The Method of Stationary Phase

Kim Petersen

Department of Mathematical Sciences

Oscillatory integrals of the first kind

Given $n \in \mathbb{N}$ we will study

$$
I_{u, \varphi}(\lambda)=\int_{\mathbb{R}^{n}} u(x) \mathrm{e}^{i \lambda \varphi(x)} \mathrm{d} x
$$

for $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right), \varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ and $\lambda \in \mathbb{R}$.

Oscillatory integrals of the first kind

Given $n \in \mathbb{N}$ we will study

$$
I_{u, \varphi}(\lambda)=\int_{\mathbb{R}^{n}} u(x) \mathrm{e}^{i \lambda \varphi(x)} \mathrm{d} x
$$

for $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right), \varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ and $\lambda \in \mathbb{R}$.

Amplitude

Oscillatory integrals of the first kind

Given $n \in \mathbb{N}$ we will study

$$
I_{u, \varphi}(\lambda)=\int_{\mathbb{R}^{n}} u(x) \mathrm{e}^{i \lambda \varphi(x)} \mathrm{d} x
$$

for $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right), \varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ and $\lambda \in \mathbb{R}$.

Phase

Oscillatory integrals of the first kind

Given $n \in \mathbb{N}$ we will study

$$
I_{u, \varphi}(\lambda)=\int_{\mathbb{R}^{n}} u(x) \mathrm{e}^{i \lambda \varphi(x)} \mathrm{d} x
$$

for $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right), \varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ and $\lambda \in \mathbb{R}$.

Example

When $n=1$ and $\varphi=-$ id we have

$$
I_{u,-\mathrm{id}}(\lambda)=\int_{-\infty}^{\infty} u(x) \mathrm{e}^{-i \lambda x} \mathrm{~d} x=\mathscr{F} u(\lambda)
$$

Oscillatory integrals of the first kind

Given $n \in \mathbb{N}$ we will study

$$
I_{u, \varphi}(\lambda)=\int_{\mathbb{R}^{n}} u(x) \mathrm{e}^{i \lambda \varphi(x)} \mathrm{d} x
$$

for $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right), \varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ and $\lambda \in \mathbb{R}$.

Example

When $n=1$ and $\varphi=-$ id we have

$$
I_{u,-\mathrm{id}}(\lambda)=\int_{-\infty}^{\infty} u(x) \mathrm{e}^{-i \lambda x} \mathrm{~d} x=\mathscr{F} u(\lambda) .
$$

Riemann-Lebesgue lemma: $I_{u,-\mathrm{id}}(\lambda) \rightarrow 0$ as $\lambda \rightarrow \pm \infty$.

Key question

How does $I_{u, \varphi}(\lambda)$ behave as $\lambda \rightarrow \pm \infty$ for general φ ?

Key question

How does $I_{u, \varphi}(\lambda)$ behave as $\lambda \rightarrow \pm \infty$ for general φ ?

Key question

How does $I_{u, \varphi}(\lambda)$ behave as $\lambda \rightarrow \underset{(}{+} \infty$ for general φ ?

$$
\overline{I_{\bar{u}, \varphi}(\lambda)}=\overline{\int_{\mathbb{R}^{n}} \overline{\overline{u(x)}} \mathrm{e}^{i \lambda \varphi(x)} \mathrm{d} x}=\int_{\mathbb{R}^{n}} u(x) \mathrm{e}^{-i \lambda \varphi(x)} \mathrm{d} x=I_{u, \varphi}(-\lambda) .
$$

Key question

How does $I_{u, \varphi}(\lambda)$ behave as $\left.\lambda \rightarrow \underset{(}{+}\right) \infty$ for general φ ?

$$
\overline{I_{\bar{u}, \varphi}(\lambda)}=\overline{\int_{\mathbb{R}^{n}} \overline{\overline{u(x)}} \mathrm{e}^{i \lambda \varphi(x)} \mathrm{d} x}=\int_{\mathbb{R}^{n}} u(x) \mathrm{e}^{-i \lambda \varphi(x)} \mathrm{d} x=I_{u, \varphi}(-\lambda) .
$$

Example

Setting $n=1, u>0$ and $\varphi=1$ gives

$$
I_{u, 1}(\lambda)=\int_{\mathbb{R}^{n}} u(x) \mathrm{e}^{i \lambda} \mathrm{~d} x=\mathrm{e}^{i \lambda}\|u\|_{L_{1}(\mathbb{R})}
$$

Principle of non-stationary phase

Theorem

Let $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and let $\varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ such that $\nabla \varphi$ is non-zero on $\operatorname{supp}(u)$.

Principle of non-stationary phase

Theorem

Let $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and let $\varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ such that $\nabla \varphi$ is non-zero on $\operatorname{supp}(u)$. Then

$$
\left|I_{u, \varphi}(\lambda)\right| \leq C_{N, u, \varphi} \lambda^{-N} \quad \text { for all } N \in \mathbb{N}_{0} \text { and } \lambda>0 .
$$

Principle of non-stationary phase

Theorem

Let $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and let $\varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ such that $\nabla \varphi$ is non-zero on $\operatorname{supp}(u)$. Then

$$
\left|I_{u, \varphi}(\lambda)\right| \leq C_{N, u, \varphi} \lambda^{-N} \quad \text { for all } N \in \mathbb{N}_{0} \text { and } \lambda>0 .
$$

Proof: On the blackboard (see exercise 3.1).

Principle of non-stationary phase

Theorem

Let $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and let $\varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ such that $\nabla \varphi$ is non-zero on $\operatorname{supp}(u)$. Then

$$
\left|I_{u, \varphi}(\lambda)\right| \leq C_{N, u, \varphi} \lambda^{-N} \quad \text { for all } N \in \mathbb{N}_{0} \text { and } \lambda>0
$$

Proof: On the blackboard (see exercise 3.1).
Consequence: The essential contributions to the asymptotic behavior of $I_{u, \varphi}(\lambda)$ come from the stationary points of φ (i.e. points y with $\nabla \varphi(y)=0$)

Principle of non-stationary phase

Theorem

Let $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and let $\varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ such that $\nabla \varphi$ is non-zero on $\operatorname{supp}(u)$. Then

$$
\left|I_{u, \varphi}(\lambda)\right| \leq C_{N, u, \varphi} \lambda^{-N} \quad \text { for all } N \in \mathbb{N}_{0} \text { and } \lambda>0
$$

Proof: On the blackboard (see exercise 3.1).
Consequence: The essential contributions to the asymptotic behavior of $I_{u, \varphi}(\lambda)$ come from the stationary points of φ (i.e. points y with $\nabla \varphi(y)=0$)

Assumption: The stationary points $y \in \operatorname{supp}(u)$ of φ are non-degenerate (i.e. $\left.\operatorname{det}\left(\partial_{i} \partial_{j} \varphi(y)\right)_{i j} \neq 0\right)$.

The Morse Lemma

Lemma

Let $x_{0} \in \mathbb{R}^{n}$ be a non-degenerate stationary point of $\varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$. Then there exist neighbourhoods V of x_{0} and U of $0 \in \mathbb{R}^{n}$, numbers $\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{ \pm 1\}$ and a diffeomorphism $\mathcal{H}: V \rightarrow U$ with $\mathcal{H}\left(x_{0}\right)=0$ such that

$$
\varphi \circ \mathcal{H}^{-1}(x)=\varphi\left(x_{0}\right)+\varepsilon_{1} x_{1}^{2}+\cdots+\varepsilon_{n} x_{n}^{2}
$$

The Morse Lemma

Lemma

Let $x_{0} \in \mathbb{R}^{n}$ be a non-degenerate stationary point of $\varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$. Then there exist neighbourhoods V of x_{0} and U of $0 \in \mathbb{R}^{n}$, numbers $\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{ \pm 1\}$ and a diffeomorphism $\mathcal{H}: V \rightarrow U$ with $\mathcal{H}\left(x_{0}\right)=0$ such that

$$
\varphi \circ \mathcal{H}^{-1}(x)=\varphi\left(x_{0}\right)+\varepsilon_{1} x_{1}^{2}+\cdots+\varepsilon_{n} x_{n}^{2}=\varphi\left(x_{0}\right)+\langle x, \mathcal{E} x\rangle
$$

with $\mathcal{E}=\operatorname{diag}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$.

The Morse Lemma

Lemma

Let $x_{0} \in \mathbb{R}^{n}$ be a non-degenerate stationary point of $\varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$. Then there exist neighbourhoods V of x_{0} and U of $0 \in \mathbb{R}^{n}$, numbers $\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{ \pm 1\}$ and a diffeomorphism $\mathcal{H}: V \rightarrow U$ with $\mathcal{H}\left(x_{0}\right)=0$ such that

$$
\varphi \circ \mathcal{H}^{-1}(x)=\varphi\left(x_{0}\right)+\varepsilon_{1} x_{1}^{2}+\cdots+\varepsilon_{n} x_{n}^{2}=\varphi\left(x_{0}\right)+\langle x, \mathcal{E} x\rangle
$$

with $\mathcal{E}=\operatorname{diag}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$.

Remark: It can be shown that the number of +1 's amongst $\varepsilon_{1}, \ldots, \varepsilon_{n}$ is equal to the number of positive eigenvalues of $\left(\partial_{i} \partial_{j} \varphi\left(x_{0}\right)\right)_{i j}$

Proof of the Morse Lemma

Without loss of generality assume that $x_{0}=0$ and $\varphi(0)=0$.

