
table

[ea, eb] = Cc
abec. (B.24)

The Cc
ab’s are the structure coefficients of the tetrad basis. Taking the double

derivatives of the tetrad field, we find

ha
µ;ν;ρ − ha

µ;ρ;ν = ha
σR

σ
µνρ

The Ricci rotation coefficients are

γacb = haµ;νhb
µhc

ν = −γbca (B.25)

The expressions

λabc = γabc − γacb = hc
µhb

ν∂[νh
a
µ] = −Ccab (B.26)

have the advantage of being independent of the Christoffel symbols. They
can be recombined to give back

γabc = 1
2
[λabc + λcab − λbca] . (B.27)

Only simple derivatives are then necessary to obtain the Riemann tensor

Rabcd = γabc,d − γabd,c + γabe[γ
e
cd − γe

dc] + γaecγ
e
bd − γaedγ

e
bc (B.28)

and the Ricci tensor

Rab = − 1
2

(
λab

c
,c + λba

c
,c + λc

ca,b + λc
cb,a + λcd

bλcda + λcd
bλdca

− 1
2
λb

cdλacd + λc
cdλab

d + λc
cdλba

d
)
. (B.29)
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This means that it is possible, in the detailed calculation of the Riemann
tensor from the metric, to short–circuit the calculation of the Christoffel
symbols.

An example: the Ricci rotation coefficients for the Friedmann–Robertson–
Walker model are: γk

0j = δk
j

ȧ
c
; γ0

jk = δjk
ȧ
c
; γk

j0 = 0; all others are zero.

And λj
0j = - λj0j = ȧ

ca
, and all others zero.

Another example: we have said in §2.2.2 that a perfect fluid is such
that an observer following a line of flux will, at each point, see the fluid as
isotropic. We can conceive now that the observer has a frame attached to
it, a tetrad whose timelike member will be taken as h0 = u = γ(1, ~v/c).
Seen from this solidary comoving frame, the fluid energy-momentum tensor
density will have just the components given in Eq.(2.3).
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Appendix C

Relativistic Gases

C.1 Introduction

We shall be frequently considering gases at high energies, eventually with
effects of quantum nature. What follows is a commented formulary on the
Statistical Mechanics of an ideal quantum relativistic gas. We shall profit to
rewrite some of the most usual expressions in units specially adequate to the
case.

First of all, given a particle of mass m (depending on the range of tem-
peratures of interest, it can be an electron, or a proton), it is natural to
use

τ =
kT

mc2
(C.1)

as the temperature variable. Two lengths are of major interest, the Compton
length and the thermal wavelength. The static Compton length is a most
natural unit:

λC =
~c
mc2

(C.2)

For the electron and for the proton, respectively, λe = 3.81 × 10−11 cm and
λp = 2.08× 10−13 cm. Thus, a natural volume cell for the proton will be λ3

p

= 9.0× 10−39 cm3.

Comment C.1.1 Recall that the Compton length is a measure of the minimum “size”
that can be consistently attributed to a particle from the quantum point of view. This
comes from the uncertainty principle. The uncertainty in the momentum should be lesser
than mc, because a higher value would lead to pair creation. Consequently,

mc∆x ≥ ∆p∆x ≈ ~

and ∆x ≥ ~/mc = λC .
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If β = 1/kT is the inverse temperature, (the cube of) the relativistic
generalization [23] of the thermal wavelength is given by (see below)

Λ3(β) = 2 π2 βmc2
e−βmc2

K2(βmc2)

(
~c
mc2

)3

=
2 π2

τ

e−τ−1

K2(τ−1)
λ3

C . (C.3)

Here K2(x) is the modified Bessel function of second order. Limits can be
found by using the properties

K2(x) ≈
√

π

2x
e−x

(
1 +

15

8x
+ . . .

)
;

K1(x) ≈
√

π

2x
e−x

(
1 +

3

8x
+ . . .

)
for x >> 1;

K2(x) ≈ 2x−2 ;K1(x) ≈ x−1 for x << 1.

