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Preface

Soon after General Relativity was given its final presentation as a new
theory for the gravitational field, an attempt to unify gravitation and elec-
tromagnetism was made by H. Weyl in 1918 [1]. His beautiful proposal did
not succeed, but introduced for the first time the notions of gauge transfor-
mations and gauge invariance, and can be considered as the seed of what is
known today as gauge theory [2, 3]. Another attempt in the same direction
was made by A. Einstein [4], about ten years later. This attempt was based
on the mathematical structure of teleparallelism, also referred to as distant
or absolute parallelism. Roughly speaking, the idea was the introduction
of a tetrad field, a field of orthonormal bases on the tangent spaces at each
point of the four-dimensional spacetime. The tetrad has sixteen components,
whereas the gravitational field, represented by the spacetime metric, has only
ten. The six additional degrees of freedom of the tetrad was then supposed
by Einstein to be related to the six components of the electromagnetic field.1

This attempt of unification did not succeed either, because the additional six
degrees of freedom of the tetrad are actually eliminated by the 6–parameter
local Lorentz invariance of the theory. Like Weyl’s work, however, it intro-
duced concepts that remain important to the present day.

After this initial period, which included also discussions with Weyl and
Pauli on the failure in the unifying aspiration, the notion of teleparallelism
experienced no new advances in the following three decades. Already in
the nineteen–sixties, Møller [6] revived Einstein’s original idea, no more for
unification purposes, but in the pursuit of a gauge theory for gravitation.
Following this work, Pellegrini & Plebanski [7] found a lagrangian formu-
lation for teleparallel gravity, a problem that Møller reconsidered later [8].
In 1967, Hayashi & Nakano [9] formulated a gauge theory for the transla-
tion group, which was further developed by Hayashi [10]. A few years later,
Hayashi [11] pointed out the connection between this theory and teleparal-
lelism, and an attempt to unify these two developments was made by Hayashi
& Shirafuji [12] in 1979. According to this approach, General Relativity —
a theory that involves only curvature — was supplemented by Teleparallel
Gravity — a theory that involves only torsion, and presents three free param-
eters which should be determined by experiment. This theory, called New
General Relativity, represented a new way of including torsion in General

1A historical account of the teleparallel–based Einstein’s unification theory can be found
in Ref. [5].
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Relativity, actually an alternative to the scheme previously provided by the
Einstein–Cartan approach [13].

For a specific choice of the free parameters, Teleparallel Gravity is found
to be completely equivalent to General Relativity. In this case it is sometimes
referred to as the Teleparallel Equivalent of General Relativity. Although fre-
quently reserved for the three-parameter theory, the name Teleparallel Grav-
ity will be used here as a synonymous for the teleparallel equivalent of Gen-
eral Relativity. A fundamental property embodied in Teleparallel Gravity is
that, due to the equivalence with General Relativity, curvature and torsion
are able to provide equivalent descriptions of the gravitational interaction.
In General Relativity, curvature is used to geometrize the gravitational inter-
action. That is to say, geometry replaces the concept of gravitational force,
and the trajectories are determined, not by force equations, but by geodesics.
Teleparallel Gravity, on the other hand, attributes gravitation to torsion, but
not through a geometrization: it acts as a force. In consequence, there are
no geodesics in Teleparallel Gravity, only force equations quite analogous to
the Lorentz force equation of electrodynamics [14].

The reason for gravitation to present two equivalent descriptions lies in
its most peculiar property: universality. Like the other fundamental interac-
tions of Nature, gravitation can be described in terms of a gauge theory. In
fact, Teleparallel Gravity is a gauge theory for the translation group. Univer-
sality of free fall, on the other hand, makes it possible a second, geometrized
description, based on the equivalence principle, just General Relativity. As
the sole universal interaction, it is the only one to allow also a geometri-
cal interpretation, and hence two alternative descriptions. From this point
of view, curvature and torsion are simply alternative ways of representing
the same gravitational field, accounting for the same degrees of freedom of
gravity.

There has been many contributions from different authors to Teleparallel
Gravity. Differently from General Relativity, it is a collective creation. Al-
though it can be considered a finished theory by now, there are still some
different views and interpretations of the theory. In this sense, it is important
to keep in mind that the ideas presented here are strongly biased by the au-
thors’ point of view on the subject, and are essentially based on the research
developed by them along many years. This book is actually an expanded
version of the relevant publications, and includes also many corrections to
the original texts. Although the authors are the solely responsible for the
contents of the book, they owe very much to their former and present col-
laborators: V. C. de Andrade, H. I. Arcos, T. V. Aucalla, A. L. Barbosa,
P. B. Barros, M. Calçada, T. Gribl Lucas, L. C. T. Guillen, R. A. Mosna,
D. J. Rezende, R. da Rocha, G. Rubilar, K. H. Vu, P. Zambianchi and C.
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M. Zhang. The authors have also benefited from discussions with Yu. N.
Obukhov, F. Hehl and J. Nester. They would like to express their deep
gratitude to all of them.

São Paulo, December 2010



iv



Contents

1 Basic Notions 1
1.1 Linear Frames and Tetrads . . . . . . . . . . . . . . . . . . . . 1
1.2 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Curvature and Torsion . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Torsion Decomposition . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Bianchi Identities . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Lorentz Transformations . . . . . . . . . . . . . . . . . . . . . 13
1.7 Dynamical Aspects . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Gauge Theories and Gravitation 19
2.1 The Gauge Tenets . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 General Relativity . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Gravitation and the Gauge Paradigm . . . . . . . . . . . . . . 31

3 Fundamentals of Teleparallel Gravity 33
3.1 Geometrical Setting . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Gauge Transformations of Source Fields . . . . . . . . . . . . 34
3.3 On the Coupling Prescriptions . . . . . . . . . . . . . . . . . . 35
3.4 Translational Coupling Prescription . . . . . . . . . . . . . . . 37

3.4.1 Translational Gauge Potential . . . . . . . . . . . . . . 37
3.4.2 Implications for the Metric . . . . . . . . . . . . . . . . 38
3.4.3 Translational Coupling in a General Frame . . . . . . . 39

3.5 Spin Coupling Prescription . . . . . . . . . . . . . . . . . . . . 39
3.5.1 General Covariance Principle . . . . . . . . . . . . . . 39
3.5.2 Passage to an anholonomic frame . . . . . . . . . . . . 41
3.5.3 Identifying inertia with gravitation . . . . . . . . . . . 42

3.6 Full Gravitational Coupling Prescription . . . . . . . . . . . . 43
3.7 Possible Connections . . . . . . . . . . . . . . . . . . . . . . . 44

3.7.1 General Relativity Connection . . . . . . . . . . . . . . 44
3.7.2 Teleparallel Connection . . . . . . . . . . . . . . . . . . 45

3.8 Curvature versus Torsion . . . . . . . . . . . . . . . . . . . . . 46

v



vi CONTENTS

3.9 Translational Field Strength . . . . . . . . . . . . . . . . . . . 48

4 Particle Mechanics 49

4.1 Free Particles Revisited . . . . . . . . . . . . . . . . . . . . . . 49

4.1.1 Basic Notions . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.2 Free Equation of Motion . . . . . . . . . . . . . . . . . 50

4.2 Gravitationally Coupled Particles . . . . . . . . . . . . . . . . 52

4.2.1 Coupling Prescription . . . . . . . . . . . . . . . . . . 52

4.2.2 Coupled Equation of Motion . . . . . . . . . . . . . . . 53

4.2.3 Equivalence with the Geodesic Equation . . . . . . . . 56

4.3 Separating Inertia from Gravitation . . . . . . . . . . . . . . . 57

4.4 Newtonian Limit . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Gravitomagnetic Field . . . . . . . . . . . . . . . . . . . . . . 61

4.6 The Spinning Particle . . . . . . . . . . . . . . . . . . . . . . . 63

5 Global Formulation for Gravity 67

5.1 Phase Factor Approach . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Colella-Overhauser-Werner Experiment . . . . . . . . . . . . . 69

5.3 Gravitational Aharonov-Bohm Effect . . . . . . . . . . . . . . 71

5.4 Quantum Versus Classical Approaches . . . . . . . . . . . . . 74

6 Hodge Dual for Soldered Bundles 77

6.1 Why a New Dual . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Dual Torsion . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Dual Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7 Lagrangian and Field Equations 83

7.1 Lagrangian of Teleparallel Gravity . . . . . . . . . . . . . . . . 83

7.2 Equivalence with Einstein–Hilbert . . . . . . . . . . . . . . . . 85

7.3 Matter Energy-Momentum Density . . . . . . . . . . . . . . . 87

7.4 Field Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.5 Bianchi Identities . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.6 A Glimpse on New General Relativity . . . . . . . . . . . . . . 92

8 Gravitational Energy-Momentum Density 95

8.1 Field Equations and Conservation Laws . . . . . . . . . . . . . 96

8.2 Teleparallel Gravity . . . . . . . . . . . . . . . . . . . . . . . . 98

8.3 General Relativity . . . . . . . . . . . . . . . . . . . . . . . . 101

8.4 Further Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 102



CONTENTS vii

9 Gravitation Without the Equivalence Principle 105

9.1 Introductory Remarks . . . . . . . . . . . . . . . . . . . . . . 105

9.2 The Electromagnetic Case as an Example . . . . . . . . . . . 106

9.2.1 The Electromagnetic Coupling Prescription . . . . . . 106

9.2.2 Lorentz Force Equation . . . . . . . . . . . . . . . . . . 107

9.3 Managing without Universality . . . . . . . . . . . . . . . . . 107

9.3.1 Non-Universal Coupling Prescription . . . . . . . . . . 107

9.3.2 Particle Equation of Motion . . . . . . . . . . . . . . . 109

9.4 Non-universality and General Relativity . . . . . . . . . . . . 112

10 Gravitational Coupling of the Fundamental Fields 115

10.1 Gravitational Coupling Revisited . . . . . . . . . . . . . . . . 115

10.2 Scalar Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

10.3 Dirac Spinor Field . . . . . . . . . . . . . . . . . . . . . . . . 117

10.3.1 The Dirac Equation . . . . . . . . . . . . . . . . . . . . 117

10.3.2 Torsion Decomposition and Spinors . . . . . . . . . . . 119

10.4 Electromagnetic Field . . . . . . . . . . . . . . . . . . . . . . 120

10.5 Spin-2 Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

10.5.1 Defining a Spin-2 Field . . . . . . . . . . . . . . . . . . 121

10.5.2 The Flat Spacetime Case . . . . . . . . . . . . . . . . . 122

10.5.3 Coupling with Gravitation . . . . . . . . . . . . . . . . 127

10.5.4 Spin-2 Field as Source of Gravitation . . . . . . . . . . 130

10.5.5 Further Remarks . . . . . . . . . . . . . . . . . . . . . 131

11 Duality Symmetry 133

11.1 Duality Symmetry and Gravitation . . . . . . . . . . . . . . . 134

11.2 Linear Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . 135

11.3 In Search of a Dual Gravity . . . . . . . . . . . . . . . . . . . 137

11.4 A Self-Dual Gravitational Theory . . . . . . . . . . . . . . . . 138

12 Teleparallel Kaluza-Klein Theory 143

12.1 Kaluza-Klein Theory: a Brief Review . . . . . . . . . . . . . . 144

12.2 Teleparallel Kaluza-Klein . . . . . . . . . . . . . . . . . . . . . 147

12.2.1 Five-Vector Potential . . . . . . . . . . . . . . . . . . . 147

12.2.2 Unified Lagrangian and Field Equations . . . . . . . . 150

12.2.3 Metric Constraint . . . . . . . . . . . . . . . . . . . . . 152

12.2.4 Matter Fields . . . . . . . . . . . . . . . . . . . . . . . 152

12.3 Further Remarks . . . . . . . . . . . . . . . . . . . . . . . . . 154



viii CONTENTS

13 The Connection Space 157
13.1 Translations in the Connection Space . . . . . . . . . . . . . . 157
13.2 Curvature and Torsion . . . . . . . . . . . . . . . . . . . . . . 158
13.3 Equivalence under Connection Translations . . . . . . . . . . . 159

14 A Glimpse on Einstein-Cartan 161
14.1 Field Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 162
14.2 Coupling Prescription . . . . . . . . . . . . . . . . . . . . . . . 163
14.3 Particle Equations of Motion . . . . . . . . . . . . . . . . . . . 164
14.4 Some Caveats . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

15 Epilogue 167
15.1 On the Gravitational Interaction . . . . . . . . . . . . . . . . 167
15.2 Why to Study Teleparallel Gravity . . . . . . . . . . . . . . . 169

15.2.1 Matters of Consistency . . . . . . . . . . . . . . . . . . 169
15.2.2 Gauge Structure and Universality . . . . . . . . . . . . 170
15.2.3 Gravitational Energy-Momentum Density . . . . . . . 170
15.2.4 The Case of the Spin-2 Field . . . . . . . . . . . . . . . 171
15.2.5 Gauge Structure and Unification . . . . . . . . . . . . 172
15.2.6 Gravity and the Quantum . . . . . . . . . . . . . . . . 172
15.2.7 Quantizing Gravity . . . . . . . . . . . . . . . . . . . . 174
15.2.8 Matters of Concept . . . . . . . . . . . . . . . . . . . . 174

Appendices 175

A Teleparallel Field Equation 177
A.1 The superpotential . . . . . . . . . . . . . . . . . . . . . . . . 178
A.2 The energy-momentum current . . . . . . . . . . . . . . . . . 179

B Dirac Equation 183
B.1 Relativistic Fields . . . . . . . . . . . . . . . . . . . . . . . . . 183
B.2 Dirac Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
B.3 Covariant Form of the Dirac Equation . . . . . . . . . . . . . 186

References 191

Index 202



Chapter 1

Basic Notions

A general spacetime is a 4-dimensional differentiable manifold whose tan-
gent space is, at each point, a Minkowski space. A tetrad field establishes
a relationship between the manifold and its tangent spaces. Connections
are essential to produce derivatives with a covariant meaning. Different
connections lead to different curvatures and torsions, as well as to distinct
accelerations. These notions are essential for the study of the gravitational
interaction.

1.1 Linear Frames and Tetrads

Spacetime is the common arena on which the four presently known funda-
mental interactions manifest themselves. Electromagnetic, weak and strong
interactions are described by gauge theories, involving transformations taking
place in “internal” spaces, by themselves unrelated to spacetime. Gravita-
tion, on the other hand, is deeply linked with the very spacetime structure.

All these theories have a strong geometrical flavor. For gauge theories,
the basic settings are the principal bundles1 with a copy of the corresponding
gauge group at each spacetime point. The geometrical setting of any theory
for gravitation is the tangent bundle, a natural construction always present
in any spacetime. In fact, at each point of spacetime — the base space of
the bundle — there is always a tangent space attached to it — the fiber of
the bundle, which is seen as a vector space.

Comment 1.1 Mathematicians use an invariant language, stating and proving results
without any use of explicit bases or coordinates. Physicists use a covariant language, in
part because they are used to, but mainly because they have to prepare for experiments,
which are always performed in a particular frame, using apparatuses which suppose a

1Bundles will be discussed in some more detail in Chapter 2.
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particular coordinate system. Also, physicists have a more pictorial discourse, frowned
upon by mathematicians, in which immediate intuition plays a dominant role. For exam-
ple, tangent spaces are spoken of as “touching” a manifold at a point, internal spaces are
“attached” to the manifold at a point, etc. We shall, of course, follow this practice.

We are going to use the Greek alphabet (µ, ν, ρ, . . . = 0, 1, 2, 3) to de-
note indices related to spacetime, and the first half of the Latin alphabet
(a, b, c, . . . = 0, 1, 2, 3) to denote indices related to the tangent space, a
Minkowski spacetime whose Lorentz metric is assumed to have the form

ηab = diag(+1,−1,−1,−1). (1.1)

The middle letters of the Latin alphabet (i, j, k, . . . = 1, 2, 3) will be reserved
for space indices. A general spacetime is a 4-dimensional differential man-
ifold (indicated R3,1 from now on) whose tangent space is, at any point, a
Minkowski spacetime. Each one of these tangent spaces can be acted upon by
the Poincaré group — the semi-direct product SO(3, 1)�T 3,1 of the Lorentz
by the translation group — or any of its subgroups.

Spacetime coordinates will be denoted by {xµ}, whereas tangent space
coordinates will be denoted by {xa}. Such coordinate systems determine, on
their domains of definition, local bases for vector fields, formed by the sets
of gradients

{∂µ} ≡
{ ∂

∂xµ

}
and {∂a} ≡

{ ∂

∂xa

}
, (1.2)

as well as bases {dxµ} and {dxa} for covector fields, or differentials. These
bases are dual, in the sense that

dxµ (∂ν) = δµν and dxa (∂b) = δab . (1.3)

On the respective domains of definition, any vector or covector can be ex-
pressed in terms of these bases, which can furthermore be extended by direct
product to constitute bases for general tensor fields.

We are going to use the notation {ea, ea} for general linear frames. A
holonomic (or coordinate) base like {ea} = {∂a}, related to a coordinate
system, is a very particular case of linear base. Any set of four linearly
independent fields {ea} will form another base, and will have a dual {ea}
whose members are such that ea(eb) = δab . Notice that, on a general manifold,
vector fields are (like coordinate systems) only locally defined — and linear
frames, as sets of four a such fields, are only defined on restricted domains.

Comment 1.2 The rather special manifolds on which a vector field can be defined
everywhere are called parallelizable. Of all the spheres Sn only S1, S3 and S7 are paral-
lelizable. Lie groups are parallelizable manifolds, which means for instance that no Lie
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group can have S2 for its underlying manifold. Also, all toruses are parallelizable. A
vector field on a non–parallelizable manifold will always vanish at some point, which is
quite unacceptable for the member of a vector base.

These frame fields are the general linear bases on the spacetime differ-
entiable manifold R3,1. The set of these bases, under conditions making of
it also a differentiable manifold, constitutes the bundle of linear frames. A
frame field provides, at each point p ∈ R3,1, a base for the vectors on the
tangent space TpR

3,1. Of course, on the common domains they are defined,
the members of a base can be written in terms of the members of the other.
For example,

ea = ea
µ ∂µ and ea = eaµ dx

µ (1.4)

and conversely
∂µ = eaµ ea and dxµ = ea

µ ea. (1.5)

We can consider general transformations taking any base {ea} into any other
set {e′a} of four linearly independent fields. These transformations constitute
the linear group GL(4,R) of all real 4 × 4 invertible matrices. Notice that
these frames, with their bundles, are constitutive parts of spacetime. They
are automatically present as soon as spacetime is taken to be a differentiable
manifold [16].

Comment 1.3 A caveat: there is no consensus on the topology of spacetime. This
means that frequently used notions like “neighborhood”, “coordinate” and “continuity” are
actually not well-defined from the mathematical point of view. The Lorentz metric, being
non-positive definite, does not define any topology [15]: its role is actually to introduce
causality. Many proposals have been made to fix that topology [?], but none has obtained
general acceptance. In practice, physicists make implicitly a purely operational option:
they use an underlying euclidean E4 when eventually using global coordinates, or when
talking about “continuous” fields. In order to have causality, they then superpose an
additional Lorentz metric, making of E4 a Minkowski M ≡ E3,1; this is the causal space.
They finally deform E3,1 into a riemannian space (indicated by R or R3,1) of the same
signature, so as to locally preserve causality. This R3,1 has, at each point, a tangent space
which is identical to the causal Minkowski M.

Consider now the spacetime metric g, with components gµν , in some dual
holonomic base {dxµ}:

g = gµνdx
µ ⊗ dxν = gµνdx

µdxν . (1.6)

A tetrad field
ha = ha

µ ∂µ, (1.7)

also frequently called vierbein, meaning four-legs, will be a linear base which
relates g to the tangent–space metric

η = ηab dx
a ⊗ dxb = ηab dx

adxb (1.8)
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by
ηab = g(ha, hb) = gµν ha

µhb
ν . (1.9)

This means that a tetrad field is a linear frame whose members ha are pseudo–
orthogonal by the pseudo–riemannian metric gµν . We shall see later how
two of such bases are related by the Lorentz subgroup of the linear group
GL(4,R). The components of the dual base members ha = haνdx

ν satisfy

haµha
ν = δνµ and haµhb

µ = δab , (1.10)

so that Eq. (1.9) has the converse

gµν = ηab h
a
µh

b
ν . (1.11)

Notice that the Lorentz metric (1.1) fixes the signature

s = |(number of positive eigenvalues)− (number of negative eigenvalues)|

as s = 2 for all metrics given by (1.11). The determinant

g = det(gµν) (1.12)

is negative because of the signature of metric ηab. We shall also be using the
notation

h = det(haµ) =
√
−g. (1.13)

Anholonomy — the property by which a differential form is not the differ-
ential of anything, or of a vector field which is not a gradient — is common-
place in many chapters of Physics. Heat and work, for instance, are typical
anholonomic coordinates on the space of thermodynamic variables, and the
angular velocity of a generic rigid body in euclidean space E3 is a classical
example of anholonomic velocity. Take a dual base ha such that dha 6= 0,
that is, not formed by differentials. Apply the anholonomic 1-forms ha to ∂µ.
The result,

haµ = ha (∂µ), (1.14)

give the components of each

ha = haµdx
µ (1.15)

along dxµ. The procedure can be inverted when the ha’s are linearly inde-
pendent, defining vector fields

ha = ha
µ∂µ (1.16)



1.1. LINEAR FRAMES AND TETRADS 5

which are not gradients. Because closed forms (ω such that dω = 0) are lo-
cally exact (that is, ω = dα for some α), holonomy/anholonomy can be given
a trivial criterion: a form is holonomic iff its exterior derivative vanishes.

A holonomic tetrad, on the other hand, will always be of the form ha =
dxa for some coordinate set {xa}. The important point is that, for such a
tetrad, the metric tensor (1.11) would simply exhibit the components of the
“trivial” Lorentz metric (1.8) transformed to the coordinate system {xµ}.
We can think of a change of coordinates {xa} ↔ {xµ} represented by

dxa = (∂µx
a) dxµ and dxµ = (∂ax

µ) dxa. (1.17)

The 1-form dxa is holonomic, just the differential of the coordinate xa, and
the objects ∂µx

a are the components of the holonomic form dxa written in
base {dxµ}, with ∂ax

µ its inverse. Thus, such a coordinate change is just a
change of holonomic bases of 1-forms. For the dual base we have the relations

∂µ = (∂µx
a) ∂a and ∂a = (∂ax

µ) ∂µ. (1.18)

An anholonomic basis {ha} satisfies the commutation relation

[ha, hb] = f cab hc, (1.19)

with f cab the so-called structure coefficients, or coefficients of anholonomy,
or still the anholonomy of frame {ha}. The frame {∂µ} has been presented
above as holonomic precisely because its members commute with each other.
The dual expression of the commutation relation above is the Cartan struc-
ture equation

dhc = − 1
2
f cab h

a ∧ hb = 1
2

(∂µh
c
ν − ∂νhcµ) dxµ ∧ dxν . (1.20)

The structure coefficients represent the curls of the base members:

f cab = hcµ[ha(hb
µ)− hb(haµ)] = ha

µhb
ν(∂νh

c
µ − ∂µhcν). (1.21)

Notice that f cab = 0 would mean dha = 0: ha is a closed differential form.
If this holds at a point p, then there is a neighborhood around p on which
functions (coordinates) xa exist such that ha = dxa. We say that a closed
differential form is always locally integrable, or exact.

Comment 1.4 In Classical Mechanics, a force is of this type when it is the gradient of
a potential, F = − dV . In this case, its integral (the work W ) from a point a to a point
b is independent on the path taken from a to b — it is “integrable”, simply the difference
W (b)−W (a). This is not what happens for an anholonomous force, one not coming from
a potential. The criterion for a force to come from a potential is well–known: dF = 0, that
is to say, its curl is zero. Analogously, the tetrads are trivial, or 4–dimensional gradients
of some coordinates, when their 4–rotationals vanish.
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In the presence of gravitation, facd includes both inertial and gravitational
effects. In this case, the spacetime metric (1.11) represents a general (pseudo)
riemannian spacetime. In absence of gravitation, on the other hand, the
anholonomy of the frames is entirely related to the inertial forces present in
those frames. In this case, haµ becomes trivial and gµν turns out to represent
the Minkowski metric in a general coordinate system. The preferred class of
inertial frames, denoted h′a, is characterized by absence of inertial forces, and
consequently represented by frames for which

f ′acd = 0. (1.22)

They are called, for this reason, holonomic frames. Different classes of
frames are obtained by performing local (point-dependent) Lorentz trans-
formations. Inside each class, different frames are related through global
(point-independent) Lorentz transformations.

1.2 Connections

Objects with a well-defined behavior under point-dependent transformations
(coordinate and gauge transformations, for example) are rather loosely called
covariant under those transformations. It is a remarkable fact that usual
derivatives of such covariant objects are not themselves covariant. In order
to define derivatives with a well-defined tensor behavior (that is, which are
covariant), it is essential to introduce connections Aµ, which behave like vec-
tors in what concerns the spacetime index, but whose non-tensorial behavior
in the algebraic indices just compensates the non-tensoriality of ordinary
derivatives. Gauge potentials are connections, introduced to produce deriva-
tives which are covariant under gauge transformations — which, as previously
said, take place in “internal” spaces (of isospin, of color, etc). Connections
related to the linear group GL(4,R) and its subgroups — such as the Lorentz
group SO(3, 1) — are called linear connections. They have a larger degree
of intimacy with spacetime because they are defined on the bundle of linear
frames, which is a constitutive part of its manifold structure. That bun-
dle has some properties not found in the bundles related to internal gauge
theories. Mainly, it exhibits soldering, which leads to the existence of tor-
sion for every connection [16]. Linear connections — in particular, Lorentz
connections — always have torsion, while internal gauge potentials do not
have. It is worth noticing that a vanishing torsion is quite different from a
non-existent (non-defined) torsion.

Comment 1.5 We shall see below that the zero torsion which appears in General Rel-
ativity has an important consequence for the theory: the Bianchi identity of Eq. (1.67),
for which no analog exists in internal gauge theories.
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A spin connection (or Lorentz connection) Aµ is a 1-form assuming values
in the Lie algebra of the Lorentz group,

Aµ = 1
2
Aabµ Sab, (1.23)

with Sab a given representation of the Lorentz generators. This connection
defines the Fock–Ivanenko covariant derivative [17]

Dµ = ∂µ − i
2
Aabµ Sab, (1.24)

whose second part acts only on the algebraic, or tangent space indices. A
Lorentz vector field φd, for example, is acted upon by the vector representa-
tion of the Lorentz generators, matrices Sab with entries [18]

(Sab)
c
d = i (δca ηbd − δcb ηad) . (1.25)

The Fock–Ivanenko derivative is, in that case,

Dµφc = ∂µφ
c + Acdµ φ

d, (1.26)

and so on for any tensor or spinor field.
In the case of soldered bundles, a tetrad field relates internal with external

tensors. For example, if φa is an internal, or Lorentz vector, then

φρ = ha
ρ φa (1.27)

will be a spacetime vector. Conversely, we can write

φa = haρ φ
ρ. (1.28)

On the other hand, due to its non–tensorial character, a connection will ac-
quire a vacuum, or non–homogeneous term, under the same transformation.
For example, a general linear connection Γρνµ is related to the corresponding
spin connection Aabµ by

Γρνµ = ha
ρ∂µh

a
ν + ha

ρAabµh
b
ν ≡ ha

ρDµhaν . (1.29)

The inverse relation is, consequently,

Aabµ = haν∂µhb
ν + haνΓ

ν
ρµhb

ρ ≡ haν∇µhb
ν , (1.30)

where ∇µ is the usual covariant derivative in the connection Γνρµ, which acts
on external (spacetime) indices only. For a spacetime vector φν , for example,
it is given by

∇µφ
ν = ∂µφ

ν + Γνρµ φ
ρ. (1.31)
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Using relations (1.27) and (1.28), it is easy to verify that

Dµφd = hdρ∇µφ
ρ. (1.32)

It is important to mention that, whereas the Fock-Ivanenko derivative Dµ can
be defined for all fields — tensorial and spinorial — the covariant derivative
∇µ can be defined for tensorial fields only. In order to describe the interac-
tion of spinor fields with gravitation the use of Fock–Ivanenko derivatives is,
therefore, mandatory.

Equations (1.29) and (1.30) are simply different ways of expressing the
property that the total — that is, with connection term for both indices —
covariant derivative of the tetrad vanishes identically:

∂µh
a
ν − Γρνµh

a
ρ + Aabµh

b
ν = 0. (1.33)

On the other hand, a connection Γρλµ is said to be metric compatible if the
so–called metricity condition

∇λgµν ≡ ∂λgµν − Γρλµgρν − Γρλνgµρ = 0 (1.34)

is fulfilled. From the tetrad point of view, and using Eqs. (1.29) and (1.30),
this equation can be rewritten in the form

∂µηab − Adaµ ηdb − Adbµ ηad = 0, (1.35)

or equivalently
Abaµ = −Aabµ. (1.36)

The underlying content of the metric preserving property, therefore, is that
the spin connection is lorentzian. Conversely, when ∇λgµν 6= 0, the corre-
sponding spin connection Aabµ cannot assume values in the Lie algebra of
the Lorentz group — it is not a Lorentz connection.

1.3 Curvature and Torsion

Curvature and torsion are properties of connections [16], not of space itself.
Strictly speaking, in the context of gauge interactions, there is no such a
thing as curvature or torsion of spacetime, but only curvature or torsion of
connections. This becomes evident if we note that many different connections
are allowed to exist on the very same spacetime [19]. Of course, when re-
stricted to the specific case of General Relativity, where only the Levi–Civita
connection is present, universality of gravitation allows it to be interpreted —
together with the metric — as part of the spacetime definition. However, in
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the presence of connections with different curvatures and torsions, it seems
far wiser and convenient to follow the mathematicians and take spacetime
simply as a manifold, and connections (with their curvatures and torsions)
as additional structures.

The curvature and torsion tensors of the connection Aabµ are defined
respectively by

Ra
bνµ = ∂νA

a
bµ − ∂µAabν + AaeνA

e
bµ − AaeµAebν (1.37)

and
T aνµ = ∂νh

a
µ − ∂µhaν + Aaeνh

e
µ − Aaeµheν . (1.38)

Whereas curvature is a 2-form assuming values in the Lie algebra of the
Lorentz group,

Rνµ = 1
2
Ra

bνµSa
b,

torsion is a 2-form assuming values in the Lie algebra of the translation group,

Tνµ = T aνµPa,

with Pa = ∂a the translation generators. Using the relation (1.30), they can
be expressed in purely spacetime forms:

Rρ
λνµ ≡ ha

ρ hbλR
a
bνµ = ∂νΓ

ρ
λµ − ∂µΓρλν + ΓρηνΓ

η
λµ − ΓρηµΓηλν (1.39)

and
T ρνµ ≡ ha

ρ T aνµ = Γρµν − Γρνµ. (1.40)

A general linear connection can be decomposed according to2

Γρµν =
◦
Γ
ρ
µν +Kρ

µν , (1.41)

where ◦
Γ
σ
µν = 1

2
gσρ (∂µgρν + ∂νgρµ − ∂ρgµν) (1.42)

is the torsionless Christoffel, or Levi–Civita connection, and

Kρ
µν = 1

2
(Tν

ρ
µ + Tµ

ρ
ν − T ρµν) (1.43)

is the contortion tensor. In terms of the spin connection Aabµ, this decom-
position assumes the form

Aabµ =
◦
A
a
bµ +Ka

bµ, (1.44)

2The quantities related to General Relativity will be denoted with an over “◦”.
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where
◦
Aabµ is the spin connection of General Relativity.

Considering that the spin connection is a vector in the last index, we can
write

Aabc = Aabµ hc
µ. (1.45)

It can thus be easily verified that, in the anholonomic basis {ha}, the curva-
ture and torsion components are given respectively by [20]

Ra
bcd = hc (Aabd)− hd (Aabc) + AaecA

e
bd − AaedAebc − f ecdAabe (1.46)

and
T abc = Aacb − Aabc − fabc. (1.47)

Use of (1.47) for three combinations of the indices gives

Aabc = 1
2
(fb

a
c + Tb

a
c + fc

a
b + Tc

a
b − fabc − T abc), (1.48)

or equivalently

Aabc =
◦
A
a
bc +Ka

bc, (1.49)

with ◦
A
a
bc = 1

2
(fb

a
c + fc

a
b − fabc) (1.50)

the usual expression of the General Relativity connection in terms of the
coefficient of anholonomy.

Comment 1.6 The totally anti-symmetric Levi–Civita (or Kronecker) symbol is de-
fined, in the 4–dimensional case, by

εµνρσ =

 1 if µνρσ is an even permutation of 0123
−1 if µνρσ is an odd permutation of 0123

0 otherwise
(1.51)

In applications, it may be necessary the contravariant version of this symbol, something
like εµνρσ with the indices raised by the contravariant metric gµν . This can be shown to
be related to the covariant symbol by

εµνρσ = − 1
h2
εµνρσ, (1.52)

where, we recall, h2 = [det(haµ)]2 = − det(gαβ) = − g. Using it, the following contractions
can be worked out:

εµνρσεαβγσ = − 1
h2

(
δµαδ

ν
βδ
ρ
γ − δ

µ
βδ
ν
αδ
ρ
γ + δµβδ

ν
γδ
ρ
α − δµγ δνβδρα + δµγ δ

ν
αδ
ρ
β − δ

µ
αδ
ν
γδ
ρ
β

)
(1.53)

εµνρσεαβρσ = − 2
h2

(
δµαδ

ν
β − δναδ

µ
β

)
(1.54)

εµνρσεανρσ = − 6
h2

δµα (1.55)

and
εµνρσεµνρσ = − 24

h2
. (1.56)
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1.4 Torsion Decomposition

The torsion tensor Tλµν can be decomposed into three components [21], irre-
ducible under the global Lorentz group: there will be a vector part

Vµ = T ννµ, (1.57)

an axial part
Aµ = 1

6
εµνρσ Tνρσ, (1.58)

and a purely tensor part

T λµν = 1
2

(Tλµν + Tµλν) + 1
6

(gνλVµ + gνµVλ)− 1
3
gλµ Vν , (1.59)

that is, a tensor with vanishing vector and axial parts. These components
are usually called “vector torsion”, “axial torsion” and “pure tensor torsion”.
With them, the whole tensor can be written as

Tλµν = 2
3

(T λµν − T λνµ) + 1
3

(gλµVν − gλνVµ) + ελµνρAρ. (1.60)

The names in the decomposition above come from their behavior under
space (P ) and time (T ) reversals. We call “vector” and “axial-vector” objects
with the following responses to P and T transformations:

Vµ = (V0, ~V)
P−→ (V0,− ~V), V = (V0, ~V)

T−→ (−V0, ~V) (1.61)

Aµ = (A0, ~A)
P−→ (−A0, ~A), A = (A0, ~A)

T−→ (A0,− ~A) (1.62)

The quantity VµAµ, for example, is a pseudo-scalar under both P and T
transformations, and a scalar under a combined PT transformation.

Comment 1.7 It will be seen in Section 5.3 that a gravitational field can be decomposed
into a gravitoelectric and a gravitomagnetic parts. In Teleparallel Gravity, only the axial
torsion appears in the gravitomagnetic component. For the gravitational interaction of
spinors (see Section 10.3.2), the purely tensor piece is irrelevant: only the vector and
the axial-vector torsions appear in the Dirac equation. This last fact will resurface in
Section 11.4.

1.5 Bianchi Identities

Given a Lorentz connection Aabµ, its torsion and curvature tensors satisfy
two identities, called Bianchi identities. There is an identity for torsion,

DνT aρµ +DµT aνρ +DρT aµν = Ra
ρµν +Ra

νρµ +Ra
µνρ, (1.63)
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usually called first Bianchi identity, and an identity for curvature,

DνRa
bρµ +DµRa

bνρ +DρRa
bµν = 0, (1.64)

usually called second Bianchi identity. Using relations (1.32) and (1.40), the
Bianchi identity for torsion can be rewritten in the form

∇νT
λ
ρµ +∇µT

λ
νρ +∇ρT

λ
µν =

Rλ
ρµν +Rλ

νρµ +Rλ
µνρ + T λρσ T

σ
µν + T λνσ T

σ
ρµ + T λµσ T

σ
νρ. (1.65)

In a similar fashion, the Bianchi identity for curvature becomes

∇νR
λ
σρµ +∇µR

λ
σνρ +∇ρR

λ
σµν =

Rλ
σµθ T

θ
νρ +Rλ

σνθ T
θ
ρµ +Rλ

σρθ T
θ
µν . (1.66)

In the case of General Relativity, torsion vanishes for the relevant Levi-

Civita connection
◦
Γλµν , and we obtain the usual Bianchi identities

◦
R
λ
ρµν +

◦
R
λ
νρµ +

◦
R
λ
µνρ = 0 (1.67)

and ◦
∇ν

◦
R
λ
σρµ +

◦
∇µ

◦
R
λ
σνρ +

◦
∇ρ

◦
R
λ
σµν = 0. (1.68)

It is remarkable that, although torsion vanishes, Bianchi identity (1.67) for
torsion remains in General Relativity — as the so–called cyclic identity.

Comment 1.8 Any tensor can be decomposed in its anti-symmetric and symmetric
parts. The anti-symmetric part is defined by

C[ab] =
1
2!

(Cab − Cba)

D[abc] =
1
3!

(Dabc −Dacb +Dcab −Dbac +Dbca −Dcba) ,

and so on. In the same way, the symmetric part is

C(ab) =
1
2!

(Cab + Cba)

D(abc) =
1
3!

(Dabc +Dacb +Dcab +Dbac +Dbca +Dcba) ,

and so on. For example, equation (1.48) can be rewritten

Aabc = Aa(bc) +Aa[bc], (1.69)

with
Aa(bc) = − 1

2 (fbca + fcb
a + Tbc

a + Tcb
a) (1.70)

and
Aa[bc] = − 1

2 (fabc + T abc). (1.71)

From this expression we see that, given a tetrad, the connection is completely determined
by its torsion — which is Ricci’s theorem [24].
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1.6 Lorentz Transformations

Vector base {ha} is far from unique. There exists actually a six-fold infinity
of tetrad fields {ha = ha

µ ∂µ}, each one relating g to the Lorentz metric
η by Eqs. (1.9) and (1.11). This comes from the fact that, at each point
of a riemannian spacetime, Eq. (1.11) only determines the tetrad field up
to transformations of the six-parameter Lorentz group in the tangent space
indices. Suppose in effect another tetrad {h′a} such that

gµν = ηcd h
′c
µh
′d
ν , (1.72)

Contracting both sides with ha
µhb

ν , we arrive at

ηab = ηcd (h′cµha
µ)(h′dνhb

ν). (1.73)

This equation says that the matrix with entries

Λa
b = h′aµ hb

µ, (1.74)

which gives the transformation

h′aµ = Λa
b h

b
µ, (1.75)

satisfies
ηcd Λc

a Λd
b = ηab. (1.76)

This is just the condition that a matrix Λ must satisfy in order to belong to
(the vector representation of) the Lorentz group.

The converse reasoning will say that Lorentz transformations preserve the
metric defined by {ha}. This leads to a better characterization of the metrics
defined by (1.11): (i) anholonomic base fields related by Lorentz transforma-
tions define one same metric; (ii) anholonomic base fields not related by
Lorentz transformations define different metrics.

Under a local Lorentz transformation Λa
b(x), the tetrad changes accord-

ing to (1.75), whereas the spin connection undergoes the transformation

A′abµ = Λa
c(x)Acdµ Λb

d(x) + Λa
c(x) ∂µΛb

c(x). (1.77)

In the same way, it is easy to verify that T aνµ and Ra
bνµ transform covari-

antly:
T ′aνµ = Λa

b(x)T bνµ (1.78)

and
R′abνµ = Λa

c(x) Λb
d(x)Rc

dνµ. (1.79)

This means that, just as gµν , spacetime–indexed quantities Γρνµ, T λµν and
Rρ

λνµ are invariant under a local Lorentz transformation.
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Comment 1.9 Let us register one more point. Suppose the members of a tetrad base
{ha} with commutation rule

[ha, hb] = f cab hc

are Lorentz-transformed: h′aµ = Λab hbµ. Then, in order to keep the commutation rule in
the form

[h′a, h
′
b] = f ′cab h

′
c, (1.80)

the anholonomy coefficients must transform in a very special way:

f ′cab = Λcd fdef Λea Λf b + Λcd
[
Λeahe(Λdb)− Λebhe(Λda)

]
. (1.81)

The last two, zero-curvature terms, vanish for global (∂µΛcb = 0) Lorentz transformations.
The anholonomy coefficients are, in that case, just covariant. Those derivative terms are,
however, essential to compensate the behavior of the two connection terms in (1.47),
keeping torsion covariant under local Lorentz transformations.