Proof of the Morse Lemma

Without loss of generality assume that $x_{0}=0$ and $\varphi(0)=0$.

After proving the case with $x_{0}=0$ and $\varphi(0)=0$, apply the obtained result to the function $x \mapsto\left(\varphi\left(x+x_{0}\right)-\varphi\left(x_{0}\right)\right)$.

Proof of the Morse Lemma

Without loss of generality assume that $x_{0}=0$ and $\varphi(0)=0$.

On the blackboard we will show the following statement:

Proof of the Morse Lemma

Without loss of generality assume that $x_{0}=0$ and $\varphi(0)=0$.
For all $N \in\{1, \ldots, n+1\}$ there exist neighbourhoods $V_{N}, U_{N} \subset \mathbb{R}^{n}$ of 0 , a diffeomorphism $\mathcal{H}_{N}: V_{N} \rightarrow U_{N}$ with $\mathcal{H}_{N}(0)=0$, numbers $\varepsilon_{m} \in\{ \pm 1\}$ and a set of functions
$\left\{q_{i j}^{(N)} \mid i, j \in \mathbb{N}, N \leq i, j \leq n\right\}$ with

$$
\left(i_{N}\right) q_{i j}^{(N)} \in C^{\infty}\left(V_{N}\right),
$$

$$
\left(i i_{N}\right) q_{i j}^{(N)}=q_{j i}^{(N)},
$$

$$
\left(i i i_{N}\right) q_{\ell k}^{(N)}(0) \neq 0 \text { for some } \ell, k
$$

such that

$$
\varphi \circ \mathcal{H}_{N}^{-1}(x)=\sum_{m=1}^{N-1} \varepsilon_{m} x_{m}^{2}+\sum_{N \leq i, j \leq n} q_{i j}^{(N)}(x) x_{i} x_{j} .
$$

Proof of the Morse Lemma

Without loss of generality assume that $x_{0}=0$ and $\varphi(0)=0$.
For all $N \in\{1, \ldots, n+1\}$ there exist neighbourhoods $V_{N}, U_{N} \subset \mathbb{R}^{n}$ of 0 , a diffeomorphism $\mathcal{H}_{N}: V_{N} \rightarrow U_{N}$ with $\mathcal{H}_{N}(0)=0$, numbers $\varepsilon_{m} \in\{ \pm 1\}$ and a set of functions $\left\{q_{i j}^{(N)} \mid i, j \in \mathbb{N}, N \leq i, j \leq n\right\}$ with

$$
\left(i_{N}\right) q_{i j}^{(N)} \in C^{\infty}\left(V_{N}\right),
$$

$$
\left(i i_{N}\right) q_{i j}^{(N)}=q_{j i}^{(N)},
$$

$$
\left(i i i_{N}\right) q_{\ell k}^{(N)}(0) \neq 0 \text { for some } \ell, k
$$

such that

$$
\begin{gathered}
\varphi \circ \mathcal{H}_{N}^{-1}(x)=\sum_{m=1}^{N-1} \varepsilon_{m} x_{m}^{2}+\sum_{N \leq i, j \leq n} q_{i j}^{(N)}(x) x_{i} x_{j} . \\
=0 \text { if } N=1
\end{gathered}
$$

Proof of the Morse Lemma

Without loss of generality assume that $x_{0}=0$ and $\varphi(0)=0$.
For all $N \in\{1, \ldots, n+1\}$ there exist neighbourhoods $V_{N}, U_{N} \subset \mathbb{R}^{n}$ of 0 , a diffeomorphism $\mathcal{H}_{N}: V_{N} \rightarrow U_{N}$ with $\mathcal{H}_{N}(0)=0$, numbers $\varepsilon_{m} \in\{ \pm 1\}$ and a set of functions $\left\{q_{i j}^{(N)} \mid i, j \in \mathbb{N}, N \leq i, j \leq n\right\}$ with

$$
\left(i_{N}\right) q_{i j}^{(N)} \in C^{\infty}\left(V_{N}\right),
$$

$$
\left(i i_{N}\right) q_{i j}^{(N)}=q_{j i}^{(N)},
$$

$$
\left(i i i_{N}\right) q_{\ell k}^{(N)}(0) \neq 0 \text { for some } \ell, k
$$

such that

$$
\varphi \circ \mathcal{H}_{N}^{-1}(x)=\sum_{m=1}^{N-1} \varepsilon_{m} x_{m}^{2}+\sum_{N \leq i, j \leq n} q_{i j}^{(N)}(x) x_{i} x_{j} .
$$

$$
=0 \text { if } N=n+1
$$

Proof of the Morse Lemma

Without loss of generality assume that $x_{0}=0$ and $\varphi(0)=0$.
For all $N \in\{1, \ldots, n+1\}$ there exist neighbourhoods $V_{N}, U_{N} \subset \mathbb{R}^{n}$ of 0 , a diffeomorphism $\mathcal{H}_{N}: V_{N} \rightarrow U_{N}$ with $\mathcal{H}_{N}(0)=0$, numbers $\varepsilon_{m} \in\{ \pm 1\}$ and a set of functions
$\left\{q_{i j}^{(N)} \mid i, j \in \mathbb{N}, N \leq i, j \leq n\right\}$ with

$$
\left(i_{N}\right) q_{i j}^{(N)} \in C^{\infty}\left(V_{N}\right),
$$

$$
\left(i i_{N}\right) q_{i j}^{(N)}=q_{j i}^{(N)},
$$

$$
\left(i i i_{N}\right) q_{\ell k}^{(N)}(0) \neq 0 \text { for some } \ell, k
$$

such that

$$
\varphi \circ \mathcal{H}_{N}^{-1}(x)=\sum_{m=1}^{N-1} \varepsilon_{m} x_{m}^{2}+\sum_{N \leq i, j \leq n} q_{i j}^{(N)}(x) x_{i} x_{j} .
$$

Consequences of the Morse Lemma

Corollary

A non-degenerate stationary point x_{0} of $\varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ is an isolated stationary point.

Consequences of the Morse Lemma

Corollary

A non-degenerate stationary point x_{0} of $\varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ is an isolated stationary point.

The compact set $\operatorname{supp}(u)$ can only contain finitely many non-degenerate stationary points of φ.

Consequences of the Morse Lemma

Corollary

A non-degenerate stationary point x_{0} of $\varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ is an isolated stationary point.

Let $\left\{\mathcal{O}_{j}\right\}_{j=0}^{N}$ be a bounded open cover of $\operatorname{supp}(u)$ such that \mathcal{O}_{j} contains precisely one stationary point of φ.

Consequences of the Morse Lemma

Corollary

A non-degenerate stationary point x_{0} of $\varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ is an isolated stationary point.

Let $\left\{\mathcal{O}_{j}\right\}_{j=0}^{N}$ be a bounded open cover of $\operatorname{supp}(u)$ such that \mathcal{O}_{j} contains precisely one stationary point of φ.

Partition of unity: $\sum_{j=0}^{N} \psi_{j}=1$ on $\operatorname{supp}(u)$ and $\psi_{j} \in C_{c}^{\infty}\left(\mathcal{O}_{j} ;[0,1]\right)$.

Consequences of the Morse Lemma

Corollary

A non-degenerate stationary point x_{0} of $\varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ is an isolated stationary point.

Let $\left\{\mathcal{O}_{j}\right\}_{j=0}^{N}$ be a bounded open cover of $\operatorname{supp}(u)$ such that \mathcal{O}_{j} contains precisely one stationary point of φ.

Partition of unity: $\sum_{j=0}^{N} \psi_{j}=1$ on $\operatorname{supp}(u)$ and $\psi_{j} \in C_{c}^{\infty}\left(\mathcal{O}_{j} ;[0,1]\right)$.
$I_{u, \varphi}(\lambda)=\sum_{j=0}^{N} \int_{\mathbb{R}^{n}} \psi_{j}(x) u(x) \mathrm{e}^{i \lambda \varphi(x)} \mathrm{d} x=\sum_{j=0}^{N} I_{u \psi_{j}, \varphi}(\lambda), u \psi_{j} \in C_{c}^{\infty}\left(\mathcal{O}_{j}\right)$,

Consequences of the Morse Lemma

Corollary

A non-degenerate stationary point x_{0} of $\varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ is an isolated stationary point.

Let $\left\{\mathcal{O}_{j}\right\}_{j=0}^{N}$ be a bounded open cover of $\operatorname{supp}(u)$ such that \mathcal{O}_{j} contains precisely one stationary point of φ.

Partition of unity: $\sum_{j=0}^{N} \psi_{j}=1$ on $\operatorname{supp}(u)$ and $\psi_{j} \in C_{c}^{\infty}\left(\mathcal{O}_{j} ;[0,1]\right)$.
$I_{u, \varphi}(\lambda)=\sum_{j=0}^{N} \int_{\mathbb{R}^{n}} \psi_{j}(x) u(x) \mathrm{e}^{i \lambda \varphi(x)} \mathrm{d} x=\sum_{j=0}^{N} I_{u \psi_{j}, \varphi}(\lambda), u \psi_{j} \in C_{c}^{\infty}\left(\mathcal{O}_{j}\right)$,
Can assume: φ has precisely one stationary point in $\operatorname{supp}(u)$.

Special Case: Quadratic Forms

The Morse Lemma inspires us to consider the case $\varphi=\langle\cdot, A \cdot\rangle$, where A is a real, symmetric and invertible $n \times n$-matrix.

