1. We consider the behavior (for $\lambda \gg 1$) of

$$
\begin{equation*}
I(\lambda)=\int_{a}^{b} f(t) e^{i \lambda g(t)} d t \tag{1}
\end{equation*}
$$

where f and g are smooth enough to admit Taylor approximations near some appropriate point in $[a, b]$, and g is real-valued.
2. Suppose that $g^{\prime}(c)=0$ at some point $c \in(a, b)$, and that $g^{\prime}(t) \neq 0$ everywhere else in the closed interval. Assume moreover that $g^{\prime \prime}(c) \neq 0$ and $f(c) \neq 0$. Let μ be the sign of $g^{\prime \prime}(c)$. Thus

$$
\mu g^{\prime \prime}(c)=\left|g^{\prime \prime}(c)\right|
$$

We rewrite $I(\lambda)$ as

$$
I(\lambda)=e^{i \lambda g(c)} \int_{a}^{b} f(t) e^{i \lambda[g(t)-g(c)]} d t
$$

By the Coates-Euler formula, $\exp (i \lambda[g(t)-g(c)])$ is highly oscillatory for $t \neq c$ and $\lambda \gg 1$. The oscillation gives rise to cancellation which in turn causes the integral to decay rapidly except in a small neighborhood of c. Thus,

$$
\begin{aligned}
I(\lambda) & \approx e^{i \lambda g(c)} \int_{c-\varepsilon}^{c+\varepsilon} f(t) e^{i \lambda[g(t)-g(c)]} d t \\
& \approx f(c) e^{i \lambda g(c)} \int_{c-\varepsilon}^{c+\varepsilon} e^{\frac{i \lambda}{2} g^{\prime \prime}(c)(t-c)^{2}} d t \\
& \approx f(c) e^{i \lambda g(c)} \int_{-\infty}^{\infty} e^{\frac{i \lambda}{2} g^{\prime \prime}(c)(t-c)^{2}} d t \\
& =f(c) e^{i \lambda g(c)} \int_{-\infty}^{\infty} e^{\frac{i \lambda}{2} g^{\prime \prime}(c) s^{2}} d s \\
& =f(c) e^{i \lambda g(c)} \sqrt{\frac{2 \pi i}{\lambda g^{\prime \prime}(c)}} \\
& =f(c) e^{i \lambda g(c)} \sqrt{\frac{2 \pi}{\lambda\left|g^{\prime \prime}(c)\right|}}(i \mu)^{\frac{1}{2}} \\
& =f(c) e^{i \lambda g(c)} \sqrt{\frac{2 \pi}{\lambda\left|g^{\prime \prime}(c)\right|}} e^{\frac{\pi i \mu}{4}},
\end{aligned}
$$

for $\lambda \gg 1$. So to leading order

$$
\begin{equation*}
I(\lambda) \sim f(c) e^{i \lambda g(c)} \sqrt{\frac{2 \pi}{\lambda\left|g^{\prime \prime}(c)\right|}} e^{\frac{\pi i \mu}{4}}, \quad \text { as } \lambda \rightarrow \infty \tag{2}
\end{equation*}
$$

Since the main contribution to the integral comes from a region of a point c at which the phase $g(t)$ is stationary, (2) is called the stationary phase approximation.
3. If $g(t)$ is stationary at an endpoint (say $t=a$) then by the usual modification we obtain the stationary phase approximation

$$
\begin{equation*}
I(\lambda) \sim f(a) e^{i \lambda g(a)} \sqrt{\frac{\pi}{2 \lambda\left|g^{\prime \prime}(a)\right|}} e^{\frac{\pi i \mu}{4}}, \quad \text { as } \lambda \rightarrow \infty \tag{3}
\end{equation*}
$$

where μ is the sign of $g^{\prime \prime}(a)$.
4. Example: For a fixed integer n, the Bessel function of the first type has the integral representation

$$
\begin{aligned}
J_{n}(\lambda) & =\int_{0}^{1} \cos (n \pi t-\lambda \sin \pi t) d t \\
& =\Re\left\{\int_{0}^{1} e^{n \pi i t} e^{-i \lambda \sin \pi t} d t\right\}
\end{aligned}
$$

In the interval $[0,1]$ the phase $g(t)=-\sin \pi t$ is stationary only at the interior point

$$
c=\frac{1}{2},
$$

with

$$
g(c)=-1, \quad g^{\prime \prime}(c)=\pi^{2}, \quad \text { and } \quad \mu=1
$$

Set

$$
f(t)=e^{n \pi i t}
$$

so that

$$
f(c)=e^{\frac{n \pi i}{2}} .
$$

Hence, to leading order,

$$
\begin{aligned}
J_{n}(\lambda) & \sim \Re\left\{e^{\frac{n \pi i}{2}} e^{-i \lambda} \sqrt{\frac{2}{\pi \lambda}} e^{\frac{i \pi}{4}}\right\}, \\
& =\sqrt{\frac{2}{\pi \lambda}} \Re\left\{e^{-i\left(\lambda-\frac{n \pi}{2}-\frac{\pi}{4}\right)}\right\} \\
& =\sqrt{\frac{2}{\pi \lambda}} \cos \left(\lambda-\frac{n \pi}{2}-\frac{\pi}{4}\right), \quad \text { as } \lambda \rightarrow \infty .
\end{aligned}
$$