1.7 Dynamical Aspects

Dynamical considerations will in special require derivatives with respect to
time, or better, to the proper time s defined by the metric tensor (1.11):

ds2 = gµν dx
µdxν = ηab h

a
µh

b
ν dx

µdxν = ηab h
ahb. (1.82)

A curve γ (say, a particle trajectory) on spacetime, parametrized by proper
time as γµ(s) = xµ(s), will have as four-velocity the vector of components

uµ =
dxµ

ds
. (1.83)

The corresponding acceleration cannot be given a covariant meaning without
a connection — and each different connection Γλµν will define a different
acceleration

aλ =
∇uλ

∇s
= uν ∇νu

λ =
duλ

ds
+ Γλµνu

µuν . (1.84)

Comment 1.10 Observe that the definition of the four-velocity does not require a
connection. In fact, even defined as an ordinary derivative, the four-velocity uµ results to
be a four-vector. The reason for this is that xµ is not a four-vector, but a set of four scalar
functions γµ(s) parametrizing the curve γ. As such, its ordinary derivative turns out to
be covariant.

The Christoffel connection (1.42), for example, will define the acceleration

◦
aλ = uν

◦
∇νu

λ =
duλ

ds
+
◦
Γ
λ
µνu

µuν . (1.85)
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As
◦
aλ is orthogonal to uλ, its vanishing means that the uλ keeps parallel

to itself along the curve. This leads to the notion of parallel transport: we
say that uλ is parallel–transported along γ. Further, as every vector field is
locally tangent to a curve (its local “integral curve”), a condition like

vµ
◦
∇µu

λ ≡
◦
∇vu

λ = 0

says that uλ is parallel–transported along the integral curve of vλ. The metric
compatibility condition (1.34) implies that

vλ
◦
∇λgµν = 0

for any vector field vλ, which is equivalent to say that the metric gµν is
parallel–transported everywhere on spacetime.

Let us now go a step further, and consider an observer attached to a
particle moving along curve γ. An observer is abstractly conceived as a
timelike worldline [25, 26]. We can do more: notice that the four members
of a tetrad are (pseudo) orthogonal to each other. This means that one of
them is timelike, and the other three are spacelike. As

ηab = gµνha
µhb

ν = haνhb
ν , (1.86)

then

h0νh0
ν = η00 = +1,

so that, in our convention with η = diag(+1,−1,−1,−1), h0 is timelike and
has unit modulus. The remaining hk, for k = 1, 2, 3, are spacelike. We then
“attach” h0 to the observer by identifying

u = h0 =
d

ds
, (1.87)

with components uµ = h0
µ. Of course, h0 will be the observer velocity. The

tetrad field is, in this way, made into a reference frame, with an observer
attached to it. If the observer is inertial, then

uν
∂uλ

∂xν
+ Γλµνu

µuν = 0. (1.88)

Take now a general connection Γ and examine the corresponding frame
acceleration

aa(f,Γ) = haλ a
λ
(f,Γ) = haλ h0(hλ0) + haλΓ

λ
µνh0

µh0
ν . (1.89)
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The connection components, seen from the frame, are

Aabc = haλΓ
λ
µνhb

µhc
ν + haλ hc(hb

λ), (1.90)

so that

aa(f,Γ) = Aa00 =
◦
A
a

00 +Ka
00 (1.91)

for whatever connection. This is the recipe: each connection Γ, which seen
from the observer tetrad is A, will attribute to the observer an acceleration
acf = Ac00, seen by that very observer. Notice that Eq. (1.90) can be rewritten
in the form

Aabc = haλ∇hchb
λ. (1.92)

For the Levi-Civita connection, we have simply

◦
aa(f) =

◦
A
a

00. (1.93)

It follows from Eq. (1.50) that

◦
ac(f) = f0

c
0. (1.94)

A holonomic tetrad, therefore, has zero Christoffel acceleration. The point
is that in the generic case, as

◦
∇haha

λ = hc
λ
◦
A
c
aa 6= 0, (1.95)

a tetrad member is not parallel-transported along its own integral curve. In
particular, it has a Christoffel acceleration.

Equation (1.92) provides a general interpretation for Acab. In particular,
◦
Aij0 is the time rate of change of hj projected along hi, with the covariant
derivative given by the Levi-Civita connection. The space tetrad members
rotate with angular velocity

◦
ωk(f) = 1

2
εkij

◦
Aij0, (1.96)

which shows
◦
Aabc in its historical role of Ricci’s coefficient of rotation. The

general meaning of (1.92) is clear: Aabc is a “generalized frame proper accel-
eration”, the covariant derivative of hb along hc, projected along ha.

The above considerations give a new perception of the acceleration

◦
ak(f) =

duk

ds
+
◦
A
k
bc u

buc, (1.97)
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as seen from an accelerated frame. Besides the first, kinetic term, it includes
contributions from the frame itself:

◦
ak(f) =

duk

ds
+
◦
ak(f)u

0u0 + 2 (u× ◦
ω(f))

k u0 +
◦
A
k
ij u

iuj. (1.98)

Some of the terms turning up can be easily recognized. The piece

◦
ak(l) =

◦
ak(f)u

0u0

represents the frame linear acceleration, whereas the piece

◦
ak(C) = 2 (u× ◦

ω(f))
k u0

represents the Coriolis force. The last piece represent additional inertial
effects present in the frame [27].

Each connection Γ will attribute to a curve γ a different acceleration,
given by Eq. (1.84). But acceleration must remain a measure of the velocity
variation with time, and time appears in that formula as the proper time
(1.82) defined by metric gµν . If acceleration is to keep a meaning, it is neces-
sary that the same metric be considered all along the curve. In other words,
the acceleration–defining connection must parallel–transport gµν , satisfying
the metricity condition (1.34). Furthermore, an infinity of connections are
metric compatible with a given metric, one (and only one) for each value
of torsion. In this way, compatible connections are classified by their tor-
sions [by the Ricci theorem mentioned in Comment 1.8]. The Levi-Civita
connection is, consequently, the only one with vanishing torsion.

Comment 1.11 Another transport, distinct from parallel transport, can be introduced
which absorbs the acceleration. It is given by the Fermi-Walker derivative:

◦
∇(FW )
u vλ =

◦
∇uvλ +

◦
aνv

νuλ − uν
◦
aλvν .

With this derivative,

◦
∇(FW )
u uλ =

◦
∇uuλ +

◦
aνu

νuλ − uν
◦
aλuν = 0

and now
◦
∇(FW )
u ha

λ =
◦
∇uhaλ +

◦
aau

λ − ua
◦
aλ.

In particular,
◦
∇(FW )
h0

h0
λ =

◦
∇h0h0

λ − ◦aλ = 0

implies that h0 — by this Fermi-Walker transport — is kept tangent along its own integral
curve.
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Chapter 2

Gauge Theories and
Gravitation

We give here short and rough résumés of gauge models — which describe
three of the four fundamental interactions of Nature — and of General Rel-
ativity — the standard theory for gravitation. No more than a “cast of
characters”, with the main protagonists in each case. At the end, we discuss
how to apply the gauge paradigm to gravitation.

2.1 The Gauge Tenets

The gauge theories which successfully describe electromagnetic, electroweak
and strong interactions are all concerned with point-dependent transforma-
tions occurring in “internal” spaces, that is, spaces unrelated to the “ex-
ternal” spacetime differentiable manifold. The “point-dependence” means
merely that different transformations in internal space take place at different
points of the external manifold.

The forerunner of these theories is the Yang-Mills model, with the unitary
group SU(2) as gauge group acting on isotopic spin (isospin) spaces of varied
dimensions, each one carrying a different linear representation of SU(2). The
proton-neutron pair stays in a 2-dimensional space of doublets (p, n), the
pions in a 3-dimensional space of triplets (π1, π2, π3), and so on. Particles
are represented by these “multiplet” fields. More precisely, once the fields are
quantized, the particles turn up as their quanta: protons are the quanta of
what we call “the proton field”, pions are the quanta of “the pion (complex
scalar) field”, and so on. A particle which is insensitive to a certain gauge
field is assigned to a singlet representation of the group, in which it will not
respond to any gauge transformation.
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Fiber bundles are composite manifolds which encapsulate all the geomet-
ric aspects of these theories.1 They are a combination of a base manifold
(here, spacetime) and another space of interest (the gauge group, or any
other space carrying one of its representations), built up with the strong pro-
viso that the overall set of points constitute also a differentiable manifold.
Given a point p on the base space, the bundle is locally (in a neighborhood
of p) a direct product of both involved spaces.

Comment 2.1 With the circumference S1 and the interval (−1,+1) two simple but
quite different bundles can be built: a cylinder, which is a global direct product, and a
Möbius band, which is only locally a direct product.

A first bundle is constructed by attaching a copy of the gauge group at
each spacetime point p. Each fiber — space attached at each point of the
base spacetime manifold — is itself a group, and in this case the bundle
is said to be “principal” (see Figure 2.1, where we have taken for base the
Minkowski space M). A “bundle projection” π takes all the points of the
“fiber over p” into its corresponding base–space point p. And a converse
“section” σ takes points on a neighborhood of p into a domain of the bundle
manifold. Other bundles, called “associated”, can be obtained by replacing

Figure 2.1: Local view of a principal bundle.

the group by one of its linear representations. “Source” fields inhabit (as
sections) precisely the carrier vector spaces of such representations. They

1Detailed accounts of the geometries both of gauge theories and General Relativity can
be found in Ref. [19].
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experience gauge transformations of the form

ψ′i(xµ) = U i
j(x

µ)ψj(xµ), (2.1)

where U i
j(x

µ) are the entries of the matrix U(xµ) — the group element —
representing the gauge transformation at the point p of coordinates xµ, with
i, j, k = 1, 2, 3, ...d, being d the dimension of the representation. This is
actually the way sections transform. Notice that to each principal bundle
corresponds an infinity of associated bundles, one for each group representa-
tion. The principal bundle has not that name for nothing: theorems proved
for it can afterwards be transferred to each one of its infinite associates.

For an associated source field ψ belonging to a given representation, the
group element assumes the form

U i
j(x

µ) = exp[αB TB]ij, (2.2)

where (TB)ij (A,B,C = 1, 2, 3, ..., n) are the generators, with n the dimension
of the group. Dropping the matrix indices, the gauge transformation (2.1)
will be given by

ψ′(x) = exp[αB TB]ψ(x), (2.3)

where αB = αB(xµ) are the parameters fixing the gauge transformation. The
corresponding infinitesimal transformation is

δψ(x) ≡ ψ′(x)− ψ(x) = αB TB ψ(x). (2.4)

The generators TB satisfy the commutation relation

[TB, TC ] = fABCTA, (2.5)

where fABC are the structure constants of the group Lie algebra. We re-
call that the Lie algebra of a Lie group has this very special property, that
the structure coefficients for the generator commutators are constants. The
adjoint representation, which we denote by JB, is given by matrices whose
dimension d coincides with the group dimension n. It is given by the matrix
with entries

(JB)AC = fABC .

The gauge boson field, which mediates the interactions, belong to the
adjoint representation. It is a 1-form assuming values in the Lie algebra of
the gauge group:

A = JC A
C
µ dx

µ. (2.6)

From the general definition of covariant derivative [19]

Dµψ = ∂µψ − ABµ
δψ

δαB
, (2.7)
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together with the infinitesimal transformation (2.4), we found that the co-
variant derivative of the matter field ψ is

Dµψ = ∂µψ − ABµTBψ, (2.8)

where the 1-form ABµ now takes values on the appropriated representation
of the Lie algebra: the covariant derivative depends on the representation
of the field on which it acts. The covariant derivative of an object has the
same behavior as the object itself. For example, since the field ψ transforms
according to ψ′ = Uψ, its covariant derivative must transform in the same
way, that is,

D′µψ
′ = U(Dµψ). (2.9)

From this condition we obtain the transformation law of the gauge potential

A′µ = UAµU
−1 + U∂µU

−1, (2.10)

which shows that A does not transform covariantly. This is so because A
is actually a connection: the last, derivative term is just the non–covariance
necessary to compensate the non–covariance of the ordinary derivative —
defining in this way covariant derivatives. As said in the previous chapter,
usual derivatives are not covariant under point–dependent transformations.
Notice that the compensating, derivative term in (2.10) is independent of the
connection. It disappears if we take the difference between two connections.
That difference is, consequently, a covariant object, a tensor.

The infinitesimal version of (2.10) is

δACµ ≡ A′Cµ − ACµ = −
(
∂µα

C + fCBDA
B
µ α

D
)
, (2.11)

which can be written as
δACµ = −Dµα

C , (2.12)

where use has been made of the fact that the transformation parameter αC

belongs to the adjoint representation.
On the other hand, the covariant derivative of A itself is its curvature,

F = 1
2
JA F

A
µν dx

µ ∧ dxν , (2.13)

which has for components along generators JA just the components of the
field strength

FA
µν = ∂µA

A
ν − ∂νAAµ + fABCA

B
µA

C
ν . (2.14)

Under the gauge transformation (2.10), the field strength changes according
to

F ′µν = UFµνU
−1. (2.15)
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This means that F transforms covariantly. The corresponding infinitesimal
transformation is

δFA
µν ≡ F ′Aµν − FA

µν = fABC α
B FC

µν . (2.16)

It is worth mentioning finally that, seen from a non-holonomous tetrad,
instead of (2.14), a gauge field strength will assume the form

FC
ab = ha(A

C
b)− hb(ACa) + fCDEA

D
aA

E
b − fdabACd. (2.17)

The last term comes from the tetrad non-holonomicity,

[hc, hd] = f ecd he,

and is linear in the connection.

Comment 2.2 It is a good point to have in mind the well–known case of electromag-
netism, which is a gauge theory with the gauge group U(1). As a manifold, U(1) is the
1-dimensional sphere, just the circumference S1. In this abelian case the fABC ’s in (2.14)
are all zero. Furthermore, because the group dimension is n = 1, the algebraic indices are
usually omitted. Equation (2.14) gives then the usual expression of the Maxwell tensor

Fµν = ∂µAν − ∂νAµ. (2.18)

The observable, measurable field is Fµν , though the Aharonov-Bohm effect shows that
some effects of Aλ can be eventually measurable at the quantum level. The potential Aµ is,
however, the fundamental field: the photon is the quantum of field Aµ. Electromagnetism
has been the historical prototype of a gauge theory, even though its simplicity left many
aspects unnoticed. It has, for example, inspired the minimal coupling prescription (2.8) —
though in its abelian, 1-dimensional simplicity TB is single and can be taken as the unity.

From (2.14) it follows the identity

DρF
A
µν +DνF

A
ρµ +DµF

A
νρ = 0, (2.19)

the indices being cyclically exchanged from term to term. This Bianchi
identity generalizes to the non-abelian case the first pair of Maxwell’s equa-
tions. Recall that those equations do not follow from the electromagnetic
lagrangian, and in this sense are not dynamical.

The dynamical equations, which are those that generalize the second pair
of Maxwell’s equations, follow from the gauge lagrangian

L = − 1
4
γAB F

A
µνF

Bµν , (2.20)

where
γAB = tr(JAJB) = fCADf

D
BC (2.21)
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is the Killing-Cartan metric, which is used to raise and lower internal in-
dices. Since this metric can be defined only for semisimple groups (those
with no invariant abelian subgroup), lagrangians for gauge theories can be
constructed only for these groups [28, 29]. For non-semisimple groups, such
as the Poincaré group, the Killing-Cartan bilinear form γAB is not a met-
ric — it is not invertible.

Comment 2.3 It should be remarked that some abelian groups admit the construc-
tion of a gauge lagrangian. The most prominent example is electromagnetism, a gauge
theory for the abelian U(1) group. Its gauge lagrangian is constructed using, not the
Killing-Cartan metric (which is degenerate), but a different gauge–invariant metric. An-
other example is Teleparallel Gravity, which corresponds to a gauge theory for the abelian
translation group. In this case, the Minkowski metric replaces the Killing-Cartan metric.
A more detailed discussion of this point will be presented at Chapter 7.

Let us then consider the lagrangian

L = Ls[ψ,Dµψ]− 1
4
FA

µνFA
µν , (2.22)

where the source lagrangian Ls[ψ,Dµψ] is obtained from the free lagrangian
for the source multiplet field ψ = {ψj} by the minimal coupling prescription:
usual derivatives ∂µ are replaced by the covariant derivatives Dµ given in
(2.8). Making use of the cyclic property

fABC = fCAB = fBCA, (2.23)

characteristic of semisimple groups, the field equation that follows from the
lagrangian (2.22) is

∂µF
Aµν + fABCA

B
µF

Cµν = JAν , (2.24)

where

JAν = − ∂Ls
∂AAν

(2.25)

is the source current. This is the equation that generalizes the second, dy-
namical pair of Maxwell’s equations

∂µF
µν = Jν . (2.26)

Notice that knowledge of the group structure constants is enough to write
down the Yang-Mills equations (2.24), which can also be written in the form

DµF
Aµν = JAν . (2.27)

The non-abelian character brings forward non-linearity: the gauge field
interacts with itself. The abelian photon does not carry electromagnetic



2.1. THE GAUGE TENETS 25

charge, but the gluon of strong interactions described by Chromodynamics
carries the strong SU(3)color charge. The second term in the left-hand side of
the field equation (2.24) is just the “self–current” jAν , the current carried by
the gauge fields themselves:

jAν = − fABC ABµ FCµν . (2.28)

From Noether’s theorem it can be verified that it is covariantly conserved:

DµJ
Aν = 0. (2.29)

Actually, this vanishing covariant divergence leads to no real conservation
law — it is only a constraint on the source currents, usually called Noether
identity. On the other hand, the field equation does lead to a true conser-
vation: due to the anti-symmetry of FAµν in the spacetime indices, we see
that

∂ν
(
JAν + jAν

)
= 0. (2.30)

This equation says that the total current — source plus gauge field — is con-
served. Notice, however, that the self–current jAν is not, by itself, covariant
under gauge transformations.

Comment 2.4 It is important to remark that this is a matter of consistency: since the
derivative is not covariant, the conserved current cannot be covariant either in such a way
that the conservation law as a whole is covariant, and is consequently physically meaning-
ful. The gravitational version of this conservation law will be discussed in Chapter 8.

Recall from electromagnetism that, in the presence of an electromagnetic
field, the Minkowski space equation of motion of a test particle of mass m
and electric charge q is described by the Lorentz force law

duλ

ds
=

q

mc2
F λ

νu
ν . (2.31)

In this case the particle current Jν = quν , which is 1-dimensional in the
internal space, obeys

dJλ

ds
=

q2

mc2
F λ

ν J
ν . (2.32)

Generalization to a particle with a gauge charge (say, isospin) qA leads to

duλ

ds
=

qA

mc2
FAλ

νu
ν . (2.33)

The charge itself will obey Wong’s equation [30]

Duq
A ≡ dqA

ds
+ ABν u

ν (TB)AC q
C = 0. (2.34)
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This describes an “internal precession”: it leads to qADuq
A = 0, so that

q2 = γAB q
AqB

is a characteristic invariant of the representation which is kept (covariantly)
constant.

Gauge theories present a special, fundamental property: the dynamic
equation (2.24) is, in the sourceless case, just the geometrical identity (2.19)
written for the dual

? FA
µν = 1

2
εµνρσF

Aρσ, (2.35)

here taken on Minkowski spacetime. In this sense, pure–gauge–field dynam-
ics is dual to pure geometry. This duality symmetry of the gauge field is very
important for its quantization — it is, together with conformal symmetry, one
of the attributes which make gauge theories renormalizable. Renormalizabil-
ity is, in almost all cases, checked in perturbation theory, the perturbation
parameter being the coupling constant. The present text uses a common
practice of field theory, hiding the coupling constant in the potential ACµ.
To obtain expressions with the explicit coupling constant g, just replace each
ACµ by g ACµ [31]. Another important merit of gauge theories is that their
coupling constants are dimensionless (the fine-structure constant α = q2/~c is
the coupling constant of the electromagnetic interaction). This means that,
order by order, they multiply (Feynman) integrals of the same dimension.
In gravitation as described by General Relativity, the coupling constant is
8πG/c4, with dimension M−1L−1T 2. If we try to quantize it, the Feynman
integrals have, at each other, to compensate for these dimensions. It turns
out that they become more and more divergent [32].

Comment 2.5 The origin of this difference is that generic Noether currents have di-
mension MT−2. The energy-momentum density, the source current for gravitation, has
“abnormal” dimension ML−1T−2. The reason for this difference is that the energy–
momentum current is related to translations on spacetime and, unlike most transforma-
tions, whose generators are dimensionless, the translation generator has dimension L−1.

We have said that elementary particles appear in field theory as the
quanta of the fundamental fields. Relativistic fields are actually sets of in-
finitely many degrees of freedom, one for each point of spacetime. Usually
in modern phenomenology, particles come before: they are first detected in
Nature, and then a field is attributed to each of them. When a field is found
beforehand (as the electromagnetic field), a particle is identified to its quan-
tum — provided the theory in quantizable. Models are built up by attributing
particles to multiplets, and then collecting such multiplets into fields. These
are, roughly speaking, the source fields. Interactions are then ascribed to me-
diating fields — here, just the gauge potentials. To the mediating fields are
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attributed new particles, the gauge bosons: photons for electromagnetism,
gluons for the strong interactions regulated by Chromodynamics, the Z0 and
the W (±) for the weak sector of the electroweak interactions ruled by the
group SU(2)⊗ U(1). Non-renormalizability of a theory (as seems to be the
case of General Relativity) jeopardises its quantization — which becomes
meaningless. We do speak of a “graviton” but, as long as General Relativity
remains non-renormalizable, this is a mere convenience of language.

Comment 2.6 Gauge fields (or the particles they represent) are massless; there is no
mass term in lagrangian (2.20). Actually, a mass term would violate gauge symmetry.
Nevertheless, the afore mentioned mediating bosons Z0 and W (±) have masses, actually
large masses as far as elementary particles are concerned. Such masses are theoretically
obtained by the only known process which breaks the gauge symmetry while preserving
renormalizability, the so–called “spontaneous symmetry breaking” (a name stemming from
its original inspiration in superconductivity): a complex scalar field φ, which interacts with
itself via a λφ4 potential, is added to the lagrangian. The ensuing Hamiltonian exhibits
a minimum value (“vacuum”) which stands below zero, and corresponds to a state which
is degenerate. In other words, this vacuum state is multiple — one can pass from one to
another state of minimum energy by a gauge transformation. It is necessary to choose one
of these states as a fundamental state in order to build the higher energy states. This choice
breaks the symmetry and induces a change of field variables. The original SU(2) ⊗ U(1)
gauge fields are no more the physical fields. The two components of the added complex
field compose with the original gauge potentials to produce the (zero mass) photon, the
Z0 field, the W (±) bosons and a residual “Higgs boson”. With this special mechanism,
the gauge symmetry is preserved as a “hidden” symmetry: it remains behind the scene,
but holds for non-physical fields. Thus the massive, physically observed mediating fields
come from a redefinition of the degrees of freedom.

2.2 General Relativity

Consider the set of all linear bases exchanged by the linear group GL(4,R),
or the set of tetrad frames exchanged by its Lorentz subgroup. Take a par-
ticular point p on the manifold R and choose one particular base on the
vector space TpR to start with. Change then to any other: every other base
can be attained by a transformation which is a group member; and to each
group element will correspond one base obtained from the initial one. In
consequence, the bundle of bases is the same as the bundle with one copy
of the group at each point p — it is a principal bundle. It is one of the
many miracles of tetrads that, being invertible, they determine the Lorentz
transformation relating them [see Eq.(1.74)].

The principal bundle of frames puts all the geometry of General Relativity
in a nutshell. A diagram is given in Figure 2.2. The tangent bundle, with a
tangent space TpR attached to each point p of the riemannian spacetime R, is
only one of its associates. Tensor bundles, and spinor bundles, are others. In
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Figure 2.2: Diagram of the frame bundle.

the bundle BR of bases on R, the whole set of frames on TpR is “attached”
to point p ∈ R. Its more intimate relation to the spacetime differentiable
manifold makes it different from the corresponding gauge principal bundle
pictured in Figure 2.1. As repeatedly said, the main difference is the presence
of soldering — with the ensuing appearance of tetrads and torsion.

Comment 2.7 The parallelizable manifolds mentioned in Comment 1.2 have a simple
definition in terms of bundles: their tangent bundle is trivial, that is, globally a direct
product of the typical tangent space (say, Minkowski space) by the base manifold (say, a
riemannian spacetime). This is a special case of a very general property: a bundle is a
global direct product (fiber × base) iff there exists a global section.

Consider a particular base b on TpR: it will be a point on BR. This
base, and all its companions obtained from it by a base transformation, are
taken into point p by the bundle projection π. The solder 1-form θ relates
each tangent space TbBR of the bundle of frames to the Minkowski space
M and — this is the main property — has, seen from each tetrad, just
the components of that same tetrad. Form θ acts in a circuitous way: the
mapping b — so called because it just represents the homonimous base b —
in the diagram, which is a vector-space isomorphism, takes M into TpR and
makes of TpR a Minkowski space. The torsion tensor of a given connection
is just the covariant derivative of the solder 1-form or, due to the mentioned
property, the covariant derivative of the tetrad field [see Eq. (1.38)]. Torsion
is simply non-existent in internal (non-soldered) gauge theories.

General Relativity conceives the gravitational interaction — which it de-
scribes with paramount success at the classical level — as a change in the
geometry of spacetime itself [33]. Specifically, as a change from the Lorentz
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metric ηab of Minkowski space into a riemannian metric gµν . This new metric
plays the role of basic field, and is in principe defined everywhere. Deriva-
tives compatible with this overall presence of the same metric must preserve
it, must parallel–transport it everywhere [see Section 1.7]. Of all the con-
nections preserving gµν , there is only one which has vanishing torsion, the

Christoffel or Levi-Civita connection
◦
Γλµν . This torsionless connection was

chosen by Einstein to define all covariant derivatives, and its curvature, the
Riemann tensor

◦
R
a
bµν = ∂µ

◦
A
a
bν − ∂ν

◦
A
a
bµ +

◦
A
a
cµ

◦
A
c
bν −

◦
A
a
cν

◦
A
c
bµ , (2.36)

represents the field: gravitation is present whenever at least one component

of
◦
Ra

bµν is non-vanishing. The Ricci tensor is a symmetric second-order
tensor defined as ◦

Rµν = ha
ρhbµ

◦
R
a
bρν , (2.37)

and the scalar curvature is ◦
R = gµν

◦
Rµν . (2.38)

It turns out that the Einstein tensor

Gµν ≡
◦
R
µν − 1

2

◦
Rg

µν (2.39)

is the only symmetric second-order tensor with vanishing covariant deriva-
tive. This result comes, actually, from the second Bianchi identity (1.68) with
convenient contractions. Concerning the source fields, the energy-momentum
tensor Θµν is the only symmetric second-order tensor with vanishing covari-
ant derivative — as determmined by Noether’s theorem. The source, in
Newtonian gravitation, is the mass, whose concept is broadened into en-
ergy by Special Relativity. Energy, which in field theory is represented by
the energy-momentum tensor, is to be the source of gravitation. It is thus
natural to write ◦

R
µν − 1

2

◦
Rg

µν = kΘµν , (2.40)

where k is some constant. Making the correspondence with Newton’s law in
the static weak-field limit, one determines k = 8πG/c4 and the field equation,
Einstein’s equation, comes out as

◦
R
µν − 1

2

◦
Rg

µν =
8πG

c4
Θµν . (2.41)

This equation can be obtained from the lagrangian

L =
◦
L+ Lm, (2.42)
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where
◦
L =

c4

16πG

√
−g

◦
R (2.43)

is the Einstein–Hilbert lagrangian, and Lm is the matter, or source field
lagrangian. The right-hand side of Einstein equation (2.40) is the symmetric
energy-momentum tensor

Θµν = − 1

2
√
−g

δLm
δgµν

. (2.44)

It is actually the energy-momentum tensor modified by the presence of grav-
itation.

How does gravitation couple to other fields? Let us repeat that the metric
gµν is related to the flat Lorentz tangent metric through the tetrad fields,

gµν = ηab h
a
µh

b
ν . (2.45)

Suppose for a moment that the haµ’s are trivial four-legs, mere coordinate
changes. We can calculate the corresponding Christoffel symbol and the

curvature. We find then that
◦
Ra

bµν = 0. This is a matter of course, as trivial
tetrads will only lead to other representations, in terms of non-cartesian
coordinates, of the flat Lorentz metric. We pass from ηab to a different,
riemannian metric only through a non-trivial tetrad field. This leads to an
intuitive view of the equivalence principle. We have seen in Section 1.7 that
non-trivial tetrads are actually accelerated frames. The equivalence principle
will say that a gravitational field is, in some sense [34], locally equivalent
to an accelerated frame. The presence of tetrads enforces also the passage
of simple derivatives to covariant derivatives, so that usual derivatives are
replaced by covariant ones. A rule turns up, which is reminiscent of the
gauge prescription: to obtain the effect of gravitation on sources in general
(particles or fields), (i) write all the usual equations they obey in Minkowski
space in general coordinates, represented by trivial tetrads, and (ii) keep
the same formulae, but with the trivial tetrads replaced by general tetrads,
related to the metric by Eq. (2.45). The resulting equations will hold in
General Relativity. Notice however that, as tetrad fields are only locally
defined, gravitation is only locally equivalent to an accelerated frame.

The simplest case is the usual geodesic equation

duλ

ds
+
◦
Γ
λ
µνu

µuν = 0, (2.46)

which describes the motion of a structureless, point-like test particle in the

presence of a gravitational field. It says that
◦
aλ = 0, which means that in



2.3. GRAVITATION AND THE GAUGE PARADIGM 31

General Relativity there is no the concept of gravitational force. In this the-
ory, the gravitational interaction is geometrized: the presence of gravitation
produces a curvature in spacetime, and the gravitational interaction is de-
scribed by letting the particles to follow the spacetime curvature. Any other
interaction would contribute with a force term to the right-hand side of the
geodesic equation.

For example, the motion of a test particle of mass m, electric charge
q and four-velocity uλ in the presence of both an electromagnetic and a
gravitational field is described by a Lorentz force law which generalizes (2.31):

duλ

ds
+
◦
Γ
λ
µρ u

µuρ =
q

mc2
F λ

νu
ν . (2.47)

The different roles played by the two kinds of interaction would be summa-
rized in the generalized Lorentz force equation for a particle with a gauge
charge qA, generalizing (2.33):

duλ

ds
+
◦
Γ
λ
µρ u

µuρ =
qA
mc2

FAλ
ν u

ν . (2.48)

While the gauge interaction engenders the force in the right-hand side, grav-
itation is a left-hand–side geometric effect.

2.3 Gravitation and the Gauge Paradigm

General Relativity is not a gauge theory. It differs from gauge theories in
many ways. The most relevant points are the following.

• The basic field of gauge theories is a connection, the gauge potential.
In General Relativity, it is the metric, with respect to which variations
are taken.

• There is a connection in General Relativity, but it is not a fundamental
field: given a metric, the Levi-Civita connection is immediately known.
Palatini approach is an attempt to circumvent this problem, but does
not solve it.

• The gauge lagrangians are quadratic in the curvature. In General Rel-
ativity the Einstein-Hilbert lagrangian is linear in the curvature.

• Gauge interactions always appear as a force, while in General Relativity
gravitation appears as a geometric effect.
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• General Relativity does not have a gauge group. Sometimes, diffeomor-
phism is considered as the gauge group of gravitation. However, as is
well known, any theory can be written in a covariant form, which means
that diffeomorphism is empty of dynamical meaning. Furthermore, it
takes place in spacetime, not in in the fiber.

In order to explore the possibility of describing gravitation as a gauge
theory, let us put the gauge paradigm to work. To get some insight on how
to proceed, let us first review the well known case of electromagnetism, a
gauge theory for the U(1) group. The source of the electromagnetic field is
the electric four-current. According to Noether theorem [40], this current is
conserved due to invariance of the source lagrangian under global transfor-
mations of the group U(1). In order to recover this symmetry for the case of
local transformations of the same group, it is necessary to introduce a connec-
tion assuming values in the Lie algebra of the U(1) group. This connection
represents the electromagnetic field, which emerges as a gauge theory for the
unitary group U(1).

Let us then play the same game for the gravitational case. As is well
known, the source of gravitation is the energy-momentum tensor. From
Noether theorem, this tensor is conserved provided the source lagrangian is
invariant under spacetime translations. If gravity has a gauge description,
therefore, it might be a gauge theory for the translation group. This theory
is just the Teleparallel Equivalent of General Relativity — or Teleparallel
Gravity — and is the theory that we will study in this book.



Chapter 3

Fundamentals of Teleparallel
Gravity

The foundations of Teleparallel Gravity, a gauge theory for the translation
group, are presented. Gauge transformations are introduced, and the cou-
pling of matter fields to gravitation discussed. The field strength of the
theory is shown to be the torsion tensor.

3.1 Geometrical Setting

The geometrical setting of Teleparallel Gravity — a gauge theory for the
translation group — is the tangent bundle: at each point p of coordinates xµ

of a general, riemannian spacetime R — the base space — there is “attached”
a Minkowski tangent-space M = TpR = TxµR — the fiber — on which the
gauge transformations take place (see Fig. 3.1, in which the tangent space
at p = {xµ} is indicated normally). A gauge transformation will be a point-
dependent translation of the TxµR coordinates xa,

x′
a

= xa + εa, (3.1)

with εa ≡ εa(xµ) the transformation parameters.
The generators of infinitesimal translations are here differential operators,

Pa =
∂

∂xa
≡ ∂a, (3.2)

which satisfy the commutation relations

[Pa, Pb] = 0. (3.3)

33
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The corresponding infinitesimal transformation can be written in the form

δxa = εbPb x
a. (3.4)

Let us insist on the fact that, due to the peculiar character of translations,

xa

x‘a

T µx
R

µx
R

Figure 3.1: Spacetime with the Minkowski tangent space at xµ.

any gauge theory including them will differ from the usual internal — Yang-
Mills type — gauge models in many ways, the most significant being the
presence of a tetrad field. The gauge bundle will always present the soldering
property, and the internal and external sectors of the theory will be linked to
each other. Teleparallelism will be necessarily a non-standard gauge theory.

3.2 Gauge Transformations of Source Fields

Let us consider now a general source field ψ. If V is an open set in spacetime,
ψ is represented by a local section ψV of the fiber bundle (see Figure 2.2),
which is given by a differentiable application of the form

ψV : V → π−1(V ), (3.5)

where π is the bundle projection from the fiber into spacetime [19]. Now, a
fiber bundle is always locally trivial, that is, π−1(V ) is always diffeomorphic
to V × F , with F the fiber on the gauge group acts:

π−1(V ) ∼ V × F. (3.6)

This diffeomorphism, usually called a “local trivialization”, is given by

fV : π−1(V )→ V × F. (3.7)
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For a fiber of dimension d, a local section ψV is an application

xµ → f−1
V (xµ, xA), (3.8)

where the coordinate set {xµ} indicates a point in spacetime and {xA(xµ)}
indicates a point in the fiber over xµ, with A = 1, . . . , d. Therefore, a general
source field ψ, defined as a section of the bundle, must depend on both
coordinates xµ and xA:

ψ = ψ(xµ, xA). (3.9)

In the case of internal, usual Yang–Mills gauge theories, the source field ψ
has a discrete set of components, it is a vector (a multiplet) in a fiber which is
the carrier space of the representation to which it belongs (see Section 2.1)).
For quantum–mechanical reasons, these representations must be unitary, and
only compact groups have finite unitary representations. Thus, the fiber is
a vector space of finite dimension, source fields are finite multiplets, whose
internal coordinates are the components. These components are distorted by
a multi–component phase αA by a gauge transformation as in Eq. (2.3).

For the case of the non-compact translation group, unitarity is anyhow
jeopardized. Each fiber is a copy of the whole Minkowski spacetime. The
continuum of coordinates, now indicated xa(xµ), takes on the role of com-
ponent indices in the above multiplets. The dependence of ψ on xa(xµ) is
written simply as

ψ = ψ(xa(xµ)). (3.10)

Under an infinitesimal tangent space translation, it transforms according to

δψ(xa(xµ)) = − εa∂aψ(xa(xµ)). (3.11)

It gives the functional change of ψ at a fixed xa and, of course, at fixed
spacetime point xµ — the typical transformation of gauge theories.

3.3 On the Coupling Prescriptions

In ordinary gauge theories, the coupling prescription amounts to replace
ordinary derivatives by covariant derivatives involving a connection. As an
example, let us consider the case of electromagnetism, a gauge theory for
the unitary group U(1). Under an infinitesimal gauge transformation with
parameter α = α(x), a (let us say) spinor field ψ changes according to

δψ = iαψ. (3.12)
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Its ordinary derivative, however, does not transform covariantly:

δ(∂µψ) = iα(∂µψ) + i(∂µα)ψ. (3.13)

In order to recover the covariance it is necessary to introduce a gauge poten-
tial Aµ, which is a connection taking values at the Lie algebra of the gauge
group U(1). It is then easy to see that

Dµψ = ∂µψ + iAµψ (3.14)

transforms covariantly,

δ(Dµψ) = iα(Dµψ), (3.15)

provided the gauge potential transforms according to

δAµ = −∂µα. (3.16)

The ensuing coupling prescription is consequently

∂µψ → Dµψ. (3.17)

Now, due to the fact that gravitation is not a background-independent
theory, the gravitational coupling prescription has two distinct parts. The
first is the replacement of the Minkowski metric ηµν by a general pseudo-
riemannian metric gµν representing a gravitational field:

ηµν → gµν . (3.18)

This part is universal in the sense that it affects equally all matter fields. As
we are going to see, it follows naturally from the requirement of covariance
under spacetime translations. The second part is related to the coupling of
the spins of matter fields to gravitation, and is related to the requirement of
covariance under Lorentz transformations. It appears in the form

∂µ → Dµ, (3.19)

with Dµ a Lorentz covariant derivative, still to be determined. Of course,
this part of the coupling is not universal in the sense that it depends on the
spin content of each field. Let us then explore separately these two coupling
prescriptions.
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3.4 Translational Coupling Prescription

3.4.1 Translational Gauge Potential

Let us consider a general source field ψ = ψ(xa(xµ)). As we have seen, under
an infinitesimal gauge translation it transforms according to

δψ = εa∂aψ. (3.20)

Like in the electromagnetic case discussed in the previous section, its ordinary
derivative does not transform covariantly:

δ(∂µψ) = εa∂a(∂µψ) + (∂µε
a)∂aψ. (3.21)

In order to recover the covariance, it is necessary to introduce a gauge po-
tential Bµ, a 1-form assuming values in the Lie algebra of the translation
group:

Bµ = Ba
µ Pa . (3.22)

In fact, it is easy to verify that

hµψ = ∂µψ +Ba
µ ∂aψ (3.23)

transforms covariantly,
δ(hµψ) = εa∂a(hµψ), (3.24)

provided the gauge potential transforms according to

δBa
µ = −∂µεa. (3.25)

The translational coupling prescription is then given by

∂µψ → hµψ = ∂µψ +Bµψ. (3.26)

Comment 3.1 The covariant derivative (3.23) can also be obtained from the general
definition of covariant derivative [19]

hµ = ∂µ +Baµ
δ

δεa
, (3.27)

where
δ

δεa
=

∂

∂εa
− ∂ρ

∂

∂(∂ρεa)
+ · · · (3.28)

is the Lagrange derivative with respect to the parameter εa. Using the transformation
(3.20), the covariant derivative of ψ is found to be

hµψ = (∂µ +Baµ ∂a)ψ, (3.29)

which is the same as (3.23).
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3.4.2 Implications for the Metric

The translational covariant derivative (3.23) can be rewritten in the form

hµψ = (∂µx
a +Ba

µ)∂aψ. (3.30)

Defining the tetrad field by

haµ = ∂µx
a +Ba

µ, (3.31)

it can be rewritten as

hµψ = haµ ∂aψ. (3.32)

Notice that the tetrad is gauge invariant, as can be easily seen by using the
gauge transformations δxa = εa and δBa

µ = − ∂µεa.

Comment 3.2 It is important to remark that, since the generators Pa = ∂a are deriva-
tives which act on matter fields ψ(xa(xµ)) through their tangent–space arguments xa,
which are the same for all, every source field in Nature will respond equally to their
action, and consequently will couple equally to the translational gauge potentials. All
of them, therefore, will feel gravitation the same. This is the origin of the concept of
universality according to Teleparallel Gravity.