Special Case: Quadratic Forms

The Morse Lemma inspires us to consider the case $\varphi=\langle\cdot, A \cdot\rangle$, where A is a real, symmetric and invertible $n \times n$-matrix.

Proposition

Let A be a real, symmetric and invertible $n \times n$-matrix. Then for all $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right), \lambda>0$ and all integers $k>0$ and $s>\frac{n}{2}$ we have

$$
\begin{aligned}
\left\lvert\, I_{u,\langle\cdot, A \cdot\rangle}(\lambda)-\left(\operatorname{det}\left(\frac{A}{\pi i}\right)\right)^{-\frac{1}{2}}\right. & \left.\sum_{j=0}^{k-1} \frac{\left\langle D, A^{-1} D\right\rangle^{j} u(0)}{(4 i)^{j} j!} \lambda^{-\frac{n}{2}-j} \right\rvert\, \\
& \leq C_{k}\left(\frac{\left\|A^{-1}\right\|}{\lambda}\right)^{\frac{n}{2}+k} \sum_{|\alpha| \leq s+2 k}\left\|D^{\alpha} u\right\|_{L^{2}}
\end{aligned}
$$

where $D=\frac{1}{i}\left(\partial_{1}, \ldots, \partial_{n}\right)$.

Proof: On the blackboard

Principle of Stationary Phase

Theorem

Let $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and consider a $\varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ with precisely one stationary point $x_{0} \in \operatorname{supp}(u)$, which is non-degenerate. Then for all $\lambda>0$ and all $k \in \mathbb{N}$ we have

$$
\left|I_{u, \varphi}(\lambda)-\mathrm{e}^{i \lambda \varphi\left(x_{0}\right)} \sum_{j=0}^{k-1} T_{j} u(0) \lambda^{-\frac{n}{2}-j}\right| \leq C_{k, n, u, \varphi} \lambda^{-\frac{n}{2}-k},
$$

where T_{j} is a differential operator of order $2 j$ with C^{∞}-coefficients.

Principle of Stationary Phase

Theorem

Let $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and consider a $\varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ with precisely one stationary point $x_{0} \in \operatorname{supp}(u)$, which is non-degenerate. Then for all $\lambda>0$ and all $k \in \mathbb{N}$ we have

$$
\left|I_{u, \varphi}(\lambda)-\mathrm{e}^{i \lambda \varphi\left(x_{0}\right)} \sum_{j=0}^{k-1} T_{j} u(0) \lambda^{-\frac{n}{2}-j}\right| \leq C_{k, n, u, \varphi} \lambda^{-\frac{n}{2}-k},
$$

where T_{j} is a differential operator of order $2 j$ with C^{∞}-coefficients.

Proof: Let $\mathcal{H}: V \rightarrow U$ and \mathcal{E} be as in the Morse lemma.

Principle of Stationary Phase

Theorem

Let $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and consider a $\varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ with precisely one stationary point $x_{0} \in \operatorname{supp}(u)$, which is non-degenerate.
Then for all $\lambda>0$ and all $k \in \mathbb{N}$ we have

$$
\left|I_{u, \varphi}(\lambda)-\mathrm{e}^{i \lambda \varphi\left(x_{0}\right)} \sum_{j=0}^{k-1} T_{j} u(0) \lambda^{-\frac{n}{2}-j}\right| \leq C_{k, n, u, \varphi} \lambda^{-\frac{n}{2}-k},
$$

where T_{j} is a differential operator of order $2 j$ with C^{∞}-coefficients.

Proof: Let $\mathcal{H}: V \rightarrow U$ and \mathcal{E} be as in the Morse lemma.

Choose $\chi \in C_{c}^{\infty}(V)$ with $\chi=1$ near x_{0}.

Principle of Stationary Phase (proof)

Then

$$
\begin{aligned}
& I_{u, \varphi}(\lambda) \\
& =\int_{\mathbb{R}^{n}} \mathrm{e}^{i \lambda \varphi(x)}(\chi u)(x) \mathrm{d} x+\int_{\mathbb{R}^{n}} \mathrm{e}^{i \lambda \varphi(x)}[(1-\chi) u](x) \mathrm{d} x
\end{aligned}
$$

Principle of Stationary Phase (proof)

Then

$$
\begin{aligned}
& I_{u, \varphi}(\lambda) \\
& =\int_{\mathbb{R}^{n}} \mathrm{e}^{i \lambda \varphi(x)}(\chi u)(x) \mathrm{d} x+\int_{\mathbb{R}^{n}} \mathrm{e}^{i \lambda \varphi(x)}[(1-\chi) u](x) \mathrm{d} x
\end{aligned}
$$

Principle of Stationary Phase (proof)

Then

$$
\begin{aligned}
& I_{u, \varphi}(\lambda) \\
& =\int_{V} \mathrm{e}^{i \lambda \varphi(x)}(\chi u)(x) \mathrm{d} x+\int_{\mathbb{R}^{n}} \mathrm{e}^{i \lambda \varphi(x)}[(1-\chi) u](x) \mathrm{d} x
\end{aligned}
$$

Principle of Stationary Phase (proof)

Then

$$
\begin{aligned}
& I_{u, \varphi}(\lambda) \\
& =\int_{V} \mathrm{e}^{i \lambda \varphi(x)}(\chi u)(x) \mathrm{d} x+\int_{\mathbb{R}^{n}} \mathrm{e}^{i \lambda \varphi(x)}[(1-\chi) u](x) \mathrm{d} x \\
& =\int_{U} \mathrm{e}^{i \lambda \varphi \circ \mathcal{H}^{-1}(x)} \quad(\chi u) \circ \mathcal{H}^{-1}(x)\left|\operatorname{det} J \mathcal{H}^{-1}(x)\right| \mathrm{d} x+I_{(1-\chi) u, \varphi}(\lambda)
\end{aligned}
$$

Principle of Stationary Phase (proof)

Then

$$
\begin{aligned}
& I_{u, \varphi}(\lambda) \\
& =\int_{V} \mathrm{e}^{i \lambda \varphi(x)}(\chi u)(x) \mathrm{d} x+\int_{\mathbb{R}^{n}} \mathrm{e}^{i \lambda \varphi(x)}[(1-\chi) u](x) \mathrm{d} x \\
& =\int_{U} \mathrm{e}^{i \lambda \varphi \circ \mathcal{H}^{-1}(x)} \quad(\chi u) \circ \mathcal{H}^{-1}(x)\left|\operatorname{det} J \mathcal{H}^{-1}(x)\right| \mathrm{d} x+I_{(1-\chi) u, \varphi}(\lambda)
\end{aligned}
$$

Principle of Stationary Phase (proof)

Then

$$
\begin{aligned}
& I_{u, \varphi}(\lambda) \\
& =\int_{V} \mathrm{e}^{i \lambda \varphi(x)}(\chi u)(x) \mathrm{d} x+\int_{\mathbb{R}^{n}} \mathrm{e}^{i \lambda \varphi(x)}[(1-\chi) u](x) \mathrm{d} x \\
& =\int_{U} \mathrm{e}^{i \lambda\left(\varphi\left(x_{0}\right)+\langle x, \mathcal{E} x\rangle\right)}(\chi u) \circ \mathcal{H}^{-1}(x)\left|\operatorname{det} J \mathcal{H}^{-1}(x)\right| \mathrm{d} x+I_{(1-\chi) u, \varphi}(\lambda)
\end{aligned}
$$

Principle of Stationary Phase (proof)

Then

$$
\begin{aligned}
& I_{u, \varphi}(\lambda) \\
& =\int_{V} \mathrm{e}^{i \lambda \varphi(x)}(\chi u)(x) \mathrm{d} x+\int_{\mathbb{R}^{n}} \mathrm{e}^{i \lambda \varphi(x)}[(1-\chi) u](x) \mathrm{d} x \\
& =\int_{U} \mathrm{e}^{i \lambda\left(\varphi\left(x_{0}\right)+\langle x, \mathcal{E} x\rangle\right)}(\chi u) \circ \mathcal{H}^{-1}(x)\left|\operatorname{det} J \mathcal{H}^{-1}(x)\right| \mathrm{d} x+I_{(1-\chi) u, \varphi}(\lambda)
\end{aligned}
$$

Principle of Stationary Phase (proof)

Then

$$
\begin{aligned}
& I_{u, \varphi}(\lambda) \\
& =\int_{V} \mathrm{e}^{i \lambda \varphi(x)}(\chi u)(x) \mathrm{d} x+\int_{\mathbb{R}^{n}} \mathrm{e}^{i \lambda \varphi(x)}[(1-\chi) u](x) \mathrm{d} x \\
& =\int_{U} \mathrm{e}^{i \lambda\left(\varphi\left(x_{0}\right)+\langle x, \mathcal{E} x\rangle\right)} \underbrace{(\chi u) \circ \mathcal{H}^{-1}(x)\left|\operatorname{det} J \mathcal{H}^{-1}(x)\right|}_{=f_{u}(x) \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)} \mathrm{d} x+I_{(1-\chi) u, \varphi}(\lambda)
\end{aligned}
$$

Principle of Stationary Phase (proof)

