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I. INTRODUCTION

The fundamentals of path integral methods in string theory are reviewed with emphasis in the development of

the Faddeev Popov ghost that emerge from overcounting of configurations and the conditions that the string theory

requires for maintaining Weyl invariance. Since the lecture is presented for a course that does not assume previous

knowledge in string theory, I include an introduction to both bosonic and superstring theory (in the RNS formalism).

This text begins with an introduction to bosonic string theory, we study the symmetries of the Polyakov action, we

work out the canonical quantization of the theory to calculate its central charge. Later the path integral formulation is

introduced with the appearance of Faddeev-Popov ghosts, we consider their canonical quantization for computing the

central charge. The total central charge generates an anomaly in the Weyl invariance of the theory. The vanishing of

such term has powerful implications that yield conditions related with the possible physical states and the dimensions

of the theory. We also introduce the BRST quantization and construction of the spectrum of the theory by means of

representation theory. Once the fundamental are presented we do essentially the same steps with superstring theory,

excluding the part of BRST quantization; since the procedure is very similar to the bosonic case, it will be a brief

discussion emphasizing mostly with fermionic coordinates.

This review does not include several important topics including background fields (such as the graviton and

dilaton) in the path integral formulation of bosonic and superstring theory (which is extensively discussed in [1]

and [2]), or the calculation of scattering amplitudes with path integrals (again can be studied in [1] and [2]) and

related topics of global topological properties of string theory. Also we do not consider more than the RNS formalism
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for superstring, since it’s uncommon of finding in the literature (it’s particularly difficult for the GS formalism [2],

although it arises naturally in the pure spinor formalism [3]). We will adopt natural units with ~ = c = 1, and use

the convention roman indices (such as µ, ν) for space-time variables, and latin indices (such as a, b) for world sheet

variables. The Minkowski signature is chosen to be (−,+, . . . ,+) in D space-time dimensions.

II. FUNCTIONAL METHODS IN BOSONIC STRING THEORY

A. Polyakov action

Let us recall that the motion of a relativistic particle of mass m in a curved D-dimensional space-time can be

formulated as a variational problem. Since the classical motion of a point particle is along geodesics, the action should

be proportional to the invariant length of the particle’s trajectory:

S0 = −α
∫
ds (1)

where the line element is given by ds2 = −gµν(X)dXµdXν , and α is a constant which leads to the correct non-

relativistic limit only if it’s equal to the particle’s mass m, that is α = m. Here gµν(X), with µ, ν = 0, . . . , D − 1,

describes the background geometry, which is chosen to have Minkowski signature. The particle’s trajectory Xµ(τ),

also called the world line of the particle, is parametrized by a real parameter τ , but the action is independent of the

parametrization, which can be easily checked. The resulting action

S = −m
∫ √

−gµν(X)dXµdXν

contains a square root, so that it is difficult to quantize. Furthermore, this action obviously cannot be used to describe

a massless particle. These problems can be circumvented by introducing an action equivalent to the previous one at

the classical level in the sense that it leads to the same classical equations.

The action (1) can be generalized to the case a p-brane sweeping out a (p + 1)-dimensional world volume in

D-dimensional space-time, constraint to p < D, by:

Sp = −Tp
∫
dµp. (2)

where Tp is the p-brane tension and dµp is the (p+ 1)-dimensional volume element given by:

dµ2
p = gµν(X)∂aX

µ∂bX
νdp+1σ (3)

where a, b = 0, . . . , p. The brane world volumes can be parametrized by the coordinates σ0 = τ , which is time-like, and

σi, which are p space-like coordinates. We shall study the case of strings (1-branes) in a D dimensional space-time.

The string sweeps out a two-dimensional surface as it moves through space-time, which is called the world sheet. The

points on the world sheet are parametrized by the two coordinates σ0 = τ , which is time-like, and σ1 = σ, which is

space-like. If the variable σ is periodic, it describes a closed string. If it covers a finite interval, the string is open.

The space-time embedding of the string world sheet is described by functions Xµ(σ, τ). The particular action of a

string moving in flat space-time is the Nambu-Goto action

S = T

∫
d2σ

√(
∂X

∂τ
· ∂X
∂σ

)2

−
(
∂X

∂τ

)2(
∂X

∂σ

)2

The integral appearing in this action describes the area of the world sheet. As a result, the classical string motion

minimizes the world-sheet area, just as classical particle motion makes the length of the world line extremal by moving

along a geodesic. The quantization of the Nambu-Goto action is complicated because of the square root, so we may

instead write an action that reproduces the same classical equations of motion as the Nambu-Goto action, which is

the string sigma model action, or also called the Polyakov action. This action is expressed in terms of an auxiliary

world- sheet metric hab(σ, τ) (whereas gµν denotes a space-time metric), and it’s given by:

S[h,X] = −T
2

∫
d2σ
√
−hhab∂aXµ∂bXµ. (4)
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FIG. 1: The world sheet for the free propagation of an open string is a rectangular surface, while the free

propagation of a closed string sweeps out a cylinder.