When the translational covariant derivative is written in the form (3.32),
the translational coupling prescription acquires a very simple form. In fact,
if we write the ordinary derivative ∂µψ as

∂µψ = eaµ∂aψ, (3.33)

with eaµ = ∂µx
a, the translational coupling prescription assumes the form

eaµ ∂aψ → haµ ∂aψ. (3.34)

That is to say,

eaµ → haµ. (3.35)

Concomitantly with this replacement, the spacetime metric changes accord-
ing to

ηµν = ηab e
a
µe
b
ν → gµν = ηab h

a
µh

b
ν . (3.36)

The change in spacetime metric is, therefore, a direct consequence of the
translational coupling prescription.
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3.4.3 Translational Coupling in a General Frame

Up to now, we have used a class of Lorentz frames where no inertial effects
are present. The equivalent expressions valid in a general Lorentz frame can
be obtained by performing a local Lorentz transformation xa → Λb

a xb, under
which

ψ → U(Λ)ψ, (3.37)

with U(Λ) an element of the Lorentz group in the representation appropriate
for the source field ψ. Considering that Ba

µ → Λb
aBb

µ, it is then immediate
to see that the translational covariant derivative (3.32) transforms covari-
antly,

hµψ → U(Λ)hµψ, (3.38)

where now
haµ = ∂µx

a +
•
A
a
bµ x

b +Ba
µ, (3.39)

with •
A
b
cµ = Λb

d ∂µΛc
d (3.40)

a purely inertial Lorentz connection. In this class of frames, therefore, the
translational coupling prescription assumes the form

eaµ∂a ψ → haµ ∂a = (∂µx
a +

•
A
a
bµ x

b +Ba
µ) ∂aψ. (3.41)

Introducing the Lorentz covariant derivative

•
Dµxa = ∂µx

a +
•
A
a
bµ x

b, (3.42)

the tetrad becomes
haµ =

•
Dµxa +Ba

µ. (3.43)

In this new class of frames, the gauge potential Ba
µ transforms according to

δBa
µ = −

•
Dµεa (3.44)

under a gauge translation δxa = εa. We see in this way that the tetrad
remains gauge invariant.

3.5 Spin Coupling Prescription

3.5.1 General Covariance Principle

Let us now obtain the spin part of the gravitational coupling prescription.
This coupling prescription can be obtained from the so-called principle of
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general covariance [35]. This principle states that an equation valid in Spe-
cial Relativity can be made to hold in the presence of gravitation if it is
generally covariant, that is, if it preserves its form under general coordinate
transformations. Now, in order to make an equation generally covariant, it is
always necessary to introduce a connection, which is in principle concerned
only with the inertial properties of the coordinate system under considera-
tion. As long as only coordinate transformations are involved, just a vacuum
connection (with zero curvature and torsion) is needed. Then, by using the
equivalence between inertial and gravitational effects, that connection is re-
placed by a connection representing a true gravitational field. The crucial
point is a formal property: the equations have the same forms for vacuum
and non-vacuum connections. In this way, equations valid in the presence of
gravitation are obtained from the corresponding equations holding in Special
Relativity.

The principle of general covariance can be seen as an active version of
the equivalence principle in the sense that, by making a special-relativistic
equation covariant and using the strong equivalence principle, it is possible
to obtain its form in the presence of gravitation. The usual form of the equiv-
alence principle, on the other hand, can be interpreted as its passive version:
the special-relativistic equation must be recovered in a locally inertial frame.
It should be emphasized that general covariance by itself is empty of physical
content, as any equation can be made generally covariant. Only when use is
made of the local equivalence between inertial and gravitational effects, and
the compensating term is re-interpreted as representing a true gravitational
field, can the principle of general covariance be seen as an active version of
the strong equivalence principle [36].

The above description of the general covariance principle refers to its usual
holonomic version. An alternative, more general version of the principle can
be obtained by using non-holonomic frames. The basic difference between
these two versions is that, instead of requiring that an equation be covariant
under a general coordinate transformation, in the anholonomic-frame version
the equation is required to be covariant under a local Lorentz transformation
of the frame. In spite of the different nature of the involved transformations,
the physical content of both approaches is the same [37]. The frame version
is, however, more general: unlike the coordinate version, it holds for integer
as well as for half-integer spin fields.

An important point of the general covariance principle is that it defines
in a natural way a Lorentz-covariant derivative, and consequently also a
gravitational coupling prescription. The process of obtaining this coupling
prescription comprises then two steps. The first is to pass to a general an-
holonomic frame, where inertial effects — which appear in the form of a
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compensating term, or vacuum Lorentz connection — are present. Then, by
using the strong equivalence principle, instead of inertial effects, the compen-
sating term can be replaced by a connection representing a true gravitational
field, yielding in this way a gravitational coupling prescription.

3.5.2 Passage to an anholonomic frame

The first step to obtain the spin coupling prescription is to pass to a general
anholonomic frame. Let us then consider a vector field vc on Minkowski
spacetime. Its ordinary derivative in frame is

∂av
c = δµa ∂µv

c. (3.45)

In this expression,
∂a = δµa ∂µ (3.46)

represents a trivial (holonomous) frame, with components δµa . Under a local
Lorentz transformation Λd

c(x) ≡ Λd
c, a vector field transforms according to

vc = Λd
c vd. (3.47)

The original and the Lorentz–transformed derivatives are related by

∂av
c = Λb

a Λd
cDbV d, (3.48)

where
DbV d = hbV

d + Λd
e hb(Λg

e)V g, (3.49)

and
hb = Λb

a ∂a (3.50)

is the transformed frame. Due to the locality of the Lorentz transformation,
it is anholonomic:

[hb, hc] = fabc ha. (3.51)

Comment 3.3 Notice that the connection appearing in the covariant derivative (3.49)
is exactly the inertial connection (3.40):

Λde hb(Λge) ≡
•
A
d
gb =

•
A
d
gµhg

µ. (3.52)

Making use of the orthogonality property of the tetrads, we see from
Eq. (3.50) that the Lorentz group element can be written in the form

Λb
d = hb

ρ δdρ. (3.53)
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From this expression, it follows that

Λc
d ha(Λb

d) = 1
2

(fb
c
a + fa

c
b − f cba) . (3.54)

Substituting in the covariant derivative (3.49), it becomes

DaV c = haV
c + 1

2
(fb

c
a + fa

c
b − f cba)V b. (3.55)

The freedom to choose any tetrad {ha} as a moving frame on Minkowski
spacetime introduces the compensating term 1

2
(fb

c
a + fa

c
b − f cba) in the

derivative of the vector field. This term is, of course, concerned only with
the inertial properties of that frame. In other words, it represents the inertial
effects inherent to the chosen frame.

3.5.3 Identifying inertia with gravitation

Let us begin by rewriting relation (1.47) in the form

Acba − Acab = T cab + f cab, (3.56)

where Acba is a general Lorentz connection, with T cba its torsion. Use of this
equation for three different combination of indices gives

1
2

(fb
c
a + fa

c
b − f cba) = Acba −Kc

ba, (3.57)

where
Kc

ba = 1
2

(Tb
c
a + Ta

c
b − T cba) (3.58)

is the contortion tensor in the tetrad frame. Considering that the covari-
ant derivative (3.55) is written in Minkowski spacetime, the coefficient of
anholonomy f cba represents inertial effects only. The left-hand side of ex-
pression (3.57) represents, in this case, inertial effects present in the frame.
The right-hand side represents a gravitational field which is locally equivalent
to those inertial effects.

Comment 3.4 It is important to remark that, in the presence of gravitation the coeffi-
cient of anholonomy f cba represents both inertia and gravitation. In Chapter 4 this point
will be discussed in more details.

According to the general covariance principle, therefore, substituting (3.57)
in the covariant derivative (3.55), which is a flat spacetime covariant deriva-
tive as seen in a general frame, we obtain the covariant derivative valid in
the presence of gravitation:

DaV c = haV
c + (Acba −Kc

ba)V
b. (3.59)
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In terms of the vector representation

(Seb)
c
d = i (δce ηbd − δcb ηed) (3.60)

of the Lorentz generators, it assumes the form

DaV c = haV
c − i

2

(
Aeba −Keb

a

)
(Seb)

c
d V

d. (3.61)

Although obtained in the specific case of a Lorentz vector field, the com-
pensating term (3.54) can be easily verified to be the same for any repre-
sentation. In fact, considering a general source field ψ carrying an arbitrary
representation of the Lorentz group, it Lorentz transformation will be

ψ′ = U(Λ)ψ, (3.62)

where
U(Λ) = exp

(
i
2
εbcS

bc
)

is the element of the Lorentz group in the arbitrary representation Sbc. As a
simple calculation shows, also in this case we obtain that [37]

U(Λ)haU
−1(Λ) = i

4
(fbca + facb − fcba) Sbc. (3.63)

In this case, the covariant derivative (3.61) reads

Daψ = haψ − i
2

(
Abca −Kbc

a

)
Sbc ψ. (3.64)

3.6 Full Gravitational Coupling Prescription

The full gravitational coupling prescription is then composed of two parts:
one, corresponding to the (universal) translational coupling prescription,
which is represented by

eaµ ∂aψ → haµ ∂aψ, (3.65)

and another, corresponding to the (non-universal) spin coupling prescription,
represented by

∂aψ → Daψ. (3.66)

Put together, they yield the full gravitational coupling prescription,

eaµ ∂aψ → haµDaψ = haµ
[
haψ − i

2

(
Abca −Kbc

a

)
Sbc ψ

]
. (3.67)

Equivalently, we can write

∂µψ → Dµψ = ∂µψ − i
2

(
Aabµ −Kab

µ

)
Sab ψ. (3.68)
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In this case, however, it is understood that, after the application of the
coupling prescription, the spacetime indices µ, ν, ρ . . . are raised and lowered
with the metric

gµν = ηab h
a
µh

b
ν . (3.69)

It is important to emphasize once more that this is the gravitational coupling
prescription that follows from the general covariance principle, that is to
say, from the strong equivalence principle. Any other form of the coupling
prescription will be in contradiction with the equivalence principle.

3.7 Possible Connections

Then comes the crucial point: the general covariance principle does not de-
termine uniquely the Lorentz connection Abcµ. In fact, from the point of
view of the coupling prescription, the connection can be chosen freely among
the infinitely many possibilities, each one characterized by a connection with
different values of curvature and torsion. Due to the identity

Abcµ −Kbc
µ =

◦
A
bc
µ, (3.70)

with
◦
Abcµ the (torsionless) spin connection of General Relativity, any one

of the choices will give rise to a coupling prescription that is ultimately
equivalent to the coupling prescription of General Relativity.

However, there is a strong constraint that must be taken into account:
considering that the source of gravitation is the symmetric energy-momentum
tensor, which has ten independent components, the gravitational field equa-
tions will be constituted by a set of ten independent differential equations.
The choice of the connection, therefore, is restricted not to exceed ten inde-
pendent components, otherwise the field equations will be unable to deter-
mine it univocally. As we are going to see, there are only two choices that
respect the above constraint.

3.7.1 General Relativity Connection

The first possibility is to follow Einstein and choose the torsionless connection

Abcµ =
◦
A
bc
µ, (3.71)

in which case the coupling prescription reads

eaµ ∂aψ → haµ
◦
Daψ = haµ

[
haψ − i

2

◦
Abca Sbc ψ

]
. (3.72)
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Equivalently, we can write

∂µψ →
◦
Dµψ = ∂µψ − i

2

◦
Abcµ Sbc ψ, (3.73)

with the spacetime indices now raised and lowered with the spacetime metric

gµν . Since the connection
◦
Abcµ is completely determined by the spacetime

metric, no additional degrees of freedom is introduced by this choice. In

fact, the linear connection
◦
Γρνµ corresponding to

◦
Abcµ is just the Christoffel

connection of the metric gµν :

◦
Γ
ρ
νµ = 1

2
gρλ (∂νgλµ + ∂µgλν − ∂λgνµ) . (3.74)

The gravitational theory based on such connection is General Relativity,
whose main properties were described in Chapter 2.

3.7.2 Teleparallel Connection

A second possible choice that, like in the case of General Relativity, does not
introduce any additional degrees of freedom into the theory, is to assume that
the Lorentz connection Aabµ does not represent gravitation at all, but only
inertial effects. This means to choose Abcµ as the inertial connection1

•
A
b
cµ = Λb

d ∂µΛc
d. (3.75)

The gravitational theory corresponding to this choice is just Teleparallel
Gravity. In this theory, the gravitational field is fully represented by the
the gauge potential Ba

µ, which appears as the non-trivial part of the tetrad
field [see Section 3.4]. In Teleparallel Gravity, therefore, Lorentz connections
keep their special relativity role of representing inertial effects only.

The teleparallel coupling prescription is then given by [39]

eaµ ∂aψ → haµ
••
Daψ = haµ

[
haψ − i

2

( •
Abca −

•
Kbc

a

)
Sbc ψ

]
, (3.76)

with
•
Kbc

µ the contortion of the connection
•
Abcµ. Alternatively, one can write

∂µψ →
••
Dµψ = ∂µψ − i

2
(
•
Abcµ −

•
Kbc

µ)Sbc ψ, (3.77)

with the spacetime indices now raised and lowered with the spacetime metric
gµν . In the specific case of a Lorentz vector field V b, for which Sbc is given
by Eq. (3.60), the coupling prescription assumes the form

∂µV
b →

••
DµV b = ∂µV

b +
( •
A
b
cµ −

•
K
b
cµ

)
V c. (3.78)

1All quantities related to Teleparallel Gravity will be denoted with an over “•”.
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The corresponding expression for the spacetime vector V ρ = hc
ρ V c is

∂µV
ρ →

••
∇µV

ρ = ∂µV
ρ +

( •
Γ
ρ
λµ −

•
K
ρ
λµ

)
V λ. (3.79)

These two derivatives are related by

••
DµV b = hbρ

••
∇µV

ρ.

Of course, due to the identity

•
A
bc
µ −

•
K
bc
µ =

◦
A
bc
µ, (3.80)

the above coupling prescription is equivalent to the coupling prescription
of General Relativity. However, the gravitational theory based on the spin
connection (3.75), although physically equivalent to General Relativity is,
conceptually speaking, completely different. In particular, since that con-
nection represents inertial effects only, the gravitational field in this theory
turns out to be fully represented by the translational gauge potential Ba

µ, as
it should be for a gauge theory for the translation group. This is the theory
known as Teleparallel Gravity.

3.8 Curvature versus Torsion

The curvature of the teleparallel connection (3.75) vanishes identically:

•
R
a
bνµ = ∂ν

•
A
a
bµ − ∂µ

•
A
a
bν +

•
A
a
eν

•
A
e
bµ −

•
A
a
eµ

•
A
e
bν = 0. (3.81)

On the other hand, for a tetrad involving a non-trivial translational gauge
potential Ba

µ, that is to say, for

haµ =
•
Dµxa +Ba

µ (3.82)

with Ba
µ 6=

•
Dµεa, torsion is non-vanishing:

•
T
a
νµ = ∂νh

a
µ − ∂µhaν +

•
A
a
eνh

e
µ −

•
A
a
eµh

e
ν 6= 0. (3.83)

This connection can be considered a kind of “dual” of the General Relativity
connection, which is a connection with vanishing torsion,

◦
T
a
νµ = ∂νh

a
µ − ∂µhaν +

◦
A
a
eνh

e
µ −

◦
A
a
eµh

e
ν = 0 (3.84)
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but non-vanishing curvature,
◦
R
a
bνµ = ∂ν

◦
A
a
bµ − ∂µ

◦
A
a
bν +

◦
A
a
eν

◦
A
e
bµ −

◦
A
a
eµ

◦
A
e
bν 6= 0. (3.85)

We see in this way that, whereas in General Relativity torsion vanishes, in
Teleparallel Gravity it is curvature that vanishes. It is opportune to reinforce
here that, from the gauge point of view, curvature and torsion are properties
of connections, not of spacetime. Note, for example, that many different
connections, each one with different curvature and torsion, can be defined on
the very same metric spacetime.

Comment 3.5 As we are going to see later, General Relativity is completely equiva-
lent to Teleparallel Gravity. This means essentially that torsion shows up simply as an
alternative to curvature in the description of the gravitational interaction. In other words,
torsion and curvature are related to the same degrees of freedom of gravity. In Chapter 14
we will present and discuss a gravitational model in which curvature and torsion represent
independent degrees of freedom.

The linear connection corresponding to the spin connection
•
Aabµ is

•
Γ
ρ
νµ = ha

ρ
(
∂µh

a
ν +

•
A
a
bµh

b
ν

)
≡ ha

ρ
•
Dµhaν . (3.86)

This is the so-called Weitzenböck connection. Its definintion is equivalent to
the identity

∂µh
a
ν +

•
A
a
bµh

b
ν −

•
Γ
ρ
νµ h

a
ρ = 0. (3.87)

In the class of frames in which the spin connection
•
Aabµ vanishes, it becomes

∂µh
a
ν −

•
Γ
ρ
νµ h

a
ρ = 0, (3.88)

which is the absolute, or distant parallelism condition, from where Telepar-
allel Gravity got its name.

The Weitzenböck connection
•
Γρµν is related to the Levi-Civita connection

◦
Γρµν of General Relativity by

•
Γ
ρ
µν =

◦
Γ
ρ
µν +

•
K
ρ
µν . (3.89)

In terms of it, the Weitzenböck torsion is written as
•
T
ρ
µν =

•
Γ
ρ
νµ −

•
Γ
ρ
µν , (3.90)

whereas the (vanishing) Weitzenböck curvature is

•
R
λ
ρνµ = ∂ν

•
Γ
λ
ρµ − ∂µ

•
Γ
λ
ρν +

•
Γ
λ
σν

•
Γ
σ
ρµ −

•
Γ
λ
σµ

•
Γ
σ
ρν = 0. (3.91)

Comment 3.6 It should be remarked that R. Weitzenböck does not seem to have ever
written expression (3.86). In spite of this, the name “Weitzenböck connection” is com-
monly used to denote this particular case of a Cartan connection.
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3.9 Translational Field Strength

Like in ordinary gauge theories, the field strength of Teleparallel Gravity is
given by the covariant rotational of the gauge potential:

•
T
a
µν =

•
DµBa

ν −
•
DνBa

µ. (3.92)

Adding to it the vanishing torsion

•
Dµeaν −

•
Dνeaµ ≡ [

•
Dµ,

•
Dν ]xa = 0

of the inertial tetrad eaµ =
•
Dµxa, we get

•
T
a
µν =

•
Dµ(

•
Dνxa +Ba

ν)−
•
Dν(

•
Dµxa +Ba

µ). (3.93)

Since, according to (3.43),

•
Dµxa +Ba

µ = haµ (3.94)

is the tetrad field, we see that the field strength of Teleparallel Gravity co-
incides with torsion: •

T
a
µν =

•
Dµhaν −

•
Dνhaµ. (3.95)

Comment 3.7 As in any gauge theory, the field strength can also be obtained from
the commutation relation of gauge covariant derivatives. Using the translational covariant
derivative (3.23), one can easily verify that

[hµ, hν ] =
•
T
a
µνPa. (3.96)

Furthermore, due to the soldered character of the tangent bundle, torsion shows up also
as the anholonomy of the translational covariant derivative:

[hµ, hν ] =
•
T
ρ
µνhρ. (3.97)

Since the tetrad is gauge invariant, the field strength
•
T aµν is also invariant

under gauge transformations:

•
T
′a
µν =

•
T
a
µν . (3.98)

This is an expected result because, being the gauge group abelian, any field
belonging to the adjoint representation, like for example the field strength,
must be gauge invariant.

Comment 3.8 Remember that the generators of infinitesimal gauge transformations of
fields belonging to the adjoint representation are the coefficient of structure of the group,
taken as matrices. Since these coefficients vanish for abelian groups, fields belonging to
the adjoint representations of abelian gauge theories will consequently be invariant. The
gauge transformation of source fields, as we have seen in Section 3.3, are generated by
Pa = ∂/∂xa.



Chapter 4

Particle Mechanics

The teleparallel equation of motion of test particles is obtained, its equiva-
lence with the geodesic equation discussed, and the roles played by torsion
and curvature in the description of the gravitational interaction clarified. It is
then shown that, because its spin connection represents inertial effects only,
Teleparallel Gravity produces a separation between inertia and gravitation.
The gravitational field in this theory is represented by a translational gauge
potential, whose time components coincide with the gravitational potential
in the Newtonian limit.

4.1 Free Particles Revisited

4.1.1 Basic Notions

Let us start with Minkowski spacetime, whose quadratic interval is

dσ2 = ηab dx
′a dx′b. (4.1)

Consider now the trivial, holonomous (inertial) tetrad

e′aµ = ∂µx
′a. (4.2)

Under a local Lorentz transformation xb = Λb
a x
′a, the tetrad transforms

according to
ebµ = Λb

a e
′a
µ, (4.3)

where
eaµ = ∂µx

a +
•
A
a
bµ x

b ≡
•
Dµxa (4.4)

is the new tetrad, with
•
Aabµ the inertial connection (3.75). In the new frame

ea = dxa +
•
A
a
b x

b, (4.5)

49
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with ea = eaµ dx
µ, the quadratic interval (4.1) reads

dσ2 = ηab e
a eb (4.6)

Since the metric is Lorentz invariant, the quadratic interval can also be writ-
ten in the form

dσ2 = ηµν dx
µdxν (4.7)

where
ηµν = ηab e

a
µ e

b
ν (4.8)

is the Minkowski spacetime metric.
The particle four-velocity is defined by

uµ =
dxµ

dσ
. (4.9)

Hence, along the trajectory of the particle, we can write

dσ = uµ dx
µ. (4.10)

Using the tetrad (4.4), we define the anholonomic four-velocity:

ua = eaµ u
µ = ea

(
1

dσ

)
. (4.11)

In terms of the anholonomic base ea, the spacetime interval along the particle
trajectory can be written in the form

dσ = ua e
a. (4.12)

4.1.2 Free Equation of Motion

A free particle of mass m is represented by the action integral

S = −mc
∫ b

a

dσ = −mc
∫ b

a

ua e
a. (4.13)

Substituting

ea = dxa +
•
A
a
bµ dx

µ, (4.14)

it assumes the form

S = −mc
∫ b

a

ua(dx
a +

•
A
a
bµ x

b dxµ). (4.15)
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Under the general spacetime variation xµ → xµ + δxµ, action (4.13) changes
according to

δS = −mc

∫ b

a

[
ea δua + ua dδx

a + ua δ(
•
A
a
bµx

b)dxµ

+ua
•
A
a
bµx

b d(δxµ)
]
. (4.16)

where we have used that [δ, d] = 0. Writing the quadratic spacetime interval
in the form

ds2 = ηab e
a eb, (4.17)

a direct calculation shows that

δ(ds) = ua δe
a. (4.18)

On the other hand, writing the interval in the form

ds = ua e
a, (4.19)

we get
δ(ds) = ua δe

a + ea δua. (4.20)

From Eqs. (4.18) and (4.20), we see immediately that

ea δua = 0. (4.21)

Substituting in (4.16), it becomes

δS = −mc

∫ b

a

[
ua dδx

a + ua δ(
•
A
a
bµx

b)dxµ + ua
•
A
a
bµx

b d(δxµ)
]
. (4.22)

Integrating by parts the first and the third terms and neglecting the
surface terms, we obtain

δS = mc

∫ b

a

[
dua δx

a − ua δ(
•
A
a
bµx

b) dxµ + d(ua
•
A
a
bµx

b) δxµ
]
. (4.23)

Performing the variations and differentials, and using the expressions

δxa = ∂µx
aδxµ and δ

•
A
a
bµ = ∂ρ

•
A
a
bµδx

ρ,

after a straightforward algebra, we get

δS = mc

∫ b

a

[
eaµ

(dua
dσ
−
•
A
b
aρ ub u

ρ
)
−
•
R
a
bµρ x

b ua u
ρ
]
dσ δxµ. (4.24)
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Since the curvature
•
Ra

bµρ of the inertial connection
•
Aabµ vanishes identically,

we are left with

δS = mc

∫ b

a

[
eaµ

(
dua
dσ
−
•
A
b
aρ ub u

ρ

)]
dσ δxµ. (4.25)

Considering then the invariance of the action, δS = 0, and the arbitrariness
of δxµ, we obtain the equation of motion

uρ
•
Dρua ≡

dua
dσ
−
•
A
b
aρ ub u

ρ = 0, (4.26)

whose contravariant form is

uρ
•
Dρua ≡

dua

dσ
+
•
A
a
bρ u

b uρ = 0. (4.27)

This is the equation of motion of a free particle as seen from a general Lorentz
frame. Of course, in the class of inertial frames e′a, the inertial connection
•
A′abρ vanishes and the equation of motion reduces to

du′a

dσ
= 0. (4.28)

Comment 4.1 We have said at the previous chapter that the spin connection of Telepar-
allel Gravity keeps the special relativity role of describing inertial effects only. This is the
reason why the same spin connection appears in the free-particle equation of motion when
described from an anholonomic frame.

4.2 Gravitationally Coupled Particles

4.2.1 Coupling Prescription

In Classical Mechanics, where particles are not represented by fields, the
gravitational coupling prescription is carried out by replacing a trivial tetrad
on Minkowski space by a non-trivial tetrad representing a gravitational field:

eaµ → haµ. (4.29)

In the specific case of Teleparallel Gravity, this is achieved by replacing

eaµ =
•
Dµxa → haµ =

•
Dµxa +Ba

µ, (4.30)
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with Ba
µ the translational gauge potential. In consonance with this replace-

ment, the spacetime metric changes according to

ηµν = ηab e
a
µ e

b
ν → gµν = ηab h

a
µh

b
ν . (4.31)

As a consequence, the quadratic interval becomes

dσ2 = ηµν dx
µ dxν → ds2 = gµν dx

µ dxν , (4.32)

or equivalently, in terms of anholonomic bases,

dσ2 = ηab e
a eb → ds2 = ηab h

a hb. (4.33)

Along the particle trajectory, therefore, the spacetime interval can be written
formally as

ds = gµρ u
µ dxρ = ηab u

a hb. (4.34)

The holonomic and the anholonomic particle four-velocities will now satisfy
the relation

uρ ≡ dxρ

ds
= ua ha

ρ. (4.35)

4.2.2 Coupled Equation of Motion

As previously said, the action representing a free particle of mass m can be
written as

S = −mc
∫ b

a

ua e
a. (4.36)

In the presence of gravitation, the corresponding action is obtained by ap-
plying the coupling prescription (4.30), in which case it becomes

S = −mc

∫ b

a

ua

[
dxa +

•
A
a
bµ x

b dxµ +Ba
µ dx

µ
]
. (4.37)

This is the teleparallel version of the action, as described from a general

Lorentz frame. In the class of frames e′a in which the inertial connection
•
A′ab

vanishes, it reduces to

S = −mc

∫ b

a

u′a [dx′a +B′aµ dx
µ] . (4.38)
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Comment 4.2 It is interesting to observe that, due to the gauge structure of Telepar-
allel Gravity, the action has a form similar to the action of a charged particle in an
electromagnetic field. In fact, if the particle has additionally an electric charge q and is in
the presence of an electromagnetic potential A′µ, the total action has the form

S = −mc
∫ b

a

[
u′a dx

′a + u′aB
′a
µ dx

µ +
q

mc2
A′µ dx

µ
]
. (4.39)

Notice that, whereas the electromagnetic interaction depends on the relation q/m of the
particle, the gravitational interaction has already been assumed to be universal in the sense
that it does not depend on any property of the particle. In Chapter 9 we will present a
more detailed discussion of this point.

Under the general spacetime variation xµ → xµ + δxµ, action (4.37)
changes according to

δS = −mc

∫ b

a

[
ha δua + ua dδx

a + ua δ
•
A
a
bµx

b dxµ + ua
•
A
a
bµδx

b dxµ

+ua
•
A
a
bµx

b dδxµ + ua δB
a
µ dx

µ + uaB
a
µ dδx

µ
]
. (4.40)

where
ha = dxa +

•
A
a
bµx

bdxµ +Ba
µdx

µ, (4.41)

and where we have already used that [δ, d] = 0. Writing the quadratic
spacetime interval in the form

ds2 = ηab h
a hb, (4.42)

a direct calculation shows that

δ(ds) = ua δh
a. (4.43)

On the other hand, writing the interval in the form

ds = ua h
a, (4.44)

we get
δ(ds) = ua δh

a + ha δua. (4.45)

From Eqs. (4.43) and (4.45), we see immediately that

ha δua = 0. (4.46)

Substituting in (4.40), it becomes

δS = −mc

∫ b

a

[
ua dδx

a + ua δ
•
A
a
bµx

b dxµ + ua
•
A
a
bµδx

b dxµ

+ua
•
A
a
bµx

b dδxµ + ua δB
a
µ dx

µ + uaB
a
µ dδx

µ
]
. (4.47)
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Integrating by parts the terms containing differentials and neglecting the
surface terms, we get

δS = mc

∫ b

a

[
duaδx

a − uaδ
•
A
a
bµx

bdxµ − ua
•
A
a
bµδx

bdxµ

+ d(ua
•
A
a
bµx

b)δxµ − uaδBa
µdx

µ + d(uaB
a
µ)δxµ

]
. (4.48)

Performing the differentials and variations, substituting the expressions

δxa = ∂µx
aδxµ, δ

•
A
a
bµ = ∂ρ

•
A
a
bµδx

ρ, δBa
µ = ∂ρB

a
µδx

ρ, (4.49)

and considering that the curvature
•
Ra

bµρ of the teleparallel spin connection
•
Aabρ vanishes identically, we get finally

δS = mc

∫ b

a

[
haµ

(
dua
ds
−
•
A
b
aρ ub u

ρ

)
−
•
T
b
µρ ub u

ρ

]
δxµ ds, (4.50)

where •
T
a
µρ =

•
DµBa

ρ −
•
DρBa

µ (4.51)

is the translational field strength, or torsion. From the invariance of the
action, δS = 0, and taking into account the arbitrariness of δxµ, the equation
of motion is found to be

dua
ds
−
•
A
b
aρ ub u

ρ =
•
T
b
aρ ub u

ρ. (4.52)

Its contravariant version is

dua

ds
+
•
A
a
bρ u

b uρ =
•
T b

a
ρ u

b uρ. (4.53)

Using the identity
•
T
b
aρ ub u

ρ = −
•
K
b
aρ ub u

ρ, (4.54)

they can be rewritten, respectively, in the forms

dua
ds
−
•
A
b
aρ ub u

ρ = −
•
K
b
aρ ub u

ρ. (4.55)

and
dua

ds
+
•
A
a
bρ u

b uρ =
•
K
a
bρ u

b uρ. (4.56)

This is the teleparallel equation of motion of a particle of mass m in a gravi-
tational field — as seen from a general Lorentz frame. It is a force equation,
with torsion (or contortion) playing the role of force. It is interesting to
observe that, since the conserved charge in teleparallel gravity is just the
four-momentum pa, the Wong equation [see Section 2.1] in this case coin-
cides with the particle equation of motion.
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Comment 4.3 By contraction with tetrads, and using identity (3.87), the equation of
motion (4.52) can be written in a purely spacetime form

duµ
ds
−
•
Γθµν uθ uν =

•
T
θ
µν uθ u

ν , (4.57)

where
•
Γθµν is the Weitzenböck connection. Substituting

•
T
θ
µν =

•
Γθνµ −

•
Γθµν , (4.58)

it reduces to
duµ
ds
−
•
Γθνµ uθ uν = 0. (4.59)

Due to the wrong positions of the indices, however, as well as to the fact that the
Weitzenböck connection is not symmetric in the last two indices, the left-hand side of the
equation (4.59) is not the covariant derivative of the four-velocity uµ. This means that
test particles do not follow the geodesics (or the auto-parallels) of the “torsioned space-
time”. In Teleparallel Gravity, therefore, the gravitational interaction is not geometrized,
but described by a force — with torsion playing the role of force.

4.2.3 Equivalence with the Geodesic Equation

Let us rewrite the force equation (4.56) in the form

dua

ds
+ (

•
A
a
bρ −

•
K
a
bρ)u

b uρ = 0. (4.60)

Remembering that
•
A
a
bρ −

•
K
a
bρ =

◦
A
a
bρ, (4.61)

with
◦
Aabρ the spin connection of General Relativity, the teleparallel force

equation (4.56) is found to coincide with the geodesic equation

dua

ds
+
◦
A
a
bρ u

b uρ = 0 (4.62)

of General Relativity. We see in this way that the teleparallel description
of the gravitational interaction is completely equivalent to the description of
General Relativity.

There are conceptual differences, though. In General Relativity, a theory
fundamentally based on the weak equivalence principle, curvature is used
to geometrize the gravitational interaction. The gravitational interaction in
this case is described by letting (spinless) particles to follow the curvature
of spacetime. Geometry replaces the concept of force, and the trajectories
are determined, not by force equations, but by geodesics. Teleparallel Grav-
ity, on the other hand, attributes gravitation to torsion. Torsion, however,
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accounts for gravitation not by geometrizing the interaction, but by acting
as a force. In consequence, there are no geodesics in Teleparallel Gravity,
only force equations quite analogous to the Lorentz force equation of elec-
trodynamics [14]. This is an expected result because, like electrodynamics,
Teleparallel Gravity is also a gauge theory.

Comment 4.4 This equivalence should not be surprising. In fact, let us take again the
teleparallel action (4.37):

S = −mc

∫ b

a

ua

[
dxa +

•
A
a
b x

b +Ba
]
. (4.63)

If we use the identity

ua(dxa +
•
A
a
b x

b +Ba) = ua h
a ≡ ds, (4.64)

we see that the above action reduces to

S = −mc

∫ b

a

ds, (4.65)

which is the usual general-relativistic form of the action, from where the geodesic equation
is usually obtained.

4.3 Separating Inertia from Gravitation

To begin with, let us consider again the tetrad field:

haµ =
•
Dµxa +Ba

µ. (4.66)

Whereas the first term is purely inertial, the second is purely gravitational.
This means that both inertia and gravitation are included in haµ. As a
consequence, the coefficient of anholonomy of a given frame ha, which is
given by

f cab = ha
µhb

ν(∂νh
c
µ − ∂µhcν), (4.67)

will also include both inertia and gravitation.
Now, as discussed in Chapter 3, the spin connection of General Relativity

is
◦
A
a
bc = 1

2
(fb

a
c + fc

a
b − fabc). (4.68)

As a consequence, it represents both inertia and gravitation. To see that
this is in fact the case, let us recall that, in its standard formulation, the
strong equivalence principle says that it is always possible to find a frame
in which inertia compensates gravitation locally, that is, in a point or along
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a world-line. In that local frame, the spin connection of general relativity
vanishes:

◦
A
a
bc = 0. (4.69)

This vanishing is possible just because both inertia and gravitation are in-

cluded in
◦
Aabρ. When they locally compensate each other, the spin connec-

tion vanishes. In this local frame, the geodesic equation

dua

ds
+
◦
A
a
bρ u

b uρ = 0, (4.70)

reduces to the equation of motion of a free particle in a local inertial frame:

dua

ds
= 0. (4.71)

On the other hand, substituting the identity

◦
A
a
bc =

•
A
a
bc −

•
K
a
bc, (4.72)

the geodesic equation (4.70) becomes the force equation of Teleparallel Grav-
ity:

dua

ds
+
•
A
a
bρ u

b uρ =
•
K
a
bρ u

b uρ. (4.73)

Since the teleparallel spin connection
•
Aabρ represents inertial effects only, the

splitting (4.72) corresponds actually to a separation between inertia and grav-
itation [44]. Accordingly, the right-hand side of the equation of motion (4.73)
represents the purely gravitational force, which transforms covariantly under
local Lorentz transformations. The inertial forces coming from the frame
non-inertiality are represented by the connection of the left-hand side, which
is non-covariant by its very nature. In teleparallel gravity, therefore, whereas
the gravitational effects are described by a covariant force, the non-inertial
effects of the frame remain geometrized in the sense of general relativity, and
are represented by an inertial-related connection. Notice that in the geodesic
equation (4.70), both inertial and gravitational effects are described by the
connection term of the left-hand side.

Comment 4.5 Although the inertial part of
◦
Aabρ does not contribute to some physical

quantities, like curvature and torsion, it does contribute to others. One example is the
energy-momentum tensor of gravitation, whose expression in General Relativity always
include, in addition the energy-momentum of gravity itself, also the energy-momentum of
inertia. This is the reason, by the way, why this density always shows up as a pseudotensor.
Chapter 8 deals with this question in more details.
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Let us consider again the local frame in which the spin connection
◦
Aabρ

vanishes. On account of the identity (4.72), the teleparallel version of this
local condition is •

A
a
bρ =

•
K
a
bρ. (4.74)

This expression shows explicitly that, in such local frame, inertia (left-hand
side) exactly compensates gravitation (right-hand side). On the other hand,
owing to the non-tensorial character of the inertial effects, in teleparallel
gravity it is also possible to choose a global frame h′b in which only the inertial

effects vanish. In this frame,
•
A′abρ = 0 and the equation of motion (4.73)

becomes purely gravitational:

du′a

ds
=
•
K
′a
bc u
′b u′c. (4.75)

Since no inertial effects are present in this formulation, we can conclude that
teleparallel gravity does not need to use the equivalence between inertia and
gravitation to describe the gravitational interaction [45]. In Chapter 9 we
will explore further this point.

Comment 4.6 In the form (4.75), the gravitational force becomes quite similar to the
Lorentz force of electrodynamics. There is a difference, though: in contrast to the Lorentz
force of electrodynamics, which is linear in the four-velocity, the gravitational force is
quadratic in the four-velocity. This difference could be attributed, in principle, to the
strict attractive character of gravitation. However, by decomposing the force on the right-
hand side in time and space components, we obtain (dropping the primes)

dua

ds
= γ2

•
K
a
00 +

γ2

c

( •
K
a
0j +

•
K
a
j0

)
vj +

γ2

c2
•
K
a
ij v

i vj , (4.76)

where we have used that

ua =
(
γ, γ

vi

c

)
with γ =

(
1− v2

c2

)−1/2

. (4.77)

We see from Eq. (4.76) that the gravitational force includes, in additional to terms in-
dependent and quadratic in the particle velocity, also terms linear in the velocity. These
terms are somewhat puzzling in the sense that the gravitational interaction will be at-
tractive or repulsive depending on the sign of the particle velocity. They give rise to the
gravitomagnetic interaction in the weak-field limit.

4.4 Newtonian Limit

By contraction with tetrads, and using the identity (1.30), the equation of
motion (4.53) can be rewritten in the purely spacetime form

duρ

ds
+
•
Γ
ρ
µν u

µ uν =
•
T µ

ρ
ν u

µ uν , (4.78)
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with
•
T µ

ρ
ν the torsion of the Weitzenböck connection

•
Γρµν . The Newtonian

limit is obtained by assuming that the gravitational field is stationary and
weak. This means respectively that the time derivative of Ba

µ vanishes,
and that |Ba

µ| � 1. Accordingly, all particles are supposed to move with a
sufficient small velocity so that ui can be neglected in relation to u0. Let us
then rewrite the force equation (4.78) in the form

duρ

ds
+
•
Γ
ρ

00 u
0u0 =

•
T 0

ρ
0 u

0u0. (4.79)

In the class of frames in which the teleparallel spin connection
•
Aabµ vanishes,

and choosing a (translational) gauge in which ∂µx
a = δaµ, the tetrad assumes

the form
haµ = δaµ +Ba

µ. (4.80)

Up to first order in Ba
µ, therefore, we get

•
Γ
ρ
µν ≡ ∂νB

ρ
µ, (4.81)

where Bρ
µ = δρa B

a
µ. In this case, Eq. (4.82) reduces to

d2xρ

ds2
= ∂ρB00 u

0u0. (4.82)

Substituting

u0 = c
dt

ds
, (4.83)

it reduces to
d2xρ

ds2
= ∂ρB00 c

2 dt
2

ds2
. (4.84)

The time component of this equation reads

d2x0

ds2
≡ c2 d

2t

ds2
= 0, (4.85)

whose solution says that dt/ds equals a constant. Using this fact, the space
component of Eq. (4.84) is found to be

dvj

dt
= c2 ∂jB00, (4.86)

with vj = dxj/dt the particle four-velocity. If we identify

c2B00 = Φ, (4.87)
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with

Φ = − GM
|~x|

(4.88)

the Newtonian gravitational potential, we get

d~v

dt
= − ~∇Φ, (4.89)

where we have used that the components of ~x are given by xi = −xi, so that
∂i = − ∂i. As expected, due to the equivalence with the geodesic equation,
the force equation of Teleparallel Gravity also has the correct Newtonian
limit.

Comment 4.7 It is interesting to observe that, since both teleparallel and Newtonian
gravity describe the gravitational interaction through a force, the newtonian limit follows
much more naturally from Teleparallel Gravity than from General Relativity, where no
gravitational force exists.