Then

$$
\begin{aligned}
& I_{u, \varphi}(\lambda) \\
& =\int_{V} \mathrm{e}^{i \lambda \varphi(x)}(\chi u)(x) \mathrm{d} x+\int_{\mathbb{R}^{n}} \mathrm{e}^{i \lambda \varphi(x)}[(1-\chi) u](x) \mathrm{d} x \\
& =\int_{U} \mathrm{e}^{i \lambda\left(\varphi\left(x_{0}\right)+\langle x, \mathcal{E} x\rangle\right)}
\end{aligned}
$$

Principle of Stationary Phase (proof)

Then

$$
\begin{aligned}
& I_{u, \varphi}(\lambda) \\
& =\int_{V} \mathrm{e}^{i \lambda \varphi(x)}(\chi u)(x) \mathrm{d} x+\int_{\mathbb{R}^{n}} \mathrm{e}^{i \lambda \varphi(x)}[(1-\chi) u](x) \mathrm{d} x \\
& =\int_{U} \mathrm{e}^{\left.i \lambda\left(\varphi\left(x_{0}\right)+\langle x, \mathcal{E}\rangle\right)\right)} f_{u}(x) \\
& =\mathrm{e}^{i \lambda \varphi\left(x_{0}\right)} I_{f_{u},\langle, \cdot \mathcal{E} \cdot\rangle}(\lambda)+I_{(1-\chi) u, \varphi}(\lambda)
\end{aligned}
$$

Principle of Stationary Phase (proof)

Then

$$
I_{u, \varphi}(\lambda)=\mathrm{e}^{i \lambda \varphi\left(x_{0}\right)} I_{f_{u},\langle, \cdot \mathcal{E} \cdot\rangle}(\lambda)+I_{(1-\chi) u, \varphi}(\lambda)
$$

Principle of Stationary Phase (proof)

Then

$I_{u, \varphi}(\lambda)=\mathrm{e}^{i \lambda \varphi\left(x_{0}\right)} I_{f_{u},\langle\cdot, \mathcal{E} \cdot\rangle}(\lambda)+I_{(1-\chi) u, \varphi}(\lambda)$
so by setting $T_{j} u=\left(\operatorname{det}\left(\frac{\mathcal{E}}{\pi i}\right)\right)^{-\frac{1}{2}} \frac{\left\langle D, \mathcal{E}^{-1} D\right\rangle^{j} f_{u}}{(4 i)^{j} j!}$ and letting s be the smallest integer $>\frac{n}{2}$ we get

$$
\left|I_{u, \varphi}(\lambda)-\mathrm{e}^{i \lambda \varphi\left(x_{0}\right)} \sum_{j=0}^{k-1} T_{j} u(0) \lambda^{-\frac{n}{2}-j}\right|
$$

$$
\leq\left|I_{f_{u},\langle\cdot, \mathcal{E} \cdot\rangle}(\lambda)-\quad \sum_{j=0}^{k-1} T_{j} u(0) \quad \lambda^{-\frac{n}{2}-j}\right|+\left|I_{(1-\chi) u, \varphi}(\lambda)\right|
$$

Principle of Stationary Phase (proof)

Then

$I_{u, \varphi}(\lambda)=\mathrm{e}^{i \lambda \varphi\left(x_{0}\right)} I_{f_{u},\langle\cdot \mathcal{E} \cdot\rangle}(\lambda)+I_{(1-\chi) u, \varphi}(\lambda)$
so by setting $T_{j} u=\left(\operatorname{det}\left(\frac{\mathcal{E}}{\pi i}\right)\right)^{-\frac{1}{2}} \frac{\left\langle D, \mathcal{E}^{-1} D\right\rangle^{j} f_{u}}{(4 i)^{j} j!}$ and letting s be the smallest integer $>\frac{n}{2}$ we get

$$
\left|I_{u, \varphi}(\lambda)-\mathrm{e}^{i \lambda \varphi\left(x_{0}\right)} \sum_{j=0}^{k-1} T_{j} u(0) \lambda^{-\frac{n}{2}-j}\right|
$$

$$
\leq\left|I_{f_{u},\langle\cdot, \mathcal{E} \cdot\rangle}(\lambda)-\quad \sum_{j=0}^{k-1} T_{j} u(0) \quad \lambda^{-\frac{n}{2}-j}\right|+\left|I_{(1-\chi) u, \varphi}(\lambda)\right|
$$

Principle of Stationary Phase (proof)

Then

$I_{u, \varphi}(\lambda)=\mathrm{e}^{i \lambda \varphi\left(x_{0}\right)} I_{f_{u},\langle\cdot \mathcal{E} \cdot\rangle}(\lambda)+I_{(1-\chi) u, \varphi}(\lambda)$
so by setting $T_{j} u=\left(\operatorname{det}\left(\frac{\mathcal{E}}{\pi i}\right)\right)^{-\frac{1}{2}} \frac{\left\langle D, \mathcal{E}^{-1} D\right\rangle^{j} f_{u}}{(4 i)^{j} j!}$ and letting s be the smallest integer $>\frac{n}{2}$ we get

$$
\begin{aligned}
& \left|I_{u, \varphi}(\lambda)-\mathrm{e}^{i \lambda \varphi\left(x_{0}\right)} \sum_{j=0}^{k-1} T_{j} u(0) \lambda^{-\frac{n}{2}-j}\right| \\
& \leq\left|I_{f_{u},\langle\cdot, \mathcal{E} \cdot\rangle}(\lambda)-\left(\operatorname{det}\left(\frac{\mathcal{E}}{\pi i}\right)\right)^{-\frac{1}{2}} \sum_{j=0}^{k-1} \frac{\left\langle D, \mathcal{E}^{-1} D\right\rangle^{j} f_{u}(0)}{(4 i)^{j} j!} \lambda^{-\frac{n}{2}-j}\right|+\left|I_{(1-\chi) u, \varphi}(\lambda)\right|
\end{aligned}
$$

Principle of Stationary Phase (proof)

Then

$I_{u, \varphi}(\lambda)=\mathrm{e}^{i \lambda \varphi\left(x_{0}\right)} I_{f_{u},\langle\cdot, \mathcal{E} \cdot\rangle}(\lambda)+I_{(1-\chi) u, \varphi}(\lambda)$
so by setting $T_{j} u=\left(\operatorname{det}\left(\frac{\mathcal{E}}{\pi i}\right)\right)^{-\frac{1}{2}} \frac{\left\langle D, \mathcal{E}^{-1} D\right\rangle^{j} f_{u}}{(4 i)^{j} j!}$ and letting s be the smallest integer $>\frac{n}{2}$ we get

$$
\begin{aligned}
& \left|I_{u, \varphi}(\lambda)-\mathrm{e}^{i \lambda \varphi\left(x_{0}\right)} \sum_{j=0}^{k-1} T_{j} u(0) \lambda^{-\frac{n}{2}-j}\right| \\
& \leq\left|I_{f_{u},\langle\cdot, \mathcal{E} \cdot\rangle}(\lambda)-\left(\operatorname{det}\left(\frac{\mathcal{E}}{\pi i}\right)\right)^{-\frac{1}{2}} \sum_{j=0}^{k-1} \frac{\left\langle D, \mathcal{E}^{-1} D\right\rangle^{j} f_{u}(0)}{(4 i))^{j}!} \lambda^{-\frac{n}{2}-j}\right|+\left|I_{(1-\chi) u, \varphi}(\lambda)\right| \\
& \leq C_{k}\left\|\mathcal{E}^{-1}\right\|^{\frac{n}{2}+k} \sum_{|\alpha| \leq 2 k+s}\left\|D^{\alpha} f_{u}\right\|_{L^{2}} \lambda^{-\frac{n}{2}-k}+C_{k, n, u, \varphi}^{\prime} \lambda^{-\frac{n}{2}-k}
\end{aligned}
$$

Principle of Stationary Phase (proof)

Then

$I_{u, \varphi}(\lambda)=\mathrm{e}^{i \lambda \varphi\left(x_{0}\right)} I_{f_{u},\langle\cdot \mathcal{E} \cdot\rangle}(\lambda)+I_{(1-\chi) u, \varphi}(\lambda)$
so by setting $T_{j} u=\left(\operatorname{det}\left(\frac{\mathcal{E}}{\pi i}\right)\right)^{-\frac{1}{2}} \frac{\left\langle D, \mathcal{E}^{-1} D\right\rangle^{j} f_{u}}{(4 i)^{j} j!}$ and letting s be the smallest integer $>\frac{n}{2}$ we get

$$
\begin{aligned}
& \left|I_{u, \varphi}(\lambda)-\mathrm{e}^{i \lambda \varphi\left(x_{0}\right)} \sum_{j=0}^{k-1} T_{j} u(0) \lambda^{-\frac{n}{2}-j}\right| \\
& \leq\left|I_{f_{u},\langle\cdot, \mathcal{E} \cdot\rangle}(\lambda)-\left(\operatorname{det}\left(\frac{\mathcal{E}}{\pi i}\right)\right)^{-\frac{1}{2}} \sum_{j=0}^{k-1} \frac{\left\langle D, \mathcal{E}^{-1} D\right\rangle^{j} f_{u}(0)}{(4 i)^{j} j!} \lambda^{-\frac{n}{2}-j}\right|+\left|I_{(1-\chi) u, \varphi}(\lambda)\right| \\
& \leq C_{k}\left\|\mathcal{E}^{-1}\right\|^{\frac{n}{2}+k} \sum_{|\alpha| \leq 2 k+s}\left\|D^{\alpha} f_{u}\right\|_{L^{2}} \lambda^{-\frac{n}{2}-k}+C_{k, n, u, \varphi}^{\prime} \lambda^{-\frac{n}{2}-k} \\
& \leq C_{k, n, u, \varphi} \lambda^{-\frac{n}{2}-k}
\end{aligned}
$$

