By Dr. Vadim Kaplunovsky, University of Texas in Austin,

Homepage: http://bolvan.ph.utexas.edu/~vadim/

Link to this document: http://bolvan.ph.utexas.edu/~vadim/classes/2013s/Dirac.pdf

Dirac Matrices and Lorentz Spinors

Background: In 3D, the spinor $j = \frac{1}{2}$ representation of the Spin(3) rotation group is constructed from the Pauli matrices σ^x , σ^y , and σ^k , which obey both commutation and anticommutation relations

$$[\sigma^i, \sigma^j] = 2i\epsilon^{ijk}\sigma^k \text{ and } \{\sigma^i, \sigma^j\} = 2\delta^{ij} \times \mathbf{1}_{2\times 2}.$$
 (1)

Consequently, the spin matrices

$$\mathbf{S} = -\frac{i}{2}\boldsymbol{\sigma} \times \boldsymbol{\sigma} = \frac{1}{2}\boldsymbol{\sigma} \tag{2}$$

commute with each other as angular momenta, $[S^i, S^j] = i\epsilon^{ijk}S^k$, so they represent the generators of the rotation group. Moreover, under finite rotations $R(\phi, \mathbf{n})$ represented by

$$M(R) = \exp(-i\phi \mathbf{n} \cdot \mathbf{S}), \tag{3}$$

the spin matrices transform into each other as components of a 3-vector,

$$M^{-1}(R)S^iM(R) = R^{ij}S^j. (4)$$

In this note, I shall generalize this construction to the $Dirac\ spinor\ representation$ of the Lorentz symmetry Spin(3,1).

Dirac Matrices are 4 anti-commuting 4×4 matrices γ^{μ} ,

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2g^{\mu\nu} \times \mathbf{1}_{4\times 4}. \tag{5}$$

The specific form of these matrices is not important — as long as they obey the anticommutation relations (5) — and different books use different conventions. In my class I shall follow the same convention as the Peskin & Schroeder textbook, namely the Weyl convention where in 2×2 block notations

$$\gamma^0 = \begin{pmatrix} 0 & \mathbf{1}_{2\times 2} \\ \mathbf{1}_{2\times 2} & 0 \end{pmatrix}, \qquad \vec{\gamma} = \begin{pmatrix} 0 & +\vec{\sigma} \\ -\vec{\sigma} & 0 \end{pmatrix}. \tag{6}$$

Note that the γ^0 matrix is hermitian while the γ^1 , γ^2 , and γ^3 matrices are anti-hermitian.

Lorentz spin matrices.

Given the Dirac matrices obeying the anticommutation relations (5), we may define the spin matrices as

$$S^{\mu\nu} = -S^{\nu\mu} \stackrel{\text{def}}{=} \frac{i}{4} [\gamma^{\mu}, \gamma^{\nu}]. \tag{7}$$

These matrices obey the same commutation relations as the generators $\hat{J}^{\mu\nu} = -\hat{J}^{\nu\mu}$ of the continuous Lorentz group. Moreover, their commutation relations with the Dirac matrices γ^{μ} are similar to the commutation relations of the $\hat{J}^{\mu\nu}$ with a Lorentz vector such as \hat{P}^{μ} .

Lemma:

$$[\gamma^{\lambda}, S^{\mu\nu}] = ig^{\lambda\mu}\gamma^{\nu} - ig^{\lambda\nu}\gamma^{\mu}. \tag{8}$$

<u>Proof</u>: Combining the definition (7) of the spin matrices as commutators with the anticommutation relations (5), we have

$$\gamma^{\mu}\gamma^{\nu} = \frac{1}{2} \{\gamma^{\mu}, \gamma^{\nu}\} + \frac{1}{2} [\gamma^{\mu}, \gamma^{\nu}] = g^{\mu\nu} \times \mathbf{1}_{4\times 4} - 2iS^{\mu\nu}. \tag{9}$$

Since the unit matrix commutes with everything, we have

$$[X, S^{\mu\nu}] = \frac{i}{2} [X, \gamma^{\mu} \gamma^{\nu}] \quad \text{for any matrix } X, \tag{10}$$

and the commutator on the RHS may often be obtained from the Leibniz rules for the commutators or anticommutators:

$$[A, BC] = [A, B]C + B[A, C] = \{A, B\}C - B\{A, C\},$$

$$\{A, BC\} = [A, B]C + B\{A, C\} = \{A, B\}C - B[A, C].$$
 (11)

In particular,

$$[\gamma^{\lambda}, \gamma^{\mu} \gamma^{\nu}] = \{\gamma^{\lambda}, \gamma^{\mu}\} \gamma^{\nu} - \gamma^{\mu} \{\gamma^{\lambda}, \gamma^{\nu}\} = 2g^{\lambda \mu} \gamma^{\nu} - 2g^{\lambda \nu} \gamma^{\mu}$$
 (12)

and hence

$$[\gamma^{\lambda}, S^{\mu\nu}] = \frac{i}{2} [\gamma^{\lambda}, \gamma^{\mu} \gamma^{\nu}] = ig^{\lambda\mu} \gamma^{\nu} - ig^{\lambda\nu} \gamma^{\mu}. \tag{13}$$

Quod erat demonstrandum.