4.5 Gravitomagnetic Field

Let us consider the same limit of the previous section, but now keeping also
terms linear in ui. In this case, the force equation (4.78) assumes the form

duρ

ds
+
•
Γ
ρ

00 u
0u0 +

( •
Γ
ρ

0i+
•
Γ
ρ
i0

)
u0ui =

•
T 0

ρ
0 u

0u0 +
( •
T 0

ρ
i+

•
T i

ρ
0

)
u0ui. (4.90)

Substituting
•
Γ
ρ
µν ≡ ∂νB

ρ
µ, (4.91)

with Bρ
µ = δρa B

a
µ, and discarding terms containing time derivatives of the

potential, Eq. (4.90) reduces to

d2xρ

ds2
= ∂ρB00 u

0u0 + [∂ρ(B0i +Bi0)− ∂i(B0
ρ +Bρ

0)]u0ui. (4.92)

We see from this expression that, in the linear approximation, only the sym-
metric part of Bρ

µ contributes to the equation of motion. We can then
assume that in this limit Bρ

µ is symmetric [47]. In this case, Eq. (4.92)
becomes

d2xρ

ds2
= ∂ρB00 u

0u0 + 2 (∂ρB0i − ∂iB0
ρ)u0ui. (4.93)

Substituting

u0 = c
dt

ds
and ui ≡ dxi

ds
=
dxi

dt

dt

ds
= vi

dt

ds
, (4.94)
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and using the identification (4.87), it reduces to

d2xρ

ds2
= ∂ρΦ

dt2

ds2
+ 2c (∂ρB0i − ∂iB0

ρ)
dt2

ds2
vi. (4.95)

Up to order v/c, the time component of this equation reads

d2x0

ds2
≡ c

d2t

ds2
= 0, (4.96)

whose solution implies that dt/ds equals a constant. Using this fact, the
space component of Eq. (4.95) can be written in the form

d2xj

dt2
= − ∂jΦ + 2

(
∂jB0i − ∂iB0

j
)
c vi. (4.97)

where we have used that ∂j = − ∂j. Now, if we identify

c2
(
∂jB0i − ∂iB0

j
)

= εj ikH
k, (4.98)

with Hk the gravitomagnetic component of the gravitational field, we get

d~v

dt
= − ~∇Φ + 2

~v

c
× ~H. (4.99)

Comment 4.8 Since the torsion tensor

•
T 0ji = ∂jB0i − ∂iB0j (4.100)

has vanishing vector torsion, its decomposition in terms of the irreducible components
under the global Lorentz group (see Section 1.4) is given by

•
T 0ji = ε0jik

•
Ak + 2

3

( •
T 0ji −

•
T 0ij

)
. (4.101)

Comparing with Eq. (4.98), we see that the gravitomagnetic component of the gravitational
field coincides with the space component of the axial torsion:

Hk = c2
•
Ak. (4.102)

It is important to notice that, although the axial torsion

•
Tµ

ρ
ν = εµ

ρ
νλ

•
Aλ (4.103)

does not contribute to the relativistic force appearing in the right-hand side of the equation
of motion (4.78), in the non-relativistic limit it can give rise to gravitational effects.
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4.6 The Spinning Particle

Let us consider now the motion of a classical particle of mass m and spin
s in a gravitational field. In the context of Teleparallel Gravity, the action
integral describing such a particle minimally coupled to gravitation is

S =

∫ b

a

[
−(∂µx

a +
•
A
a
bµ x

b +Ba
µ) pa + 1

2
(
•
A
ab
µ −

•
K
ab
µ)sab

]
dxµ, (4.104)

where pa = mcua is the Noether charge associated with the invariance of S
under spacetime translations, and sab = −sba is the Noether charge associated
with the invariance of S under Lorentz transformations [30, 148]. In other
words, pa is the momentum, and sab is the spin angular momentum density,
which satisfies the Poisson relation

{sab, scd} = ηac sbd + ηbd sac − ηad sbc − ηbc sad. (4.105)

Notice that, according to this prescription, the particle momentum couples
minimally to the translational gauge potential Ba

µ, whereas the spin of the
particle, as implied by the general covariance principle, couples minimally to
the dynamical spin connection

•
A
ab
µ −

•
K
ab
µ ≡

◦
A
ab
µ. (4.106)

A quite convenient way to get the equations of motion is by using the
Routhian formalism, according to which the equation of motion for the par-
ticle trajectory comes from the Lagrange formulation, and the spin equation
of motion comes from the Hamilton formulation. The Routhian arising from
action (4.104) is

R0 = − (∂µx
a +

•
A
a
bµx

b +Ba
µ) pa u

µ + 1
2

(
•
A
ab
µ −

•
K
ab
µ) sab u

µ. (4.107)

The equation of motion for the particle trajectory is obtained from

δ

δxµ

∫
R0 ds = 0, (4.108)

whereas the equation of motion for the spin tensor follows from

dsab
ds

= {R0, sab}. (4.109)

The four-velocity and the spin angular momentum density must satisfy
the constraints

sab s
ab = 2 s2 (4.110)

sab u
a = 0, (4.111)
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with s the particle spin vector. However, since the equations of motions that
are obtained from the Routhian R0 do not satisfy the above constraints, it is
necessary to include those constraints in the Routhian. The simplest way to
achieve this amounts to the following [149]. First, a new expression for the
spin is introduced:

s̃ab = sab −
sacu

cub
u2

− scbu
cua

u2
. (4.112)

This new tensor satisfies the Poisson relation (4.105) with the metric

ηab − uaub/u2.

A new Routhian that incorporates the above constraints is obtained by re-
placing all sab in R0 by s̃ab, and by subtracting from it the term

dua

ds

sabu
b

u2
.

It is then given by

R = − (∂µx
a +

•
A
a
bµx

b +Ba
µ) pa u

µ + 1
2

(
•
A
ab
µ −

•
K
ab
µ) sab u

µ −
••
Dua

Ds
sabu

b

u2
,

where
••
Dua

Ds
= uµ

••
Dµua,

with
••
Dµ the covariant derivative (3.78). Using this Routhian, the equation

of motion for the spin is found to be

••
Dsab
Ds

= (ua sbc − ub sac)
••
Duc

Ds
, (4.113)

which, on account of the equivalence (4.106), coincides with the correspond-
ing result of General Relativity.

Making use of the lagrangian formalism, the next step is to obtain the
equation of motion for the trajectory of the particle. Through a tedious but
straightforward calculation, it is found to be

••
D
Ds

(mcuc) +

••
D
Ds

(
Dua

Ds
sac
u2

)
= −1

2

•
Qab

µν sab u
ν hc

µ, (4.114)

where [see Eq. (7.23)]

•
Qa

bµν =
•
Dµ

•
K
a
bν −

•
Dν

•
K
a
bµ +

•
K
a
dµ

•
K
d
bν −

•
K
a
dν

•
K
d
bµ (4.115)
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is a curvature-like tensor, but which depends on torsion only. Using con-
straints (4.110-4.111), it is easy to verify that

••
Dua

Ds
sac
u2

= ua
••
Dsca
Ds

. (4.116)

As a consequence, Eq. (4.114) acquires the form

••
D
Ds

(
mcuc + ua

••
Dsca
Ds

)
= − 1

2

•
Qab

µν sab u
ν hc

µ. (4.117)

Defining the generalized four-momentum

Pc = hc
µPµ ≡ mcuc + ua

••
Dsca
Ds

, (4.118)

we get
••
DPµ
Ds

= − 1

2

•
Qab

µν sab u
ν . (4.119)

This is the teleparallel version of the Papapetrou equation. Notice that
the particle spin, similarly to the electromagnetic field [see the teleparal-
lel Maxwell equation (10.43)], couples to a curvature-like tensor, which is
however a tensor written in terms of torsion only.

When the spin vanishes, it reduces to

••
D
Ds

(mcuc) = 0, (4.120)

which is just the teleparallel force equation for spinless particles

duc
ds
−
•
A
b
cρ ub u

ρ =
•
K
b
cρ ub u

ρ. (4.121)

When rewritten in terms of the spin connection of General Relativity, the
teleparallel equation of motion (4.119) reduces to the ordinary Papapetrou
equation [150]

◦
DPµ
Ds

= − 1

2

◦
R
ab
µν sab u

ν . (4.122)

Comment 4.9 When the spin vanishes and the mass is constant, the Papapetrou equa-
tion (4.122) becomes to the geodesic equation

◦
D
Ds

(mcuc) = 0. (4.123)
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If, however, the mass changes along the trajectory, the above equation gives

◦
Duµ

Ds
= (δµν − uµuν)

◦
Dν(lnm) ≡ ∂µ(lnm)− uµ d

ds
(lnm). (4.124)

The last term, an acceleration which is proportional to the time–variation of the mass
logarithm, is reminiscent of the classical velocity–propellant equation for rockets [126].



Chapter 5

Global Formulation for Gravity

Due to their shared abelian gauge structure, Teleparallel Gravity and elec-
tromagnetism are similar in several aspects. By analogy to the phase-factor
approach to Maxwell’s theory, a teleparallel non-integrable phase-factor for-
malism for gravitation can be developed. It represents the quantum mechan-
ical version of the classical gravitational Lorentz force, and leads to simple
descriptions of the Colella-Overhauser-Werner experiment and of the grav-
itational Aharonov-Bohm effect. In the classical (non-quantum) limit, it
reduces to the force equation of Teleparallel Gravity.

5.1 Phase Factor Approach

As is widely known, in addition to the usual differential formalism, electro-
magnetism (as gauge theories in general) has a global formulation in terms of
a non-integrable phase factor [48, 49]. According to that approach, electro-
magnetism can be considered as the gauge invariant effect of a non-integrable
(path-dependent) phase factor. For a particle with electric charge q traveling
from an initial point P to a final point Q, the phase factor is given by

Φe(P|Q) = exp

[
iq

~c

∫ Q

P

Aµ dx
µ

]
, (5.1)

where Aµ is the electromagnetic gauge potential. In the classical (non-
quantum) limit, the non-integrable phase factor approach yields the same
results as those obtained from the Lorentz force equation

dua

ds
=

q

mc2
F a

b u
b. (5.2)

In this sense, the phase-factor approach can be considered the quantum gen-
eralization of the classical Lorentz force equation. It is actually more general,

67
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as it can be used both on simply-connected and on multiply-connected do-
mains. Its use is mandatory, for example, to describe the Aharonov-Bohm
effect, a quantum phenomenon taking place in a multiply-connected space.
While a differential equation as (5.2) is strictly local, an integrated object as
the phase in (5.1) is global, and consequently able to take some topological
effects into account.

By its similarity to Aµ, the teleparallel gauge potential Ba
µ can be used

to construct a global formulation for gravitation [50]. To start with, let us
notice that the electromagnetic phase factor has the form

Φe(P|Q) = exp

[
− i

~
Se
]
, (5.3)

where

Se = − q
c

∫ Q

P

Aµ dx
µ (5.4)

is the interaction part of the action integral for a charged particle within an
electromagnetic field. We can similarly write the gravitational phase factor
as

Φg(P|Q) = exp

[
− i

~
Sg
]
, (5.5)

where Sg is the interaction part of the action integral for a particle of mass
m in a gravitational field. From Eq. (4.37) we see that the interaction part
of the action is

Sg = −mc
∫ Q

P

Ba
µ ua dx

µ. (5.6)

The gravitational phase factor is then written in the form

Φg(P|Q) = exp

[
imc

~

∫ Q

P

Ba
µ ua dx

µ

]
. (5.7)

As for the electromagnetic phase factor, it represents the quantum mechanical
law that replaces the classical gravitational Lorentz force equation (4.75).

Observe that, since both the tetrad haρ and the tangent space metric ηab
are gauge invariant, both the spacetime metric

gµν = ηab h
a
µ h

a
ν (5.8)

and the corresponding interval

ds2 = gµν dx
µ dxν , (5.9)
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are also gauge invariant. In consequence, the four-velocity

ua = ha
( d
ds

)
= haµ u

µ (5.10)

is found to be gauge invariant.
Considering that any laboratory, even on Earth, can be considered as

inertial, we assume the class of frames where the inertial spin connection
•
Aabµ vanishes. In this case, under a gauge transformation,

B′aµ = Ba
µ − ∂µεa, (5.11)

analogously to the electromagnetic case, the integral in the phase factor (5.7)
changes by a surface term. In the remaining of this chapter we are going to
assume this specific class of frames.

5.2 Colella-Overhauser-Werner Experiment

As a first application of the gravitational non-integrable phase factor (5.7), we
consider the Colella-Overhauser-Werner (COW) experiment [51]. It consists
of using a neutron interferometer to observe the quantum mechanical phase
shift of neutrons caused by their interaction with Earth’s gravitational field,
assumed to be Newtonian. As seen in Section 4.4, a Newtonian gravitational
field is characterized by the condition that only B00 6= 0. Furthermore, as
the experience is performed with thermal neutrons, it is possible to use the
small velocity approximation, according to which

u0 = γ ≡ [1− (v2/c2)]−1/2 ' 1. (5.12)

When acting on the wave function of such particles, therefore, the gravita-
tional phase factor (5.7) assumes the form

Φg(P|Q) = exp

[
im

~

∫ Q

P

c2B00 dt

]
. (5.13)

According to Eq. (??), in the Newtonian approximation the term c2B00 can
be identified with the (assumed homogeneous) Earth Newtonian potential,
which is here given by

c2B00 = g z. (5.14)

In this expression, g is the gravitational acceleration, assumed not to change
significantly in the domain of the experience, and z is the distance from
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Earth taken from some reference point. Consequently, the phase factor can
be rewritten in the form

Φg(P|Q) = exp

[
img

~

∫ Q

P

z(t) dt

]
≡ exp iϕ. (5.15)

A
B

C

D

E
F

r

s

2 θ

θ

θ

Figure 5.1: Schematic illustration of the COW neutron interferometer.

Let us now compute the phase ϕ through the two trajectories of Fig. 5.1.
First, we consider the trajectory BDE. Assuming that the segment BD is at
z = 0, we obtain

ϕBDE =
mg

~

∫ E

D

z(t) dt. (5.16)

For the trajectory BCE, we have

ϕBCE =
mg

~

∫ C

B

z(t) dt+
mgr

~

∫ E

C

dt. (5.17)

As the phase contribution along the segments DE and BC are equal, they
cancel out from the phase difference

∆ϕ ≡ ϕBCE − ϕBDE =
mgr

~

∫ E

C

dt. (5.18)

Since the neutron velocity is constant along the segment CE, the integral is∫ E

C

dt ≡ s

v
=
smλ

h
, (5.19)

where s is the length of the segment CE, and λ = h/(mv) is the de Broglie
wavelength associated with the neutron. We thus obtain

∆ϕ = s
2πgrλm2

h2
, (5.20)
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which is exactly the gravitationally-induced phase difference of the COW
experiment [51].

5.3 Gravitational Aharonov-Bohm Effect

As a second application we use the phase factor (5.7) to study the gravita-
tional analog of the Aharonov-Bohm effect [52]. The usual (electromagnetic)
Aharonov-Bohm effect consists in a shift, by a constant amount, of the elec-
tron interferometry wave pattern, in a region where there is no magnetic field,
but there is a nontrivial electromagnetic gauge potential Ai. Analogously,
the gravitational Aharonov-Bohm effect will consist in a similar shift of the
same wave pattern, but produced by the presence of a gravitational gauge
potential B0i.

Comment 5.1 As the phase shift of the COW experiment is produced by the coupling
of the neutron mass with the component B00 of the translational gauge potential, it can
be considered as a gravitoelectric Aharonov-Bohm effect. A similar denomination is used
in the electromagnetic case [53].

Phenomenologically, this kind of effect might be present near a massive,
rapidly rotating source, like a neutron star for example. Of course, differently
from an ideal apparatus, in a real situation the gravitational field cannot be
eliminated, and consequently the gravitational Aharonov-Bohm effect should
be added to the other effects also causing a phase change.

Let us consider first the case in which there is no external field at all. If
the electrons are emitted with a characteristic momentum p, then its wave-
function has the de Broglie wavelength λ = h/p. Denoting by L the distance
between the slit and the screen (see Fig. 5.2), and by d the distance between
the two slits, when the conditions L� λ, L� x and L� d are satisfied the
phase difference at a distance x from the central point of the screen is given
by

δ0ϕ(x) =
2πxd

Lλ
. (5.21)

This expression defines the wave pattern on the screen.
We consider now the case in which a kind of infinite gravitational sol-

enoid produces a purely static gravitomagnetic field flux concentrated in its
interior. In the ideal situation, the gravitational field outside the solenoid
vanishes completely, but there is a nontrivial gauge potential B0i. When we
let the electrons to move outside the solenoid, phase factors corresponding
to paths lying on one side of the solenoid will interfere with phase factors
corresponding to paths lying on the other side, which will produce an addi-
tional phase shift at the screen. Let us then calculate this additional phase
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SOLENOID

(2)

x

(1) z

d

L

Figure 5.2: Scheme of the Aharonov-Bohm electron interferometer.

shift. The gravitational phase factor (5.7) for the physical situation above
described is

Φg(P|Q) = exp

[
− imc

~

∫ Q

P

u0 ~B0 · d~r
]
, (5.22)

where ~B0 is the vector with components B0
i = −B0i. Since

u0 = γ ≡ [1− (v2/c2)]−1/2,

and considering a constant electron velocity v, we can write

Φg(P|Q) = exp

[
− iγmc

~

∫ Q

P

~B0 · d~r
]
. (5.23)

Now, denoting by ϕ1 the phase corresponding to a path lying on one side of
the solenoid, and by ϕ2 the phase corresponding to a path lying on the other
side, the phase difference at the screen will be

δϕ ≡ ϕ2 − ϕ1 =
γmc

~

∮
~B0 · d~r. (5.24)

This can be rewritten in the form

δϕ =
E Ω

~ c
, (5.25)

where E = γmc2 is the electron kinetic energy, and

Ω =

∮
~B0 · d~r =

∮
(~∇× ~B0) · d~σ ≡

∮ ~H

c2
· d~σ (5.26)
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is the flux of gravitomagnetic field ~H inside the solenoid. In components, the
gravitomagnetic field ~H is written as

H i

c2
= 1

2
εijk (∂jB0k − ∂kB0j) = 1

2
εijk

•
T 0jk, (5.27)

with
•
T 0jk the torsion of the Weitzenböck connection — that is, the teleparallel

field strength. Recalling from Section 1.4 that the axial torsion is defined by

•
Aµ = 1

6
εµνρσ

•
T νρσ, (5.28)

we see that the gravitomagnetic field coincides with the component

H i

c2
=

•
Ai ≡ 1

2
εi0jk

•
T 0jk (5.29)

of the axial torsion [46].
Expression (5.25) gives the phase difference produced by the interaction

of the particle kinetic energy with a gauge potential, which gives rise to the
gravitational Aharonov-Bohm effect. As this phase difference depends on
the energy, it applies equally to massive and massless particles. There is
a difference, though: whereas for massive particles it is a genuine quantum
effect, for massless particles, due to their intrinsic wave character, it can be
considered as a classical effect. In fact, for E = hω, the phase difference
becomes

δϕ =
ωΩ

c
, (5.30)

which is seen not to depend on Planck’s constant.
Like the electromagnetic Aharonov-Bohm effect, the phase difference is

independent of the position x on the screen, and consequently the wave
pattern defined by (5.25) will be wholly shifted by a constant amount. Dif-
ferently from the electromagnetic case, however, the phase difference in the
gravitational case depends on the particle kinetic energy, which in turn de-
pends on the particle’s mass and velocity. As a consequence, the requirement
of invariance of the gravitational phase factor under the translational gauge
transformation (5.11) implies that

ΩE = nhc, (5.31)

with n an integer number. We see from this expression that, in contrast to
the electromagnetic case, where it is possible to define a quantum of mag-
netic flux, in the gravitational case, due to the presence of the energy, it
is not possible to define a particle-independent quantum of gravitomagnetic
flux [54].
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5.4 Quantum Versus Classical Approaches

We proceed now to show that, in the classical limit, the non-integrable phase
factor approach reduces to the usual approach provided by the gravitational
Lorentz force equation. In electromagnetism, the standard argument is well-
known: the phase turning up in the quantum case is exactly the classical
action, which leads to the Lorentz force. We intend, however, to illustrate
the result directly, and for that we consider again the electron interferometry
slit experiment, this time with a homogeneous static gravitomagnetic field ~H
permeating the whole region between the slits and the screen (see Fig. 5.3).
This field is supposed to point in the negative y-direction, and will produce
a phase shift which is to be added to the phase

δ0ϕ(x) =
2πxd

Lλ
, (5.32)

extant in the absence of gravitomagnetic field. This shift, according to
Eq. (5.25), is given by EΩ/~c, with Ω the flux through the surface S cir-
cumscribed by the two trajectories. It is easily seen that

d

L

x

z
S

Figure 5.3: Schematic illustration of the electron interference experiment in
the presence of a gravitomagnetic field. The only contribution to the phase–
shift comes from the flux inside the surface S delimited by the two trajectories.

S =
Ld

2
(5.33)

for any value of x. The flux is, consequently,

Ω = − HyLd

2c2
, (5.34)
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where ~H = −Hy êy, with êy a unity vector in the y direction. Therefore, the
total phase difference will be

δϕ =
2πxd

Lλ
− EHyLd

2~c3
. (5.35)

This is the total phase–shift yielded by the phase–factor approach.
In the classical limit [55], the slit experiment can be interpreted in the

following way. The electrons traveling through the gravitomagnetic field have
their movement direction changed. This means that they are subjected to a
force in the x-direction. For x� L, we can approximately write the electrons
velocity as v ' vz. In this case, they will be transversally accelerated by the
gravitomagnetic field during the time interval

∆t =
L

vz
. (5.36)

This transversal x-acceleration is given by

ax =
2x

(∆t)2
. (5.37)

Since the attained acceleration is constant, we can choose a specific point
to calculate it. Let us then consider the point of maximum intensity on the
screen, which is determined by the condition δϕ = 0. This yields

x =
Hy λL

2 E
2h c3

. (5.38)

The acceleration is then found to be

ax =
Hy λ E v2

z

h c3
. (5.39)

From the classical point of view, therefore, we can say that the electrons
experience a force in the x-direction given by

Fx ≡ γ max =
E vzHy

c

λ p

h
, (5.40)

with p = γmvz the electron momentum. Using the de Broglie relation λ =
h/p, the Planck constant is eliminated, and we get the classical result

Fx =
E
c3
vzHy =

E
c3

(~v × ~H)x. (5.41)
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The corresponding equation of motion is
•
∇ px
∇t

=
E
c3

(~v × ~H)x, (5.42)

where
•
∇/∇t represents a time covariant derivative in the Weitzenböck con-

nection.

Comment 5.2 The force equation (5.42) is quite similar to the electromagnetic Lorentz
force, with the kinetic energy E = γmc2 replacing the electric charge, and the gravitomag-
netic vector field ~H replacing the usual magnetic field.

Let us show now that equation of motion (5.42) coincides with the x-
component of the gravitational Lorentz force equation (4.57). Using pi =
γmvi, we can write

•
∇vi
∇t

=
1

c
(~v × ~H)i ≡

1

c
εijk v

j Hk. (5.43)

From Eq. (5.27), however, we see that εijkH
k = c2

•
T 0ij. In terms of torsion

components, therefore, we have
•
∇vi
∇t

= c
•
T 0ij v

j. (5.44)

Furthermore, a gravitomagnetic field B0
i does not change the time com-

ponents of the spacetime metric g00, which remains that of a Minkowski
spacetime. This means that dt = (γ/c)ds, and consequently we can write

•
∇vi
∇s

= γ
•
T 0ij v

j. (5.45)

Using the relations u0 = γ and uj = (γvj)/c, as well as the fact that the grav-
itomagnetic field does not change the absolute value of the particle velocity,
and consequently dγ/ds = 0, we obtain

•
∇ui
∇s

=
•
T 0ij u

0 uj. (5.46)

This force equation is a particular case of the gravitational Lorentz force
equation [see Eq. (4.57)],

•
∇uµ
∇s
≡ duµ

ds
−
•
Γ
λ
µρ uλ u

ρ =
•
T λµρ u

λ uρ, (5.47)

for the case in which only the axial component of
•
T 0ij is non-vanishing.

We see in this way that the phase factor approach reduces, in the classical
limit, to the gravitational Lorentz force equation, which is equivalent to the
geodesic equation of General Relativity (as discussed in Section 4.2.3).



Chapter 6

Hodge Dual for Soldered
Bundles

To account for all possible contractions allowed by the presence of the solder
form, a generalized Hodge dual must be defined in the case of soldered bun-
dles. Although for curvature the generalized dual coincides with the usual
one, for torsion it gives a completely new dual definition.

6.1 Why a New Dual

Let Ωp be the space of p-forms on an n-dimensional manifold R with metric
gµν . Since vector spaces Ωp and Ωn−p have the same finite dimension, they
are isomorphic. The presence of a metric renders it possible to single out an
unique isomorphism, called Hodge dual. Using a coordinate basis, the Hodge
dual of a p-form αp ∈ Ωp,

αp =
1

p!
αµ1...µp dx

µ1 ∧ . . . ∧ dxµp , (6.1)

is the (n− p)-form ?αp ∈ Ωn−p defined by

? αp =
h

(n− p)!p!
εµ1µ2...µn α

µ1...µp dxµp+1 ∧ . . . ∧ dxµn , (6.2)

where h = det(haµ) =
√
−g, with g = det(gµν), and εµ1µ2...µn is the totally

anti–symmetric Levi-Civita symbol discussed in Comment 1.6. The operator
? satisfies the property

?? αp = (−1)p(n−p)+(n−s)/2 αp, (6.3)
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where s is the metric signature (see Section 1.1). Its inverse is, consequently,

?−1 = (−1)p(n−p)+(n−s)/2 ? . (6.4)

This dual operator can be used to define an inner product on Ωp, given by

αp ∧ ? βp = < αp, βp > vol, (6.5)

where vol is the volume element. Conversely, given an inner product, Eq. (6.5)
can be used to define the dual operator.

For non-soldered bundles, the dual operator can be generalized in a
straightforward way to act on vector-valued p-forms. Let β be a vector-
valued p-form on the n-dimensional base space R, taking values on a vector
space V. Its dual is the vector-valued (n− p)-form

? βp =
h

(n− p)!p!
εµ1µ2...µn JA β

Aµ1...µp dxµp+1 ∧ . . . ∧ dxµn , (6.6)

where the set {JA} is a basis for the vector space V. In this case, the
components βAµ1...µp have also an internal space index, which is not related
to the external indices µi. As an example, let us consider the Yang–Mills
field strength 2-form FA

µν in a four dimensional spacetime. Its dual is

? FA
µν =

h

2
εµνρσ F

Aρσ. (6.7)

For soldered bundles, on the other hand, the situation is completely dif-
ferent. Due to the presence of the solder form, internal and external indices
can be transformed into each other, and this feature leads to the possibility
of defining new dual operators [56], each one of them related to an inner
product on Ωp. The main requirement of these new definitions is that, since
(6.3) is still valid for p-forms on soldered bundles, we want to make it true
also for vector-valued p-forms. As usual, the inner product < αp, βp > of two
vector-valued p-forms αp and βb will be defined by

tr (αp ∧ ? βp) = < αp, βp > vol. (6.8)

We consider next, in a four dimensional spacetime, the specific cases of tor-
sion and curvature, quantities related to connections living in soldered bun-
dles.
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6.2 Dual Torsion

Differently from internal (non-soldered) gauge theories, whose dual is defined
by equation (6.6), in soldered bundles algebraic and spacetime indices can
be transformed into each other through the use of the tetrad field. This
property opens up the possibility of new contractions in relation to the usual
definition (6.7). For the case of torsion, a general dual definition involving
all possible index contractions is of the form

? T λµν = h εµνρσ
(
a T λρσ + b T ρλσ + c T θρθ g

λσ
)
, (6.9)

with a, b, c constant coefficients. It can be shown, however, that two coeffi-
cients suffice to define the generalized dual torsion. One way to see this is to
observe that the first and second terms of (6.9) differ just by a permutation
of indices. Since T λρσ is anti-symmetric in the last two indices, whereas T λρσ

has no definite symmetry in the first and third indices, and considering that
both are contracted with εµνρσ, the first term contributes with half the num-
ber of independent terms in relation to the second term. This means that, in
order to eliminate equivalent contractions, it is necessary that the coefficient
a be half the value of b. We then set

b = 2a, (6.10)

which yields

? T λµν = h εµνρσ
(
a T λρσ + 2a T ρλσ + c T θρθ g

λσ
)
. (6.11)

Comment 6.1 If we had chosen instead the alternative condition b = −2a, we would
end up with an inconsistent algebraic system of equations for the coefficients a and c.

Now, in a four–dimensional spacetime with metric signature s = 2 the
dual torsion must, as any 2-form, satisfy the relation

?? T ρµν = − T ρµν . (6.12)

This condition yields the following algebraic system:

8a2 − 2ac = 1 (6.13)

8a2 + 2ac = 0. (6.14)

There are two solutions, which differ by a global sign:

a = 1/4 c = −1 (6.15)
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and

a = −1/4 c = 1 (6.16)

Since we are looking for a generalization of the usual expression (6.7), we
choose the solution with a > 0. In this case, the generalized dual torsion is
found to be

? T ρµν = h εµναβ
(

1
4
T ραβ + 1

2
Tαρβ − T λαλ g

ρβ
)
. (6.17)

Defining the tensor

Sρµν = −Sρνµ := Kµνρ − gρνT σµσ + gρµT σνσ, (6.18)

the dual torsion can be rewritten in the form [56]

? T ρµν =
h

2
εµναβ S

ραβ. (6.19)

Comment 6.2 Another way to see that two coefficients suffice to define the generalized
dual torsion is to use the fact that torsion can be decomposed into irreducible components
under the global Lorentz group (see Section 1.4). In terms of these components, the dual
torsion reads

Tλµν = 2
3 (T λµν − T λνµ) + 1

3 (gλµVν − gλνVµ) + ελµνρAρ, (6.20)

where
Vµ = T ννµ and Aµ = 1

6 ε
µνρσ Tνρσ (6.21)

are respectively the vector and axial vector parts, and

T λµν = 1
2 (Tλµν + Tµλν) + 1

6 (gνλVµ + gνµVλ)− 1
3gλµ Vν , (6.22)

is a purely tensor part. Using the generalized dual definition (6.9), a simple calculation
shows that

? Vµ = 6haAµ ≡ AhAµ (6.23)

and

?Aµ =
1

3h
(4a+ 3c)Vµ ≡

B

h
Vµ, (6.24)

where A and B are two new parameters which, on account of the property (6.12), satisfy
the relation AB = −1. In terms of the irreducible components, the generalized dual
torsion is easily seen to be

? Tλµν = h
[
± 2

3
εµναβ T λαβ +

A

3
(δλµAν − δλνAµ) +

B

h2
ελµνρ Vρ

]
. (6.25)

We see from this expression that two parameters suffice to define the generalized dual.
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6.3 Dual Curvature

Let us consider now the curvature tensor. In a way analogous to the tor-
sion case, we define its generalized dual by taking into account all possible
contractions,

? Rαβ
µν = h εµνρσ

[
aRαβρσ + b(Rαρβσ −Rβρασ)

+c(gαρRβσ − gβρRασ) + d gαρ gβσ R
]
, (6.26)

with a, b, c, d constants coefficients. Of course, since the curvature 2-form
takes values on the Lie algebra of the Lorentz group, the above definition is
anti–symmetric in α and β. By requiring, as in (6.12), that

??Rαβ
µν = −Rαβ

µν , (6.27)

we obtain a system of algebraic equations for a, b, c, d, whose solution with is

a = 1/2 and b = c = d = 0. (6.28)

For the curvature, therefore, the generalized dual coincides with the usual
expression, that is,

? Rαβ
µν =

h

2
εµνρσ R

αβρσ. (6.29)

This means that the additional index contractions related to soldering do not
generate any additional contributions to the dual of curvature.
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Chapter 7

Lagrangian and Field Equations

The lagrangian of Teleparallel Gravity is, like those of gauge theories, writ-
ten in terms of contractions of its field strength — here represented by the
torsion of the Weitzenböck connection. Nevertheless, due to the interchange-
able character of algebraic and spacetime indices, additional contractions are
possible and lead to a higher number of terms. These additional terms natu-
rally yield the lagrangian of the teleparallel equivalent of General Relativity.
The ensuing field equations are obtained.

7.1 Lagrangian of Teleparallel Gravity

As a gauge theory for the translation group, the gravitational action of
Teleparallel Gravity can be written as

•
S =

c3

16πG

∫
tr
( •
T ∧ ?

•
T
)
, (7.1)

where •
T = 1

2

•
T aµν Pa dx

µ ∧ dxν (7.2)

is the torsion 2-form, and

?
•
T = 1

2

(
?
•
T
a
ρσ

)
Pa dx

ρ ∧ dxσ (7.3)

is the corresponding dual form. There is, however, a problem: the translation
group is abelian, its Cartan–Killing bilinear form is degenerate and cannot
be used as a metric. It is necessary to use another invariant metric. To find
out which one, we recall that the group manifold of translations is just the
Minkowski spacetime M, the quotient space between the Poincaré (P) and
the Lorentz (L) groups:

M = P/L.
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In other words, M is homogeneous — or transitive — under spacetime trans-
lations. The role of the Cartan–Killing metric comes, when it exists, from its
being invariant under the group action. Here it does not exist, but we can
use the invariant Lorentz metric ηab of M in its stead.

Comment 7.1 This is quite similar to electromagnetism, a gauge theory for the abelian
U(1) group. Also in this case the Cartan–Killing metric is degenerate and must be replaced
by a different invariant metric. In general the trivial one-dimensional metric η = +1 is
chosen, though the choice η = −1 would also be possible.

Action (7.1) can then be written as

•
S =

c3

16πG

∫
ηab

•
T
a ∧ ?

•
T
b, (7.4)

or, equivalently,

•
S =

c3

64πG

∫
ηab

•
T
a
µν

(
?
•
T
b
ρσ

)
dxµ ∧ dxν ∧ dxρ ∧ dxσ. (7.5)

Taking into account that

dxµ ∧ dxν ∧ dxρ ∧ dxσ = − εµνρσ h2 d4x, (7.6)

with h =
√
−g, the action functional reduces to

•
S = − c3

64πG

∫
•
Tαµν

(
?
•
T
α
ρσ

)
εµνρσ h2 d4x, (7.7)

where we have used the identity

•
T
α
ρσ = ha

α
•
T
a
ρσ. (7.8)

Using then the generalized dual (6.19), as well as the identity (1.54), the
action assumes the form [57]

•
S =

c3

32πG

∫
•
T ρµν

•
S
ρµν h d4x, (7.9)

where •
S
ρµν = −

•
S
ρνµ =

•
K
µνρ − gρν

•
T
σµ
σ + gρµ

•
T
σν
σ (7.10)

is the tensor introduced in Section 6.2, which is usually called superpotential,
and •

K
ν
ρµ = 1

2

( •
T ρ

ν
µ +

•
T µ

ν
ρ −

•
T
ν
ρµ

)
(7.11)
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is the contortion of the Weitzenböck connection. The corresponding lagran-
gian density is

•
L =

c4h

32πG

•
S
ρµν

•
T ρµν . (7.12)

Making use of the identity

•
T
µ
µρ =

•
K
µ
ρµ, (7.13)

it can alternatively be written in the form

•
L =

c4h

16πG

( •
K
µνρ

•
Kρνµ −

•
K
µρ
µ

•
K
ν
ρν

)
. (7.14)

Substituting
•
Kρµν , the teleparallel lagrangian becomes

•
L =

c4h

16πG

(
1
4

•
T ρµν

•
T ρ

µν + 1
2

•
T ρµν

•
T νµρ −

•
T ρµρ

•
T νµν

)
. (7.15)

The first term corresponds to the usual lagrangian of internal gauge theories.
The existence of the other two terms is related to presence of a tetrad field,
which leads to new possible contractions — as discussed in Chapter 6.

Comment 7.2 If we rewrite a similar lagrangian with three free parameters, but with
the coefficient of anholonomy replacing torsion, we get

•
L =

c4h

16πG
(
α fabcf

bc
a + β fabc f

cb
a − γ faba f cbν

)
, (7.16)

where α, β, γ are constants. Up to a surface term, this lagrangian is invariant under local
Lorentz transformation only if the parameters satisfy the relation

β = 2α and γ = −4α. (7.17)

For α = 1/4, we get exactly the same coefficients of (7.15) [62].

7.2 Equivalence with Einstein–Hilbert

Substituting the relation

•
Γ
ρ
µν =

◦
Γ
ρ
µν +

•
K
ρ
µν (7.18)

in expression (3.91) for the curvature of the Weitzenböck connection, we find

•
R
ρ
θµν =

◦
R
ρ
θµν +

•
Qρ

θµν ≡ 0, (7.19)
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where ◦
R
ρ
θµν = ∂µ

◦
Γ
ρ
θν − ∂ν

◦
Γ
ρ
θµ +

◦
Γ
ρ
σµ

◦
Γ
σ
θν −

◦
Γ
ρ
σν

◦
Γ
σ
θµ (7.20)

is the curvature of the Levi–Civita connection, and

•
Qρ

θµν = ∂µ
•
K
ρ
θν − ∂ν

•
K
ρ
θµ +

•
Γ
ρ
σµ

•
K
σ
θν −

•
Γ
ρ
σν

•
K
σ
θµ

−
•
Γ
σ
θµ

•
K
ρ
σν +

•
Γ
σ
θν

•
K
ρ
σµ +

•
K
ρ
σν

•
K
σ
θµ −

•
K
ρ
σµ

•
K
σ
θν (7.21)

is a tensor written in terms of the Weitzenböck connection only. Like the
Riemann curvature tensor, it is a 2-form assuming values in the Lie algebra
of the Lorentz group,

•
Q = 1

2
Sa

b
•
Qa

bµν dx
µ ∧ dxν , (7.22)

with the components given by

•
Qa

bµν =
•
Dµ

•
K
a
bν −

•
Dν

•
K
a
bµ +

•
K
a
cν

•
K
c
bµ −

•
K
a
cµ

•
K
c
bν . (7.23)

By taking appropriate contractions, it is easy to show that the scalar
version of Eq. (7.19) is

−
◦
R =

•
Q ≡

( •
K
µνρ

•
Kρνµ −

•
K
µρ
µ

•
K
ν
ρν

)
+

2

h
∂µ(h

•
T
νµ
ν). (7.24)

Comparing with Eq. (7.14), we see that

•
L =

◦
L − ∂µ

(
c4h

8πG

•
T
νµ
ν

)
, (7.25)

where
◦
L = − c4

16πG

√
−g

◦
R (7.26)

is the Einstein–Hilbert lagrangian of General Relativity. Up to a diver-
gence, therefore, the lagrangian of Teleparallel Gravity is equivalent to the
lagrangian of General Relativity.