The simplest asymptotic expansion of $I_{u, \varphi}(\lambda)$

Remembering the definitions of $T_{j} u$ and f_{u},

$$
T_{j} u=\left(\operatorname{det}\left(\frac{\mathcal{E}}{\pi i}\right)\right)^{-\frac{1}{2}} \frac{\left\langle D, \mathcal{E}^{-1} D\right\rangle^{j} f_{u}}{(4 i)^{j} j!}
$$

and

$$
f_{u}=\left[(\chi u) \circ \mathcal{H}^{-1}\right] \cdot\left|\operatorname{det} J \mathcal{H}^{-1}\right|,
$$

we see that

$$
T_{0} u(0)=\left(\operatorname{det}\left(\frac{\mathcal{E}}{\pi i}\right)\right)^{-\frac{1}{2}} f_{u}(0)=\left(\operatorname{det}\left(\frac{\mathcal{E}}{\pi i}\right)\right)^{-\frac{1}{2}}\left|\operatorname{det} J \mathcal{H}^{-1}(0)\right| u\left(x_{0}\right)
$$

The simplest asymptotic expansion of $I_{u, \varphi}(\lambda)$

Remembering the definitions of $T_{j} u$ and f_{u},

$$
T_{j} u=\left(\operatorname{det}\left(\frac{\mathcal{E}}{\pi i}\right)\right)^{-\frac{1}{2}} \frac{\left\langle D, \mathcal{E}^{-1} D\right\rangle^{j} f_{u}}{(4 i)^{j} j!}
$$

and

$$
f_{u}=\left[(\chi u) \circ \mathcal{H}^{-1}\right] \cdot\left|\operatorname{det} J \mathcal{H}^{-1}\right|
$$

we see that

$$
T_{0} u(0)=\left(\operatorname{det}\left(\frac{\mathcal{E}}{\pi i}\right)\right)^{-\frac{1}{2}} f_{u}(0)=\left(\operatorname{det}\left(\frac{\mathcal{E}}{\pi i}\right)\right)^{-\frac{1}{2}}\left|\operatorname{det} J \mathcal{H}^{-1}(0)\right| u\left(x_{0}\right)
$$

The simplest asymptotic expansion of $I_{u, \varphi}(\lambda)$

Remembering the definitions of $T_{j} u$ and f_{u},

$$
T_{j} u=\left(\operatorname{det}\left(\frac{\mathcal{E}}{\pi i}\right)\right)^{-\frac{1}{2}} \frac{\left\langle D, \mathcal{E}^{-1} D\right\rangle^{j} f_{u}}{(4 i)^{j} j!}
$$

and

$$
f_{u}=\left[(\chi u) \circ \mathcal{H}^{-1}\right] \cdot\left|\operatorname{det} J \mathcal{H}^{-1}\right|
$$

we see that

$$
T_{0} u(0)=\left(\operatorname{det}\left(\frac{\mathcal{E}}{\pi i}\right)\right)^{-\frac{1}{2}} f_{u}(0)=\quad C_{\left(\partial_{i} \partial_{j} \varphi\left(x_{0}\right)\right)_{i j}} \quad u\left(x_{0}\right)
$$

The simplest asymptotic expansion of $I_{u, \varphi}(\lambda)$

Remembering the definitions of $T_{j} u$ and f_{u},

$$
T_{j} u=\left(\operatorname{det}\left(\frac{\mathcal{E}}{\pi i}\right)\right)^{-\frac{1}{2}} \frac{\left\langle D, \mathcal{E}^{-1} D\right\rangle^{j} f_{u}}{(4 i)^{j} j!}
$$

and

$$
f_{u}=\left[(\chi u) \circ \mathcal{H}^{-1}\right] \cdot\left|\operatorname{det} J \mathcal{H}^{-1}\right|,
$$

we see that

$$
T_{0} u(0)=\left(\operatorname{det}\left(\frac{\mathcal{E}}{\pi i}\right)\right)^{-\frac{1}{2}} f_{u}(0)=\quad C_{\left(\partial_{i} \partial_{j} \varphi\left(x_{0}\right)\right)_{i j}} \quad u\left(x_{0}\right)
$$

SO

$$
\left|I_{u, \varphi}(\lambda)-C_{\left(\partial_{i} \partial_{j} \varphi\left(x_{0}\right)\right)_{i j}} \mathrm{e}^{i \lambda \varphi\left(x_{0}\right)} u\left(x_{0}\right) \lambda^{-\frac{n}{2}}\right| \leq C_{k, n, u, \varphi} \lambda^{-\frac{n}{2}-1} .
$$

Final remarks

Topics for further studies

- Considering $I_{u, \varphi}(\lambda)$ with complex λ or complex ϕ,

Final remarks

Topics for further studies

- Considering $I_{u, \varphi}(\lambda)$ with complex λ or complex ϕ,
- Removing smoothness assumptions on u and φ,

Final remarks

Topics for further studies

- Considering $I_{u, \varphi}(\lambda)$ with complex λ or complex ϕ,
- Removing smoothness assumptions on u and φ,
- Allowing degenerate stationary points of φ on $\operatorname{supp}(u)$.

Final remarks

Topics for further studies

- Considering $I_{u, \varphi}(\lambda)$ with complex λ or complex ϕ,
- Removing smoothness assumptions on u and φ,
- Allowing degenerate stationary points of φ on $\operatorname{supp}(u)$.

References

- Hörmander: "Analysis of Linear Partial Differential Operators l",
- Grigis, Sjöstrand: "Microlocal Analysis for Differential Operators: An Introduction",
- Tao: "Lecture Notes 8 for 247B",
- Fedoryuk: "The Stationary Phase Method and Pseudodifferential Operators",
- Stein: "Harmonic Analysis".

Stationary Phase
Given $n \in \mathbb{N}$ we will study

$$
I_{u, \varphi}(\lambda)=\int_{\mathbb{R}^{n}}^{\text {amplitude }} \overbrace{u(x)}^{\text {phase }} e^{i \lambda \varphi(x)} d x=\int_{\mathbb{R}^{n}} u e^{i \lambda \varphi} d m
$$

for $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right), \varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ and $\lambda \in \mathbb{R}$.
Example 1
When $n=1$ and $\varphi=-i d$ we have

$$
I_{u,-i d}(\lambda)=\int_{-\infty}^{\infty} u(x) e^{-i \lambda x} d x=F u(\lambda) \text {. }
$$

Riemann-Lebesgue lemma: $I_{u, i d}(\lambda) \rightarrow 0$ as $\lambda \rightarrow \pm \infty \quad$ (even for $\left.u \in L^{\prime}(\mathbb{R})\right)$
How does $I_{u, \varphi}(\lambda)$ behave as $\lambda \rightarrow \underset{\uparrow}{+\infty}$ for general $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$?

Example 2:

$$
\overline{I_{\bar{u}, \varphi}(\lambda)}=\overline{\int_{\mathbb{R}^{n}}^{\bar{u}} e^{i \lambda \varphi} d m}=\int_{\mathbb{R}^{n}} e^{-i \lambda \varphi} d m=I_{u, \varphi}(-\lambda)
$$

When $x=1, u>0$ and $\varphi=1$ we have

$$
I_{u, 1}(\lambda)=e^{i \lambda}\|u\|_{L(\mathbb{R})}
$$

"Complicated behavior"

Principle of mon-stationary phase (see exercise 3.1) Let $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and let $\varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ such that $\nabla \varphi$ is non-zero on suppl (egg. as in example 1). Then

$$
\left|I_{u, \varphi}(\lambda)\right| \leqslant C_{N, u, \varphi} \lambda^{-N} \text { for all } N \in \mathbb{N}_{0} \text { and } \lambda>0
$$

Proof: Note that on supp we have

$$
\begin{aligned}
& \frac{1}{i \lambda} \frac{\nabla \varphi}{|\nabla \phi|^{2}} \cdot \nabla\left(e^{i \lambda \varphi}\right)=\frac{1}{i \lambda} \frac{\nabla \varphi}{\nabla \nabla \phi t^{2}} \cdot\left(e^{i \lambda \varphi} \cdot i \hbar \nabla \varphi\right)=e^{i \lambda \varphi} \\
& \text { non-zero! }
\end{aligned}
$$

Stationary Phase
so

$$
\begin{aligned}
& I_{u, \varphi}(\lambda)=\frac{1}{i \lambda} \int_{\mathbb{R}^{n}} u \frac{\nabla \varphi}{|\nabla \varphi|^{2}} \cdot \nabla\left(e^{i \lambda \varphi}\right) d m \\
& =-\frac{1}{i \lambda} \int_{\mathbb{R}^{n}} \underbrace{\nabla \cdot\left(u \frac{\nabla \varphi}{|\nabla \rho|^{2}}\right)}_{=u_{1} \in C_{c}^{c o s}\left(\mathbb{R}^{n}\right)} e^{i \lambda \varphi} d m \\
& =-\frac{1}{i \lambda} I_{u_{1, \varphi}}(\lambda) \\
& =\left(-\frac{1}{i \lambda}\right)^{2} I_{u_{2, \varphi}}(\lambda) \\
& \vdots \quad l=\nabla \cdot\left(\frac{\gamma \varphi}{1|\nabla \varphi|^{2}}\right) \\
& \stackrel{\vdots}{=}\left(-\frac{1}{i \lambda}\right)^{N} I_{u_{N}, \varphi}(\lambda) \\
& \gamma=\nabla \cdot\left(u_{N-1}-\frac{\nabla \varphi \varphi}{\mid \nabla \varphi}\right)
\end{aligned}
$$