K1(βmc
2) will appear later, in the energy expression. The non-relativistic

limit gives the usual expression

ΛNR(β) = λ = ~
√

2πβ

m
=

√
2π

τ
λC . (C.4)

For instance, a proton at kT ≈ 4MeV will have ΛNR ≈ 40λC . A fermion,
say a proton, will “occupy” a degeneracy-volume λ3 = 1.42×10−40

τ3/2 cm3, from
which every other proton will be statistically excluded.

1 2 3 4

kT
����������
mc2

1

2

3

4

5

6

7

thermal
���������������������
Compton

Figure C.1: Thermal wavelength in units of Compton wavelengths, as a func-
tion of τ = kT/mc2.

Intuitively, the thermal wavelength is the average “range” of the wave-
function of one particle, or extension along which the wavefunction differs
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from zero. We see in Figure C.1 how it decreases with the temperature. It
reduces to Compton’s length at kT ≈ 1.8 mc2. Each particle can be pictured
as a bell–like form whose mouth size is the thermal wavelength. The bells
shrink more and more at higher and higher temperatures. Quantum effects
will turn up when two of such bells superpose. When that happens, we say
that the system is degenerate. The Pauli principle acquires a simple descrip-
tion: each fermion is a “hard bell” with respect to other fermions, so that
two fermions do not superpose. A convenient measure of quantum effects
is the degeneracy index d =nλ3, which tells how many particles there are,
always on the average, inside a bell. In the fermion case, d > 1 means that
the wavefunctions must be deformed so that a volume λ3 can accommodate
more particles. Bosons, on the other hand, are positively sociable: quantum
effects can be replaced by a small attractive effective potential.

The ultra-relativistic limit turns out to be

ΛUR(β) = π2/3 β~c = π2/3 λC

τ
. (C.5)

In the ultra-relativistic limit Riemann’s zeta function appears frequently.
It is defined as

ζ(z) =
∞∑

n=1

1

nz
. (C.6)

Let us now proceed to the approach appropriate to describe a gas with
a variable number of particles, which is the grand-canonical formalism. In
particular, it will tells us where (C.3) comes from.

C.2 The grand-canonical formalism

Let us recall that the grand-canonical partition function for an gas of non-
interacting quantum particles with chemical potential µ is given by the trace

Ξ(V, β, µ) = tr
[
e−β

P
i(εi−µ)n̂i

]
, (C.7)

where each n̂i is the occupation number operator corresponding to the energy
level εi and β = 1/kT . Calculating the trace means summing over all the
energy levels but, before that, summing over all the possible sets {nj} of
occupation numbers at each fixed level. Thus,

Ξ(V, β, µ) =
∑
{nj}

〈n0n1n2 . . . |e−β
P

i(εi−µ)n̂i|n0n1n2 . . .〉 =

∑
n0

∑
n1

∑
n2

. . . e−β(ε0−µ)n0 e−β(ε1−µ)n1 e−β(ε2−µ)n2 . . . =
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∏
i

∑
n

e−β(εi−µ)n =
∏

ε

∑
n

e−β(ε−µ)n .

We see that, in this non-interacting case, each level contributes an inde-
pendent factor. The system can have also internal degrees of freedom, which
will likewise contribute separately. Suppose a single degree of freedom (spin,
for example) taking g possible values. The partition function will be

Ξ(V, β, µ) =
∏

ε

[∑
n

e−β(ε−µ)n

]g

. (C.8)

The kind of statistics appears in the summation, which is over the possible
values of the occupation number n, from n = 0 up to the maximum number
of particles allowed in each state: 1 for fermions,∞ for bosons. The product
can be transformed into a summation by using the formal identity∏

ε

{. . .} =
∏

ε

[exp(ln{. . .})] = exp
∑

ε

ln{. . .}.