The Einstein–Hilbert lagrangian (7.26) depends on the metric, as well as
on the first and second derivatives of the metric. The terms containing second
derivatives, however, form a surface, or divergence term [58]. In consequence,
it is possible to rewrite Einstein–Hilbert lagrangian in the form

◦
L =

◦
L1 + ∂µ(

√
−g wµ), (7.27)

where
◦
L1 is a first-order lagrangian — it depends only on the metric and

its first derivatives. Of course,
◦
L1 is not by itself a scalar. However, since



7.3. MATTER ENERGY-MOMENTUM DENSITY 87

it changes by a divergence under general coordinate transformations, there

are actually infinitely many different lagrangians
◦
L1, each one with its par-

ticular surface term
√
−g wµ. One specific first-order lagrangian for General

Relativity is the Møller lagrangian [8]

◦
LM =

c4h

16πG

( ◦
∇µh

aν
◦
∇νha

µ −
◦
∇µha

µ
◦
∇νh

aν
)
. (7.28)

The interesting point of this lagrangian is that, in the class of frames h′a in
which the teleparallel spin connection vanishes, it is found to coincide exac-
tly — that is, without any surface term — with the teleparallel lagrangian:

◦
LM =

•
L′. (7.29)

7.3 Matter Energy-Momentum Density

The action integral of a general matter field is

Sm =
1

c

∫
Lm d4x. (7.30)

The lagrangian Lm is assumed to depend only on the fields and on their first
derivatives. Thus, under an arbitrary variation δha

µ of the tetrad field, the
action variation is written in the form

δSm =
1

c

∫
Θa

µ δha
µ h d4x, (7.31)

where

hΘa
µ =

δLm
δBa

µ
≡ δLm
δhaµ

=
∂Lm
∂haµ

− ∂λ
∂Lm
∂λ∂haµ

(7.32)

is the matter energy-momentum tensor.
Let us consider first an infinitesimal Lorentz transformation

Λa
b = δa

b + εa
b,

with εa
b = − εba, the transformation parameter. Under such transformation,

the tetrad changes according to

δha
µ = εa

b hb
µ. (7.33)

The requirement of invariance of the action under local Lorentz transforma-
tions, therefore, yields ∫

Θa
b εa

b h d4x = 0. (7.34)
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Since εa
b is anti–symmetric, the energy–momentum tensor must be symmet-

ric to yield a vanishing result [35].
Let us consider now a general transformation of the spacetime coordi-

nates,
x′ρ = xρ + ξρ. (7.35)

Under such transformation, the tetrad changes according to

δha
µ ≡ h′a

µ(x)− haµ(x) = ha
ρ ∂ρξ

µ − ξρ ∂ρhaµ. (7.36)

Substituting in (7.31), we obtain

δSm =
1

c

∫
Θa

µ [ha
ρ ∂ρξ

µ − ξρ ∂ρhaµ]h d4x, (7.37)

or equivalently

δSm =
1

c

∫
[Θρ

c ∂ρξ
c + ξc Θρ

µ ∂ρhc
µ − ξρ ∂ρhaµ]h d4x, (7.38)

Substituting the identity

∂ρha
µ =

•
A
b
aρ hb

µ −
•
Γ
µ
λρ ha

λ, (7.39)

which follows from Eq. (3.87) and making use of the symmetry of the energy-
momentum tensor, the action variation assumes the form

δSm =
1

c

∫
Θc

ρ
[
∂ρξ

c + (
•
A
c
bρ −

•
K
c
bρ) ξ

b
]
h d4x. (7.40)

Integrating the first term by parts, neglecting the surface term, the invariance
of the action yields∫ [

∂µ(hΘa
µ)− (

•
A
b
aµ −

•
K
b
aµ) (hΘb

µ)
]
ξa h d4x = 0. (7.41)

From the arbitrariness of ξc, it follows that

••
Dµ(hΘa

µ) ≡ ∂µ(hΘa
µ)− (

•
A
b
aµ −

•
K
b
aµ) (hΘb

µ) = 0. (7.42)

Making use of the identity

∂ρh = h
◦
Γ
ν
νρ ≡ h

( •
Γ
ν
ρν −

•
K
ν
ρν

)
, (7.43)

the above conservation law becomes

∂µΘa
µ + (

•
Γ
µ
ρµ −

•
K
µ
ρµ) Θa

ρ − (
•
A
b
aµ −

•
K
b
aµ) Θb

µ = 0. (7.44)
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In a purely spacetime form, it reads

••
∇µΘλ

µ ≡ ∂µΘλ
µ + (

•
Γ
µ
ρµ −

•
K
µ
ρµ) Θλ

ρ − (
•
Γ
ρ
λµ −

•
K
ρ
λµ) Θρ

µ = 0. (7.45)

This is the conservation law of the source energy-momentum tensor in Telepar-
allel Gravity. Of course, due to the relation (7.18), it coincides with the
corresponding conservation law of General Relativity:

◦
∇µΘλ

µ ≡ ∂µΘλ
µ +

◦
Γ
µ
ρµΘλ

ρ −
◦
Γ
ρ
λµΘρ

µ = 0. (7.46)

Comment 7.3 It is important to remark that “covariant conservation laws” are not,
strictly speaking, true conservation laws because they fail to yield a conserved “charge”.
They are actually identities, called Noether identities, which rule the exchange of energy
and momentum between the source and the gravitational fields [40].

7.4 Field Equations

Consider now the lagrangian

L =
•
L+ Lm, (7.47)

with Lm the lagrangian of a general matter field. Introducing the notation

k =
8πG

c4
, (7.48)

variation with respect to the gauge potential Ba
ρ yields the teleparallel ver-

sion of the gravitational field equation

∂σ(h
•
Sa

ρσ)− k h
•
a
ρ = k hΘa

ρ. (7.49)

In this equation,

h
•
Sa

ρσ = hha
λ
•
Sλ

ρσ ≡ − k ∂
•
L

∂(∂σhaρ)
(7.50)

is the superpotential,

h
•
a
ρ = − ∂

•
L

∂Ba
ρ

≡ − ∂
•
L

∂haρ
(7.51)
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stands for the gauge current, which in this case represents the Noether
energy-momentum density of gravitation [59], and

hΘa
ρ = − δLm

δBa
ρ

= − δLm
δhaρ

≡ −
(
∂Lm
∂haρ

− ∂λ
∂Lm
∂λ∂haρ

)
(7.52)

is the matter (or source) energy-momentum tensor. In Appendix A we pres-
ent a detailed computation leading to the results

•
Sa

ρσ =
•
K
ρσ
a − haσ

•
T
θρ
θ + ha

ρ
•
T
θσ
θ (7.53)

and
•
a
ρ =

1

k
ha

λ
•
Sc

νρ
•
T
c
νλ −

ha
ρ

h

•
L+

1

k

•
A
c
aσ

•
Sc

ρσ. (7.54)

The gravitational field equation (7.49) depends on torsion only. Using
the identity (7.18), it can be rewritten in terms of the curvature only. In
fact, through a lengthy but straightforward calculation, the left-hand side of
(7.49) can be shown to satisfy

∂σ(h
•
Sa

ρσ)− k (h
•
a
ρ) = h

( ◦
Ra

ρ − 1
2
ha

ρ
◦
R
)
. (7.55)

This means that, as expected due to the equivalence between the corre-
sponding lagrangians, the teleparallel field equation (7.49) is equivalent to
Einstein’s field equation

◦
Ra

ρ − 1
2
ha

ρ
◦
R = kΘa

ρ. (7.56)

It is important to observe that the energy-momentum tensor appears as the
source in both theories: as the source of curvature in General Relativity,
and as the source of torsion in Teleparallel Gravity. It is not surprising,
therefore, that its conservation law (7.45) in Teleparallel Gravity, coincides
with its conservation law (7.46) in General Relativity. This is just a matter
of consistency.

7.5 Bianchi Identities

The Bianchi identities of Teleparallel Gravity [60] can be obtained from the
general Bianchi identities presented in Section 1.5, by replacing

Aabµ →
•
A
a
bµ, (7.57)
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which implies the concomitant replacements

T aµν →
•
T
a
µν (7.58)

and

Ra
bµν →

•
R
a
bµν ≡

◦
R
a
bµν +

•
Qa

bµν = 0. (7.59)

Thus, the Bianchi identity for torsion, which in the general case is given by
[see Eq. (1.63)]

DνT aρµ +DµT aνρ +DρT aµν = Ra
ρµν +Ra

νρµ +Ra
µνρ, (7.60)

assumes the teleparallel form

•
Dν

•
T
a
ρµ +

•
Dµ

•
T
a
νρ +

•
Dρ

•
T
a
µν = 0. (7.61)

Through a tedious, but straightforward calculation, it can be rewritten in
the form,

•
Qρ

θµν +
•
Qρ

νθµ +
•
Qρ

µνθ = 0, (7.62)

which is equivalent to the first Bianchi identity of General Relativity

◦
R
ρ
θµν +

◦
R
ρ
νθµ +

◦
R
ρ
µνθ = 0. (7.63)

Comment 7.4 In the class of frames h′a in which
•
A′abµ = 0, the Bianchi identity (7.61)

reduces to
∂ν
•
T
′a
ρµ + ∂µ

•
T
′a
νρ + ∂ρ

•
T
′a
µν = 0. (7.64)

In this form it becomes similar to the Bianchi identity of electromagnetism,

∂νF
′
ρµ + ∂µF

′
νρ + ∂ρF

′
µν = 0. (7.65)

On the other hand, the Bianchi identity for curvature, which in the general
case is given by [see Eq. (1.64)]

DνRa
bρµ +DµRa

bνρ +DρRa
bµν = 0, (7.66)

in Teleparallel Gravity acquires the form

•
Dν

•
Qa

bρµ +
•
Dµ

•
Qa

bνρ +
•
Dρ
•
Qa

bµν = 0, (7.67)

where use has been made of the General Relativity Bianchi identity

◦
Dν

◦
R
a
bρµ +

◦
Dµ

◦
R
a
bνρ +

◦
Dρ
◦
R
a
bµν = 0. (7.68)
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As is well known, the contracted form of this identity is

◦
Dρ
[
h
( ◦
Ra

ρ − 1
2
ha

ρ
◦
R
)]

= 0. (7.69)

Through a similar procedure, the contracted form of the teleparallel Bianchi
identity (7.67) is found to be

••
Dρ
[
∂σ(h

•
Sa

ρσ)− k h
•
a
ρ
]

= 0. (7.70)

If we remember that, in the presence of a source field, the teleparallel field
equation is given by

∂σ(h
•
Sa

ρσ)− k h
•
a
ρ = k hΘa

ρ, (7.71)

the Bianchi identity (7.70) is seen to be consistent with the conservation law

••
Dρ(hΘa

ρ) = 0, (7.72)

as obtained from Noether’s theorem [see Section 7.3].

7.6 A Glimpse on New General Relativity

New General Relativity corresponds to a generalized teleparallel model with
three arbitrary parameters. Like in Teleparallel Gravity, the relevant con-
nection is the Weitzenböck connection

Γρµν = ha
ρ ∂νh

a
µ, (7.73)

but the lagrangian has the form

Lngr =
c4

16πG
[a1 T

ρ
µν Tρ

µν + a2 T
ρ
µν T

νµ
ρ + a3 Tρµ

ρ T νµν ] , (7.74)

where a1, a2, a3 are arbitrary coefficients, to be determined by experience. In
terms of the irreducible components of torsion [see Section 1.4], it can be
rewritten in the form [21]:

Lngr =
c4

16πG
[b1 T ρµν T ρµν + b2 Vµ Vµ + b3AµAµ] , (7.75)

with b1, b2, b3 new arbitrary coefficients. A straightforward calculation shows
that

2
3
T ρµν T ρµν + 2

3
Vµ Vµ − 3

2
AµAµ =

◦
R , (7.76)
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with
◦
R the scalar curvature of the Levi–Civita connection. Using this iden-

tity, lagrangian (7.74) can be recast in the form

Lngr =
c4

16πG

[ ◦
R + c1 T ρµν T ρµν + c2 Vµ Vµ + c3AµAµ

]
, (7.77)

with the new coefficients given by

c1 = b1 − 2
3
, c2 = b2 − 2

3
, c3 = b3 + 3

2
. (7.78)

The first term of (7.77) is the Einstein–Hilbert lagrangian. In this theory,
therefore, torsion is assumed to produce deviations from the predictions of
General Relativity — or equivalently, from the predictions of the teleparallel
equivalent of General Relativity. This means that torsion represents addi-
tional degrees of freedom in relation to curvature. It should be remarked that
solar system experiments restrict severely the existence of non-vanishing c1

and c2. Considering that all precision experiments have up to now found a
reasonable explanation within General Relativity, we can say that there is
no any experimental evidence for a non-vanishing c3 either. Furthermore, it
has already been shown that the Schwarzschild solution exists only for the
case with [173]

c1 = c2 = c3 = 0.

In principle, therefore, we can say that New General Relativity lacks experi-
mental support.
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Chapter 8

Gravitational
Energy-Momentum Density

Using the possibility of separating gravitation and inertia allowed by telepar-
allel gravity, explicit expressions for the energy-momentum density of grav-
itation and inertia are obtained. The energy-momentum density of gravity
turns out to be a true tensor which satisfies a covariant conservation law. The
energy-momentum density of inertia, on the other hand, is neither conserved
nor covariant. Together with the energy-momentum tensor of gravity, they
form a pseudotensor conserved in the ordinary sense. The non-covariance
of the usual expressions of the gravitational energy-momentum density is
not an intrinsic property of gravity, but a consequence of the fact that they
include also the energy-momentum of inertia.

As for any true field, it is natural to expect that gravitation have its own
local energy-momentum density. In the preface to his classic textbook [25],
Synge says that in Einstein’s theory, either there is a gravitational field or
there is none, according to as the Riemann tensor does not or does vanish.
This is an absolute property; it has nothing to do with any observer’s world
line. Bondi [72] argues in that same direction, saying that in relativity a
non-localizable form of energy is inadmissible, because any form of energy
contributes to gravitation and so its location can in principle be found. In this
line of argument, the energy of the gravitational field should be localizable
independently of any observer.

On the other hand, it is usually argued that such a density cannot be
locally defined because of the equivalence principle [61]. According to these
arguments, any attempt to identify an energy-momentum density for the
gravitational field leads to complexes that are not true tensors. The first of
such attempts was made by Einstein, who proposed an expression which was
nothing but the canonical expression obtained from Noether’s theorem [63].
This quantity is, like many others, a pseudotensor, an object that depends

95
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on the coordinate system. Several other attempts have been made, leading
to different expressions for this pseudotensor [64].

Comment 8.1 The problem of defining an energy-momentum density for the gravita-
tional field has a close analogy with the problem of defining a gauge self-current for the
Yang-Mills field, discussed in Section 2.1. The sourceless field equation is

∂µF
Aµν + jAν = 0, (8.1)

with FAµν the curvature of the connection AAµ. The piece

jAν = − fABC ABµ FCµν (8.2)

represents the gauge pseudocurrent. Due to the explicit presence of the connection ABµ,
this current is clearly not gauge covariant, in analogy with the gravitational energy-
momentum pseudotensor, which is not covariant under general coordinate transformations.

Despite the existence of some controversial points related to the equiva-
lence principle [25, 65], it seems true that in the context of General Relativity
no tensorial expression for the gravitational energy-momentum density ex-
ists. In the stream of this perception, a quasilocal approach [67] has been
proposed which is highly clarifying [68]. According to this approach, for
each gravitational energy-momentum pseudotensor there is an associated su-
perpotential which is a hamiltonian boundary term. The energy-momentum
defined by such a pseudotensor does not really depend on the local reference
frame, but only on its values on the boundary of a region — from which its
quasilocal character. As the relevant boundary conditions are physically ac-
ceptable, this approach is said to validate the pseudotensor approach to the
gravitational energy-momentum problem. Independently of this and others
attempts to circumvent the problem of the gravitational energy-momentum
density, the question remains: is the impossibility of defining a tensorial
expression for the gravitational energy–momentum density a fundamental
property of Nature, or just a drawback of the particular geometrical descrip-
tion of General Relativity?

8.1 Field Equations and Conservation Laws

In the first order formalism, where the lagrangian depends on the field and
on its first derivative only, the gravitational field equation can be obtained
from the usual, first order Euler-Lagrange equation

∂L
∂haρ

− ∂σ
∂L

∂(∂σhaρ)
= 0. (8.3)
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It can be rewritten in the form

∂σ(hSa
ρσ)− k haρ = 0, (8.4)

where k is defined in Eq. (7.48),

Sa
ρσ = −Saσρ ≡ −

k

h

∂L
∂(∂σhaρ)

(8.5)

is the so-called superpotential, and

a
ρ ≡ − 1

h

∂L
∂haρ

(8.6)

stands for the Noether gravitational energy-momentum current. Equation
(8.4) is known as the potential form of the gravitational field equation [8].
It is, in structure, similar to the Yang-Mills equation. Its main virtue is
to explicitly exhibit the complex defining the energy-momentum current of
the gravitational field. Due to the anti-symmetry of Sa

ρσ in the last two in-
dices, the field equation implies the conservation of the gravitational energy-
momentum current:

∂ρ(ha
ρ) = 0. (8.7)

Any conservation law of this form, namely, written as a four-dimensional
ordinary divergence, is a true conservation law in the sense that it yields
a time-conserved “charge”. On the other hand, in order to be physically
meaningful, the equation expressing any conservation law must be covariant
under both general coordinate and local Lorentz transformations.

Comment 8.2 Of course, in the case of gauge theories, the conservation laws must also
be gauge covariant.

Although trivial in the absence of gravitation, this simple property has an
important consequence in the gravitational case: no tensorial quantity can
be truly conserved. In fact, since the derivative in this case is not covariant,
in order to have a covariant conservation law, the conserved current can-
not be covariant either. This means that the energy-momentum current a

ρ

appearing in the gravitational field equation (8.4), which has the conserva-
tion law (8.7), cannot be a tensor. Conversely, due to the fact that it is a
true tensor, the symmetric energy-momentum tensor Θa

ρ of a source field—
that is, the energy-momentum tensor appearing in the right-hand side of the
gravitational field equation—can only be conserved in the covariant sense,

◦
Dρ(hΘa

ρ) ≡ h(∂ρΘa
ρ −

◦
A
c
aρ Θc

ρ +
◦
Γ
ρ
λρ Θa

λ) = 0, (8.8)
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otherwise the conservation law itself would not be covariant. We reinforce
that this is not a true conservation law, but just an identity (the Noether
identity) regulating the exchange of energy-momentum between matter and
gravitation.

The discussion above makes it clear that, if a tensorial expression ta
ρ for

the energy-momentum density of gravitation exists, it must be conserved in
the covariant sense. On the other hand, inertial (or fictitious) effects related
to the non-inertiality of a frame are non-covariant, as they are represented
by Lorentz connections. The energy-momentum density associated to these
fictitious effects, which we denote by ıa

ρ, cannot therefore be a true tensor.
This means that, even if a tensorial expression for the gravitational energy-
momentum density exists, the sum of the inertial and the purely gravitational
densities, ıa

ρ + ta
ρ, will necessarily be a pseudotensor. This is a matter of

consistency: since the sum represents the total (in the absence of source
fields) energy-momentum density, it has to be truly conserved,

∂ρ[h(ıa
ρ + ta

ρ)] = 0, (8.9)

and consequently cannot be a true tensor.

8.2 Teleparallel Gravity

In Special Relativity, the anholonomy of the frames is entirely related to the
fictitious forces present in those frames. The preferred class of inertial frames
is then characterized by the absence of fictitious forces. In the presence
of gravitation, however, the anholonomy of the frames is related to both
gravitational and inertial effects. Since the gravitational effects can never
be eliminated globally, no holonomous frames can be defined in the presence
of gravitation. Like in Special Relativity, however, also in the presence of
gravitation there is a preferred class of frames: the class that reduces to the
inertial class in the absence of gravitation. Seen from that preferred class of
frames, which we denote by h′b, the spin connection of Teleparallel Gravity
vanishes everywhere:

•
A
′a
bµ = 0. (8.10)

It is important to remark that this has nothing to do with the strong equiv-
alence principle, which says that a connection can be made to vanish at a
point, or locally along a trajectory. In a Lorentz rotated frame ha = Λa

b h′b,
it assumes the form

•
A
a
bµ = Λa

e ∂µΛb
e. (8.11)
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As seen in Chapter 7, the sourceless gravitational field equation is [59]

∂σ(h
•
Sa

ρσ)− k h
•
a
ρ = 0, (8.12)

where
•
Sa

ρσ ≡ − k

h

∂
•
L

∂(∂σhaρ)
=
•
K
ρσ
a − haσ

•
T
θρ
θ + ha

ρ
•
T
θσ
θ (8.13)

is the superpotential, and

•
a
ρ ≡ − 1

h

∂
•
L

∂haρ
=

1

k
ha

λ
•
Sc

νρ
•
T
c
νλ −

ha
ρ

h

•
L+

1

k

•
A
c
aσ

•
Sc

ρσ (8.14)

is the teleparallel energy-momentum current. Due to the anti-symmetry of
the superpotential in the last two indices, it is conserved in the ordinary
sense:

∂ρ(h
•
a
ρ) = 0. (8.15)

An important property of Teleparallel Gravity is that its spin connection,
given by Eq. (8.11), is related only to the inertial properties of the frame, not
to gravitation. In fact, it is possible to choose an appropriate frame in which
it vanishes everywhere. This means that the last term of the gravitational
current (8.14) will also vanish in that appropriate frame. Furthermore, put
together with the potential term of field equation (8.12), they make up a
Fock-Ivanenko covariant derivative of the superpotential:

∂σ(h
•
Sa

ρσ)−
•
A
c
aσ(h

•
Sc

ρσ) ≡
•
Dσ(h

•
Sa

ρσ). (8.16)

This allows us to rewrite that field equation in the form

•
Dσ(h

•
Sa

ρσ)− k h
•
ta
ρ = 0, (8.17)

where
•
ta
ρ =

1

k
ha

λ
•
Sc

νρ
•
T
c
νλ −

ha
ρ

h

•
L (8.18)

is a tensorial current. The crucial point comes out now: since the teleparallel
spin connection (8.11) has vanishing curvature, the Fock-Ivanenko derivative
•
Dσ is commutative:

[
•
Dρ,

•
Dσ] = 0. (8.19)

Taking into account the anti-symmetry of the superpotential in the last two
indices, it follows from (8.17) that the tensorial current (8.18) is covariantly
conserved: •

Dρ(h
•
ta
ρ) = 0. (8.20)
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Due to these properties,
•
ta
ρ can be interpreted as the energy-momentum

density of gravitation alone. Accordingly,

•
ıa
ρ =

1

k

•
A
c
aσ

•
Sc

ρσ (8.21)

can be interpreted as the energy-momentum density of the inertial (or ficti-
tious) forces. The total (inertia plus gravitation) energy-momentum density
is consequently

•
a
ρ =

•
ıa
ρ +

•
ta
ρ, (8.22)

which is non-covariant due to the inertial effects, and is conserved in the or-
dinary sense. We see in this way that the basic reason for the usual general
relativistic expressions to be a pseudotensor is that they include, in addition
to gravitation, a contribution from the inertial effects of the frame. If con-
sidered separately from inertia, however, the gravitational energy-momentum
density is found to be a true tensor and conserved in the covariant sense. Of
course, as it does not represent the total energy-momentum density, it does
not need to be truly conserved.

Comment 8.3 An interesting property of the tensorial current (8.18) is that, as field
theory would expect for a massless field, its trace vanishes identically:

•
tρ
ρ ≡ haρ

•
ta
ρ = 0. (8.23)

On the other hand, the trace of the pseudocurrent (8.14) is found to be proportional to
the lagrangian:

h
•
ρ
ρ ≡ hhaρ

•
a
ρ = − h

2k
•
Sa

µν
•
T
a
µν = − 2

•
L. (8.24)

Similar results hold for the symmetric and the canonical energy-momentum densities of
the electromagnetic field, given respectively by [58]

Θλ
ρ = −FλµF ρµ + 1

4 δλ
ρ FµνF

µν (8.25)

and
θλ
ρ = − ∂λAµF ρµ + 1

4 δλ
ρ FµνF

µν . (8.26)

In fact, one can easily check that

Θρ
ρ = 0 and θρ

ρ = − 2Lem.

We can then say that
•
ta
ρ and

•
µ
ρ play a role similar to the symmetric and the canonical

energy–momentum tensors of massless source fields. This similarity becomes still more
evident if we note that, whereas the symmetric energy-momentum tensor Θλ

ρ is gauge
invariant, the canonical tensor θλρ is not, as it depends explicitly on the electromagnetic
potential Aµ.
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8.3 General Relativity

It is well known that no first order invariant lagrangian for General Rela-
tivity exists. What does exist is the second order Einstein-Hilbert invariant
lagrangian, in which the second-derivative terms reduce to a total divergence.
This lagrangian is the of the form

◦
L = − h

2k

◦
R ≡

◦
L1 + ∂µ(hwµ), (8.27)

where
◦
L1 is a first-order lagrangian and wµ is a contravariant four-vector.

There are actually infinitely many different first order lagrangians, each one
connected to a different surface term:

◦
L =

◦
L1 + ∂µ(hwµ) =

◦
L′1 + ∂µ(hw′µ) =

◦
L′′1 + ∂µ(hw′′µ) = . . . . (8.28)

Since the divergence term does not contribute to the field equation, any one
of the first order lagrangians will lead to the same expression

∂σ(h
◦
Sa

ρσ)− k h
◦
a
ρ = 0 (8.29)

for the potential form of Einstein’s field equation [8]. In this equation,
◦
Sa

ρσ

is the superpotential and
◦
a
ρ is the gravitational current, which is conserved

in the ordinary sense:

∂ρ(h
◦
a
ρ) = 0. (8.30)

Now, as is well known, the general-relativistic approach to gravitation
is strongly rooted on the equivalence between inertia and gravitation. As
a consequence, inertial and gravitational effects are considered on the same

footing: they are both embodied in the spin connection
◦
Aabµ, and cannot be

separated. Because of this inseparability, the energy-momentum current in
General Relativity will always include, in addition to the purely gravitational
density, also the energy-momentum density of inertia. Since the latter is a
pseudotensor, so will the whole current be. In General Relativity, therefore,
it is not possible to define a tensorial expression for the gravitational energy-
momentum density. To see that, let us rewrite Einstein equation (8.29) in
the form

◦
Dσ(h

◦
Sa

ρσ)− kh
◦
ta
ρ = 0, (8.31)

where
◦
Dσ(h

◦
Sa

ρσ) = ∂σ(h
◦
Sa

ρσ)−
◦
A
b
aσ (h

◦
Sb

ρσ) (8.32)
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is the covariant derivative in the general relativity spin connection, and

◦
ta
ρ =

◦
a
ρ − 1

k

◦
A
b
aσ

◦
Sb

ρσ (8.33)

is a tensorial quantity that, at least in principle, could be interpreted as the
energy-momentum density of gravitation. That this is a covariant quantity
can be verified by noting that, since Einstein equation (8.31) is covariant,
and considering that its first term is also covariant, the current term must
necessarily be a tensor. However, there is a problem in this interpretation:

due to the fact that
◦
Dσ is not commutative, this tensorial quantity is not

covariantly conserved, and consequently cannot be physically meaningful.

Conversely, we can say that the requirement of covariant conservation of
◦
ta
ρ

would impose unphysical constraints on the spacetime geometry.

Comment 8.4 This last inconsistency is similar to the inconsistencies that appear in
the theory of a fundamental spin-2 field coupled to gravitation in the context of general
relativity [76]. In Section 10.5 we show that Teleparallel Gravity is able to solve also this
problem.

8.4 Further Remarks

Using the fact that teleparallel gravity allows a separation between gravi-
tation and inertia, we have shown that it is possible to obtain explicit ex-
pressions for the energy-momentum density of gravitation and inertia. The
energy-momentum density of gravity turns out to be a true tensor which
satisfies a covariant conservation law. Since it does not represent the to-
tal energy-momentum density—in the sense that the inertial part is not
included—it does not need to be truly (or ordinarily) conserved. This is
consistent with the property that a covariant quantity can only be conserved
in the covariant sense, otherwise the conservation law itself will be physically
meaningless. The energy-momentum density of inertia, on the other hand, is
neither conserved nor covariant. It constitutes, furthermore, an example of
an energy-momentum density that is not source of gravitation. Together with
the energy-momentum tensor of gravity, they form a pseudotensor conserved
in the ordinary sense. We can then say that the non-covariance of the gravi-
tational energy-momentum density is not an intrinsic property of gravity, but
a consequence of the fact that the usual expressions include also the energy-
momentum of inertia. Considering that, in general relativity, gravitation
and inertia are mixed up in the spin connection of the theory and cannot be
separated, the energy-momentum tensor of gravity in this theory will alway
include the the energy-momentum tensor of inertia, and will consequently be
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a pseudotensor. The existence of a purely gravitational energy-momentum
tensor in teleparallel gravity allows one to compute unequivocally the en-
ergy and momentum of gravitation in a given frame, and through Lorentz
transformations to obtain the value in any other frame without necessity of
a regularization process [77].
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Chapter 9

Gravitation Without the
Equivalence Principle

General Relativity is fundamentally grounded on the equivalence principle.
If universality is found to fail, even in a small quantity, the geometric descrip-
tion of General Relativity breaks down. On the other hand, due to its gauge
structure, Teleparallel Gravity does not require the equivalence principle to
describe the gravitational interaction. As a consequence, it remains a con-
sistent theory in the absence of universality. Although this is not important
at the classical level, where universality has passed all experimental tests, it
may become important at the quantum level, where universality may fail to
be true.

9.1 Introductory Remarks

Universality of gravitation means that everything in the universe feels gravity
the same. Provided the initial conditions are the same, all particles, inde-
pendently of their mass and constitution, will follow the same trajectory. In
the study of a massive particle motion, universality of free fall is directly con-
nected with the equality between inertial and gravitational masses: mi = mg.
In fact, in order to be eliminated from the equation of motion — such that
the motion becomes universal — they must necessarily coincide.

In Einstein’s General Relativity, which is a theory fundamentally based
on the universality of free fall or, equivalently, on the weak equivalence prin-
ciple, geometry replaces the concept of force in the description of the grav-
itational interaction. Despite its success in all experimental tests at the
classical level [78, 80], it is worth to keep in mind that a possible violation of
the weak equivalence principle would lead, among other consequences, to the
non-universality of free fall, and consequently to its conceptual breakdown.
Of course, like Newtonian gravity, it could still to be used in most practical

105



106CHAPTER 9. GRAVITATION WITHOUT THE EQUIVALENCE PRINCIPLE

cases but, again like Newton theory, it could fail in describing some spe-
cific physical situation. A violation of the weak equivalence principle would
constitute the discovery of a new force of Nature, not predicted by General
Relativity.

The non-universal character of electromagnetism is the reason why there
is no a geometric description, in the sense of General Relativity, for the
electromagnetic interaction. On the other hand, as a gauge theory for the
translation group, the teleparallel equivalent of General Relativity does not
describe the gravitational interaction through a geometrization of spacetime,
but as a gravitational force similar to the Lorentz force of electrodynamics.
Since Maxwell theory, a gauge theory for the unitary group U(1), is able
to describe the non-universal electromagnetic interaction, the question then
arises whether the gauge approach of Teleparallel Gravity would also be able
to describe the gravitational interaction in the lack of universality, that is, in
the absence of the weak equivalence principle. This is the issue we are going
to address in this chapter.

9.2 The Electromagnetic Case as an Example

9.2.1 The Electromagnetic Coupling Prescription

The non-universal electromagnetic interaction is described by a gauge theory
for the unitary group U(1). An element of this group is written as

U = exp[iεJ ], (9.1)

where ε = ε(xµ) is the transformation parameter, and J is the transformation
generator. When applied to a general field ψ representing a particle of electric
charge q, the generator in the ψ representation is simply J =

√
αe, with

αe =
q2

~c
(9.2)

the electromagnetic fine structure constant. Considering units in which ~ =
c = 1, the gauge transformation ψ′ = Uψ is written as

ψ′ = exp[iεq]ψ, (9.3)

whose infinitesimal form is
δψ = iεqψ. (9.4)

In order to render the derivative

Dµψ = (∂µ + iqAµ)ψ (9.5)
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really covariant, the gauge potential must transform according to

A′µ = Aµ − ∂µε. (9.6)

Comment 9.1 Sometimes, the U(1) group element is written in the form

U = exp[iε]. (9.7)

The gauge transformation is then

ψ′ = exp[iε]ψ, (9.8)

whose infinitesimal form is
δ = iεψ. (9.9)

In this case, to make the derivative (9.5) really covariant, the gauge potential is required
to transform according to

A′µ = Aµ −
1
q
∂µε. (9.10)

9.2.2 Lorentz Force Equation

Considering an inertial frame in Minkowski spacetime, the action describing a
particle of mass m and electric charge q in the presence of an electromagnetic
field Aµ, is

S = −mc

∫ b

a

[
ua ∂µx

a +
q

mc2
Aµ

]
dxµ. (9.11)

The invariance of the action under a general spacetime transformation yields
the equation of motion

dua

ds
=

q

mc2
F ac uc, (9.12)

where F ac is the electromagnetic field strength. This is the so-called Lorentz
force equation. This force is not universal in the sense that it depends on
the relation q/m of the particle.

9.3 Managing without Universality

9.3.1 Non-Universal Coupling Prescription

To see how Teleparallel Gravity is able to manage without universality, let
us imagine the existence of particles with different gravitational and iner-
tial masses: mg 6= mi. Analogously to the electromagnetic case, whose
gauge transformation involves the electromagnetic fine structure constant,
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the translational gauge transformation in the non-universal case must de-
pend on some kind of gravitational constant αg. Since it must reduce to
αg = 1 in the universal case, we write

αg =
mg

mi

. (9.13)

Let us then denote by ψ a field representing a particle with mg 6= mi. Its
translational gauge transformation is

ψ′ = Ũ ψ, (9.14)

with
Ũ = exp [αg ε

a ∂a] . (9.15)

The corresponding infinitesimal transformation is

δ̃ψ = αg ε
a ∂aψ. (9.16)

Since it must have the form

δ̃ψ = δxa ∂aψ, (9.17)

the non-universal gauge transformation of the tangent space coordinates is

δ̃xa = αg ε
a. (9.18)

Using now the general definition (3.27) of covariant derivative, the trans-
lational gauge covariant derivative of ψ is found to be

h̃µψ = ∂µψ + αg B
a
µ ∂a ψ. (9.19)

Comment 9.2 To see that this derivative is in fact covariant, let us take the transformed
derivative

h̃′µψ
′ = ∂µψ

′ + αg B
′a
µ ∂aψ

′, (9.20)

where we have used the gauge invariance of the generators ∂a. Substituting

ψ′ = ψ + αg ε
c ∂cψ, (9.21)

as well as the gauge potential transformation

B′aµ = Baµ − ∂µεa, (9.22)

we see that
δ̃(h̃µψ) = αg ε

a∂a(h̃µψ), (9.23)

which shows that (9.19) is gauge covariant.
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Similarly to the universal case, the covariant derivative (9.19) can be rewrit-
ten in the form

h̃µψ = (h̃µx
a) ∂a ψ, (9.24)

where
h̃µx

a = ∂µx
a + αgB

a
µ (9.25)

is the translational covariant derivative of xa. In a general Lorentz rotated
frame, it assumes the form

h̃µx
a = ∂µx

a +
•
A
a
bµ x

b + αgB
a
µ. (9.26)

The non-universal gravitational coupling prescription is then achieved by
replacing

∂µx
a → h̃µx

a. (9.27)

It is interesting to observe that the break down of universality modifies the
gravitational behavior of the particle, but does not change their inertial prop-
erties. This is the real meaning of breaking universality: particles couple
differently to gravitation and to inertia.

9.3.2 Particle Equation of Motion

If the inertial and gravitational masses of a given particle are different, its
free action is written as

S = −mi c

∫ b

a

ua ∂µx
a dxµ. (9.28)

The corresponding action in the presence of gravitation is obtained by ap-
plying the coupling prescription

∂µx
a → h̃µx

a, (9.29)

with h̃µx
a given by (9.25). The result is

S = −mi c

∫ b

a

ua

[
∂µx

a +
•
A
a
bµ x

b + αgB
a
µ

]
dxµ. (9.30)

Comment 9.3 Notice that, due to the gauge structure of Teleparallel Gravity, the
action assumes a form similar to the action of a charged particle in an electromagnetic
field. In fact, if the particle has additionally an electric charge q and is in the presence of
an electromagnetic field Aµ, the action becomes

S = −mi c

∫ b

a

[
ua
•
Dµxa +

mg

mi
Baµua +

q

mi

Aµ
c2

]
dxµ. (9.31)

We see from this expression that the gravitational mass mg plays a role similar to the
electric charge q.
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Variation of the action integral (9.30) under general spacetime transfor-
mations xµ → xµ + δxµ yields

δS = −mic

∫ b

a

[
δuah̃

a + ua

(
δdxa + δ

•
A
a
bµx

bdxµ +
•
A
a
bµδx

bdxµ

+
•
A
a
bµx

bδdxµ + αgδB
a
µdx

µ + αgB
a
µδdx

µ
)]
, (9.32)

where we have introduced the notation

h̃a ≡ h̃aµdx
µ = (∂µx

a +
•
A
a
bµx

b + αgB
a
µ)dxµ. (9.33)

Comment 9.4 It is important to remark that h̃aµ is not a tetrad. It is related to the
true tetrad haµ through

h̃aµ = haµ +
mg −mi

mi
Baµ.

When mi = mg it becomes the tetrad.

Using the property [δ, d] = 0, integrating by parts the terms containing dδxµ,
and neglecting the surface terms, Eq. (9.32) becomes

δS = −mic

∫ b

a

[
δuah̃

a + ua

(
− duaδxa + uaδ

•
A
a
bµx

bdxµ + ua
•
A
a
bµδx

bdxµ +

−d(ua
•
A
a
bµx

b)δxµ + αguaδB
a
µdx

µ − αgd(uaB
a
µ)δxµ

)]
. (9.34)

The variation of the four-velocity ua is

δua =
dua
ds

δs. (9.35)

From the relation ds = gµνu
µdxν , we can write

δs = gµνu
µδxν . (9.36)

Substituting in (9.35), we obtain

δua = uµ
dua
ds

δxµ. (9.37)

Using this result, as well as the relations

δxa = ∂µx
aδxµ, δ

•
A
a
bµ = ∂ρ

•
A
a
bµδx

ρ, δBa
µ = ∂ρB

a
µδx

ρ, (9.38)
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variation (9.34) assumes the form

δS = −mic

∫ b

a

[
h̃a
dua
ds

uµ − duah̃aµ + ua

(
∂µ
•
A
a
bρ − ∂ρ

•
A
a
bµ

)
xbdxρ

+ua

( •
A
a
bρ∂µx

b −
•
A
a
bµ∂ρx

b
)
dxρ + αgua

(
∂µB

a
ρ − ∂ρBa

µ

)
dxρ
]
δxµ. (9.39)

Since the teleparallel spin connection
•
Aabµ has vanishing curvature,

•
R
a
bµρ = ∂µ

•
A
a
bρ − ∂ρ

•
A
a
bµ +

•
A
a
eµ

•
A
e
bρ −

•
A
a
eρ

•
A
e
bµ = 0, (9.40)

we arrive at

δS = −mic

∫ b

a

[
− P ρ

µh̃
a
ρ
dua
ds

+ ua
•
A
a
bρh̃

b
µu

ρ

−ua
•
A
a
bµh̃

b
ρu

ρ + αgua
•
T
a
µρu

ρ
]
δxµds, (9.41)

where

P ρ
µ = δρµ − uρuµ (9.42)

is a projection tensor, and

•
T
a
µρ = ∂µB

a
ρ − ∂ρBa

µ +
•
A
a
bµB

b
ρ −

•
A
a
bρB

b
µ (9.43)

is the field strength, or torsion. Due to the invariance of the action, and the
arbitrariness of δxµ, we get finally

P ρ
µh̃

a
ρ
dua
ds
−
( •
A
a
bρh̃

b
µ −

•
A
a
bµh̃

b
ρ

)
ua u

ρ = αg
•
T
a
µρuau

ρ. (9.44)

This is the equation of motion for particles with mg 6= mi in the presence of
gravitation. It can also be written in the alternative form

h̃aρ

[
P ρ

µ

•
Dua
Ds

+ P λ
µ

•
A
b
aλ ub u

ρ
]

= αg
•
T
a
µρuau

ρ. (9.45)

Due to the fact that uµP ρ
µ = 0, both sides of the equation of motion are

clearly orthogonal to uµ. A crucial point is that, though this equation of mo-
tion depends explicitly on the relation αg = mg/mi of the particle, fields Ba

µ

and
•
T aρµ do not. This means essentially that the teleparallel field equation

(7.49) can be consistently solved for the gravitational potential Ba
µ, inde-

pendently of the validity or not of the weak equivalence principle. That is to
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say, Teleparallel Gravity is able to describe the motion of a particle even in
its absence [82]. For mg = mi, the above equation of motion reduces to

dua
ds
−
•
A
b
aρ ub u

ρ =
•
T
b
aρ ub u

ρ, (9.46)

which is the universal teleparallel force equation(4.52)
The equation of motion (9.45) is Lorentz covariant, as can be seen by

rewriting it in the form

h̃aµ

(
dua
ds
− ub

•
A
b
aρu

ρ

)
+ h̃aρu

ρ

(
uµ
dua
ds
− ub

•
A
b
aµ

)
= αgua

•
T
a
µρu

ρ. (9.47)

It is important to note that, under the gauge transformations

dx′a = dxa + αg dε
a (9.48)

and
B′a = Ba − dεa, (9.49)

both the action (9.30) and the equation of motion (9.45) are gauge invariant.
Furthermore, in the Newtonian limit, Eq. (9.45) reduces to

mi
d2~x

dt2
= −mg∇Φ,

with
Φ = c2B00,

which is just Newton equation for mi 6= mg. We recall that Newtonian
gravity, like Teleparallel Gravity, can comply with the lack of universality.