Hence

$$
\left|I_{u, \varphi}(\lambda)\right| \leq \lambda^{-N} \underbrace{\int_{\operatorname{suppu}} \operatorname{lu}_{N}(x) \mid d x}_{=C_{N, u, \varphi}}
$$

Consequence: Essential contributions to the asymptotic behavior of $I_{u, p}$ come from the stationary points of φ (ie. points $y \in \mathbb{R}^{n} \omega_{i}$ th $\nabla \varphi(y)=0$)
General assumption: The stationary points $y \in$ supp of φ are non-degenerate

$$
\text { (ie. } \operatorname{det}\left(\partial_{i} \partial_{j} \varphi(y)\right) \neq 0 \text {) }
$$

The Morse Lemma: Let $x_{0} \in \mathbb{R}^{n}$ be a non-degenerate stationary pant of $\varphi \in C^{" r}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ Then there are nigh's V of x_{0} and U of $o \in \mathbb{R}^{n}$, numbers $\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{ \pm 1\}$ and a differmorphism $\mathcal{H}: V \rightarrow U$ with $\mathcal{X}\left(x_{0}\right)=0$ such that

$$
\varphi \cdot x^{-1}(x)=\varphi\left(x_{0}\right)+\varepsilon_{1} x_{1}^{2}+\cdots+\varepsilon_{n} x_{n}^{2}=\varphi\left(x_{0}\right)+\langle x, \xi x\rangle
$$

Remark: It can be shown that the number of +1 's amongst $\varepsilon_{1}, \ldots, \varepsilon_{n}$ is equal to the number of positive eigenvalues of $\left(\partial_{i} \partial_{j} \varphi\left(x_{0}\right)\right)_{i}$.

Corollary
Stationary Phase
A non-degenerate stationary point x_{0} of $\varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ is an isolated stationary point.
Troufi
For $x \in U$

$$
\begin{aligned}
& \text { consume } \\
& \text { icJ } \left.\mathcal{X}^{-1}(x)\right]^{\top} \nabla \varphi\left(\mathcal{X}^{-1}(x)\right) \stackrel{ }{=} \nabla\left(\varphi \circ \mathcal{X}^{-1}\right)(x)=2\left(\begin{array}{c}
\varepsilon_{1} x_{1} \\
1 \\
\varepsilon_{n} x_{n}
\end{array}\right)
\end{aligned}
$$

Jacobian
so setting $x=\mathscr{H}(y)$ gives

$$
\nabla \varphi(y)=2\left(\left[J \mathcal{L}^{-1}(x(y))\right]^{T}\right)^{-1}\left(\begin{array}{c}
\varepsilon_{1}[x(y)]_{1} \\
\vdots \\
\varepsilon_{n}[x(y)]_{n}
\end{array}\right) \neq 0 \text { for } y \in V \mid\left[x_{0}\right\}
$$

Proof of Morse Lemma:
Wog assume that $x_{0}=0$ and $p(0)=0$.
[After proving this case, apply the result to $x \mapsto\left(\varphi\left(x+x_{0}\right)-\varphi\left(x_{0}\right)\right)$]
We will show:
For all $N \in\{1,-, n+1\}$ there exist mood's $V_{N}, U_{N} \subseteq \mathbb{R}^{n}$ of 0 , a differmorphism $\mathscr{C}_{N}: V_{N} \rightarrow U_{N}$ with $\mathscr{X}_{N}(0)=0$, numbers $\varepsilon_{m} \in\{ \pm 1\}$ and a set of functions $\left\{q_{j \dot{\prime}}^{(N)}, i, j \in \mathbb{N}, N \leqslant i, j \leqslant n\right\}$ with
$\left.i_{N}\right) q_{i j}^{(N)} \in C^{\infty}\left(V_{N}\right)$,
$\left.i_{N}\right) \quad q_{\dot{j}}^{(N)}=q_{j i}^{(N)}$,
$\left.\ddot{m i}_{N}\right) q_{(k}^{(N)}(0) \neq 0$ for some l, k
such that

$$
\varphi \circ x_{N}^{-1}(x)=\sum_{m=1}^{N-1} \varepsilon_{m} x_{m}^{2}+\sum_{N \leq i, j \leq n} q_{i j}^{(N)}(x) x_{i} x_{j}
$$

Induction start $(N=1)$: By the Taylor formula $[G G,(A .8)]$

$$
\begin{aligned}
\varphi(x) & =\sum_{|\alpha|<2} \frac{x^{\alpha}}{\alpha!} \partial^{\alpha} \varphi(0)+\sum_{|\alpha|=2} \frac{2}{\alpha!} x^{\alpha} \int_{0}^{1}(1-\theta) \partial^{\alpha} \varphi(\theta x) d \theta \\
& =\sum_{1 \leqslant i \mid \leqslant \pi} q \ddot{y}^{(1)}(x) x_{i}^{\prime} x_{j}
\end{aligned}
$$

Stationary Phase
with

$$
q_{i j}^{(n)}(x)=\frac{2}{i!j!} \int_{0}^{1}(1-\theta) \partial_{i} \partial_{j} \varphi(\theta x) d \theta \text {. }
$$

We set $V_{1}=U_{1}=\mathbb{R}^{n}, X_{1}=i_{\mathbb{R}_{n}}$ and note that $q_{y}^{(i)}$ satisfies $\left.i_{1}\right)$-iii,
$[i$,$) Trivial$
iii) Trial

$$
\text { iii, } q_{i j}^{(1)}(0)=\frac{2}{i^{i} j j!} \partial_{i} j_{j} \varphi(0) \cdot\left[\theta-\frac{1}{2} \theta^{2}\right]_{0}^{1}=\frac{1}{i!j!} \partial_{i} \partial_{j} \varphi(0) \text {. }
$$

so the cain follows since O is a non-degenerate stationary point for φ.]
Induction step: Assume (*) holds for some NE $\{1, \ldots, n\}$. By in in) we can wog assume that $q_{N N}^{(N)}(0) \neq 0$ (with a suitable automorphism L on \mathbb{R}^{n} one can write

$$
\varphi \circ \mathcal{e}_{N(N)}^{-1} \circ \alpha(y)=\sum_{m=1}^{N-1} \varepsilon_{m} y_{m}^{2}+\sum_{N \leq i, i j n} \tilde{q}_{i j}^{(N)}(y) y_{i} y_{j}
$$

where $\tilde{q}_{\dot{j}}^{(N)}$ has the properties $\left.\left.i_{N}\right)-i i_{N}\right)$ and $\left.\tilde{q}_{N N}^{(N)}(0) \neq 0\right)$.
[If there exists a $p \in\{N, \ldots, n\}$ with $q_{p p}^{(N)}(0) \neq 0$ we can choose $L:\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{\sigma(i)}, x_{\sigma(n)}\right)$ and $\tilde{q}_{1 i j}^{(N)}=q_{\sigma(i) \sigma l y}^{(N)}$, L where

$$
\sigma:\left(1, \ldots, N_{2}, p_{1}, \ldots, n\right) \mapsto\left(1, \ldots, p_{1}-, N_{1} \ldots, n\right)
$$

If not, we dirde into two cases :
If there exists an $r \in\{N,-, n\}$ such that $q_{r N}(0) \neq 0$ then we can choose $L:\left(x_{1}, x_{r}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{N}+x_{r}, \ldots, x_{n}\right)$,

$$
\tilde{q}_{j N}^{(N)} \tilde{q}_{N N_{i}^{(N)}}^{(N)}=\left(q_{N j}^{(N)}+q_{j}^{(N)}\right) \cdot L \text { for } j \neq N, \tilde{q}_{N N}^{(N)}=\left(q_{N N}^{(N)}+q_{r r}^{(N)}+2 q_{N N}^{(N)}\right) \cdot L \text { and }
$$

$\tilde{q}_{j j}^{(N)}=q_{i j}^{(M)} \circ L$ otherwise.
If not, we choose $L:\left(x_{1}, \ldots, x_{l}, \ldots, x_{k}, \ldots, x_{n}\right) \mapsto\left(x_{n},-x_{l}+x_{N}, \cdots, x_{k}^{+x_{N}} w^{\prime}, x_{n}\right)$

$$
\begin{aligned}
& \text { and } \tilde{q}_{i j}^{(w)}=q_{i j}^{(N)} \text { gL otheronse.] }
\end{aligned}
$$

By continuity of $q_{N N}^{(N)}$ there exists a nghb. $W \subset V_{N}$ of 0 oniwhich $q_{N N}^{(N)} \neq 0$.