Theorem: The $S^{\mu\nu}$ matrices commute with each other like Lorentz generators,

$$\left[S^{\kappa\lambda}, S^{\mu\nu}\right] = ig^{\lambda\mu}S^{\kappa\nu} - ig^{\kappa\nu}S^{\mu\lambda} - ig^{\lambda\nu}S^{\kappa\mu} + ig^{\kappa\mu}S^{\nu\lambda}. \tag{14}$$

<u>Proof</u>: Again, we use the Leibniz rule and eq. (9):

$$[\gamma^{\kappa}\gamma^{\lambda}, S^{\mu\nu}] = \gamma^{\kappa} [\gamma^{\lambda}, S^{\mu\nu}] + [\gamma^{\kappa}, S^{\mu\nu}] \gamma^{\lambda}$$

$$= \gamma^{\kappa} (ig^{\lambda\mu}\gamma^{\nu} - ig^{\lambda\nu}\gamma^{\mu}) + (ig^{\kappa\mu}\gamma^{\nu} - ig^{\kappa\nu}\gamma^{\mu})\gamma^{\lambda}$$

$$= ig^{\lambda\mu}\gamma^{\kappa}\gamma^{\nu} - ig^{\kappa\nu}\gamma^{\mu}\gamma^{\lambda} - ig^{\lambda\nu}\gamma^{\kappa}\gamma^{\mu} + ig^{\kappa\mu}\gamma^{\nu}\gamma^{\lambda}$$

$$= ig^{\lambda\mu}(g^{\kappa\nu} - 2iS^{\kappa\nu}) - ig^{\kappa\nu}(g^{\lambda\mu} + 2iS^{\lambda\mu})$$

$$- ig^{\lambda\nu}(g^{\kappa\mu} - 2iS^{\kappa\mu}) + ig^{\kappa\mu}(g^{\lambda\nu} + 2iS^{\lambda\nu})$$

$$= 2g^{\lambda\mu}S^{\kappa\nu} - 2g^{\kappa\nu}S^{\lambda\mu} - 2g^{\lambda\nu}S^{\kappa\mu} + 2g^{\kappa\mu}S^{\lambda\nu},$$

$$(15)$$

and hence

$$\left[S^{\kappa\lambda}, S^{\mu\nu}\right] = \frac{i}{2} \left[\gamma^{\kappa}\gamma^{\lambda}, S^{\mu\nu}\right] = ig^{\lambda\mu}S^{\kappa\nu} - ig^{\kappa\nu}S^{\mu\lambda} - ig^{\lambda\nu}S^{\kappa\mu} + ig^{\kappa\mu}S^{\nu\lambda}. \tag{16}$$

Quod erat demonstrandum.

In light of this theorem, the $S^{\mu\nu}$ matrices represent the Lorentz generators $\hat{J}^{\mu\nu}$ in a 4-component spinor multiplet.

Finite Lorentz transforms:

Any continuous Lorentz transform — a rotation, or a boost, or a product of a boost and a rotation — obtains from exponentiating an infinitesimal symmetry

$$X^{\prime\mu} = X^{\mu} + \epsilon^{\mu\nu} X_{\nu} \tag{17}$$

where the infinitesimal $\epsilon^{\mu\nu}$ matrix is antisymmetric when both indices are raised (or both lowered), $\epsilon^{\mu\nu} = -\epsilon^{\nu\mu}$. Thus, the $L^{\mu}_{\ \nu}$ matrix of any continuous Lorentz transform is a matrix exponential

$$L^{\mu}_{\nu} = \exp(\Theta)^{\mu}_{\nu} \equiv \delta^{\mu}_{\nu} + \Theta^{\mu}_{\nu} + \frac{1}{2}\Theta^{\mu}_{\lambda}\Theta^{\lambda}_{\nu} + \frac{1}{6}\Theta^{\mu}_{\lambda}\Theta^{\lambda}_{\kappa}\Theta^{\kappa}_{\nu} + \cdots$$
 (18)

of some matrix Θ that becomes antisymmetric when both of its indices are raised or lowered, $\Theta^{\mu\nu} = -\Theta^{\nu\mu}$. Note however that in the matrix exponential (18), the first index of Θ is raised

while the second index is lowered, so the antisymmetry condition becomes $(g\Theta)^{\top} = -(g\Theta)$ instead of $\Theta^{\top} = -\Theta$.