9.4 Non-universality and General Relativity

Of course, the equation of motion (9.45) does not reduce to a geodesic equa-
tion. In order to comply with the foundations of General Relativity, and
rewrite it as a geodesic equation, it would be necessary to incorporate the
particle properties into the spacetime geometry. This can be achieved by
assuming that

h̃aµ = ∂µx
a +

•
A
a
bµx

b + αgB
a
µ (9.50)

which takes into account the relation αg = mg/mi of the particle under
consideration, is a true tetrad field. This tetrad defines a new spacetime
metric tensor

g̃µν = ηab h̃
a
µ h̃

b
ν , (9.51)
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in terms of which the corresponding spacetime invariant interval is

ds̃2 = g̃µν dx
µdxν . (9.52)

It defines also a new Weitzenböck connection

Γλµρ = h̃a
λ
•
Dρh̃aµ, (9.53)

whose torsion is

T aµρ = ∂µh̃
a
ρ − ∂ρh̃aµ +

•
A
a
bµh̃

b
ρ −

•
A
a
bρh̃

b
µ. (9.54)

Then, by noticing that in this case the relation between the gravitational
field strength

•
T
a
µρ = ∂µB

a
ρ − ∂ρBa

µ +
•
A
a
bµB

b
ρ −

•
A
a
bρB

b
µ (9.55)

and torsion turns out to be

αg
•
T
a
µρ = h̃aλ T

λ
µρ, (9.56)

it is an easy task to verify that, for a fixed relation α = mg/mi, the equation
of motion (9.45) is equivalent to the geodesic equation

dũµ
ds̃
− Γ̃λµρ ũλ ũ

ρ = 0, (9.57)

where

ũµ ≡ dxµ

ds̃
= ua h̃a

µ

is the particle four-velocity, and Γ̃ρµν is the Christoffel connection of the
metric g̃µν . Notice that this equation can also be obtained from the action
integral

S̃ = − mic

∫ b

a

ds̃, (9.58)

which has the usual form of the action in the context of General Relativity.
Nevertheless, the price for imposing a geodesic equation of motion to

describe a non-universal interaction is that the theory becomes inconsistent.
In fact, the solution of the corresponding Einstein’s field equation

R̃µν −
1

2
g̃µνR̃ =

8πG

c4
Θ̃µν , (9.59)

would in this case depend on the relation mg/mi of the test particle, which
renders the theory self-contradictory: test particles with different relations
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mg/mi would require connections with different curvatures to keep all equa-
tions of motion given by geodesics. Of course the gravitational field, as a
true field, cannot depend on any test particle properties. We can then con-
clude that, in the absence of the weak equivalence principle, the geometric
description of General Relativity breaks down. Since the gauge potential Ba

µ

can always be obtained independently of any property of the test particle,
Teleparallel Gravity remains a consistent theory [82].



Chapter 10

Gravitational Coupling of the
Fundamental Fields

The teleparallel coupling of some of the main fundamental relativistic fields —
scalar, Dirac and electromagnetic fields — to gravitation are examined. The
dominant aspect is that they all couple to gravitation through torsion.

10.1 Gravitational Coupling Revisited

We recall that a relativistic field is a field with a definite, covariant behavior
under transformations of the Poincaré group P [See Appendix B, Section
B.1]. This means, actually, that it belongs to one of the representations of
P . There is one of such representations for each value of mass and spin.
With fixed masses, a scalar field belongs to the null representation, which
means that it is invariant (spin 0); a Dirac field belongs to the bi-spinor
representation (spin 1/2); a vector fields belongs to the vector representation
(spin 1); and so on.

As discussed in Chapter 3, the teleparallel coupling of any field to gravi-
tation is obtained by applying the coupling prescription

∂µψ →
••
Dµψ, (10.1)

where
••
Dµψ = ∂µψ − i

2

( •
Abcµ −

•
Kbc

µ

)
Sbc ψ, (10.2)

with Sbc the Lorentz generators written in the representation appropriate for
the field under consideration. In the case of a Lorentz vector field V b, for

115
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which Sbc is given by Eq. (3.60), the coupling prescription assumes the form

∂µV
b →

••
DµV b = ∂µV

b +
( •
A
b
cµ −

•
K
b
cµ

)
V c. (10.3)

The corresponding expression for the spacetime vector V ρ = hc
ρ V c is

∂µV
ρ →

••
∇µV

ρ = ∂µV
ρ +

( •
Γ
ρ
λµ −

•
K
ρ
λµ

)
V λ. (10.4)

In this chapter we apply the teleparallel coupling prescription to some specific
fundamental fields.

10.2 Scalar Field

Let us consider the lagrangian of a scalar field φ of mass m, which on
Minkowski spacetime is written as

Lφ =
e

2

(
ηµν ∂µφ ∂νφ− µ2φ2

)
, (10.5)

where e = det(eaµ) = 1 and µ = mc/~. The corresponding field equation is
the Klein–Gordon equation

ηµν ∂µ∂νφ+ µ2φ = 0. (10.6)

Since by definition a scalar field belongs to the null representation,

Sabφ = 0, (10.7)

the coupling prescription (3.76 assumes the form

∂µ →
••
Dµ ≡ ∂µ. (10.8)

Applying this prescription to the free lagrangian (10.5), it becomes

Lφ =
h

2

[
gµν ∂µφ ∂νφ− µ2φ2

]
, (10.9)

where we have concomitantly changed

eaµ → haµ and ηµν → gµν . (10.10)

Variation of this lagrangian yields the field equation

•
φ+ µ2φ = 0, (10.11)
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where
•
φ = h−1 ∂ρ (h ∂ρφ) (10.12)

is the Laplace–Beltrami operator. Using the identity

∂µh = h (
•
Γ
ρ
µρ −

•
K
ρ
µρ), (10.13)

it can be rewritten in the form

•
φ =

(
∂µ +

•
Γ
ρ
µρ −

•
K
ρ
µρ

)
∂µφ ≡

••
∇µ∂

µφ, (10.14)

with
••
∇µ the covariant derivative (10.4). This is the teleparallel version of

the Laplace–Beltrami operator. The teleparallel version of the Klein–Gordon
equation is, consequently [85],

••
∇µ∂

µφ+ µ2φ = 0. (10.15)

We see from this equation that, in Teleparallel Gravity, a scalar field cou-
ples to torsion. We see also that it results equivalent to apply the coupling
prescription to the lagrangian or to the field equation.

Comment 10.1 It is important to remark that, in the Einstein–Cartan models (see
Chapter 14), only a spin distribution could produce or feel torsion [83]. A scalar field, for
example, should be able to feel only curvature [84]. However, as we have seen in Chapter 7,
the gravitational interaction can be described alternatively in terms of curvature or torsion.
Since a scalar field couples to curvature, it must also couple to torsion [85]. Actually, its
own spin is zero, but its derivative is a vector field which “feels” torsion.

10.3 Dirac Spinor Field

10.3.1 The Dirac Equation

On Minkowski spacetime, the spinor field lagrangian is

Lψ =
ic~
2

(
ψ̄ γa ea

µ ∂µψ − eaµ ∂µψ̄γa ψ
)
−mc2 ψ̄ψ. (10.16)

The corresponding field equation is the free Dirac equation

i~γa eaµ ∂µψ −mcψ = 0. (10.17)

Comment 10.2 Due to the importance of spinor fields in the study of the gravitational
interaction at the microscopic scale, in Appendix B we present a resumé on the Dirac
equation.
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The gravitationally coupled Dirac lagrangian is obtained by applying the
teleparallel coupling prescription

ea
µ ∂µψ → ha

µ
••
Dµ = ∂µψ − i

2

( •
Abcµ −

•
Kbc

µ

)
Sbc ψ, (10.18)

with Sbc the spinor representation

Sbc ≡ 1
2
σbc = i

4
[γb, γc]. (10.19)

The result is

Lψ = h

[
ic~
2

(
ψ̄γµ

••
Dµψ −

••
Dµψ̄ γµψ

)
−mc2 ψ̄ψ

]
, (10.20)

where we have used the notation γµ ≡ γµ(x) = γa ha
µ. Using the identity

••
Dµ(hγµ) = 0, (10.21)

the teleparallel version of the coupled Dirac equation is found to be

i~γµ
[
∂µψ − i

4

( •
Abcµ −

•
Kbc

µ

)
σbc

]
ψ −mcψ = 0. (10.22)

In the class of frames in which the inertial connection
•
Aabµ vanishes, the

Dirac equation becomes

i~γµ
[
∂µψ + i

4

•
Kbc

µ σbc

]
ψ −mcψ = 0. (10.23)

We see from this equation that, whereas in Teleparallel Gravity the Dirac

spinor couples to the contortion tensor
•
Ka

bµ, in General Relativity it couples

to the spin connection
◦
Aabµ.

Comment 10.3 Sometimes, the coupling prescription of Teleparallel Gravity is as-
sumed to be defined by the covariant derivative

•
Dµψ = ∂µψ −

i

2
•
A
ab
µ Sabψ. (10.24)

Since
•
Aabµ vanishes in a specific class of frames, it is argued that, for spinor fields ψ, the

Fock–Ivanenko derivative reduces to an ordinary derivative [12]:

•
Dµψ = ∂µψ. (10.25)

For this reason, it is usually asserted that, in the presence of spinor fields, the equivalence
between General Relativity and Teleparallel Gravity is broken down. This argument is of
course misleading as it is based on a coupling prescription that does not follow from the
equivalence principle. Actually, the coupling prescription based on the covariant derivative
(10.24) violates the principle, and is therefore physically unacceptable.
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10.3.2 Torsion Decomposition and Spinors

As discussed in Section 1.4, torsion can be decomposed in irreducible com-
ponents under the global Lorentz group:

Tλµν = 2
3

(tλµν − tλνµ) + 1
3

(gλµvν − gλνvµ) + ελµνρ a
ρ, (10.26)

where tλµν represents the purely tensor torsion, and vµ and aρ represent
respectively its vector and axial parts. Let us consider the Dirac equation
(10.22). As a simple calculation shows, the coupling term of the covariant
derivative is

i
4

•
Kab

µ γ
µ σab = − γµ

(
1
2

•
Vµ + 3i

4

•
Aµ γ5

)
, (10.27)

where γ5 = γ5 := iγ0γ1γ2γ3. As a consequence, in the class of frames in which

the inertial connection
•
Aabµ vanishes, the teleparallel covariant derivative of

a spinor field can be written as

γµ
••
Dµψ = γµ

(
∂µ − 1

2

•
Vµ − 3i

4

•
Aµ γ5

)
ψ. (10.28)

The corresponding teleparallel Dirac equation then reads

i ~ γµ
(
∂µ − 1

2

•
Vµ − 3i

4

•
Aµγ5

)
ψ = mcψ. (10.29)

It involves the vector
•
Vµ and the axial

•
Aµ torsions only [37]. This means

essentially that the purely tensor piece tλµν of torsion is irrelevant for the
description of the gravitational interaction of fermions. Notice that the prop-
erty above is necessary for invariance under temporal and space invertions:

vector
•
Vµ couples to the vector current γµ, axial

•
Aµ couples to the axial cur-

rent γµγ5 [see Appendix B for a discussion on the different kind of currents
allowed by the Grassmann algebra].

Comment 10.4 It is interesting to remark that, in General Relativity, where the co-
variant derivative is given by

◦
Dµψ = ∂µψ − i

2

◦
Aabµ Sabψ, (10.30)

if the spin connection
◦
Abcµ is written in terms of the coefficient of nonholonomy fabc

according to
◦
A
a
bc = − 1

2 (fabc + fbc
a + fcb

a), (10.31)

a decomposition similar to (10.27) can be made, and the Dirac equation turns out to be
written in terms of the trace and the pseudo-trace of fabc only. The purely tensor part of
fabc is also irrelevant for spinors.
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10.4 Electromagnetic Field

On Minkowski spacetime, the electromagnetic field is described by the Lagran-
gian density

Lem = − e

4
FµνF

µν , (10.32)

where e = det(eaµ) = 1, and

Fµν = ∂µAν − ∂νAµ (10.33)

is the electromagnetic field–strength. The corresponding field equation is

∂µF
µν = 0, (10.34)

which along with the Bianchi identity

∂µFνρ + ∂ρFµν + ∂νFρµ = 0, (10.35)

constitute the sourceless Maxwell’s equations. In the Lorenz gauge ∂µA
µ = 0,

field equation (10.34) becomes the wave equation

ηµν ∂µ∂νA
ρ = 0. (10.36)

Let us obtain now, by applying the coupling prescription (10.4), Maxwell’s
equation in Teleparallel Gravity. In the specific case of the electromagnetic
vector field Aρ, the coupling prescription assumes the form

∂µV
ρ →

••
∇µA

ρ = ∂µA
ρ +

( •
Γ
ρ
νµ −

•
K
ρ
νµ

)
Aν . (10.37)

As a consequence, the gravitationally coupled Maxwell lagrangian in Telepar-
allel Gravity can be written as

Lem = − h
4
FµνF

µν , (10.38)

where now
Fµν =

••
∇µAν −

••
∇νAµ. (10.39)

Using the explicit form of
••
∇µ, and the definitions of torsion and contortion

tensors, it is easy to verify that the field strength, like in General Relativity,
does not change:

Fµν = ∂µAν − ∂νAµ. (10.40)

The corresponding field equation is

••
∇µF

µν ≡ ∂µ(hF µν) = 0, (10.41)
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which yields Maxwell’s equation in Teleparallel Gravity. Assuming the telepar-

allel Lorenz gauge
••
∇µA

µ = 0, and using the commutation relation[••
∇µ,

••
∇ν

]
Aµ = −

•
Qµν A

µ, (10.42)

where
•
Qµν =

•
Qρ

µρν , with
•
Qρ

µσν given by Eq. (7.21), we obtain

••
∇µ

••
∇µAν +

•
Qµ

νAµ = 0. (10.43)

This is the teleparallel version of Maxwell’s equation in terms of the elec-
tromagnetic potential. Consider now the Bianchi identity (10.35). Applying
the coupling prescription (10.37), it is an easy task to verify that it remains
invariant:

∂µFνσ + ∂σFµν + ∂νFσµ = 0. (10.44)

This is the teleparallel version of the second pair of Maxwell’s equation.
In the context of the teleparallel equivalent of General Relativity, there-

fore, the electromagnetic field is able to couple to torsion, and this coupling
does not violate the gauge invariance of Maxwell’s theory. Furthermore, using
relation (7.18), it is easy to verify that the teleparallel version of Maxwell’s
equations, which are equations written in terms of the Weitzenböck connec-
tion only, are completely equivalent with the usual Maxwell’s equations in
the context of General Relativity, which are equations written in terms of the
Levi–Civita connection only. The basic lesson is that Teleparallel Gravity is
able to provide a consistent description of the interaction of torsion with the
electromagnetic field [96].

10.5 Spin-2 Field

10.5.1 Defining a Spin-2 Field

Due to the fact that linearized gravity represents a spin-2 field, the dynam-
ics of a fundamental spin-2 field in Minkowski space, according to the usual
approach [103], is expected to coincide with the dynamics of a linear pertur-
bation of the metric around flat spacetime:

gµν = ηµν + ψµν . (10.45)

For this reason, a fundamental spin-2 field is usually assumed to be described
by a rank-two, symmetric tensor ψµν = ψνµ. However, conceptually speak-
ing, this is not the most fundamental notion of a spin-2 field. As is well
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known, although the gravitational interaction of scalar and vector fields can
be described in the metric formalism, the gravitational interaction of spinor
fields requires a tetrad formalism [104]. The tetrad formalism can then be
considered to be more fundamental than the metric formulation in the sense
that it is able to describe the gravitational interaction of both tensor and
spinor fields. Accordingly, the tetrad field can be said to be more fundamen-
tal than the metric. Relying on this property, instead of similar to a linear
perturbation of the metric, a fundamental spin-2 field should be considered
a linear perturbation of the tetrad field [111].

Denoting by eaµ a trivial tetrad representing the Minkowski metric, a
fundamental spin-2 field φaµ should, therefore, be defined by

haµ = eaµ + φaµ. (10.46)

Since the tetrad is a translational-valued vector field, φaµ will also be a
translational-valued vector field,

φµ = φaµ Pa, (10.47)

with Pa = ∂a the translation generators. Observe that, in the usual met-
ric formulation of gravity, the symmetry of the metric tensor eliminates six
degrees of freedom of the sixteen original degrees of freedom of gµν . In the
tetrad formulation, on the other hand, local Lorentz invariance is responsible
for eliminating six degrees of freedom of the sixteen original degrees of free-
dom of haµ, yielding the same number of independent components of gµν . Of
course, the same equivalence must hold in relation to the fields ψµν and φaµ.

Now, in teleparallel gravity the gravitational field is represented by a
translational gauge potential Bµ = Ba

µPa, which appears as the nontrivial
part of the tetrad field [106]. This means essentially that φaµ is similar to
the gauge potential of teleparallel gravity. Accordingly, its dynamics must
coincide with the dynamics of linearized teleparallel gravity.

10.5.2 The Flat Spacetime Case

Gauge transformations

In the inertial frame e′a, the tetrad describing the flat Minkowski spacetime
is of the form

e′aµ = ∂µx
′a. (10.48)

A spin-2 field φ′aµ corresponds to a linear perturbation of this tetrad:

h′aµ = ∂µx
′a + φ′aµ. (10.49)
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In this class of frames, therefore, the vacuum is represented by

φ′aµ = ∂µξ
a(x), (10.50)

with ξa(x) an arbitrary function of the spacetime coordinates xρ. In fact,
such φ′aµ represents simply a gauge translation

x′a → x′a + ξa(x) (10.51)

in the fiber fiber, or tangent space. This means that the gauge transformation
associated to the spin-2 field φaµ is

φ′aµ → φ′aµ − ∂µξa(x). (10.52)

Of course, h′aµ is invariant under such transformations.

Field strength and Bianchi identity

The next step towards the construction of a field theory for φ′aµ is to define
the analogous of torsion:

F ′aµν = ∂µφ
′a
ν − ∂νφ′aµ. (10.53)

This tensor is actually the spin-2 field-strength. As can be easily verified,
F ′aµν is gauge invariant. Furthermore, it satisfies the Bianchi identity

∂ρF
′a
µν + ∂νF

′a
ρµ + ∂µF

′a
νρ = 0, (10.54)

which can equivalently be written in the form

∂ρ(ε
λρµν F ′aµν) = 0, (10.55)

with ελρµν the totally anti-symmetric, flat spacetime Levi-Civita tensor.

Lagrangian and field equation

Considering that the dynamics of a spin-2 field must coincide with the dy-
namics of linear gravity, its Lagrangian will be similar to the Lagrangian
(7.12) of teleparallel gravity. One has just to replace the teleparallel torsion
•
T aµν by the spin-2 field strength

√
k F ′aµν . It is interesting to notice that

when we do that, the spin-2 analogous of the teleparallel superpotential
•
Saµν

is the Fierz tensor [97]

F ′aµν = e′a
ρK′µνρ − e′aν e′bρ F ′bµρ + e′a

µ e′b
ρ F ′bνρ, (10.56)
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with
K′µνρ = 1

2
(e′a

ν F ′aµρ + e′aρ F
′
a
µν − e′aµ F ′aνρ) (10.57)

the spin-2 analogous of the teleparallel contortion. Considering that in the
absence of gravitation det(e′aµ) = 1, the Lagrangian for a massless spin-2
field is

L′ = 1

4
F ′aµν F ′aµν . (10.58)

By performing variations with respect to φaρ, we obtain

∂µF ′aρµ = 0. (10.59)

This is the field equation satisfied by a massless spin-2 field in Minkowski
spacetime, as seen from the inertial frame e′aµ.

Comment 10.5 It is interesting to notice that teleparallel gravity naturally yields the
Fierz formulation for a spin-2 field [107].

Duality symmetry

The spin-2 field can be viewed as an Abelian gauge field with the internal
index replaced by an external Lorentz index. Due to the presence of the
tetrad, Lorentz and spacetime indices can be transformed into each other.
As a consequence, its Hodge dual will necessarily include additional index
contractions in relation to the usual dual. Taking into account all possible
contractions, its dual turns out to be given by [108]

?F ′aµν = 1
2
εµνρσ F ′aρσ. (10.60)

Substituting the Fierz tensor (10.56), we find

?F ′aµν = 1
2
εµνρσ

(
F ′aρσ − e′aσe′bλ F ′bρλ + e′aρe′b

λ F ′bσλ
)
. (10.61)

Let us now consider the Bianchi identity (10.55). Written for the dual of
F ′aµν , it reads

∂ρ(ε
λρµν ?F ′aµν) = 0. (10.62)

Substituting ?F ′aµν as given by Eq. (10.60), we get

∂ρF ′aµρ = 0, (10.63)

which is the field equation (10.59). We see in this way that, provided the
generalized Hodge dual (10.60) for soldered bundles is used, the spin-2 field
has duality symmetry. This is actually an expected result because the dy-
namics of a spin-2 field must coincide with the dynamics of linear gravity,
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which has already been shown to present duality symmetry [?]. We remark
finally that, in the usual Fierz formulation of a spin-2 field, identity (10.55)
has to be put by hand in order to get the number of equations consistent
with the number of degrees of freedom [109]. In the present formulation it
appears as a consequence of considering the spin-2 field as a perturbation of
the tetrad instead of the metric.

Passage to a general frame

In a Lorentz rotated frame ea = Λa
b(x) e′a, the tetrad assumes the form

eaµ ≡
•
Dµxa = ∂µx

a +
•
A
a
bµ x

b. (10.64)

In this frame, the vacuum of φaµ turns out to be represented by

φaµ =
•
Dµξa(x), (10.65)

whereas the gauge transformations assume the form

φaµ → φaµ −
•
Dµξa(x). (10.66)

The field strength (10.53), on the other hand, becomes

F a
µν =

•
Dµφaν −

•
Dνφaµ. (10.67)

Accordingly, the Bianchi identity reads

•
DρF a

µν +
•
DνF a

ρµ +
•
DµF a

νρ = 0, (10.68)

which is equivalent to
•
Dρ(ελρµν F a

µν) = 0. (10.69)

Analogously, the Fierz tensor turns out to be

Faµν = ea
ρKµνρ − eaν ebρ F bµ

ρ + ea
µ eb

ρ F bν
ρ. (10.70)

Now, as a simple inspection shows, the Lagrangian (10.58) is invariant under
local Lorentz transformations, that is,

L′ ≡ L =
1

4
Faµν F a

µν . (10.71)

The corresponding field equation,

•
DµFaρµ ≡ ∂µFaρµ −

•
A
b
aµFbρµ = 0, (10.72)
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represents the field equation satisfied by a massless spin-2 field in Minkowski
spacetime, as seen from the general frame eaµ. It is clearly invariant under
the gauge transformation (10.66). It is important to observe that the the-
ory has twenty two constraints: sixteen of the invariance under the gauge
transformations (10.52), and six from the invariance of the Lagrangian L un-
der local Lorentz transformations. The twenty four original components of
the Fierz tensor are then reduced to only two, as appropriate for a massless
spin-2 field.

Relation to the metric approach

Let us consider the inertial frame e′a endowed with a cartesian coordinate
system. In this case all connections vanish, and according to Eq. (1.33) the
tetrad e′aµ satisfies the condition ∂ρe

′a
µ = 0. Using this tetrad, we can define

φ′ρµ := e′a
ρ φ′aµ. Since φ′ρµ is not in principle symmetric, the perturbation of

the metric — which is usually supposed to represent a fundamental spin-2
field — is to be identified with the symmetric part of φ′ρµ:

ψρµ = φ′ρµ + φ′µ
ρ. (10.73)

It is then easy to see that, in terms of ψρµ, the gauge transformation (10.52)
acquires the form,

ψρµ → ψρµ − ∂ρξµ(x)− ∂µξρ(x), (10.74)

where ξµ(x) = ξa(x) e′a
µ. The Bianchi identity (10.54), on the other hand, is

seen to be trivially satisfied, whereas the field equation (10.59) assumes the
form

� (δµλ ψ − ψµλ)−∂λ∂µ ψ− δµλ ∂ν∂ρ ψνρ +∂ν∂
µ ψνλ +∂λ∂ρ ψ

ρµ = 0, (10.75)

with ψ = ψαα. This is precisely the linearized Einstein equation [112], which
means that in absence of gravity the teleparallel-based approach is totally
equivalent to the usual general relativity-based approach to the spin-2 field.
Namely, φaρ and ψµν are the same physical field, which in the massless case
is well known to represent waves with helicity 2. The teleparallel approach,
however, is much more elegant and simple in the sense that it is similar
to the spin-1 electromagnetic theory — an heritage of the (abelian) gauge
structure of teleparallel gravity. In addition, it allows a precise distinction
between gauge transformations — local translations in the tangent space —
and spacetime coordinate transformations. Furthermore, in contrast to the
usual metric approach, the field φaρ, as well as its gauge transformations, are
not restricted to be infinitesimal.
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10.5.3 Coupling with Gravitation

Gravitational coupling prescription

In absence of gravitation, as we have seen in the previous section, the al-
gebraic index of φaρ can be transformed into a spacetime index through
contraction with the tetrad field, and vice-versa. In the presence of grav-
itation, this index transformation can lead to problems with the coupling
prescription. In fact, as is well known, higher (s > 1) spin fields, and in
particular a spin-2 field, present consistency problems when coupled to grav-
itation [112]. The problem is that the divergence identities satisfied by the
field equations of a spin-2 field in Minkowski spacetime are no longer valid
when it is coupled to gravitation. In addition, the coupled equations are
no longer gauge invariant. The basic underlying difficulty is related to the
fact that the covariant derivative of general relativity — which defines the
gravitational coupling prescription — is non-commutative, and this intro-
duces unphysical constraints on the spacetime curvature. As we are going
to see here, if Teleparallel Gravity is used as paradigm, all inconsistencies
disappear.

To begin with we note that, because φaρ is a vector field assuming values
in the Lie algebra of the translation group, φρ = φaρPa, the algebraic index
“a” is not an ordinary vector index. It is actually a gauge index which, due to
the “external” character of translations, happens to be similar to the usual,
true vector index “ρ”. To understand better this difference, let us consider
a scalar field φ. As is well known, its gravitational coupling prescription is
trivial:

∂µφ→ ∂µφ. (10.76)

Its interaction with gravitation comes solely from the tetrad replacement

eaµ → haµ = eaµ +Ba
µ, (10.77)

or equivalently, from the metric replacement

ηµν = eaµe
b
ν ηab → gµν = haµh

b
ν ηab. (10.78)

The crucial point is to note that this is true independently of whether the
scalar field is or is not a translational-valued field φ = φaPa. We see in
this way that translational gauge indices are irrelevant for the gravitational
coupling prescription.

Based on the above considerations, in the class of frames h′a in which the

inertial connection
•
Aabµ vanishes, the gravitational coupling prescription of
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the spin-2 field φρ = φaρPa is written in the form

∂µφ
′
ρ → ∂µφ

′
ρ −

( •
Γ
λ
ρµ −

•
K
λ
ρµ

)
φ′λ. (10.79)

In components, it reads

∂µφ
′a
ρ → ∂µφ

′a
ρ −

( •
Γ
λ
ρµ −

•
K
λ
ρµ

)
φ′aλ. (10.80)

Of course, because of the identity

•
Γ
λ
ρµ −

•
K
λ
ρµ =

◦
Γ
λ
ρµ, (10.81)

with
◦
Γλρµ the Levi-Civita connection of the metric gµν , this coupling pre-

scription coincides with the coupling prescription of general relativity. This
is a key point of the equivalence between general relativity and teleparallel
gravity [110].

Let us consider now the coupling prescription in an arbitrary frame. Un-
der a local Lorentz transformation, the ordinary derivative of φ′aρ transforms
according to

∂µφ
′a
ρ →

•
Dµφaρ = ∂µφ

a
ρ +

•
A
a
bµ φ

b
ρ. (10.82)

In a general Lorentz frame, therefore, the gravitational coupling prescription
of a fundamental spin-2 field φaρ is written as

∂µφ
a
ρ → ∂µφ

a
ρ +

•
A
a
bµ φ

b
ρ −

( •
Γ
λ
ρµ −

•
K
λ
ρµ

)
φaλ. (10.83)

This coupling prescription provides different connection-terms for each index
of φaρ: whereas the algebraic index is connected to inertial effects only, the
spacetime index is connected to the gravitational coupling prescription. It
constitutes one of the main differences of the teleparallel-based approach in
relation to the usual metric approach based on general relativity. In fact, the
latter considers both indices of the spin-2 variable ψµν on an equal footing,
leading to a coupling prescription that breaks the gauge invariance of the
spin-2 theory.

Comment 10.6 It is important to note that, as a simple inspection shows, the coupling
prescription (10.83) cannot be rewritten in terms of the connections

◦
Aabµ and

◦
Γλρµ of

General Relativity. In spite of the equivalenece between Teleparallel Gravity and General
Relativity, such spin-2 field theory has not a General Relativity counterpart.



10.5. SPIN-2 FIELD 129

Field strength and Bianchi identity

Let us now apply the gravitational coupling prescription (10.83) to the free
theory. To begin with we notice that, because the gauge parameter ξa has
an algebraic index only, the gauge transformation (10.66) does not change in
the presence of gravitation:

φaµ → φaµ −
•
Dµξa(x). (10.84)

On the other hand, considering that the connection (10.81) is symmetric in
the last two indices, we see that the field strength F a

µν does not change in
the presence of gravitation:

F a
µν =

•
Dµφaν −

•
Dνφaµ. (10.85)

Due to the fact that the teleparallel Fock-Ivanenko derivative
•
Dµ is commu-

tative, the Bianchi identity also remains unchanged,

•
DρF a

µν +
•
DνF a

ρµ +
•
DµF a

νρ = 0. (10.86)

Since ελρµν is a density of weight ω = −1, in the presence of gravitation
the Levi-Civita tensor is given by hελρµν , and the Bianchi identity can be
rewritten in the form

•
Dρ(h ελρµν F a

µν) = 0. (10.87)

This is similar to what happens to the electromagnetic field in the presence
of gravitation.

Lagrangian and field equation

Analogously to the flat background case, the Lagrangian of the spin-2 field in
the presence of gravitation can be obtained from the teleparallel Lagrangian

(7.12) by replacing the teleparallel torsion
•
T aµν by the spin-2 field strength√

k F a
µν . The result is

L =
h

4
Faµν F a

µν , (10.88)

where

Faµν = ha
ρKµνρ − haµ hbσF bν

σ + ha
ν hb

σF bµ
σ (10.89)

is the gravitationally-coupled Fierz tensor, with

Kµνρ = 1
2

(ha
ν F aµ

ρ + haρ Fa
µν − haµ F aν

ρ) (10.90)
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the corresponding spin-2 analogous of the coupled contortion. We notice
in passing that this Lagrangian is invariant under the gauge transformation
(10.66). It is furthermore invariant under local Lorentz transformation h′aµ =
Λa

b(x)haµ of the frames.
Performing variations in relation to φaρ, we get

•
DµFaρµ + (

•
Γ
µ
νµ −

•
K
µ
νµ)Faρν = 0. (10.91)

Using the identity

∂µh = h
◦
Γ
µ
λµ ≡ h

( •
Γ
µ
λµ −

•
K
µ
λµ

)
, (10.92)

it can be rewritten in the form

•
Dµ(hFaρµ) = 0. (10.93)

This is the field equation of a fundamental spin-2 field in the presence of
gravitation, as seen from the general frame haµ. It is important to remark

that, on account of the commutativity of the covariant derivative
•
Dµ, the

gravitationally-coupled theory is gauge invariant and, like the free theory,
has the correct number of independent components.

Comment 10.7 It is important to observe that the coupled equation (10.93) can also
be obtained from the free field equation (10.72) by applying the gravitational coupling
prescription (10.83).

10.5.4 Spin-2 Field as Source of Gravitation

Let us consider now the total Lagrangian

Lt =
•
L+ L, (10.94)

where
•
L is the teleparallel Lagrangian (7.12), and L is the Lagrangian (10.88)

of a spin-2 field in the presence of gravitation. The corresponding field equa-
tion is

∂σ(h
•
Sa

ρσ)− k h (
•
ta
ρ +

•
ıa
ρ) = k h θa

ρ, (10.95)

where
•
ta
ρ is the gravitational energy-momentum tensor,

•
ıa
ρ is the energy-

momentum pseudotensor of inertia, and

θa
ρ ≡ −1

h

δL
δhaρ

= ha
ν Fcµρ F c

µν −
ha

ρ

h
L (10.96)
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is the spin-2 field source energy-momentum tensor. Observe that

θρ
ρ ≡ haρ θa

ρ = 0, (10.97)

as it should be for a massless field. Furthermore, from the invariance of
L under general coordinate transformation, it is found to satisfy the usual
(general relativity) covariant conservation law [35]

◦
Dρ(hθaρ) ≡ ∂ρ(hθa

ρ)−
◦
A
b
aρ (hθb

ρ) = 0. (10.98)

Due to the anti-symmetry of the superpotential in the last two indices, we
see from the field equation (10.95) that the total energy-momentum density
is conserved in the ordinary sense:

∂ρ[h(
•
ıa
ρ +

•
ta
ρ + θa

ρ)] = 0. (10.99)

As we have seen in Chapter 7, the field equation (10.95) can be rewritten
in the form •

Dσ(h
•
Sa

ρσ) = k h (
•
ta
ρ + θa

ρ), (10.100)

where the right-hand side represents the true gravitational field source. We
recall that the energy-momentum density of inertia, although entering the
total energy-momentum conservation, is not source of gravitation, and ac-
cordingly must remain in the left-hand side of the field equation. Considering

that the covariant derivative
•
Dρ is commutative, the true source of gravita-

tion is found to be conserved in the covariant sense:

•
Dρ[h(

•
ta
ρ + θa

ρ)] = 0. (10.101)

This property ensures the consistency of the theory in the sense that no
constraints on the background spacetime geometry show up.

10.5.5 Further Remarks

Due to the fact that it describes the gravitational interaction through a ge-
ometrization of spacetime, General Relativity is not, strictly speaking, a field
theory in the usual sense of classical fields. On the other hand, owing to its
gauge structure, teleparallel gravity does not geometrize the gravitational
interaction, and for this reason it is much more akin to a field theory than
general relativity. When looking for a field theory for the spin-2 field, there-
fore, it seems far more reasonable to use teleparallel gravity as paradigm.
Accordingly, instead of a symmetric second-rank tensor ψµν , the spin-2 field
is assumed to be represented by a spacetime (world) vector field assuming
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values in the Lie algebra of the translation group. Its components φaµ, like
the gauge potential of teleparallel gravity (or the tetrad), represent a set of
four spacetime vector fields.

Although in the absence of gravitation the teleparallel-based approach to
the spin-2 field coincides with the usual metric approach based on General
Relativity, in the presence of gravitation it differs substantially from the
usual metric approach. The reason is that the index “a” of the translational-
valued field φaρ is not an ordinary vector index, but a gauge index. As such,
it is irrelevant for the gravitational coupling prescription, as discussed in
section 10.5.3. This point is usually overlooked in the metric approach, which
considers both indices of the spin-2 field ψµν on an equal footing. As a result,
the ensuing gravitational coupling prescription is found to break the gauge
invariance of the theory. When the correct coupling prescription is used,
a sound gravitationally-coupled spin-2 field theory emerges, which is quite
similar to the gravitationally-coupled electromagnetic theory. Furthermore,
it is both gauge and local Lorentz invariance, and it preserves the duality
symmetry of the free theory.

Finally, it is important to remark that, because the teleparallel spin con-

nection
•
Aabµ is purely inertial, the covariant derivative

•
Dσ is commutative.

Taking into account the anti-symmetry of the superpotential in the spacetime
indices, we obtain the divergence identity

•
Dρ

•
Dσ(h

•
Sa

ρσ) = 0, (10.102)

which is consistent with the covariant conservation law (10.101). This prop-
erty, together with the gauge and local Lorentz invariance, render the grav-
itationally–coupled spin-2 theory fully consistent. In the context of general
relativity, whose spin connection represents both inertia and gravitation, the
inertial part of the gravitational energy-momentum pseudotensor cannot be
separated, and consequently the gravitational field equation cannot be writ-
ten in a form equivalent to (10.100). In the context of general relativity,
therefore, no consistent gravitationally-coupled spin-2 field theory can be
obtained.



Chapter 11

Duality Symmetry

Duality symmetry is an important property of sourceless gauge theories.
It says that the field equation is just the Bianchi identity written for the
dual of the field strength. This means that, if we know the geometrical
background — that is, the Bianchi identity — we know the dynamics —
that is, the field equations. Duality is not present in General Relativity
nor in Teleparallel Gravity. It is, nevertheless, present in the linearized
approximation to both. Taking advantage of the possibility of separating
torsion into irreducible components under the global Lorentz group, a dual-
symmetric sub-theory of Teleparallel Gravity is obtained.

General Relativity does not exhibit the remarkable duality symmetry de-
scribed in Section 2.1, characteristic of internal–space gauge theories. Telepar-
allel Gravity, on the other hand, is a gauge theory, though for the translation
group [115, 116]. It presents, anyhow, several characteristics distinguishing
it from General Relativity and approaching the Yang–Mills paradigm. In
particular, it does not describe the gravitational interaction by a geometriza-
tion of spacetime, but by a true force (see Chapter 4). Another important
point refers to the lagrangian of the gravitational field: whereas in General
Relativity it is linear in the curvature, in Teleparallel Gravity it is quadratic
the field strength of the theory, the torsion tensor.

The main difference Teleparallel Gravity shows with respect to the inter-
nal gauge paradigm comes precisely from its external fingerprint: the pres-
ence of a solder form connecting the internal with the external sectors of
the theory. This form, whose components are the tetrad field, gives rise to
new types of contractions, absent in internal gauge theories. In consequence
the gauge lagrangian, as well as the field equation, will include additional
terms if compared to the internal theories. As discussed in Chapter 6, these
additional terms can be taken into account through a generalization of the
concept of dual, which holds in soldered bundles. We intend now to analyze
whether, under some specific conditions, teleparallelism could present duality

133



134 CHAPTER 11. DUALITY SYMMETRY

symmetry [117].

11.1 Duality Symmetry and Gravitation

Consider the first Bianchi identity of Teleparallel Gravity, given by Eq. (7.61):
•
Dν

•
T
a
ρµ +

•
Dµ

•
T
a
νρ +

•
Dρ

•
T
a
µν = 0. (11.1)

It can equivalently be written in the form
•
Dρ(ελρµν

•
T
a
µν) = 0. (11.2)

For the dual torsion, it reads
•
Dρ(ελρµν ?

•
T
a
µν) = 0. (11.3)

Substituting the dual definition [see Eq. (6.19)]

?
•
T
a
µν = 1

2
h εµνασ

•
Saασ, (11.4)

and using the relation [see Eq. (1.54)],

ελρµν εµνασ = − 2

h2

(
δλα δ

ρ
σ − δλσ δρα

)
, (11.5)

it reduces to •
Dσ(h

•
Sa

ρσ) = 0. (11.6)

Comparing with the sourceless teleparallel gravitational field equation [see
Eq. (8.17)]

•
Dσ(h

•
Sa

ρσ)− k (h
•
ta
ρ) = 0, (11.7)

we see that the Bianchi identity written for the dual torsion does not yield
the sourceless gravitational field equation. As a matter of fact, it yields the
potential term of the field equation, but not the current term. This means
essentially that gravitation is not dual–symmetric.

The condition for gravitation to present duality symmetry, therefore, is
that the gravitational energy–momentum current [see Eq. (8.18)]

•
ta
ρ =

1

k
ha

λ
•
Sc

νρ
•
T
c
νλ −

ha
ρ

h

•
L (11.8)

vanishes. Using the expression (7.12) for the teleparallel lagrangian, we arrive
at the condition

Sc
µρ T cµλ = 1

4
δρλ Sc

µν T cµν . (11.9)

This is quite a restrictive condition, which seems not to be realized, at least in
the general case. Nevertheless, under some specific conditions, it is possible
that gravitation may present duality symmetry. Let us begin by analyzing
the case of linear gravity.
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11.2 Linear Gravity

As discussed in Chapter 1, the trivial tetrad

eaµ ≡
•
Dµxa = ∂µx

a +
•
Abµ x

b (11.10)

describes the flat Minkowski geometry. In the class of frames in which the

inertial connection
•
Abµ vanishes, it becomes

eaµ = ∂µx
a. (11.11)

For such tetrads, it is always possible to properly choose the translational
gauge in such a way that

eaµ = δaµ. (11.12)

In this case, the spacetime metric will be

ηµν = δaµ δ
b
ν ηab = diag(+1,−1,−1,−1). (11.13)

Next, we consider the gauge potential Ba
µ as a small perturbation in

relation to the trivial tetrad, and write

Ba
µ = εBa

(1)µ + ε2Ba
(2)µ + . . . , (11.14)

where ε is a small dimensionless parameter introduced to label the successive
orders of the perturbation. We obtain, in consequence, an expansion of the
tetrad field around the flat background:

haµ = δaµ + εBa
(1)µ + ε2Ba

(2)µ + . . . . (11.15)

The corresponding expansion of the metric tensor is

gµν = ηµν + ε (B(1)µν +B(1)νµ) + . . . , (11.16)

where
Bρ

(1)ν = δρaB
a
(1)ν , (11.17)

and the spacetime indices are now raised and lowered with the Minkowski
metric ηµν :

B(1)µν = ηµρB
ρ
(1)ν . (11.18)

Although the perturbation B(1)µν of the gauge potential is not in principle
symmetric, it has already been shown that the anti-symmetric part of B(1)µν

drops off completely from the first-order lagrangian and field equation [121].
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For this reason, we are going to assume from now on that B(1)µν is symmetric.
In this case, and up to first order, the Weitzenböck connection (3.86) reads

•
Γ
ρ
(1)µν = ∂νB

ρ
(1)µ. (11.19)

The torsion and the contortion tensors are found to be, respectively,

•
T
ρ
(1)µν = ∂µB

ρ
(1)ν − ∂νBρ

(1)µ (11.20)

and
•
K
ρ
(1)µν = ∂ρB(1)µν − ∂µBρ

(1)ν . (11.21)

The corresponding first–order superpotential is

•
S(1)ν

ρµ = ∂ρBµ
(1)ν − ∂µBρ

(1)ν

−δµν
(
∂ρBσ

(1)σ − ∂σB
σρ
(1)

)
+ δρν

(
∂µBσ

(1)σ − ∂σB
σµ
(1)

)
(11.22)

Comment 11.1 We notice in passing that the superpotential (11.22) coincides with the
Fierz tensor [97] for a symmetric spin-2 field [see Section 10.5].