Stationary Phase
Then with $\varepsilon_{N}=\operatorname{sign}\left(q_{N_{N}}^{(N)}(0)\right)$ we get

$$
\begin{aligned}
& \varphi \circ \mathcal{H}^{-1}(x)=\sum_{m=1}^{N-1} \varepsilon_{m} x_{m}^{2}+\sum_{N \leq 1, j n} q_{i j}^{(N)}(x) x_{i} x_{j} \quad=\text { kif } N=n
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\varepsilon_{N}\left(l_{N}(x)\right)^{2}=\varepsilon_{N}\left(\left|q_{N N}^{(N)}\right| x_{N}^{2}+\frac{1}{\left|q_{N N}\right|}\left(\sum_{j=N+1}^{n} q_{N j}^{(N)} x_{j}\right)\left(\sum_{i=N+1}^{n} q_{N i}^{(n)} x_{i}\right)+2 \varepsilon_{N} \sum_{j=N+1}^{n} q_{N j}^{(N)} x_{N} x_{j}\right)\right.} \\
& \left.=\sum_{N+1 \leq i, j \leq n} \frac{q_{N i}^{(N)} q^{(N)}}{q_{N N}^{(N)}} x_{i} x_{j}+\sum_{\substack{N i \leq i, j s m \\
i=N, j=N}} q_{i j}^{(N)} x_{i} x_{j}\right]
\end{aligned}
$$

Note that l_{N} is C^{∞} on W with

$$
\partial_{k} l_{N}(x)=\left\{\begin{array}{cc}
0 & , 1 \leq k<N \\
\frac{\varepsilon_{N}}{\sqrt{q_{N M}^{N}(x) \mid}}\left(\sum _ { j = N } ^ { n } \left(\partial_{k q_{N j}}^{(N)}(x)-\frac{\left.\left.\partial_{\left.k q_{j} q_{N}^{(N)}(x)\right)_{M M}^{(N)}(x)}^{2 q_{N M}^{(N)}(x)}\right) x_{j}+q_{N k}^{(N)}(x)\right),}{}, N \leq k \leq n\right.\right.
\end{array}\right.
$$

so defining $\mathcal{H}: W \rightarrow \mathbb{R}^{n}$ by

$$
\left.\mathscr{L}(x)=\left(x_{1},-, x_{N-1}\right) l_{N}(x), x_{N+1}-, x_{n}\right)=\left(y_{11}-, y_{N-1}, y_{N}, y_{N+11}-y_{n}\right)
$$

gives a C^{∞}-map with

Thus, the inverse function theorem $[\mathscr{S}$, Thu 2.10$]$ gives the existence of open sets $V_{N+1} \subset W, U_{N+1} \subset \mathbb{R}^{n}$ such that of $V_{N+1}, 0=\mathscr{X}(0) \in U_{N+1}$ and $\mathcal{H} V_{V_{N+1}}$ is a differmorphism $V_{N+1} \rightarrow U_{N+1}$

Stationary Phase
Hence

$$
(\varphi \cdot \underbrace{\left.\left.\varphi \cdot x_{N}^{-1} \circ x\right|_{V_{N+1}} ^{-1}\right)(y)}_{x_{N+1}^{-1}}=\sum_{m=1}^{N \cdot 1} \varepsilon_{m} y_{m}^{2}+\varepsilon_{N} y_{N}^{2}+\sum_{N+1 \leq i, j \leq n} \underbrace{\left.\left(q_{1 j}^{(N)}-\frac{q_{N i}^{(N)} q_{N i}^{(N)}}{q_{N N}^{(N)}}\right) \cdot x\right|_{N+1} ^{-1}(y)}_{q_{i}^{(N+1)}(y)} y_{i} y_{j}
$$

$$
\begin{aligned}
& \begin{array}{l}
\mathscr{X}_{N+1} \\
\text { diffeomophism }
\end{array}=\sum_{m=1}^{N} \varepsilon_{m} y_{m}^{2}+ \\
& \left.\left.q_{y}^{(N+1)} \text { satisfies } i_{N+1}\right)-i i_{N+1}\right) .
\end{aligned}
$$

$\left[2_{N+1}\right)$ Trivial
${ }^{2 i_{N+1}}$) Trinal
iiiin+1) By the chain nile

$$
\left(\partial_{l} \partial_{k}\left(\varphi \circ \mathcal{X}_{N+1}^{-1}\right)(0)\right)=\left[D \mathcal{X}_{N+1}^{-1}(0)\right]^{\top}\left(\partial_{i} \partial_{j} \varphi(0)\right) D \mathcal{X}_{N+1}^{-1}(\theta)
$$

so $\left.\left[i 2 i_{N+1}\right)\right]$ r would imply that $\left.\operatorname{det}\left(\partial_{i} \partial j \varphi(0)\right)=0\right]$
Remark
The compact set suppu cau only contain finitely many stationary points of φ.

Let $\left\{U_{j}\right\}_{j=0}^{N}$ be a bounded open cover of supp such that U_{j} contains one and only one stationary point of φ.
Partition of unity $[G G, T h m .2 .17]: \sum_{j=0}^{N} \psi_{j}=1$ on $\operatorname{supp}(u)$ with $\psi_{j} \in C_{c}^{\infty}\left(\varphi_{j} ;[0,1]\right)$

Stationary Phase
Then
so we can assume that φ has one and only one non-degenerate stationary point in suppu.
The More Lemma inspires us to consider the case $\varphi(x)=\langle x, A x\rangle$, where A is a real, symmetric and invertible $n \times n$-matrix.

Proposition
Let A be a real, symmetric and invertible $n \times n-m a t n x$. Then for all $u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right), \lambda>0$ and all integers $k>0$ and $s>\frac{n}{2}$

$$
\left|I_{u,\langle x, A x\rangle}(\lambda)-\left(\operatorname{det}\left(\frac{A}{\pi i}\right)\right)^{-\frac{1}{2}} \sum_{j=0}^{k-1} \frac{\left\langle D A^{-1} D\right\rangle j u(0)}{(4 i) j j^{\prime}!} \lambda^{-\frac{n}{2}-j}\right| \leqslant C_{k}\left(\frac{\left\|A^{-1}\right\|^{\frac{n}{2}+k}}{\lambda}\right)^{\frac{2}{2}} \sum_{k \mid s s+2 k}\left\|D^{x} u\right\|_{L^{2}}
$$

where $D=\frac{1}{i}\left(\partial_{1}, \ldots, \partial_{n}\right)$.
Lemma
Let A be a real, symmetric and invertible matrix.

$$
\mathcal{F}\left(e^{i \lambda\langle x, A x\rangle}\right)(\xi)=\left(\operatorname{det}\left(\frac{A}{\pi t}\right)\right)^{-\frac{1}{2}} \lambda^{-\frac{n}{2}} e^{-i \frac{\left\langle\xi, A^{-1} \xi\right\rangle}{4 \lambda}}
$$

Proof of proposition:
Note that

$$
\begin{aligned}
I_{u, i x, A x\rangle}(\lambda) & =\int_{\mathbb{R}^{n}} u(x) e^{i \lambda\langle x, A x\rangle} d x \\
& =\left\langle e^{i \lambda x x, A x\rangle}, F(2 \pi)^{-n} F u\right\rangle \\
& =\left(\operatorname{det}\left(\frac{A}{\pi i}\right)\right)^{-\frac{1}{2}} \lambda^{-\frac{n}{2}}(2 \pi)^{-n} \int_{\mathbb{R}^{n}} e^{-i \frac{\left\langle\xi, A^{-1} \xi\right\rangle}{4 \lambda}} \bar{F} u(\xi) d \xi \\
& =\left(\operatorname{det}\left(\frac{A}{\pi i}\right)\right)^{-\frac{1}{2}} \lambda^{-\frac{n}{2}} F^{-1}\left(e^{-i \frac{\left\langle\xi / A^{-i} \xi\right\rangle}{4 \lambda}} \mathcal{F} u\right)(0)
\end{aligned}
$$

Stationary Phase
so

$$
\begin{aligned}
& \left|I_{u_{1}\langle x, A x\rangle}(\lambda)-\left(\operatorname{det}\left(\frac{A}{\pi i}\right)\right)^{-\frac{1}{2}} \sum_{j=0}^{k-1} \lambda^{-\frac{n}{2}-j} \frac{\left\langle D_{1} A^{-1} D\right\rangle^{1} u(0)}{\left(y_{i}\right) j^{j} j^{\prime}}\right|^{2} \\
& =\underbrace{\left|\operatorname{det}\left(\frac{A}{\pi i}\right)\right|^{-1}} \lambda^{-n}\left|F^{-1}\left(e^{-i \frac{\left\langle\xi, A^{-1} \xi\right\rangle}{4 a}} F u\right)(0)-\sum_{j=0}^{k-1} \lambda^{-j \frac{\left\langle D, A^{-1} D\right\rangle^{i} u}{(4 i) \gamma} j^{!}}(0)\right|^{2} \\
& \propto\left|\operatorname{det}\left(A^{-1}\right)\right| \leq\left\|A^{-1}\right\|^{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Paneval } \left.\rightarrow \approx\left(\frac{\left\|A^{-1}\right\|}{\lambda}\right)^{n} \sum_{\text {with }}^{\left.\sum_{|\alpha| \leqslant s}\|\underbrace{}_{\text {Taylor }}\| e^{-i\left\langle\xi, A^{-1} \xi\right\rangle} \frac{\left\langle\xi, A^{-1} \xi\right\rangle}{4 \lambda}-\sum_{j=0}^{k-1} \lambda-j \frac{\left.\left\langle\xi, A^{-1} \xi\right\rangle\right\rangle^{\prime}}{(4, j) j!} \right\rvert\,} \right\rvert\, F D^{\alpha} u \|_{L^{2}}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{\mid w v k^{2}}{k!}
\end{aligned}
$$

$$
\begin{aligned}
& \lesssim\left(\frac{\left\|A^{-1}\right\|}{\lambda}\right)^{n+2 k} \sum_{|\alpha| \leq s+2 k}\left\|D^{\alpha} u\right\|_{L^{2}}^{2} \text {. }
\end{aligned}
$$

Thus, the desired result follows by taking squareroots and using that $\sqrt{a+b} \leq \sqrt{a}+\sqrt{b}$ for $a, b \geq 0$.
Proof of lemma:
From exercise 1.1 we know
If B is symmetric, unitanly diagonalizable and invertible with $\operatorname{Re} B \geqslant 0$ then

$$
F\left(e^{-\langle x, B x\rangle}\right)(\xi)=\frac{\pi^{n / 2}}{(\operatorname{det}(B))^{1 / 2}} e^{\left.-\frac{1}{4}\left\langle\xi, B^{-16}\right\rangle\right\rangle}
$$

After showing , the lemma follows by setting $B=-i \lambda A$.