To treat bosons and fermions at the same time, we adopt the usual conven-
tion: upper signs for bosons, lower signs for fermions. The above formulas
lead to

ln ΞB,F (V, β, µ) = ∓g
∑

ε

ln
[
1∓ e−β(ε−µ)

]
. (C.9)

It is convenient to use the fugacity variable, either the usual non-relativistic
fugacity z = eβµ (where µ is the chemical potential) or its relativistic version
Z = eβµR = z eβmc2 . If we do not care about zero–energy states, the sum over
the energy levels can be replaced by an integral over the momenta through

the prescription
∑

ε →
R

d3xd3p

h3 . This would lead to a difficult integral:

ln ΞB,F (V, β, µ) = ∓g4πV

h3

∫ ∞

0

p2dp ln
[
1∓ Ze−β(p2c2+m2c4)1/2

]
.

The solution is to expand the logarithm and collect like terms. The partition
function acquires the form

ΞB,F (V, β, z) = exp

{
gV

h3

∞∑
j=1

(±1)j−1

j
zj

∫
d3pe−jβ[(p2c2+m2c4)1/2−mc2]

}
.

(C.10)
The relativistic thermal wavelength (C.3) appears now in the integral

1

h3

∫
d3p e−β[(p2c2+m2c4)1/2−mc2] =

1

Λ3(β)
, (C.11)
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which leads to the final expression for the grand-canonical partition function
for a gas of non-interacting quantum particles,

ΞB,F (V, β, z) = exp

{
gV

∞∑
j=1

(±1)j−1

j
zj 1

Λ3(jβ)

}
, (C.12)

or its equivalent

ΞB,F (V, β, z) = exp

{
g
4πV

h3c3
(mc2)2

β

∞∑
j=1

(±1)j−1

j
ZjK2(jβmc

2)

}
. (C.13)

The pressure and the particle number follow by standard thermal relations:

pV = kT ln Ξ = g kT V

∞∑
l=1

(±)l−1

l
zl 1

Λ3(lβ)
. (C.14)

N̄ =

[
z
∂

∂z
ln Ξ(V, β, z)

]
V,β

= g
∑

ε

1

z−1eβε ∓ 1
(C.15)

=
gV

h3

∫
d3p

z−1eβ [
√

p2c2+m2c4−mc2] ± 1
= gV

∞∑
l=1

(±)l−1zl 1

Λ3(lβ)
. (C.16)

These equations can be seen as a parametric form (with parameter z) of the
equation of state. The expressions in terms of integrals or of series are more
or less convenient, depending on the application in view. We can extract the
density number of particles at energy ε, nε = g

z−1eβε∓1
. Positivity of this last

number implies 0 ≤ z ≤ 1, or µ ≤ 0, for bosons, but no restriction in the
fermion case.

The average energy, including the masses, is

Ē = −
(
∂

∂β
ln Ξ(V, β, z)

)
Z,V

=
∑

ε

nεε = 3pV +

4π g

(
mc2

λ3
C

)(
kT

mc2

) ∞∑
l=1

(±)l−1

l
zlelβmc2K1(lβmc

2) . (C.17)

The degree of degeneracy, which indicates how quantal the gas is, is given by

d =
N̄Λ3(β)

V
= g

∞∑
l=1

(±)l−1zl Λ3(β)

Λ3(lβ)
= g

∞∑
l=1

(±)l−1

l
zl e

−βmc2K2(lβmc
2)

e−lβmc2K2(βmc2)
.

(C.18)
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C.2.1 Massive particles

For a massive particle, the variables w = p/Mc and (C.1), we can write
n = N̄

V
in the form

n =
g

2π2

1

λ3
C

∫ ∞

0

w2dw

z−1e
√

1+w2/τ ± 1
. (C.19)

Comment C.2.1 For use in Cosmology: changing to x = w/τ ,

n =
g

2π2

τ3

λ3
C

∫ ∞

0

x2dx

z−1e
√

1/τ2+x2 ± 1
. (C.20)

Thus, in units of the proton Compton wavelength λ3
C and the proton dimensionless tem-

perature,

nb = 9.9× 10−47Ωb0h
2 (1 + z)3

λ3
C

= 6.3× 10−15 Ωb0h
2 τ3

λ3
C

. (C.21)

With our proton-related variables, the temperature during the thermalized period preced-
ing recombination will be