The Dirac spinor representation of the finite Lorentz transform (18) is the 4×4 matrix

$$M_D(L) = \exp\left(-\frac{i}{2}\Theta_{\alpha\beta}S^{\alpha\beta}\right).$$
 (19)

The group law for such matrices

$$\forall L_1, L_2 \in SO^+(3,1), \quad M_D(L_2L_1) = M_D(L_2)M_D(L_1)$$
 (20)

follows automatically from the $S^{\mu\nu}$ satisfying the commutation relations (14) of the Lorentz generators, so I am not going to prove it. Instead, let me show that when the Dirac matrices γ^{μ} are sandwiched between the $M_D(L)$ and its inverse, they transform into each other as components of a Lorentz 4-vector,

$$M_D^{-1}(L)\gamma^{\mu}M_D(L) = L^{\mu}_{\ \nu}\gamma^{\nu}.$$
 (21)

This formula makes the Dirac equation transform covariantly under the Lorentz transforms.

<u>Proof:</u> In light of the exponential form (19) of the matrix $M_D(L)$ representing a finite Lorentz transform in the Dirac spinor multiplet, let's use the multiple commutator formula (AKA the Hadamard Lemma): for any 2 matrices F and H,

$$\exp(-F)H\exp(+F) = H + [H,F] + \frac{1}{2}[[H,F],F] + \frac{1}{6}[[H,F],F],F] + \cdots$$
 (22)

In particular, let $H = \gamma^{\mu}$ while $F = -\frac{i}{2} \Theta_{\alpha\beta} S^{\alpha\beta}$ so that $M_D(L) = \exp(+F)$ and $M_D^{-1}(L) = \exp(-F)$. Consequently,

$$M_D^{-1}(L)\gamma^{\mu}M_D(L) = \gamma^{\mu} + \left[\gamma^{\mu}, F\right] + \frac{1}{2}\left[\left[\gamma^{\mu}, F\right], F\right] + \frac{1}{6}\left[\left[\left[\gamma^{\mu}, F\right], F\right], F\right] + \cdots (23)$$

where all the multiple commutators turn out to be linear combinations of the Dirac matrices.

Indeed, the single commutator here is

$$\left[\gamma^{\mu}, F\right] = -\frac{i}{2}\Theta_{\alpha\beta}\left[\gamma^{\mu}, S^{\alpha\beta}\right] = \frac{1}{2}\Theta_{\alpha\beta}\left(g^{\mu\alpha}\gamma^{\beta} - g^{\mu\beta}\gamma^{\alpha}\right) = \Theta_{\alpha\beta}g^{\mu\alpha}\gamma^{\beta} = \Theta^{\mu}_{\lambda}\gamma^{\lambda}, \quad (24)$$

while the multiple commutators follow by iterating this formula:

$$\left[\left[\gamma^{\mu},F\right],F\right] = \Theta^{\mu}_{\lambda}\left[\gamma^{\lambda},F\right] = \Theta^{\mu}_{\lambda}\Theta^{\lambda}_{\nu}\gamma^{\nu}, \qquad \left[\left[\left[\gamma^{\mu},F\right],F\right],F\right] = \Theta^{\mu}_{\lambda}\Theta^{\lambda}_{\rho}\Theta^{\rho}_{\nu}\gamma^{\nu},\dots (25)$$

Combining all these commutators as in eq. (23), we obtain

$$M_{D}^{-1}\gamma^{\mu}M_{D} = \gamma^{\mu} + \left[\gamma^{\mu}, F\right] + \frac{1}{2}\left[\left[\gamma^{\mu}, F\right], F\right] + \frac{1}{6}\left[\left[\left[\gamma^{\mu}, F\right], F\right], F\right] + \cdots$$

$$= \gamma^{\mu} + \Theta^{\mu}_{\ \nu}\gamma^{\nu} + \frac{1}{2}\Theta^{\mu}_{\ \lambda}\Theta^{\lambda}_{\ \nu}\gamma^{\nu} + \frac{1}{6}\Theta^{\mu}_{\ \lambda}\Theta^{\lambda}_{\ \rho}\Theta^{\rho}_{\ \nu}\gamma^{\nu} + \cdots$$

$$= \left(\delta^{\mu}_{\nu} + \Theta^{\mu}_{\ \nu} + \frac{1}{2}\Theta^{\mu}_{\ \lambda}\Theta^{\lambda}_{\ \nu} + \frac{1}{6}\Theta^{\mu}_{\ \lambda}\Theta^{\lambda}_{\ \rho}\Theta^{\rho}_{\ \nu} + \cdots\right)\gamma^{\nu}$$

$$\equiv L^{\mu}_{\ \nu}\gamma^{\nu}. \tag{26}$$

Quod erat demonstrandum.