Stationary Phase
Let B be symmetric, unitarily diagonalizable and invertible with $R e B \geq 0$. If μ_{1}, \ldots, μ_{n} denotes the eigenvalues of B we set

$$
k=\frac{\min \left\{\left|\mu_{1}\right|, \ldots,\left|\mu_{n}\right|\right\}}{2}
$$

Then for $0<\varepsilon<k$ the matrix $B+\varepsilon I$ is symmetric, diagomalizable and inv w/ $\operatorname{Re}(\mathcal{B}+\varepsilon I)>0$, whereby
(**)

$$
\begin{aligned}
& \mathcal{F}\left(e^{-\left\langle x_{j}(B+\varepsilon I) x\right\rangle}\right)(\xi)=\frac{\pi^{2 / 2}}{(\operatorname{det}(B+\varepsilon I))^{1 / 2}} e^{-\frac{1}{4}\left\langle\xi,(B+\varepsilon I)^{-1} \xi\right\rangle}
\end{aligned}
$$

$$
\begin{aligned}
& \longrightarrow 11 \\
& \frac{\pi^{n / 2}}{\left(\prod_{j=1}^{n}\left(\mu_{j}+\varepsilon\right)\right)^{1 / 2}} e^{-\frac{1}{4} \sum_{j=1}^{n}\left(\mu_{j}+\varepsilon\right)^{-1}\left[u^{-1} \xi\right]_{j}^{2}}
\end{aligned}
$$

Note that we have the pointwise limits
(***)

$$
\begin{aligned}
& e^{-\langle x,(B+\varepsilon I) x\rangle} \underset{\varepsilon \rightarrow 0^{+}}{ } e^{-\langle x, B x\rangle} \\
& \frac{\pi^{n / 2}}{(\operatorname{det}(B+\varepsilon I))^{1 / 2}} e^{-\frac{1}{4}\left\langle\xi,(B+\varepsilon I)^{-1 / \xi\rangle}\right.} \underset{\varepsilon \rightarrow 0^{+}}{\longrightarrow} \frac{\pi^{n / 2}}{(\operatorname{det} B)^{1 / 2}} e^{-\frac{1}{4}\left\langle\xi, B^{-1 \xi}\right\rangle}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& \left|e^{-\langle x,(B+\varepsilon I) x\rangle}\right|=e^{-\operatorname{Re}\langle x, B x\rangle-\varepsilon\|x\|^{2}} \leqslant 1, \\
& \left|\frac{\pi^{n / 2}}{(\operatorname{det}(B+\varepsilon I))^{1 / 2}} e^{-\frac{1}{4}\left\langle\xi,(B+\varepsilon I)^{-1} \xi\right\rangle}\right| \leqslant\left(\frac{\pi}{k}\right)^{n / 2} e^{-\frac{1}{4}\left\langle\xi,(B+k I)^{-1} \xi\right\rangle} \in C^{\infty}
\end{aligned}
$$

where we use that $\left|\left(\prod_{j=1}^{n}\left(\mu_{j}+\varepsilon\right)\right)^{1 / 2}\right|=\left(\left|\mu_{1}+\varepsilon\right| \cdots\left|\mu_{n}+\varepsilon\right|\right)^{1 / 2} \geq k^{n / 2}$ and that $\left(\mu_{j}+k\right)^{-1} \leqslant\left(\mu_{j}+\varepsilon\right)^{-1}$ for $j \in\{1, \ldots, n\}^{\text {ie }} \quad$ ie
By dominated convergence $(* * *)$ therefore holds in φ^{\prime} and so the LHS of $(* *)$ goes to $F\left(e^{-\langle x, B x\rangle}\right)$ in \mathscr{S}^{\prime} (and thereby also in $\left.D^{\prime}\right)$ as $\varepsilon \rightarrow 0^{+}$. Similarly, the RHS of (**) goes to $\frac{\pi^{n / 2}}{(\operatorname{det} B)^{1 / 2}} e^{-\frac{1}{4}\left\langle\xi, B^{-1} \xi\right\rangle}$ in D^{\prime} as $\varepsilon \rightarrow 0^{+}$. The desired result follows.

Stationary Phase
Principle of stationary phase
Let $x \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and consider a $\varphi \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$ with one and only one stationary point x_{0} in supp; this is assumed to be. non-degenerate. Then for all integers $k>0$ we have

$$
\left|I_{u, \varphi}(\lambda)-e^{i \lambda \varphi\left(x_{0}\right)} \sum_{j=0}^{k-1} T_{j u}(0) \lambda^{\left.-\frac{n}{2}-j \right\rvert\,}\right| \leq C_{k, n ; \pi, \varphi} \lambda^{-\frac{n}{2}-k}
$$

where T_{j} is a differential operator of order $2 j$ with C^{∞} - coefficients.
Roof
Let $\mathcal{H}: V \rightarrow U$ be as in the Morse Lemma and choose $X_{\in} C_{c}^{\infty}(V)$ with $\chi=1$ near x_{0}

Then

$$
\begin{aligned}
& \begin{array}{c}
I_{u, p}(\lambda)=\int_{V} e^{i \lambda \varphi(x)}(\chi u)(x) d x+\int_{\mathbb{R}^{n}} e^{i \lambda \varphi(x)}[(1-\chi) u](x) d x \\
=\varphi\left(x_{0}\right)+\langle x, \xi x\rangle \mathbb{R}^{n}
\end{array} \\
& =\int_{u} e^{i \lambda \overbrace{\varphi} \circ \mathcal{X}^{-1}(x)} \underbrace{(x u) \circ \mathcal{X}^{-1}(x)\left|\operatorname{det} J \mathscr{X}^{-1}(x)\right| d x+I_{(1-\chi) u, \varphi}(\lambda)}_{=f_{u}(x) \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)} \\
& =e^{i \lambda \varphi\left(x_{0}\right)} I_{f_{u},\left\langle x, \xi^{x}\right\rangle}(\lambda)+I_{(1-\lambda)_{u, \varphi}(\lambda)}
\end{aligned}
$$

so by setting

$$
T_{j u}=\left(\operatorname{det}\left(\frac{\xi}{\pi i}\right)\right)^{-\frac{1}{2}} \frac{\left\langle D, \xi^{-1} D\right\rangle \dot{F}_{u}}{(\dot{4}) \dot{j} j!}
$$

and letting s be the smallest integer $>\frac{n}{2}$ we get

$$
\begin{aligned}
& \left\lvert\, I_{u, \varphi}(\lambda)-e^{i \lambda \varphi\left(x_{0}\right)} \sum_{j=0}^{k-1} T_{j} u(0) \lambda^{\left.-\frac{n}{2}-j \right\rvert\,}\right. \\
& \leqslant\left|I_{f_{u},\langle x, \xi x\rangle}(\lambda)-\left(\operatorname{det}\left(\frac{g}{\pi i}\right)\right)^{-\frac{1}{2}} \sum_{j=0}^{\frac{k-1}{}} \frac{\left\langle D, \Sigma^{-1} D>j f_{u}(0)\right.}{(4 i) i j!} \lambda^{-\frac{n}{2}-j}\right|+\left|I_{(1-x) u, \varphi}(\lambda)\right| \\
& \leqslant C_{k, n, \mu, \varphi} \lambda^{-\frac{n}{2}-k}
\end{aligned}
$$

Stationary Phase
Remark:
Observe that by definition of T_{j} and f_{u} we have

$$
T_{0} u(0)=\left(\operatorname{det}\left(\frac{\mathscr{C}}{\pi i}\right)\right)^{-\frac{1}{2}} f_{u}(0)=\underbrace{}_{\left.=C_{\left.\left(\partial_{i} \partial_{j} \varphi\left(x_{0}\right)\right)\right)_{i j}}^{\left.\left(\operatorname{det}\left(\frac{\mathscr{L}}{\pi i}\right)\right)^{-\frac{1}{2}} \right\rvert\, \operatorname{det} J \mathcal{H}^{-1}(0)} \right\rvert\, u\left(x_{0}\right)}
$$

so

$$
\left|I_{u, \varphi}(\lambda)-C_{\left(\partial_{i} j \varphi \rho\left(x_{0}\right)\right)_{j j}} e^{i \lambda \varphi\left(x_{0}\right)} u\left(x_{0}\right) \lambda^{-\frac{n}{2}}\right| \leqslant C_{k, n, u, \varphi} \lambda^{-\frac{n}{2}-1}
$$