FIG. 2: The embedding of the string world sheet in space-time

where h = det(hab) and hab = (h−1)ab. It’s important to calculate the world-sheet energy momentum tensor to make

canonical quantization later on. Since there is no kinetic term for hab in the action, the energy momentum will be

zero by the Euler-Lagrange equations, that is:

Tab ≡ −
2

T

1√
−h

δS[X,h]

δhab
= ∂aX · ∂bX −

1

2
habh

cd∂cX · ∂dX = 0. (5)

B. Symmetries

• Poincaré transformations. These are global symmetries under which the world-sheet fields transform as

δXµ = aµνX
ν + bµ and δhab = 0.

Here the constants aµν (with aµν = −aνµ) describe infinitesimal Lorentz transformations and bµ describe space-

time translations.

• Reparametrizations. The string world sheet is parametrized by two coordinates τ and σ, but a change in the

parametrization does not change the action. Indeed, the transformations

σa → fa(σ) = σ′
a
, and hab(σ) =

∂fc

∂σa
∂fd

∂σb
hcd.

leave the action invariant. These local symmetries are also called diffeomorphisms. This implies that the

transformations and their inverses are infinitely differentiable.
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• Weyl transformations. The action is invariant under the rescaling:

hab → eφ(σ,τ)hab and δXµ = 0,

because
√
−h→ eφ

√
−h and hab → e−φhab give cancelling factors. This local symmetry is the reason that the

energy–momentum tensor is traceless.

Poincaré transformations are global symmetries, whereas reparametrizations and Weyl transformations are local

symmetries, which can be used to choose a gauge.

C. Equations of motion and boundary conditions

It is very convenient to introduce world-sheet light-cone coordinates for solving the equations of motion. Let’s

define σ± = τ ± σ. In these coordinates the derivatives and the two dimensional Lorentz metric takes the form:

∂± =
1

2
(∂τ ± ∂σ) and

(
η++ η+−
η−+ η−−

)
= −1

2

(
0 1

1 0

)
. (6)

In light-cone coordinates the wave equation for the embedding is:

∂a∂
aXµ =

(
∂2

∂σ2
+

∂2

∂τ2

)
Xµ = ∂+∂−X

µ = 0. (7)

The general solution involves right XR(σ+) and left XL(σ+) movers, with the constraint (∂−XR)2 = (∂+XL)2 = 0.

In this coordinates, the vanishing of the energy momentum tensor becomes:

T++ = ∂+X
µ∂+X

µ = 0, T−− = ∂−X
µ∂−X

µ = 0, (8)

while T+− = T−+ = 0 automatically. For extremizing the action we require the following boundary terms to vanish:

−T
∫
dτ

dXµ

dσ

∣∣∣∣σ=π

σ=0

= 0, (9)

where we have chosen σ ∈ [0, π] (we could have chosen any length ` for the interval instead of π, it’s just a matter

of convenience that does not affect the quantization of the string modes). The only boundary conditions that are

consistent with (9) are:

• Closed string: The embeddings are periodic Xµ(σ, τ) = Xµ(σ + π, τ). The most general solution of (7) with

this boundary condition is:

Xµ
R =

1

2
xµ +

1

2
l2sp

µ(σ−) +
i

2
ls
∑
n 6=0

1

n
αµne

−2inσ− (10)

Xµ
L =

1

2
xµ +

1

2
l2sp

µ(σ+) +
i

2
ls
∑
n 6=0

1

n
α̃µne

−2inσ+ (11)

where xµ is a center-of-mass position, pµ is the total string momentum in the string center of mass, and ls is

called the string length scale, related with the string tension and the open-string Regge slope parameter α′ by

T =
1

4πα′
, α′ =

1

2
l2s .

• Open string with Neumann boundary conditions: The component of the momentum normal to the

boundary of the world sheet vanishes, that is:
∂Xµ
∂σ = 0 at σ = 0, π. The general solution:

Xµ(τ, σ) = xµ + l2sp
µτ + ils

∑
m 6=0

αµm
m
e−imτ cosmσ.
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• Open string with Dirichlet boundary conditions: The positions of the two string ends are fixed, so

δXµ = 0, Xµ|σ=0 = Xµ
0 and Xµ|σ=π = Xµ

π , where µ = 1, . . . , D − p− 1. Neumann boundary conditions break

Poincaré invariance, so they were not consider until it was realized that they are of fundamental importance

for the existence of Dp-branes (hypersurfaces where the string can end, so the total system conserves Poincaré

invariance). The general solution:

Xµ(τ, σ) = xµ + l2sp
µτ + ils

∑
m 6=0

αµm
m
e−imτ sinmσ.

This solution can be obtained from a T-duality applied to an open string with Neumann boundary condition,

see for example section 6.1 of [4].