Dirac Equation

The Dirac spinor field $\Psi(x)$ has 4 complex components $\Psi_{\alpha}(x)$ arranged in a column vector

$$\Psi(x) = \begin{pmatrix} \Psi_1(x) \\ \Psi_2(x) \\ \Psi_3(x) \\ \Psi_4(x) \end{pmatrix}.$$
(27)

Under continuous Lorentz symmetries $x'^{\mu} = L^{\mu}_{\ \nu} x^{\nu}$, the spinor field transforms as

$$\Psi'(x') = M_D(L)\Psi(x). \tag{28}$$

The classical field equation for the free spinor field is the Dirac equation — a first-order differential equation

$$(i\gamma^{\mu}\partial_{\mu} - m)\Psi(x) = 0. (29)$$

The Dirac equation implies the Klein–Gordon equation for each component $\Psi_{\alpha}(x)$. Indeed,

if $\Psi(x)$ obey the Dirac equation, then

$$(-i\gamma^{\nu}\partial_{\nu} - m)(i\gamma^{\mu}\partial_{\mu} - m)\Psi(x) = 0$$
(30)

where the differential operator on the LHS is the Klein–Gordon $m^2 + \partial^2$ times a unit matrix. Indeed,

$$(-i\gamma^{\nu}\partial_{\nu} - m)(i\gamma^{\mu}\partial_{\mu} - m) = m^{2} + \gamma^{\nu}\gamma^{\mu}\partial_{\nu}\partial_{\mu} = m^{2} + \frac{1}{2}\{\gamma^{\mu}, \gamma^{\nu}\}\partial_{\nu}\partial_{\mu} = m^{2} + g^{\mu\nu}\partial_{\nu}\partial_{\mu}.$$

$$(31)$$

The Dirac equation transforms covariantly under the Lorentz symmetries — its LHS transforms exactly like the spinor field itself.

<u>Proof:</u> Note that since the Lorentz symmetries involve the x^{μ} coordinates as well as the spinor field components, the LHS of the Dirac equation becomes

$$\left(i\gamma^{\mu}\partial_{\mu}^{\prime}-m\right)\Psi^{\prime}(x^{\prime})\tag{32}$$

where

$$\partial'_{\mu} \equiv \frac{\partial}{\partial x'^{\mu}} = \frac{\partial x^{\nu}}{\partial x'^{\mu}} \times \frac{\partial}{\partial x^{\nu}} = (L^{-1})^{\nu}_{\mu} \times \partial_{\nu}. \tag{33}$$

Consequently,

$$\partial'_{\mu}\Psi'(x') = \left(L^{-1}\right)^{\nu}_{\mu} \times M_D(L) \,\partial_{\nu}\Psi(x) \tag{34}$$

and hence

$$\gamma^{\mu} \partial_{\mu}^{\prime} \Psi^{\prime}(x^{\prime}) = \left(L^{-1}\right)_{\mu}^{\nu} \times \gamma^{\mu} M_{D}(L) \partial_{\nu} \Psi(x). \tag{35}$$

But according to eq. (23),

$$M_D^{-1}(L)\gamma^{\mu}M_D(L) = L^{\mu}_{\ \nu}\gamma^{\nu} \implies \gamma^{\mu}M_D(L) = L^{\mu}_{\ \nu} \times M_D(L)\gamma^{\nu}$$

$$\implies (L^{-1})^{\ \nu}_{\ \mu} \times \gamma^{\mu}M_D(L) = M_D(L)\gamma^{\nu}, \tag{36}$$

SO

$$\gamma^{\mu} \partial_{\mu}^{\prime} \Psi^{\prime}(x^{\prime}) = M_D(L) \times \gamma^{\nu} \partial_{\nu} \Psi(x). \tag{37}$$

Altogether,

$$(i\gamma^{\mu}\partial_{\mu} - m)\Psi(x) \xrightarrow{\text{Lorentz}} (i\gamma^{\mu}\partial'_{\mu} - m)\Psi'(x') = M_D(L) \times (i\gamma^{\mu}\partial_{\mu} - m)\Psi(x), \quad (38)$$

which proves the covariance of the Dirac equation. Quod erat demonstrandum.