The first–order sourceless gravitational field equation is consequently

∂µ
•
S(1)a

ρµ = 0, (11.23)

where
•
S(1)a

ρµ = δνa
•
S(1)ν

ρµ. (11.24)

On the other hand, we see from Eq. (11.6) that the first order Bianchi identity
written for the dual torsion is

∂µ
•
S(1)a

ρµ = 0. (11.25)

Comparing with the first–order field equation (11.23), we conclude that lin-
ear gravity does present duality symmetry. This is actually an expected
result because, as already remarked in Chapter 10, linear General Relativity
presents duality symmetry [113].

Comment 11.2 Let us consider the teleparallel action of the gravitational field, which
according to Eq. (7.4) is given by

•
S[
•
T ] =

c3

16πG

∫
ηab

•
T
a ∧ ?

•
T
b. (11.26)
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Written for the dual, it reads

•
S[?

•
T ] =

c3

16πG

∫
ηab ?

•
T
a ∧ ??

•
T
b. (11.27)

Since
??
•
T
b = −

•
T
b,

we see immediately that the action changes sign under the dual transformation:
•
S[?

•
T ] = −

•
S[
•
T ] (11.28)

This is a known property of linear General Relativity [113], which emerges quite trivially
in the context of Teleparallel Gravity.

11.3 In Search of a Dual Gravity

As discussed in Section 10.3.2, the gravitational interaction of a Dirac spinor
in Teleparallel Gravity involves only the vector and the axial torsions [37].

In the class of frames in which the inertial connection
•
Aabµ vanishes, the

teleparallel Dirac equation is

i ~ γµ
(
∂µ − 1

2

•
Vµ − 3 i

4

•
Aµγ5

)
ψ = mcψ. (11.29)

We then argue: since the pure tensor piece
•
tλµν is irrelevant for the descrip-

tion of the gravitational interaction of spinor fields, if we restrict ourselves to
the microscopic world of the fermions we can consider a gravitational theory
in which the purely tensor piece of torsion vanishes. In this case, torsion
reduces to •

T λµν = 1
3

(
gλµ

•
Vν − gλν

•
Vµ
)

+ ελµνρ
•
Aρ. (11.30)

The corresponding contortion tensor is

•
K
ρµν = 1

3

(
gνρ

•
Vµ − gνµ

•
Vρ
)
− 1

2
ενρµλ

•
Aλ, (11.31)

whereas the superpotential becomes

•
S
ρµν = − 2

3

(
gρµ

•
Vν − gρν

•
Vµ
)
− 1

2
ερµνλ

•
Aλ. (11.32)

Substituting these expressions in the teleparallel lagrangian

•
L =

c4h

32πG

•
S
ρµν

•
T ρµν , (11.33)

we obtain
•
L =

c4h

16πG

(
−2

3

•
Vµ

•
Vµ + 3

2

•
Aµ

•
Aµ
)
. (11.34)
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Comment 11.3 An alternative way to get this lagrangian is to note that the teleparallel
lagrangian (11.33) can be written in the form [12]

•
L =

c4h

16πG

(
2
3
•
T λµν

•
T λµν −

2
3
•
Vµ
•
Vµ +

3
2
•
Aµ

•
Aµ
)
. (11.35)

When
•
T λµν vanishes, it reduces to (11.34).

We can then ask: would this theory present duality symmetry? Or in
other words, would the purely tensor torsion be responsible for spoiling the
duality symmetry of gravitation? To answer this question, we rewrite the
condition for a gravitational theory to present duality symmetry — given by
Eq. (11.9) — in terms of the vector and the axial torsions. The result is

− 4
9

•
Vλ
•
Vρ − 2

9
δλ
ρ
•
Vµ

•
Vµ − 1

2
ερλνα

•
Vν

•
Aα + δλ

ρ
•
Aµ

•
Aµ −

•
Aλ

•
Aρ

= 1
2
δρλ

(
−2

3

•
Vµ

•
Vµ + 3

2

•
Aµ

•
Aµ
)
. (11.36)

Now, as a simple inspection shows, no solution exists if torsion is real. How-
ever, in the complex domain, if the axial and vector parts of torsion are
related by

•
Aµ = ±2i

3

•
Vµ, (11.37)

the above condition is fulfilled, and the resulting gravitational theory turns
out to present duality symmetry.

Applying the generalized dual definition (6.17) to the axial and vector
torsions, we obtain

?
•
Aµ = −2

3

•
Vµ and ?

•
Vµ = 3

2

•
Aµ. (11.38)

On account of the relation (11.37), we see that in this theory torsion turns
out to be self dual (upper sign) or anti-self dual (lower sign):

?
•
Aµ = ±i

•
Aµ and ?

•
Vµ = ±i

•
Vµ. (11.39)

Notice that we are using here the extended notions of self duality and anti-
self duality for complex fields [119]. In that context we can say that we have
obtained a sub-theory of Teleparallel Gravity which is able to describe the
gravitational interaction of fermions and presents duality symmetry.

11.4 A Self-Dual Gravitational Theory

Let us briefly explore some properties of the self–dual gravitational theory
obtained in the previous Section. We begin by noting that, according to
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Eq. (11.37), torsion becomes a complex tensor. In fact, in terms of the
vector torsion, it reads

•
T λµν = 1

3

(
gλµ

•
Vν − gλν

•
Vµ
)
± 2i

3
ελµνρ

•
Vρ. (11.40)

The corresponding contortion tensor is

•
K
ρµν = 1

3

(
gνρ

•
Vµ − gνµ

•
Vρ
)
∓ i

3
ενρµλ

•
Vλ, (11.41)

whereas the superpotential acquires the form

•
S
λρσ = − 2

3

(
gλρ

•
Vσ − gλσ

•
Vρ
)
∓ i

3
ελρσθ

•
Vθ. (11.42)

Even though torsion is complex, the gravitational lagrangian is real:

•
L = − c4h

12πG

•
Vµ
•
Vµ. (11.43)

The corresponding field equation is

∂σ(h
•
Sa

ρσ) = 0. (11.44)

Of course, as the theory is dual symmetric, this field equation coincides with
the Bianchi identity written for the dual torsion, which is given by Eq. (11.6).
Using the relation

•
Sa

ρσ = haλ
•
S
λρσ,

with
•
Sλρσ given by Eq. (11.42), its explicit form is the complex equation

− 2
3
∂σ

[
h
(
ha

ρ
•
Vσ − haσ

•
Vρ
)]

+ i
3
∂σ

(
hhaν ε

νρσλ
•
Vλ
)

= 0. (11.45)

The imaginary part is

∂σ

(
hhaν ε

νρσλ
•
Vλ
)

= 0, (11.46)

or equivalently,

∂σ

(
hhaν

•
Vλ
)

+ ∂λ

(
hhaσ

•
Vν
)

+ ∂ν

(
hhaλ

•
Vσ
)

= 0. (11.47)

This is the Bianchi identity of the theory. The real part of Eq. (11.45), on
the other hand, is

− 2
3
∂σ

[
h
(
ha

ρ
•
Vσ − haσ

•
Vρ
)]

= 0. (11.48)
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This is the dynamical field equation of the theory. We then have the following
property: whereas the Bianchi identity shows up as the imaginary part, the
dynamical field equation is obtained as the real part of the complex field
equation (11.45). A similar mechanism holds in the Palatini formulation of
self dual General Relativity [see Ref. [124], page 1511].

In the presence of a source field represented by Lm, since the correspond-
ing energy-momentum tensor

Θa
ρ ≡ − 1

h

δLm
δBa

ρ

= − 1

h

δLm
δhaρ

(11.49)

is real, it only contributes to the dynamical equation, which acquires then
the form

∂σ

[
h
(
ha

σ
•
Vρ − haρ

•
Vσ
)]

=
12πG

c4
(hΘa

ρ). (11.50)

This is the equation governing the dynamics of the self dual gravitational
field.

Comment 11.4 In the weak field limit of (macroscopic) Teleparallel Gravity, the axial
torsion is found not to contribute to the newtonian potential. In fact, only the vector
and purely tensor parts of torsion contribute to the Newton potential [46]. On the other
hand, in the (microscopic) limit of the gravitational interaction of fermions, it is the purely
tensor part of torsion that does not contribute. As a consequence, the dual gravitation
will not present a newtonian limit. Of course, this is not a problem as this theory might
be valid only at the microscopic level, where the newtonian limit is not required to hold.

It is interesting to note that, when the vector and axial–vector parts of
torsion are related by Eq. (11.37), the Dirac equation (11.29) assumes the
form

i ~ γµ
[
∂µ − 1

2

•
Vµ (1∓ γ5)

]
ψ = mcψ, (11.51)

with the upper (lower) sign refering to the self dual (anti-self dual) case.
We see from this equation that a self dual (anti-self dual) torsion couples
only to the left-hand (right-hand) component of the spinor field. In other
words, gravitation becomes a chiral interaction at the microscopic level of
the gravitational interaction of fermions. Observe furthermore that the Dirac
equation (11.51) is invariant under a chiral transformation

ψ → γ5 ψ,

except for a change of sign of the spinor mass term. A similar property holds
in Electrodynamics [see, for example, Ref. [125], page 520].

It should be remarked finally that, although this self dual gravitational
theory is able to describe the gravitational interaction of fermions, its physi-
cal meaning is still quite obscure. In particular, since its energy–momentum
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current vanishes, it seem unable to transport energy and momentum. Any-
way, because it presents duality symmetry, this sub-theory has a natural
intrinsic interest and may deserve further analysis.

Comment 11.5 Even though it has no meaning at the microscopic level of the gravita-
tional interaction of fermions, it is instructive to obtain the (classical) equation of motion
of a spinless particle in the presence of gravitation. In the context of Teleparallel Gravity,
this equation of motion is given by [see Eq. 4.56]

dua

ds
+
•
A
a
bρ u

b uρ =
•
K
a
bρ u

b uρ. (11.52)

Substituting
•
Ka

bρ as given by Eq. (11.41), the imaginary part of torsion drops out, and
we get

dua

ds
+
•
A
a
bρ u

b uρ = − 1
3

(haρ − ua uρ)
•
Vρ. (11.53)

We see from this equation that the gravitational force in this case has the form of a
projector, and is orthogonal to the particle four-velocity.
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Chapter 12

Teleparallel Kaluza-Klein
Theory

In gauge theories the total space (or the bundle) is locally a direct product
of spacetime — described by General Relativity — and the internal space
of gauge variables. In Kaluza-Klein theories the bundle is taken as a global
direct product. The Einstein–Hilbert lagrangian written on the total space
leads, when the coordinates are convenient separated, to the 4–dimensional
lagrangian of General Relativity plus a lagrangian of Yang–Mills type —
the Kaluza-Klein “miracle”. Replacing General Relativity by its teleparallel
equivalent leads to versions of Kaluza-Klein models which are closer to the
formal unification which is their ultimate goal.

In ordinary Kaluza-Klein theories [127], the geometrical approach of Gen-
eral Relativity is used as the paradigm for the description of all other inter-
actions of Nature. In the original Kaluza-Klein theory, for example, gravi-
tational and electromagnetic fields are described by a Einstein-Hilbert type
lagrangian in a five-dimensional spacetime. On the other hand, as discussed
in previous chapters, Teleparallel Gravity, a gauge theory for the translation
group, is equivalent to General Relativity. This equivalence opens up new
roads for the study of unified theories. In fact, instead of using the general–
relativistic geometrical description, we can adopt the gauge description as
the basic paradigm, and in this way construct what we call the teleparallel
equivalent of Kaluza-Klein theory [128]. According to this approach, instead
of a Einstein-Hilbert type lagrangian, both gravitational and electromagnetic
fields are described by a gauge, or Maxwell type lagrangian.

143
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12.1 Kaluza-Klein Theory: a Brief Review

In its simplest form, the Kaluza-Klein theory [129, 130] is an extension of
General Relativity to a five dimensional pseudo-Riemannian spacetime R5

with a topology given by the product between the usual four dimensional
spacetime R4 and the circumference S1:

R5 = R4 ⊗ S1.

Denoting the five dimensional indices by capital Latin letters (A,B,C, . . . =
0, 1, 2, 3, 5), the metric γAB of R5 is, in principle, a function of the coordinates
xµ of R4 and of the coordinates x5 of S1:

γAB = γAB(xµ, x5).

Since x5 is a periodic coordinate, we can write

x5 = ρ θ,

with θ the angular coordinate and ρ the radius of S1. Using the metric γAB,
we define now the five dimensional Levi-Civita connection [131]

ΓCAB = 1
2
γCD(∂AγDB + ∂BγDA − ∂DγAB). (12.1)

Its curvature tensor is

RA
BCD = ∂CΓABD − ∂DΓABC + ΓACEΓEBD − ΓADEΓEBC . (12.2)

The action integral of the theory is written as a five dimensional Einstein-
Hilbert Lagrangian

S5 = − c3

16πG5

∫
d5x
√
−γ R, (12.3)

where γ = det(γAB), R = γBDRA
BAD is the five dimensional scalar curvature,

and G5 is the five dimensional version of Newton constant.

Comment 12.1 Around 1912, G. Nordström developed a scalar theory for gravita-
tion [132]. He was the first to use a five dimensional spacetime in an attempt to unify
gravitation and electromagnetism [133]. For a historical account, as well as for a compre-
hensive list of references, see Ref. [127]

The fifteen components of the five dimensional metric γAB can be repre-
sented by the four dimensional spacetime metric gµν , a vector field Aµ, and a
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scalar field φ. In terms of these variables, it can be conveniently parametrized
in the form

γAB =

(
gµν + β2φAµAν βφAµ

βφAν φ

)
, (12.4)

with β a parameter to be determined by the unification process. On the
other hand, the assumed topology for the five dimensional space allows us to
expand any field quantity, and in particular each component of the metric
γAB, in a Fourier series of the form

γAB =
∞∑

n=−∞

γ
(n)
AB(xµ) exp [inx5/r]. (12.5)

In order to obtain the four dimensional theory, Kaluza originally imposed
the so-called cylindric condition

∂γAB
∂x5

= 0, (12.6)

which corresponds to taking only the n = 0 mode in the Fourier expansion
(12.5). Substituting the n = 0 piece of γAB into the action (12.3), integrating
over x5 and choosing

β2 =
16πG

c4
, (12.7)

with

G =
G5

2πρ
(12.8)

the ordinary Newton gravitational constant, we get (dropping the label (0) of
the Fourier expansions)

S =

∫
d4x
√
−g
(
− c3

16πG

◦
R +

φ

4
FµνF

µν +
c3

24πG

∂µφ ∂
µφ

φ2

)
, (12.9)

where g = det(gµν),
◦
R is the Ricci scalar curvature of the four dimensional

spacetime, and

Fµν = ∂µAν − ∂νAµ. (12.10)

If we take φ = −1, we can then identify Aµ as the electromagnetic potential,
and action (12.9) reduces to the Einstein-Maxwell action

S =

∫
d4x
√
−g
(
− c3

16πG

◦
R−

1

4
FµνF

µν

)
. (12.11)
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This is usually considered the “miracle” of the Kaluza-Klein theories: gauge
theories emerge naturally from geometry in the dimensional reduction pro-
cess. It is particularly interesting to observe how the action (12.3), which is
invariant under five dimensional general coordinate transformations, reduces
to the action (12.9), which is invariant under both four dimensional general
coordinate transformations and U(1) gauge transformations.

Comment 12.2 In order to get the proper relative sign between Einstein and Maxwell
lagrangians, so that energy is positive, it is necessary that

φ ≡ γ55 < 0.

According to our metric convention, this means that the fifth dimension must be space-
like. This is consistent with causality as more than one time-like dimension would lead to
closed time-like curves.

An important point of the abelian Kaluza-Klein theory is that the five
dimensional space R5 is a solution of the five dimensional Einstein equation

RAB −
1

2
γABR = 0, (12.12)

which follows from action (12.3). Using the decomposition (12.4), it yields
respectively for AB = µν, AB = µ5 and AB = 55,

◦
Rµν −

1

2
gµν

◦
R = − β

2φ

2
Θµν −

1

φ

[ ◦
∇µ(∂νφ)− gµν �φ

]
, (12.13)

◦
∇νFµ

ν = − 3
∂νφ

φ
Fµν , (12.14)

and

�φ = − β
2φ

4
FµνF

µν , (12.15)

with
◦
Rµν the four dimensional Ricci tensor, and Θµν the symmetric energy-

momentum tensor of the electromagnetic field. If we set again φ = −1, and
use Eq. (12.7), we obtain the Einstein-Maxwell system of equations,

◦
Rµν −

1

2
gµν

◦
R =

8πG

c4
Θµν (12.16)

and ◦
∇νFµ

ν = 0. (12.17)

The five dimensional sourceless field equation (12.12), therefore, reduces
to the usual four dimensional Einstein equation with the electromagnetic
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energy-momentum tensor as source. This means that matter in four dimen-
sions comes from the geometry of a five dimensional spacetime.

Although used by Kaluza in his original paper, the condition φ = constant
leads to inconsistencies. In fact, we see from Eq. (12.15) that it implies

FµνF
µν = 0, (12.18)

as first noticed by Jordan [134], Bergmann [135] and Thiry [136]. This prob-
lem can be solved by taking into account all harmonics of the Fourier expan-
sion (12.5). In this case, however, the scalar field φ will remain in the theory.
Initially, this fact was considered a drawback of the theory because it leads
actually to a scalar-tensor theory for gravitation. Afterwards, because scalar
fields are useful to explain several phenomena of modern physics, like for ex-
ample inflation and spontaneous symmetry breaking, this point became well
accepted. Furthermore, quantum corrections would provide a mass for φ,
thereby removing its long range gravitational effects [137, 138]. Since these
fields remain in the theory, they imply the existence of a huge family of new
particles which emerge as a byproduct of the unification process.

Comment 12.3 The generalization of the Kaluza-Klein theory for non-abelian groups
[139] can be made by assuming a spacetime manifold of the form

R4+n = R4 ⊗ Sn,

with Sn a compact manifold. In complete analogy with the five dimensional case, the di-
mensional reduction of a (4 + n)-dimensional Einstein lagrangian yields four–dimensional
Einstein’s plus a Yang-Mills type lagrangians. It should be remarked however that, differ-
ently from the five dimensional abelian theory, the non-abelian case is plagued by concep-
tual difficulties. One of the main problems is that the space R4+n cannot be a solution of
the (4 + n)-dimensional Einstein equation [137]. This is a serious drawback which cannot
be overlooked when considering these models.

12.2 Teleparallel Kaluza-Klein

12.2.1 Five-Vector Potential

In the framework of Teleparallel Gravity, the action describing a particle of
mass m and charge q in the presence of both an electromagnetic field Aµ and
a gravitational field Ba

µ is [14]

S = −mc
∫ b

a

[
ua
•
Dµxa +Ba

µ u
b ηab +

q

mc2
Aµ

]
dxµ. (12.19)
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The corresponding equation of motion is [see Section 4.2.2]

haρ

•
Dua
Ds

=
•
T
a
ρµ u

buµ ηab +
q

mc2
Fρµ u

µ, (12.20)

where
•
T
a
µν =

•
DµBa

ν −
•
DνBa

µ (12.21)

is the gravitational field strength — that is, torsion — and

Fµν =
•
DµAν −

•
DνAµ (12.22)

is the electromagnetic field strength.
We see from the equation of motion (12.20) that torsion acts on particles

in the very same way the electromagnetic field acts on charges, that is, as
a force. This similarity allows a unified description of the gravitational and
electromagnetic interactions. In order to get such description, we begin by
choosing the U(1) gauge index of the electromagnetic theory as the fifth
component of the gauge potential. Accordingly, we define a five-vector gauge
potential in the form (A,B, . . . = 0, 1, 2, 3, 5)

AAµ =
(
Ba

µ, A
5
µ

)
, (12.23)

where

A5
µ =

q

κmc2
Aµ, (12.24)

with κ a dimensionless parameter to be determined in the unification proce-
dure. Accordingly, we define a unified field strength

FAµν =
( •
T
a
µν , F

5
µν

)
,

with

F 5
µν =

q

κmc2
Fµν . (12.25)

In terms of the potential AAµ, therefore, the unified field strength is

FAµν =
•
DµAAν −

•
DνAAµ. (12.26)

Implicit in the above definitions is the introduction of a five-dimensional
spaceM5, given by the cartesian product between the Minkowski space M4

and the circle S1:

M5 = M4 ⊗ S1.
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A point in this space is determined by the coordinates

xA = (xa, x5),

where xa are the coordinates of M4, and x5 is a coordinate on S1. The
corresponding metric tensor is

ηAB =

(
ηab 0
0 η55

)
, (12.27)

We introduce now a velocity five-vector

uA = (ua, u5).

The components ua form the usual anholonomic four-velocity, and u5 is a
strictly internal component. In this case, by choosing

u5 = −κ and η55 = −1, (12.28)

action (12.19) can be rewritten in the form

S = −mc
∫ b

a

[
ua
•
Dµxa +AAµ uB ηAB

]
dxµ. (12.29)

The corresponding equation of motion is

haρ

•
Dua
Ds

= FAρµ uB uµ ηAB. (12.30)

Due to the fact that torsion acts on particles in the very same way the electro-
magnetic field acts on charges, the trajectory of a charged particle submitted
to both an electromagnetic and a gravitational field can be described by a
unified Lorentz-type force equation.

Comment 12.4 Alternatively, we could have chosen

u5 = κ and η55 = 1, (12.31)

which would lead to the same action integral, and consequently to the same equation of
motion. This choice corresponds to another metric convention for the internal space. In
principle, both conventions are possible. However, as we are going to see, the unification
process will introduce a constraint according to which the choice of η55 will depend on the
metric convention adopted for the tangent Minkowski space.
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12.2.2 Unified Lagrangian and Field Equations

In a gauge theory for the translation group, the gauge transformation is
defined as a local translation of the tangent-space coordinates,

δxa = αbPb x
a, (12.32)

with Pb = ∂/∂xb the generators, and αb the corresponding infinitesimal
parameters. In a unified teleparallel Kaluza-Klein model, a general gauge
transformation is represented by a translation of the five-dimensional space
coordinates xA,

δxA = αB PB x
A, (12.33)

where PB = ∂/∂xB are the generators, and

αB =
(
αa, α5

)
(12.34)

are the transformation parameters. Analogously to the definitions used for
the gauge potentials, we take

α5 =
q

κmc2
α. (12.35)

Furthermore, in the same way as in ordinary Kaluza-Klein models, we assume
that the gauge potentials AAµ, and consequently the tetrad haµ and the
metric tensor gµν , do not depend on the coordinate x5.

As discussed in Chapter 7, the gravitational action of Teleparallel Gravity
is

•
S =

c3

16πG

∫
ηab

•
T
a ∧ ?

•
T
b. (12.36)

The action of the electromagnetic field, on the other hand, is

Sem = − 1

4

∫
F ∧ ?F, (12.37)

with F the electromagnetic field 2-form. Owing to the gauge structure of
both actions, and using the unified field strength (12.26), we can write a
unified action in the form

S =
c3

16πG

∫
ηAB FA ∧ ?FB, (12.38)

with
FA = 1

2
FAµν dxµ ∧ dxν

the unified 2-form field strength (12.26).
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Separating the spacetime and the electromagnetic components, the cor-
responding lagrangian is

L =
hc4

32πG

•
T
ρ
µν

•
Sρ

µν + η55
κ−2q2

16πGm2

h

4
FµνF

µν . (12.39)

The first term of L is the teleparallel gauge lagrangian (7.12), which is equiv-
alent to the Einstein-Hilbert lagrangian of General Relativity. In order to get
Maxwell’s lagrangian from the second term, two conditions must be satisfied.
First, it is necessary that

κ2 =
q2

16πGm2
. (12.40)

We see from this expression that κ2 turns out to be proportional to the ratio
between electric and gravitational forces [140]. Second, in order to have a
positive-definite energy for the electromagnetic field, and to get the appropri-
ate relative sign between the gravitational and electromagnetic lagrangians,
it is necessary that η55 = −1. With these conditions, the lagrangian (12.39)
becomes

L ≡
•
L+ Lem =

h

4k

•
T
ρ
µν

•
Sρ

µν − h

4
FµνF

µν , (12.41)

with k = 8πG/c4. As said in Section 12.1, that the Maxwell lagrangian in four
dimensions shows up from the Einstein-Hilbert lagrangian in five dimensions,
is usually considered as a miracle of the standard Kaluza-Klein theory [137].
That the Einstein-Hilbert lagrangian of general relativity shows up from a
Maxwell-type lagrangian for a five-dimensional translation gauge theory, can
be considered as the other face of the same miracle.

The functional variation of L with respect to Ba
ρ yields the teleparallel

field equation

∂σ(h
•
Sa

ρσ)− k (h
•
a
ρ) = k (hΘa

ρ), (12.42)

where
•
a
ρ is the Noether energy-momentum current of the gravitational field,

and

hΘa
ρ ≡ − δLem

δBa
ρ

≡ − δLem
δhaρ

= hFaνF
ρν − haρLem (12.43)

is the symmetric energy-momentum tensor of the electromagnetic field. On
the other hand, the functional variation of L with respect to Aµ yields the
teleparallel version of Maxwell’s equation

••
∇µF

µν = 0, (12.44)

as obtained in Section 10.4.
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12.2.3 Metric Constraint

An interesting feature of the teleparallel Kaluza-Klein model is that it im-
poses a constraint between the spacetime metric and the metric on the U(1)
group. In fact, when we choose the metric of the Minkowski space to be

ηab = diag(+1,−1,−1,−1), (12.45)

we have necessarily that η55 = −1, and the resulting metric of the five-
dimensional “internal” space will be

ηAB = diag(+1,−1,−1,−1,−1). (12.46)

This means that the fifth dimension must necessarily be space-like, and the
metric with signature (3, 2) is excluded. On the other hand, if we had chosen
instead

ηab = diag(−1,+1,+1,+1) (12.47)

for Minkowski spacetime, it is easy to verify that the same consistency
arguments would require that η55 = 1. The resulting metric of the five-
dimensional “internal” space would then be

ηAB = diag(−1,+1,+1,+1,+1), (12.48)

and the same conclusion would be obtained: the fifth dimension must nec-
essarily be space-like, and the metric with signature (3, 2) is excluded. The
unification of the gravitational and electromagnetic lagrangians, therefore,
imposes a constraint on the metric conventions for Minkowski and for the
electromagnetic internal manifold S1. In fact, the choice between η55 = +1
and η55 = −1 for the metric of the U(1) group depends on the metric conven-
tion adopted for the Minkowski space. As a consequence, the metric of the
five-dimensional internal space turns out to be restricted to either (12.46) or
(12.48). Metrics with signature (3, 2), which would imply a time-like fifth
dimension, are excluded.

12.2.4 Matter Fields

Let us consider now a general matter field Ψ. In contrast to the gauge fields,
it depends on the coordinate x5:

Ψ(xA) = Ψ(xµ, x5).

Under an infinitesimal generalized gauge translation, it behaves as

δΨ = αA PA Ψ. (12.49)
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Its covariant derivative is consequently

DµΨ = ∂µΨ +AAµPA Ψ, (12.50)

with the infinitesimal gauge transformation of AAµ given by

δABµ = − ∂µαB. (12.51)

This transformation is consistent with the fact that both electromagnetism
and Teleparallel Gravity are described by abelian gauge theories.

Now, as the internal manifold S1 is compact, we assume that the depen-
dence of Ψ(xµ, x5) on the coordinate x5 is of the form

Ψ(xµ, x5) = exp [i 2πθ] ψ(xµ), (12.52)

where

θ =
κx5

λC
(12.53)

is the dimensionless coordinate (angle) of S1, with λC = (2π~/mc) the Comp-
ton wavelength of the particle the wave function Ψ represents. That is to
say,

Ψ(xµ, x5) = exp

[
i2π

κx5

λC

]
ψ(xµ). (12.54)

As a consequence, a translation in the coordinate x5 turns out to be a U(1)
gauge transformation, and a translation in the coordinates xa turns out to
be a gauge transformation of the translation group. For a simultaneous in-
finitesimal translation in the five coordinates xA, we see from transformation
(12.49) that

δΨ = αa ∂aΨ + α

(
iq

~c

)
Ψ, (12.55)

where we have used Eq. (12.35).
On the other hand, the covariant derivative (12.50) assumes the form

DµΨ = hµΨ +
iq

~c
Aµ Ψ, (12.56)

with hµ = haµ ∂a. Using the relation Aa = ha
µAµ, we can rewrite (12.56) in

the form
DµΨ = haµDaΨ, (12.57)

with

DaΨ = ∂aΨ +
iq

~c
Aa Ψ (12.58)
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the electromagnetic covariant derivative in Minkowski spacetime. As usual,
the commutator of covariant derivatives yields the field strength

[Dµ,Dν ]Ψ = FAµνPAΨ, (12.59)

with

FAµνPAΨ =
•
T
a
µνPaΨ +

iq

~c
FµνΨ. (12.60)

12.3 Further Remarks

The teleparallel equivalent of the standard Kaluza-Klein theory is a five–
dimensional Maxwell-type translational gauge theory on a four-dimensional
spacetime. In this theory, owing to the fact that both torsion and the elec-
tromagnetic field act on particles through a Lorentz-type force, the electro-
magnetic field strength can be considered as an extra, fifth component of
torsion. For this reason, the unification in this approach can be considered
to be much more natural than in the ordinary Kaluza-Klein theory.

An important feature of this model is that, in contrast to ordinary Kaluza–
Klein models, no scalar field is generated by the unification process. Accord-
ingly, no unphysical constraints appear, and the gravitational action can be
naturally truncated at the zero mode. In other words, the cylindric condition
can be naturally imposed for matter fields, which corresponds to keep only
the n = 0 Fourier mode. The infinite spectrum of massive new particles is
eliminated, strongly reducing the redundancy present in ordinary Kaluza-
Klein theories. Furthermore, spacetime is kept four-dimensional, with no
extra dimension. Only the “internal” space has additional dimensions.

Another important point concerns the relation between geometry and
gauge theories. According to ordinary Kaluza-Klein models, gauge theories
emerge from higher-dimensional geometric theories as a consequence of the
dimensional reduction process. According to the teleparallel approach, how-
ever, gauge theories are the natural structures to be introduced, the four–
dimensional geometry (gravitation) emerging from the noncompact sector
of the “internal” space. In fact, only this sector can give rise to a tetrad
field, which is the responsible for the geometrical structure (either metric or
teleparallel) induced in spacetime. As the gauge theories are introduced in
their original form — they do not come from geometry — the unification
turns out to be much more natural and easier to be performed.

The generalization of the teleparallel Kaluza-Klein model to non-abelian
gauge theories is straightforward, and can be realized by introducing a (4+n)-
dimensional internal space formed by the cartesian product between Min-
kowski space and a compact riemannian manifold, where n is the dimen-
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sion of the gauge group [141]. Like in the electromagnetic case, the gauge
field-strength appears as extra gauge-components of torsion. It is worth
mentioning also that most of the conceptual problems present in ordinary
Kaluza-Kllein models do not appear in the teleparallel version. In particu-
lar, due to the fact that the gauge structure — and not geometry — forms
the basic paradigm, the problem discussed in Comment 12.3 does not exist
in non-abelian teleparallell Kaluza-Klein.
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Chapter 13

The Connection Space

The space of connections, like the space of points, is an affine space. Differ-
ent points of this space defines different connections, which are not related
by Lorentz transformations. Each connection defines an acceleration, and
provides different ways of describing the gravitational interaction. Whereas
in General Relativity the spin connection defines a vanishing acceleration,
and then the geodesic equations, in Teleparallel gravity the spin connection
defines an acceleration which is related to a gravitational force.

13.1 Translations in the Connection Space

The space of connections has a very interesting character: it is an affine
space [22, 23]. This means that the points on any straight line drawn through
two connections is also a connection. Given two connections A(0) and A(1),

A(α) = αA(1) + (1− α)A(0) (13.1)

will be a connection for any real value of α. These properties hold also
for gauge potentials which, as said above, are connections on bundles with
internal spaces. This is similar to the space of points, which is also an affine
space. The difference between two points is not a point, but a vector. Points
themselves are not covariant in any sense, but vectors are. In the same
token, connections are not covariant (and in particular a connection which is
zero in one base is not zero in another base), but the difference between two
connections is a tensor — an object with well-defined behavior. The above
property does not transfer to curvature, but transfers to torsion:

T λ(α)µν = αT λ(1)µν + (1− α)T λ(0)µν . (13.2)

A generic point in the space of Lorentz connections is specified by a
connection 1-form

Ac = 1
2
Aabc Sab (13.3)

157
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presenting curvature and torsion. Given two different connections Ac and
Āc, the difference

Āabc − Aabc = kabc (13.4)

is also a 1-form assuming values in the Lorentz Lie algebra,

kc = 1
2
kabc Sa

b, (13.5)

but transforming covariantly under local Lorentz transformations. As such,
it is necessarily anti-symmetric in the first two indices. Separating kabc in
the symmetric and anti-symmetric parts in the last two indices, one gets

kabc = 1
2
(kabc + kacb) + 1

2
(kabc − kacb). (13.6)

Defining a tensor tacb = − tabc such that

kabc − kacb = tacb, (13.7)

and using Eq. (13.6) for three combination of indices, it is easy to verify that

kabc = 1
2
(tb

a
c + tc

a
b − tabc). (13.8)

We see that the difference between two connections has the form of a contor-
tion tensor. In other words, a translation in the space of Lorentz connections
is achieved by adding to a given connection a contortion-type 1-form.

13.2 Curvature and Torsion

In the language of differential forms, curvature and torsion of a given con-
nection 1-form A are defined respectively by

R = dA+ AA ≡ DAA (13.9)

and
T = dh+ Ah ≡ DAh, (13.10)

where h is a tetrad DA denotes the covariant differential in the connection
A. Given two connections A and Ā, the difference

Ā− A ≡ k (13.11)

is also a 1-form assuming values in the Lorentz Lie algebra,

kc = 1
2
kabc Sab, (13.12)
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but transforming covariantly under local Lorentz transformations. Its covari-
ant derivative, therefore, is written as

DAk = dk + {A, k}. (13.13)

It is then easy to verify that, given two connections such that Ā = A + k,
their curvature and torsion will be related by

R̄ = R +DAk + k k (13.14)

and
T̄ = T + k h. (13.15)

The effect of adding a covector k to a given connection A is then to change
its curvature and torsion 2-forms. On account of the torsion transformation
(13.15), the contortion tensor is found to transform according to

K̄ = K + k. (13.16)

13.3 Equivalence under Connection Transla-

tions

Let us choose the point of the space of connections representing the vanishing
connection •

A
a
bc = 0. (13.17)

See from a general Lorentz frame, this connection has the form

•
A
a
bc = Λa

e hcΛb
e, (13.18)

with Λa
e the Lorentz transformation. As we have seen, this is just the spin

connection of Teleparallel Gravity.

Performing now a translation with parameter
•
Ka

bc, we obtain the new
connection •

A
a
bc −

•
K
a
bc =

◦
A
a
bc, (13.19)

which is just the spin connection of General Relativity. We see in this way
that Teleparallel Gravity and General Relativity are related by a translation
in the space of connections. This is actually an universal property: given a
general connection Aabc, if one performs a translation using the connection
contortion Ka

bc, one ends up with the spin connection of General Relativity:

Aabc −Ka
bc =

◦
A
a
bc. (13.20)



160 CHAPTER 13. THE CONNECTION SPACE

Now, as we have discussed in Section 1.7, each connection defines an
acceleration. There are, thus, many different accelerations, one for each
point of the connection space. Of course, they are independent in the sense
that they are not related by any Lorentz transformations. The same holds

for the connections
•
Aabc and

◦
Aabc. In General Relativity, for example, the

connection is such that all accelerations vanish identically. The geodesic
equation

duc

ds
+
◦
A
c
ab u

a ub = 0 (13.21)

shows clearly this property. As a consequence, there is no the concept of
force in General Relativity. In Teleparallel Gravity, on the other hand, the
connection has no dynamical meaning, and the resulting acceleration is fully
related to a gravitational force. In fact, the equation of motion in this case
is the force equation

duc

ds
+
•
A
c
ab u

a ub =
•
K
c
ab u

a ub. (13.22)

Of course, due to the relation (13.20), the acceleration defined by any con-
nection will give rise to an equivalent equation of motion

duc

ds
+ Acab u

a ub = Kc
ab u

a ub. (13.23)

However, since this general connection cannot be obtained from the metric,
or the tetrad, which are the variables of the gravitational field equations,
they cannot be determined by the field equations. In this sense, we can say
that the space of connections has two special points: one, which defines,
up to a local Lorentz transformation, a vanishing connection, and another,
which defines the Levi-Civita connection, a connection fully determined by
the spacetime metric, or tetrad.

Comment 13.1 Connections — including gauge potentials — belong to affine spaces.
This allows a detailed examination of an interesting question, the Wu–Yang ambiguity or
the problem of copies [23]. The fundamental field of a gauge theory is the potential ACλ,
but the observable, measurable field is the field strength FCµν . It may come as a sur-
prise that, in non–abelian theories, many quite non-equivalent potentials ACλ (“copies”)
can have one same field strength FCµν . In what concerns torsion, there are no copies
for lorentzian connections. Let us state in more detail the Ricci theorem mentioned in
Comment 1.8 and at the end of Section 1.7: given a metric gµν and any tensor of type
Tλµν , there exists one and only one linear connection Γ which preserves gµν and has tor-
sion equal to Tλµν . In particular, the only lorentzian connection with Tλµν = 0 is the
Levi-Civita connection, from which the others differ precisely by their torsions. Lorentzian
connections are, in this way, classified by their torsions. General Relativity, by postulating
Tλµν = 0 fixes the connection as

◦
Γ and avoids the copies problem. Notice that this is still

another consequence of the existence of torsion, even if vanishing.



Chapter 14

A Glimpse on Einstein-Cartan

Einstein-Cartan can be considered as a prototype of those theories in which
curvature and torsion represent different gravitational degrees of freedom.
For the sake of comparison with Telaparallel Gravity, in which curvature
and torsion are related to the same degrees of freedom, a brief review of this
theory is presented here. Some drawbacks are pointed out.

Alternative gravitational models, like Einstein-Cartan and gauge theories
for the Poincaré and the affine groups, consider curvature and torsion as
representing independent gravitational degrees of freedom. Torsion appears
as intimately related to spin, and consequently turns out to be important
mainly at the microscopic level, where spins become relevant. A fundamental
difference between Einstein–Cartan and the mentioned gauge theories is that,
whereas in the former torsion is a non-propagating field, in the latter both
curvature and torsion are propagating fields. Notwithstanding this difference,
as these models present all the same relationship between torsion and spin,
the Einstein-Cartan model can be taken as representative of this class, and
for this reason it will be the only one to be discussed here.

The basic motivation for the Einstein–Cartan construction [142] is the fact
that, at a microscopic level, matter is represented by elementary particles,
which are characterized by mass and spin. If one adopts the same geometrical
spirit of General Relativity, not only mass but also spin should be source of
gravitation at that level. According to this scheme, like in General Relativity,
energy–momentum should appear as source of curvature, whereas spin should
appear as source of torsion. The relevant connection of this theory, therefore,
is a general Cartan connection Aabµ presenting both curvature and torsion.
It can be decomposed as in Eq.(1.44), that is,

Aabµ =
◦
A
a
bµ +Ka

bµ. (14.1)
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The corresponding spacetime linear connection is

Γρλµ = ha
ρ∂µh

a
λ + ha

ρAabµh
b
λ ≡ ha

ρDµhaλ. (14.2)

In terms of this connection, decomposition (14.1) assumes the form

Γρλµ =
◦
Γ
ρ
λµ +Kρ

λµ, (14.3)

with
◦
Γρλµ the Levi–Civita connection.

14.1 Field Equations

The Einstein–Cartan gravitational lagrangian is

LEC = − c4

16πG

√
−g R. (14.4)

Although it formally coincides with the Einstein–Hilbert lagrangian of Gen-
eral Relativity, the scalar curvature

R = gµν Rρ
µρν (14.5)

refers now to the curvature of the general Cartan connection:

Rρ
λνµ = ∂νΓ

ρ
λµ − ∂µΓρλν + ΓρηνΓ

η
λµ − ΓρηµΓηλν . (14.6)

Since the connection Γρλµ is not symmetric in the last two indices, the Ricci
curvature tensor is not symmetric either: Rµν 6= Rνµ.