τ =
kTγ

mc2
= 2.5× 10−13(1 + z) . (C.22)

For example,
nγ = 3.8× 10−39 (1 + z)3λ−3

C . (C.23)

C.2.2 Massless particles

For a massless particle, the change of variables x = pc/kT = w/τ can be
used directly to give

n =
g

2π2

τ 3

λ3
C

∫ ∞

0

x2dx

z−1ex ± 1
. (C.24)

Gas of photons

For a gas of photons (using g = 2, z = 1, ζ(3) = 1.20206), there are many
expressions of interest:

nγ =
N̄γ

V
=

2

h3

∫
d3p

eβpc − 1
= 2

∞∑
l=1

1

Λ3
UR(lβ)

=
16π

h3c3
ζ(3) (kTγ)

3. (C.25)

Comment C.2.2 Again for Cosmology:

nγ =
1
π2

τ3

λ3
C

∫ ∞

0

x2dx

ex − 1
= 2

τ3

π2λ3
C

∞∑
l=1

1
l3

= 2 ζ(3)
τ3

π2λ3
C

=
2 ζ(3)

π2

(
kTγ

~c

)3

= 0.244
τ3

λ3
C

.

(C.26)
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The above expression gives the total number of photons per unit volume.
The number of photons per unit volume and with the momentum in the
interval (p,p + dp) is just the first integrand above. Integration on the
angular variables gives, for an isotropic distribution, a factor 4π. The energy
of a photon of frequency ν is pc = hν, so that the number of photons per
unit volume and with frequency in the interval (ν, ν + dν) is

8π

c3
ν2dν

ehν/kT − 1

Using again the energy hν of each photon, the energy density in the frequency
interval (ν, ν + dν) is

ργ(ν)dν =
8πh

c3
ν3dν

ehν/kT − 1
, (C.27)

which is Planck’s formula. Using (C.5), the pressure is found to be

pγ =
16π

h3 c3
ζ(4) (kT )4 . (C.28)

Also

pγ =
ζ(4)

ζ(3)
nγ kTγ = 0.900 nγ kTγ =

2ζ(4)

π2

(
k

~c

)3

kT 4
γ (C.29)

(ζ(4) = π4/90 = 1.08232). The energy density is eγ = 3pγ, that is,

eγ =
48π

h3 c3
ζ(4) (kT )4 = 4

σ

c
T 4 , (C.30)

which can the taken as the equation of state for the blackbody radiation.
The entropy will be Sγ = 4 pγV/T .

The above expressions are typical of ultrarelativistic boson gases.

Massless fermions

For a gas of fermions with g = 2 (like protons or antiprotons),

np̄ =
N̄p

V
=

1

π2

1

λ3
C

∫ ∞

0

w2dw

z−1e
√

1+w2/τ + 1
= 2

∞∑
l=1

(−)l−1zl 1

Λ3(lβ)
(C.31)

In the ultrarelativistic regime this becomes (we take the antiproton as the
standard example), if we put z = 1,

n
(UR)
p̄ =

1

π2

τ 3

λ3
C

∫ ∞

0

x2dx

ex + 1
=

3

2

ζ(3)

π2

τ 3

λ3
C

= 0.183
τ 3

λ3
C

. (C.32)
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This is the same as

n
(UR)
p̄ =

3

2

ζ(3)

π2

(
kTγ

~c

)3

. (C.33)

A factor nγ

n
(UR)
p̄

= 4
3

comes from the fermion repulsion effect, encapsulated in

the sign in the integrand denominator, opposite to that in (C.25). It is more
difficult to pack fermions than bosons together. This can be seen also from
the limits of the degeneracy index (C.18). In this ultrarelativistic regime, its
values are, for photons and antiprotons, respectively, nγ Λ3

UR = 0.244 π =

0.766 and n
(UR)
p̄ Λ3

UR = 0.183 π = 0.575. The pressure will be

p
(UR)
p̄ = 2 7

8
ζ(4)

(kT )4

π2(~c)3
= 7

8
pγ. (C.34)
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