Considering the total lagrangian

L = LEC + Lm, (14.7)

with Lm the lagrangian of a matter source field ψ, the gravitational field
equations are obtained by taking variations with respect to the metric gµν

and the contortion tensor Kρ
µν . The resulting field equations are

Gµν ≡ Rµν − 1
2
gµνR =

8πG

c4
θµν (14.8)

and

T ρµν + δρµ T
α
να − δρν Tαµα =

8πG

c4
sρµν . (14.9)

In these equations,

√
−g θµν =

∂Lm
∂(Dνψ)

haµ∂aψ − δνµ Lm (14.10)
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is the canonical energy–momentum tensor and

√
−g sρµν =

1

2

∂Lm
∂(Dρψ)

Sµνψ (14.11)

is the canonical spin tensor of the source, with

Sµν = haµh
b
νSab

the spacetime version of the Lorentz generators. Equation (14.9) can be
rewritten in the form

T ρµν =
8πG

c4

(
sρµν + 1

2
δρµ s

α
να − 1

2
δρν s

α
µα

)
. (14.12)

We see from this equation that, for spinless matter torsion vanishes, the
canonical energy–momentum tensor becomes symmetric, and the field equa-
tion (14.8) reduces to ordinary Einstein equation. In particular, in empty
space there is no difference between the Einstein–Cartan and Einstein the-
ories. In the presence of spinning matter, however, there will be a non-
vanishing torsion, as given by Eq. (14.12). As this is a purely algebraic
equation, torsion is a non-propagating field.

14.2 Coupling Prescription

The coupling prescription in Einstein–Cartan theory is achieved through the
replacement

∂µ → Dµ = ∂µ − i
2
Aabµ Sab. (14.13)

Acting on a spinor field ψ, it assumes the form

Dµψ = ∂µψ − i
2
Aabµ Sabψ, (14.14)

with Sab the spinor representation (10.19). Substituting the decomposition
(14.1), we obtain

Dµψ =
◦
Dµψ − i

2
Kab

µ Sabψ, (14.15)

with
◦
Dµψ the covariant derivative of General Relativity. We see from this

expression that new physical phenomena in relation to General Relativity
(and consequently in relation to Teleparallel Gravity) are expected in the
presence of spin, or equivalently, in the presence of torsion. These additional
effects are related to the fact that, in this theory, curvature and torsion
represent independent gravitational degrees of freedom.
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In the case of a Lorentz vector V a, for which the generators Sab are given
by Eq. (1.25), the covariant derivative (14.15) reads

DµV a = ∂µV
a + Aabµ V

b. (14.16)

The corresponding covariant derivative of a spacetime vector V ρ = ha
ρV a

has the form
∇µV

ρ = ∂µV
ρ + Γρλµ V

λ. (14.17)

14.3 Particle Equations of Motion

According to the Einstein–Cartan construction, torsion vanishes in absence
of spin, and the theory reduces to General Relativity. As a consequence, a
spinless particle must satisfy the geodesic equation

duρ

ds
+
◦
Γ
ρ
µν u

µ uν = 0. (14.18)

Comment 14.1 It is worth mentioning that, considering the equation of motion of a
free particle in an inertial frame with cartesian coordinates,

duρ

ds
= 0, (14.19)

and applying the coupling prescription (14.17), we obtain the auto-parallel equation

duρ

ds
+ Γρµν uµ uν = 0, (14.20)

which is not the correct equation of motion for spinless particles in Einstein–Cartan theory.
In fact, according to this equation, all particles are equally affected by torsion, indepen-
dently of their spin content. This means that even spinless particles would follow a trajec-
tory that deviates from the geodesic motion. There are actually more problems with the
auto-parallel equation of motion. It has already been shown that they cannot be obtained
from a lagrangian formalism [147], which means that a spinless particle following such a
trajectory does not have a lagrangian. Taking into account that the energy-momentum
density is defined as the functional derivative of the lagrangian with respect to the metric
tensor (or equivalently, with respect to the tetrad field), it is not possible to define an
energy-momentum density for such particle.

The geodesic equation (14.18) is obtained from the lagrangian

S = −
∫ b

a

haµ pa dx
µ. (14.21)

where pa = mcua is the is the particle four–momentum. According to the
minimal coupling prescription (14.16), the action integral describing a spin-
ning particle minimally coupled to the gauge potential Aabµ is

S =

∫ b

a

[
−haµ pa + 1

2
Aabµ sab

]
dxµ, (14.22)
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where sab is the particle spin angular momentum. Following the same proce-
dure of Section 4.6, the Routhian describing a spinning particle in Einstein–
Cartan theory is

R = −haµ pa uµ + 1
2
Aabµ sab u

µ − Du
a

Ds
sabu

b

u2
, (14.23)

where
Dua

Ds
= uµDµua,

with Dµ the covariant derivative (14.16). Using this Routhian, the equation
of motion for the spin is found to be

Dsab
Ds

= (ua sbc − ub sac)
Duc

Ds
. (14.24)

Making use of the lagrangian formalism, the equation of motion for the
trajectory of the particle is found to be

DPµ
Ds

= T aµν Pa uν −
1

2
Rab

µν sab u
ν , (14.25)

where
Pµ = hµ

cPc, (14.26)

with

Pc = mcuc + ua
Dsca
Ds

(14.27)

the generalized momentum. This is the Einstein–Cartan version of the Papa-
petrou equation [176]. In addition to the usual Papapetrou coupling between
the particle spin and the Riemann tensor, there is also a coupling between
torsion and the generalized momentum Pρ. Since curvature and torsion rep-
resent in this case independent degrees of freedom, new physics is associated
to the coupling of torsion with Pρ. This equation should be compared with
the equation of motion (4.119) and (4.122), in which curvature and torsion
appears as alternative ways of describing the same gravitational field, and in
which no new physics is associated to torsion.

14.4 Some Caveats

The Einstein–Cartan theory briefly described in this chapter presents a series
of conceptual problems, some of them usually overlooked in the literature.
The first problem refers to the coupling prescription (14.13). Although it
complies with the passive strong equivalence principle, it violates the general
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covariance principle, an active version of the strong equivalence principle [see
Section 3.5.1]. This problem can be circumvented by assuming a totally anti–
symmetric torsion [see, for example, Ref. [176]], but this is totally unjustified
from the conceptual point of view. Furthermore, when used to describe the
interaction of the electromagnetic field with gravitation, the coupled Maxwell
equation results to be not gauge invariant.

Another, quite important problem, refers to the gravitational field equa-
tion (14.8). As is well known, the canonical energy–momentum tensor of the
electromagnetic field is not gauge covariant [see, for example, Ref. [58], page
81]. When the electromagnetic field is considered as the source field, there-
fore, the field equation (14.8) will not be gauge covariant. This is a serious
drawback of the model.

These problems are usually circumvented by postulating that the electro-
magnetic field does not couple nor produce torsion [175]. In other words,
torsion is assumed to be irrelevant to the Maxwell’s equations [93]. This “so-
lution”, however, is far from reasonable. It is not Nature that has to comply
with our theories, but the other way round.

Comment 14.2 It is important to remark that the above postulate lacks physical sup-
port. In fact, from a quantum point of view, one may always expect an interaction between
photons and torsion [94]. The reason for this is that a photon, perturbatively speaking,
can virtually disintegrate into an electron–positron pair. Considering that these particles
are massive fermions that do couple to torsion, a photon will necessarily feel the presence
of torsion. Since all macroscopic phenomena must have an interpretation based on an
average of microscopic phenomena, and taking into account the strictly attractive charac-
ter of gravitation which eliminates the possibility of a vanishing average, the photon field
must interact with torsion through the virtual pair produced by the vacuum polarization.

Finally, it is worth mentioning that, although the equation of motion
(14.25) is widely considered to be the Einstein–Cartan version of the Papa-
petrou equation [see, for example, Ref. [176]], it somehow contradicts the
Einstein–Cartan paradigm in the sense that torsion does not couple to spin,
but to the generalized four momentum. Like in General Relativity, spin
couples to curvature. There has been some attempts to obtain equations of
motions in which torsion couples somehow to spin [see, for example, Ref. [13],
page 249], but these equations do not follow from a variational principle, nor
makes use of the Einstein–Cartan coupling prescription (14.13).



Chapter 15

Epilogue

If Teleparallel Gravity is equivalent to General Relativity, why should one
study it? A discussion of some of the reasons is presented here.

15.1 On the Gravitational Interaction

Gravitation has, at least at the classical level, a quite distinctive property:
structureless particles with different masses and compositions experience it
in such a way that all of them acquire the same acceleration and, given the
same initial conditions, follow the same path. This universality of response
— usually referred to as universality of free fall, and embodied in the weak
equivalence principle — is its most peculiar characteristic. It is unique: no
other fundamental interaction of Nature exhibits it. That said, effects equally
felt by all bodies were known since long: they are the inertial effects, which
show up in non-inertial frames. Examples on Earth are the centrifugal and
the Coriolis forces.

Universality of both gravitational and inertial effects was a conceptual
clue used by Einstein in building up General Relativity. Another ingredient
was the notion of field, which provides the best approach to interactions
consistent with Special Relativity: all known forces are mediated by fields
on spacetime. If gravitation is to be represented by a field it should, by the
considerations above, be a universal field, equally felt by every particle. A
natural solution is then to assume that gravitation changes spacetime itself.
The simplest way to change spacetime would be to change what appears
as its most fundamental field — the metric. The presence of a gravitational
field should be, therefore, represented by a change in the metric of Minkowski
spacetime.

The metric tensor, however, defines neither curvature nor torsion by itself.

167



168 CHAPTER 15. EPILOGUE

As a matter of fact, curvature and torsion are properties of connections, and
many different connections, with different curvature and torsion tensors, can
be defined on the very same metric spacetime. The question then arises: how
can we determine the relevant connection to describe the gravitational field?
To answer this question, we observe first that a general Lorentz connection
has 24 independent components. However, any gravitational theory in which
the source is the 10 components symmetric energy–momentum tensor, will
not be able to determine uniquely the connection. There are only two possible
options.

The first is to choose the Levi–Civita, or Christoffel connection, which is
a connection completely specified by the 10 components of the metric tensor.
The second option is to choose a Lorentz connection not related to gravita-
tion, but to inertial effects only. In this case, the gravitational field turns
out to be fully represented by the tetrad field — or more specifically, by the
non–trivial part of the tetrad field. In the first case, which corresponds to
Einstein’s choice, we get General Relativity, a theory that assumes torsion to
vanish from the very beginning. In the second case, we get Teleparallel Grav-
ity, a gauge theory for the translation group, in which curvature is assumed
to vanish from the very beginning.

Einstein’s choice, it must be said, is the most intuitive from the point
of view of universality. Gravitation can be easily understood by supposing
that it produces a curvature in spacetime, in such a way that all (spinless,
structureless) particles, independently of their masses and constitutions, will
follow a geodesic of the curved spacetime. Universality of free fall is, in this
way, naturally incorporated into gravitation. Geometry replaces the concept
of force and the trajectories are solutions, not of a force equation, but of
a geodesic equation. Nevertheless, because such a geometrization requires
the weak equivalence principle, in the absence of universality the general–
relativistic description of gravitation would simply break down.

This restriction apart, one may wonder whether there is any problem with
Einstein’s choice. Was Einstein wrong when he chose a torsionless connec-
tion to describe gravitation? This question is as old as General Relativity.
In fact, since the early days of General Relativity, there have been theoret-
ical speculations on the necessity of including torsion, in addition to cur-
vature, in the description of the gravitational interaction. This comes from
the fact that a Lorentz connection, as described in its generality by Cartan,
presents naturally both curvature and torsion. Theories like the Einstein–
Cartan model [142] and the gauge theories for the Poincaré [143, 28, 29]
and the affine groups [144] consider curvature and torsion as representing
separate degrees of freedom. In these theories, torsion is directly related to
spin and should become relevant only when spins are important. According
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to these models, therefore, new physical phenomena are expected from the
presence of torsion. From this point of view, therefore, Einstein would have
made a mistake by neglecting torsion.

On the other hand, although conceptually different, General Relativity
and Teleparallel Gravity are found to yield equivalent descriptions of the
gravitational interaction. An immediate implication of this equivalence is
that curvature and torsion turn out to be simply alternative ways of describ-
ing the gravitational field, and are consequently related to the same degrees
of freedom of gravity. This is corroborated by the fact that the same matter
energy-momentum tensor appears as source in both theories: of curvature in
General Relativity, of torsion in Teleparallel Gravity. According to this in-
terpretation, both General Relativity and Teleparallel Gravity are complete
theories. From this point of view, therefore, Einstein did not make a mistake
by not introducing torsion into gravitation. It should be emphasized that,
as of today, there is no experimental evidence for new physics associated to
torsion. Furthermore, ordinary physics related to all known gravitational
phenomena, including the physics of the solar system, can be consistently
reinterpreted in terms of teleparallel torsion. This means essentially that,
though unnoticed by many, torsion has already been detected.

15.2 Why to Study Teleparallel Gravity

Then comes the inevitable question: if Teleparallel Gravity is equivalent to
General Relativity, why should one study it? There are several points that
can be used to justify this study. Here, we discuss some of them.

15.2.1 Matters of Consistency

Differently from the coupling prescriptions of other models involving torsion,
the coupling prescription of Teleparallel Gravity, like that of General Rela-
tivity, is consistent with both the active and passive versions of the strong
equivalence principle. In consequence, when applied to describe the gravita-
tional interaction of the electromagnetic field, that prescription is found not
to violate the U(1) gauge invariance of Maxwell theory. As this invariance is
of paramount importance for physics, the torsion interpretation provided by
Teleparallel Gravity can be considered as the most natural in the sense that
it is not in conflict with well established theories.



170 CHAPTER 15. EPILOGUE

15.2.2 Gauge Structure and Universality

Although equivalent to General Relativity, Teleparallel Gravity gives of grav-
itation a completely different picture. Curvature is replaced by torsion, geom-
etry by force. Behind this difference lies the gauge structure: teleparallelism
shows up as a gauge theory for the group of translation on Minkowski space,
the tangent space at every point of any spacetime — which, by the way,
explains why gravitation has for source energy–momentum, just the Noether
current for those translations. Soldering makes of it a non-standard gauge
theory, keeping nevertheless a remarkable similarity to electromagnetism,
also a gauge theory for an abelian group. Due to the gauge structure, it dis-
penses with the weak equivalence principle. It can comply with universality,
but remains a consistent theory in its absence. And, because also Newtonian
gravity can comply with non–universality, the Newtonian limit follows much
more naturally from Teleparallel Gravity than from General Relativity.

15.2.3 Gravitational Energy-Momentum Density

All fundamental fields have a well-defined local energy-momentum density. It
should be expected that the same happen to the gravitational field. It is true,
however, that no tensorial expression for the gravitational energy-momentum
density can be defined in the context of General Relativity. The basic reason
for this impossibility is that both gravitational and inertial effects are mixed
in the spin connection of the theory, and cannot be separated. Even though
some quantities, like for example curvature, are not affected by inertia, some
others turn out to depend on it. For example, the energy-momentum density
of gravitation will necessarily include both the energy-momentum density
of gravity and the energy–momentum density of inertia. Since the inertial
effects are essentially non-tensorial — they depend on the frame — it is not
surprising that in this theory the complex defining the energy–momentum
density of the gravitational field shows up as a non-tensorial object.

On the other hand, although equivalent to general relativity, teleparallel
gravity naturally separates gravitation from inertia. As a consequence, it
is possible to write down an energy-momentum density for gravitation only,
excluding the contribution from inertia. This object is a true tensor, which
means that gravitation alone, like any other field of nature, does have a
tensorial energy-momentum definition. Since the purely gravitational energy-
momentum density does not represent the total energy-momentum density
— in the sense that the inertial part is not included — it does not need to be
truly conserved, but only covariantly conserved. Of course, the total energy-
momentum density, which in the general case includes contributions from
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inertia, gravitation and matter, remains conserved in the ordinary sense. We
can then say that the impossibility of defining a tensorial expression for the
energy-momentum density of gravity is not a property of nature, but just a
drawback of the geometrical picture of general relativity.

15.2.4 The Case of the Spin-2 Field

It is well known that higher spin fields, and in particular a spin-2 field, present
consistency problems when coupled to gravitation [112, ?]. The problem is
that the divergence identities satisfied by the field equations of a spin-2 field
in Minkowski spacetime are no longer valid when it is coupled to gravitation.
In addition, the coupled equations are no longer gauge invariant. The basic
underlying difficulty is related to the fact that the covariant derivative of
general relativity — which defines the gravitational coupling prescription
— is non-commutative, and this introduces unphysical constraints on the
spacetime curvature.

Now, due to the fact that General Relativity describes the gravitational
interaction through a geometrization of spacetime, it is not, strictly speaking,
a field theory in the usual sense of classical fields. On the other hand, owing
to its gauge structure, teleparallel gravity does not geometrize the gravita-
tional interaction, and for this reason it is much more akin to a field theory
than general relativity. When defining a spin-2 field, therefore, instead of
using General Relativity, it seems far more reasonable to use Teleparallel
Gravity as paradigm. Accordingly, instead of a symmetric second-rank ten-
sor, a spin-2 field must be assumed to be represented by a spacetime (world)
vector field assuming values in the Lie algebra of the translation group. Its
components, like the gauge potential of teleparallel gravity, represent a set
of four spacetime vector fields.

In absence of gravitation, the resulting spin-2 field theory naturally emerges
in the Fierz formalism, and turns out to be structurally similar to electro-
magnetism, a gauge theory for the U(1) group. In fact, in addition to satisfy
a dynamic field equation, the spin-2 field is found to satisfy also a Bianchi
identity, which is related to the dynamic field equation by duality transforma-
tion. Furthermore, the gauge and the local Lorentz invariance of the theory
provide the correct number of independent components for a massless spin-
2 field. Upon contraction with the tetrad, the translational-valued vector
field and the symmetric second-rank tensor field represent the same physical
field, and consequently both approaches are equivalent in absence of gravita-
tion. The teleparallel-based construction, however, can be considered to be
more elegant in the sense that it has a gauge structure, it presents duality
symmetry, and it allows for a precise distinction between gauge transforma-
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tions — local translations in the tangent space — and spacetime coordinate
transformations.

In the presence of gravitation, if the teleparallel correct coupling pre-
scription is used, a sound gravitationally–coupled spin-2 field theory emerges,
which is quite similar to the gravitationally–coupled electromagnetic theory.
Furthermore, it is both gauge and local Lorentz invariance, and it preserves
the duality symmetry of the free theory. In addition, owing to the fact that
the teleparallel spin connection is purely inertial, the corresponding covariant
derivative is commutative, no unphysical constraints on the spacetime geom-
etry shows up. This property, together with the gauge and local Lorentz
invariance, render the teleparallel–based gravitationally–coupled spin-2 the-
ory fully consistent. Namely, it does not present the consistency problems of
the spin-2 theory constructed on the basis of general relativity.

15.2.5 Gauge Structure and Unification

An argument comes from the age–old unification dream: all other fundamen-
tal interactions of Nature are described by gauge theories and gravitation,
with Teleparallel Gravity, comes to the fold. This is far from enough to attain
unification, but it is a step towards it. Consider, for example, the unification
approach of the Kaluza-Klein theories. In their ordinary versions, gauge the-
ories emerge from higher–dimensional geometric theories as a consequence of
the dimensional reduction process. According to the teleparallel approach,
on the other hand, it is the gauge makeup the natural structure to be in-
troduced. In this case, it is the four–dimensional geometry (or gravitation)
that emerges from the soldered sector of the gauge theory. As the gauge
theories are introduced in their original form — they do not come from ge-
ometry — the unification turns out to be much more simple and natural. In
fact, in contrast to ordinary Kaluza–Klein models, in the teleparallel version
studied in Chapter 12 no scalar field is generated by the unification process.
Accordingly, no unphysical constraints appear, and the gravitational action
can naturally be truncated at the zero mode. The infinite spectrum of new
massive particles is eliminated, strongly reducing the redundancy present in
ordinary Kaluza–Klein theories.

15.2.6 Gravity and the Quantum

General Relativity is fundamentally grounded on the universality of free fall
— or, equivalently, on the weak equivalence principle. This has been con-
firmed by all experimental tests at the classical level [78], but not at the
quantum level [79]. In fact, at this level, as discussed in Chapter 5, the
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phase of the particle wavefunction turns out to depend on the particle mass
(in the COW experiment, obtained in the non-relativistic limit), or on the
relativistic kinetic energy (in the gravitational Aharonov–Bohm effect). On
the other hand, owing to its gauge structure, Teleparallel Gravity does not
require the weak equivalence principle. Although classically equivalent to
General Relativity, therefore, Teleparallel Gravity seems to be a more con-
venient theory to deal with gravitationally–related quantum phenomena.

The fact that teleparallelism can dispense with the weak equivalence prin-
ciple can have some deeper consequences. In fact, as is well known, General
Relativity and quantum mechanics are not consistent with each other. This
conflict stems from the very principles on which these theories take their
roots. General Relativity, on one hand, is based on the equivalence principle,
whose strong version establishes the local equivalence between gravitation
and inertia. The fundamental asset of quantum mechanics, on the other
hand, is the uncertainty principle, which is essentially nonlocal: a test parti-
cle does not follow a given trajectory, but infinitely many trajectories, each
one with a different probability. Is there a consistent way of reconciling the
equivalence and the uncertainty principles?

First of all, observe that the strong version of the equivalence princi-
ple, which requires the weak one, presupposes an ideal observer [34], repre-
sented by a timelike curve which intersects the space-section at a point. In
each space-section, it applies at that intersecting point. The conflict comes
from that idealization and extends, clearly, also to Special Relativity. In the
geodesic equation, gravitation only appears through the Levi–Civita connec-
tion, which can be made to vanish all along. An ideal observer can choose
frames whose acceleration exactly compensate the effect of gravitation. A
real observer, on the other hand, will be necessarily an object extended in
space, consequently intersecting a congruence of curves. Such congruences
are described by the geodesic deviation equation and, consequently, detect
the true covariant object characterizing the gravitational field, the curvature
tensor — which cannot be made to vanish. Quantum Mechanics requires real
observers, pencils of ideal observers. The inconsistency with the strong prin-
ciple, therefore, is a mathematical necessity which precludes the existence of
a quantum version of the strong equivalence principle [177].

It seems, therefore, that the equivalence and the uncertainty principles
cannot hold simultaneously. It then comes the question: is it possible to
discard one of them? From the point of view of General Relativity, the
answer is no, as this theory cannot survive without it. From the point of
view of Teleparallel Gravity, however, the old Synge’s injunction [25] to the
effect that the midwife be now buried with appropriate honours, can finally
take place. This may represent an important step towards a reconciliation
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between gravity and the quantum.

15.2.7 Quantizing Gravity

Due to the fact that General Relativity is deeply rooted on the equivalence
principle, its spin connection involves both gravitation and inertia. As a
consequence, any approach to quantum gravity based on this connection
will necessarily include a quantization of the inertial forces — whatever this
means. Considering furthermore the non–covariant character of inertia, as
well as its divergent asymptotic behavior, such approach has great chances
to face severe consistency problems. It is also important to mention that,
as is well known [35], general covariance by itself is empty of dynamical
content as any relativistic equation can be made generally covariant. As a
consequence, Lorentz covariance is also empty of dynamical content as any
relativistic equation can be made Lorentz covariant. The invariance of a
physical system under Lorentz transformations has to do only with changes
of frames. In fact, whereas a local Lorentz transformation relates different
classes of frames, a global Lorentz transformation relates frames inside each
one of those classes. Observe furthermore that the Lorentz connection of
General Relativity is not an independent field: it is completely determined
by the tetrad field. One should not expect, therefore, any dynamical effect
coming from a “gaugefication” of the Lorentz group.

On the other hand, as a gauge theory for the translation group, the
gravitational field in Teleparallel Gravity is not represented by a Lorentz
connection, but by a translational–valued connection that appears as the
non–trivial part of the tetrad. In this theory, the Lorentz connection keeps its
special relativistic role of representing inertial effects only. Considering that
the translational gauge potential does not represent inertia, but gravitation
only, a quantization approach based on the teleparallel variables will probably
appear much more natural and consistent. Furthermore, due to the abelian
character of translations, such approach will certainly be much simpler than
those based on the non–abelian Lorentz connections.

15.2.8 Matters of Concept

Due to the geometric interpretation provided by General Relativity, which
makes use of the torsionless Levi–Civita connection, there is a widespread
belief that gravitation produces a curvature in spacetime. In consequence,
the universe as a whole must be curved. According to Teleparallel Gravity,
however, the above perspective changes, producing deep implications on the
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way we see the universe. In fact, because of the equivalence between Telepar-
allel Gravity and General Relativity, it becomes a matter of convention to
describe the gravitational interaction in terms of curvature or in terms of tor-
sion. This means essentially that the attribution of curvature to spacetime
is not an absolute statement, but a model–dependent conclusion. Of course,
the cosmology based on General Relativity is not incorrect. However, an ap-
praisal based on teleparallel gravity could provide a new way to look at the
universe, and eventually unveil new perspectives not visible in the standard
General Relativity approach.
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Appendix A

Teleparallel Field Equation

We present in this appendix a detailed computation leading to the teleparallel
field equation introduced in Section 7.4. The teleparallel lagrangian is given
by [see Eq. (7.15)]
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where k = 8πG/c4, and
•
T ρνµ = ha

ρ
•
T aνµ with

•
T
a
νµ = ∂νh

a
µ − ∂µhaν +

•
A
a
eνh

e
µ −

•
A
a
eµh

e
ν (A.2)

the torsion tensor. The gravitational field equation is obtained from the
Euler–Lagrange equation for the the gauge potential Ba

µ or, equivalently,
for the tetrad field haµ:

∂
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The corresponding field equation can be written in the form
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is the superpotential, and
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h

∂
•
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∂haρ
(A.6)

stands for the Noether gravitational energy-momentum current.
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A.1 The superpotential

Taking the functional derivative of the first term of Eq. (A.1) with respect
to ∂σh

a
ρ, we obtain
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In the same way, the second term of Eq. (A.1) yields
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where we have used the fact that neither the metric nor the tetrad depends
on the derivative of the tetrad. The functional derivative of the last term of
the lagrangian yields
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Combining these results, the superpotential (A.5) is found to be
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or equivalently,
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the contortion tensor.
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A.2 The energy-momentum current

Using the identity
∂h

∂haρ
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ρ h, (A.13)

the functional derivative of Eq. (A.1) with respect to haρ can bw written in
the form
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In what follows, we are going to use the properties
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From the torsion definition (A.2), the first functional derivative that appears
in (A.14) is trivially calculated:
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The second kind of functional derivative that appears in (A.14) is
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The third kind of functional derivative is

∂
•
T νµc
∂haρ

= ηcb
∂

∂haρ

(
hbσ

•
T
νµσ
)

= ηca
•
T
νµρ + ηcb h

b
σ
∂
•
T νµσ

∂haρ
,

where

∂
•
T νµσ

∂haρ
=

∂

∂haρ

(
ηbchb

ν
•
T c

µσ
)

= −ηbchaνhbρ
•
T c

µσ + ηbchb
ν ∂
•
T c

µσ

∂haρ

= −haν
•
T
ρµσ − ηbchbν

(
ha

µ
•
T c

ρσ + gµρ
•
T ca

σ + gσρ
•
T c

µ
a + ha

σ
•
T c

µρ
)

+ ηbchb
νηcd g

µαgσρ
•
A
d
aα − ηbchbνηcd gµρgσβ

•
A
d
aβ

= −haν
•
T
ρµσ − haµ

•
T
νρσ − gµρ

•
T
ν
a
σ − gσρ

•
T
νµ
a − haσ

•
T
νµρ

+ hb
νgµαgσρ

•
A
b
aα − hbνgµρgσβ

•
A
b
aβ. (A.18)

The fourth kind of derivative that appears in (A.14) can be calculated with
help of (A.18). It is given by

∂
•
T νµν
∂haρ

=
∂

∂haρ

(
gνσ

•
T
νµσ
)

=
∂gνσ
∂haρ

•
T
νµσ + gνσ

∂
•
T νµσ

∂haρ

= −
•
T
ρµ
a − haµ

•
T
νρ
ν − gµρ

•
T
ν
aν + hb

ρgµν
•
A
b
aν − hbνgµρ

•
A
b
aν .

Finally, the fifth and last functional derivative that appears in (A.14) is

∂
•
T λµ

λ

∂haρ
=

∂

∂haρ

(
hc
λ
•
T
c
µλ

)
= −haλhcρ

•
T
c
µλ + hc

λ(
•
A
c
aµδ

ρ
λ −

•
A
c
aλδ

ρ
µ)

= −
•
T
ρ
µa + hc

ρ
•
A
c
aµ − hcλ

•
A
c
aλδ

ρ
µ. (A.19)

Considering all results above, after some algebraic manipulations, the func-
tional derivative (A.14) is found to be

∂
•
L

∂haρ
=
h

k
hc
σ
•
T
c
νa

•
Sσ

ρν + ha
ρ
•
L+

h

k

•
A
c
aν

•
Sc

νρ. (A.20)



A.2. THE ENERGY-MOMENTUM CURRENT 181

The energy-momentum current (A.6) is, consequently, given by

•
a
ρ =

1

k
hc
σ
•
T
c
νa

•
Sσ

νρ − ha
ρ

h

•
L −

1

k
Acaν

•
Sc

νρ. (A.21)
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Appendix B

Dirac Equation

B.1 Relativistic Fields

Let us start by recalling that a field is — by definition — a relativistic
field if it belongs to some representation of the Poincaré group [179], the
semi–direct product of the Lorentz group by the group of translations on
Minkowski spacetime: P = L � T . The Poincaré group P is the group of
isometries (or motions) on Minkowski, which means that its transformations
preserve the Lorentz metric ηab.

The Lorentz generators Sab and the translation generators P a constitute
a base for the Lie algebra of P , and obey the basic commutation rules[

P a, P b
]

= 0 (B.1)[
P c, Sab

]
= i

(
P a ηbc − P b ηac

)
(B.2)[

Sab, Sde
]

= i
(
Sad ηbe + Sbe ηad − Sbd ηae − Sae ηbd

)
. (B.3)

Under a Lorentz transformation, in particular, a field will transform by the
action of a representation U(Λ), given as

ψ′(x′) = U(Λ)ψ(x) = exp

[
− i

2
ωab S

ab

]
ψ(x), (B.4)

with ωab the transformation (rotation, boost) parameters.
A carrier space is any space on which the transformations take place.

The set of operators representing the group Lie algebra on a given carrier
space is a representation. The Poincaré group P is a group of rank two.
This means that there are at most two operators which commute with all its
generators and are, consequently, invariant under the transformations they
generate. Of course, a function of invariants is itself invariant, so that it is
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possible to choose the invariant operators which have the most direct physical
meaning. A fundamental result is that the eigenvalues of the two invariant
operators classify all the representations: members (vectors, functions) of
the space carrying a representation are transformed into each other, so that
those eigenvalues are kept the same.

In Field Theory, representations are characterized, or classified, by the
eigenvalues of two chosen invariant operators:

ηab P
aP b = m2c2,

with m the rest mass of the particle with four–momentum P a, and

ηabW
aW b = −m2c2 s(s+ 1),

where s is the spin and W a is the Pauli–Lubanski operator

Wd = −1
2
εabcd S

abP c. (B.5)

Every relativistic field must have fixed values of PaP
a and WaW

a, that is,
well–defined values of mass and spin. Particles appear in field theory as the
quanta of the fundamental fields. Such fields are, before quantization, wave-
functions ψ(~x, t) representing the states of a system in Quantum Mechanics.
They are fields in the sense that ψ(~x, t) stands for a continuous infinity of
possible values, one at each point of spacetime.

Comment B.1 Actually, it is the covering SL(2, C) of L = SO(3, 1) which is at work,
but we shall not go into these details. Let us only say that the covering is necessary to
include half-integer spins. This generalizes the case of the group of usual rotations in
ordinary euclidean 3-dimensional space, which is isomorphic to SO(3), the group of 3× 3
orthogonal matrices with determinant = +1. This group has rank one: it has only one
invariant, which is chosen to be

J2 = J2
x + J2

y + J2
z ,

whose eigenvalues are j(j+1), with j an integer. Each value of this invariant characterizes
a representation. Its covering, the group SU(2) of unitary 2×2 matrices with determinant
= +1, has all the representations of SO(3) plus many others, characterized by J2 = j(j+1),
with j a half-integer. An example of representation of SU(2), which is not a representation
of SO(3), is the SU(2) fundamental (that is, lowest-dimensional, j = 1

2 ) representation,
generated by 1

2σa, with σa the 2× 2 Pauli matrices:

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (B.6)
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B.2 Dirac Fields

In the non–relativistic case, time evolution is ruled by the prototype of wave
equation, the Schrödinger equation. It is obtained from Classical Mechanics
through the so-called quantization rules, by which classical quantities become
operators acting on ψ(~x, t). Depending on the “representation”, some quan-
tities become differential operators and other are given by a simple product.
As it is, ψ(~x, t) corresponds to the configuration–space representation, in
which ~x is the operator acting on ψ(~x, t) according to

ψ(~x, t)→ ~x ψ(~x, t).

The Hamiltonian and the 3-momenta, on the other hand, are given respec-
tively by

H → i ~
∂

∂t
(B.7)

and

~p→ ~
i

→
∇. (B.8)

In the case of a free particle, for which H = ~p2/2m, these rules lead to the
free Schrödinger equation

i~
∂ψ(~x, t)

∂t
= − ~2

2m

→
∇

2

ψ(~x, t) . (B.9)

Now, the Schrödinger equation is the non–relativistic limit of the Klein–
Gordon equation, which we write in the form

− ~2 ∂
2ψ(~x, t)

∂t2
= − ~2c2 ~∇2ψ(~x, t) +m2c4ψ(~x, t). (B.10)

Every relativistic field must obey this equation, because it corresponds to
the expression

H2 = ~p2c2 +m2c4,

which is compulsory because it says simply that the field is an eigenstate of
the Poincaré group invariant operator

PaP
a = H2/c2 − ~p2.

with eigenvalue m2c2. A field corresponding to a particle of mass m must
satisfy this condition. Of course, once we use H2, we shall be introducing
negative energy solutions for a free system: there is no reason to exclude

H = −
√

p2c2 +m2c4.
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Following Dirac, we can look for another way to “extract the square root”
of the operator H2. In other words, we look for a linear, first-order equation
both in t and x. We write [180]√

p2c2 +m2c4 = c ~α · ~p + βmc2, (B.11)

where ~α = (α1, α2, α3) and β are constants to be found. Taking the square,
we arrive at the conditions

α1
2 = α2

2 = α3
2 = β2 = 1

αk β + β αk = 0, for k = 1, 2, 3

αiαj + αjαi = 0, for i, j = 1, 2, 3 with i 6= j. (B.12)

These conditions cannot be met if αk and β are real or complex numbers,
but can be satisfied if they are matrices. In that case, as the equation corre-
sponding to (B.11) is the matrix equation

Hψ(~x, t) = i~
∂ψ(~x, t)

∂t
=

~
i
c ~α · ~∇ψ(~x, t) +mc2 β ψ(~x, t), (B.13)

the wavefunction will be necessarily a column-vector, on which the matri-
ces act. Notice that, once conditions (B.12) are satisfied, ψ will also obey
the mandatory Klein-Gordon equation. We must thus look at (B.13) as an
equation involving four matrices (complex, n×n for the time being) and the
n-vector ψ. As H should be hermitian, so should αk and β be:

α†k = αk β† = β.

It turns out that the minimum value of n necessary to have four matrices
that are hermitian, independent and distinct from the identity, is n = 4.
Thus, αk and β will be 4×4 matrices. The four components ψ correspond to
particles and antiparticles with spins components + 1/2 and − 1/2 (whence
the name “bispinor representation”).

B.3 Covariant Form of the Dirac Equation

Equation (B.13) is the Hamiltonian form of the Dirac equation, in which
time and space play distinct roles. To go into the so-called covariant form,
we first define new matrices, the celebrated Dirac’s gamma matrices, as

γ0 = β and γi = βαi. (B.14)
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In terms of the gamma matrices, conditions (B.12) acquire the compact form,

γaγb + γbγa = {γa, γb} = 2 ηab I, (B.15)

where I stands for the unit 4× 4 matrix. In the Pauli–Dirac representation,
the γ’s have the forms

γi =

(
0 σi
−σi 0

)
γ0 =

(
I 0
0 −I

)
, (B.16)

in which σi are the Pauli matrices (B.6). Any other set of matrices γa ob-
tained from those by a similarity transformation is equally acceptable [180,
181]. We shall here only use the above representation.

The commutator of gamma matrices

σab = i
2

(γaγb − γbγa) = i
2

[γa, γb] (B.17)

has an important role. In effect, these σab are such that[
1
2
σab,

1
2
σcd
]

= i
(
ηbc

1
2
σad − ηac 1

2
σbd + ηad

1
2
σbc − ηbd 1

2
σac
)
. (B.18)

Comparison with (B.3 ) shows that

Sab = 1
2
σab

is a Lorentz generator. Just as each matrix Sab of Eq.(1.25) is a generator
of the vector (j = 1) representation of the Lie algebra of the Lorentz group,
each matrix σab/2 is a generator of the spinor (j = 1/2) representation of the
Lie algebra of the Lorentz group. In fact, it is found that the covariance of
the Dirac equation under the transformation

ψ′(x′) = U(Λ)ψ(x) = exp
[
− i

4
ωab σab

]
ψ(x) (B.19)

requires that the Dirac field ψ(x) belong to this bispinor representation gen-
erated by σab/2. It is clear, however, that the particular form of the matrices
σab depend on the “representation” we are using for the matrices γ. In the
representation (B.16) the σab are particularly simple:

σij =

(
εijkσk 0

0 εijkσk

)
σ0i =

(
0 iσi

iσi 0

)
. (B.20)

Currents of Dirac fields have the general form

ψ̄(x) Ôψ(x),
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where

ψ̄(x) = ψ†(x) γ0 (B.21)

is the adjoint wavefunction, and Ô is an operator. Such expressions, called
bilinear forms, are the only combinations that can appear in lagrangians.
Only currents with a well-defined behavior under a Lorentz transformation
are acceptable. From (B.19) it follows that

ψ̄′(x′) Ô ψ′(x′) = ψ̄(x)U−1 ÔUψ(x)

This means that the behavior of a current is fixed by the behavior of the
operator Ô itself. It is possible to choose as a basis for the 4× 4 matrices a
set of matrices, each one with a well–known behavior. Such a set is formed
by the following 16 matrices:

ΓS = I

ΓV a = γa

ΓT ab = σab

ΓP = iγ0γ1γ2γ3 = γ5 = γ5

ΓAa = γ5 γa,

where we have introduced the notation

γ5 = γ5 = iγ0γ1γ2γ3 =

(
0 I
I 0

)
. (B.22)

The superscript letter denote the corresponding behavior: scalar, vector,
tensor, pseudoscalar and axial. As matrices Γ form a basis, any operator Ô
will have the form

Ô =
16∑
n=1

cn Γn,

and only expressions of type

ψ̄(x)Ôψ(x) =
16∑
n=1

cn ψ̄(x) Γn ψ(x)

can appear in lagrangians.
Mltiplying the Dirac equation (B.13) by β/c on the left, after some alge-

braic manipulation we find

i~ γa∂aψ(x)−mcψ(x) = 0. (B.23)
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This is the covariant form of the Dirac equation. It follows from the la-
grangian

L = i
2

~c
[
ψ̄ γa ∂aψ − (∂aψ̄) γa ψ

]
−mc2 ψ̄ ψ. (B.24)

The probability current, on the other hand, is of the form

jµ(x) = ψ̄(x) cγµψ(x). (B.25)
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in Comptes Rendus de l’Academie des Sciences (Serie IV) 2, 1249
(2001) [arXiv:gr-qc/0109063].

[66] M. Dubois-Violette and J. Madore, Comm. Math. Phys. 108, 213
(1987); L. B. Szabados, Class. Quantum Grav. 9, 2521 (1992); J. M.
Aguirregabiria, A. Chamorro and K. S. Virbhadra, Gen. Rel. Grav.
28, 1393 (1996); T. Shirafuji and G. L. Nashed, Prog. Theor. Phys. 98,
1355 (1997); S. Deser, J. S. Franklin and D. Seminara, Class. Quantum
Grav. 16, 2815 (1999); S. V. Babak and L. P. Grishchuck, Phys. Rev.
D61, 024038 (2000); Y. Itin, Class. Quantum Grav. 19, 173 (2002); Y.
Itin, Gen. Rel. Grav. 34, 1819 (2002); J. W. Maluf, Gen. Rel. Grav.
30, 413 (1998); J. W. Maluf, J. F. da Rocha-Neto, T. M. L. Toŕıbio
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