In any of these cases the canonical momentum conjugate to Xµ is given by:

Pµ(σ, τ) =
δS[X,h]

δ∂τXµ
= T

∂Xµ

∂τ
. (12)

With this definition of the canonical momentum, we may calculate the relevant Poisson brackets

{Pµ(σ, τ), Xν(σ, τ)}P.B. = δµνδ(σ − σ′) in terms of the Fourier coefficients αµn, ανn. The world-sheet theory can

be quantized by replacing the Poisson brackets by commutators in the case of bosons, {. . . }P.B. → i[· · · ], leading to:

[αµm, α
ν
n] = [α̃µm, α̃

ν
n] = mηµνδm+n,0, [αµm, α̃

ν
n] = 0. (13)

where αm, m > 0 destroys particles, and αm, m < 0 creates particles. One may insert the closed-string mode

expansions for XL and XR into the energy momentum tensor of Eq. (8) to obtain:

T−− = 2l2s
∑
m

Lme
−2imσ− , T++ = 2l2s

∑
m

L̃me
−2imσ+ (14)

where the Fourier coefficients are Virasoro generators

Lm =
1

2

∑
n

αm−n · αn, L̃m =
1

2

∑
m

α̃m−n · α̃n. (15)

In quantum theory these operators are defined to be normal-ordered, that is

Lm =
1

2

∑
n

: αm−n · αn :

such that in the lowering operators always appear to the right of the raising operators, i.e.

: αmαn :=

{
αmαn, if m ≤ n
αnαm, if n < m.

. (16)

This prescription is motivated by the fact that the Hamiltonian (which follows from Eq. (4))

H =
T

2

∫ π

0

[(
∂X

∂τ

)2

+

(
∂X

∂σ

)2
]
dσ (17)

for an open string is given by:

H =
∑
n

α−n · αn (18)

so that acting on vacuum it should be anhilated instead of raised which is the case when n < 0 in the previous

expression, therefore to correctly describe the quantum problem we require the normal ordered expression

H =
∑
n

: α−n · αn : .
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Using the commutators for the modes αµn, one can show that in the quantum theory the Virasoro generators for

the embeding X satisfy the relation:

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0. (19)

where c = d is the number of space-time dimensions. In the classical theory we would had found that [Lm, Ln]P.B. =

i(m−n)Lm+n. The term proportional to c is a quantum effect, the term accompanying c is called the central extension,

and c is called the central charge.

Also notice that from the normal ordering ambiguity when imposing the constraint that the zero mode of the

energy–momentum tensor should vanish, the only requirement in the case of the open string is that there exists some

constant a such that

(L0 − a) |φ〉 = 0

Here |φ〉 is any physical on-shell state in the theory, and the constant a will be determined later.

D. Polyakov path integral

From the action for bosonic string theory, we may attempt to quantize the theory starting from a generating

functional and implement the Faddev-Popov techniques for interpreting the gauge theory. The integral runs over all

metrics and over all embeddings Xµ(σ, τ) of the world-sheet in Minkowski spacetime:

Z =

∫
Dh(σ, τ)DX(σ, τ) eiS[h, X] (20)

where S is the Polyakov action, and
∫
Dh(σ, τ) denotes an integral over the three independent components of the

metric h00, h10 and h11 (because it’s a symmetric tensor), or equivalently in the light cone coordinates h++, h−−,

h−+. We could had done a Wick rotation and work with an Euclidean signature in hab, it make no difference.

There are 2 popular paths that we could follow to develop the functional integral. In Ref. [2], the functional

integral over Dh is performed on the independent components of the metric h++ and h−− and the world-sheet metric

is gauge fixed to hab = eφηab. In Ref. [1] the functional integration over Dh is performed on the diffeomorphism and

Weyl parameters, and the metric is gauge fixed to a generic form ĥab. We shall follow this later treatment since it’s

more formal and the interpretation of Faddeev–Popov becomes easier.

Let’s start from the fact that the action is invariant under a general diffeomorphism σa → σa− εa(σ, τ) combined

with a local Weyl rescalings hab → e2Λ(σ, τ)hab, so that:

Xµ → Xµ + εa∂aX
µ, (21)

hab → hab + (P · ε)ab +

(
2Λ +

1

2
D · ε

)
hab (22)

where (P · ε)ab = Daεb + Dbεa − hab(D · ε), and Daσb = ∂aσb − Γcabσc is the covariant derivative for a curved world

sheet, which involves Christoffel symbols Γcab. The operator P maps vectors to a symmetric traceless 2-tensors:

(P · ε)ab = P cabεc, with P cab = δc(bDa) − habDc

where f(agb) = fagb + fbga. Also notice that the effect of (P · ε)ab on hab can be undone by Weyl rescaling. The

corresponding εa are called conformal Killing vectors.

If for fixed ĥab the parameters ζ = (εa, Λ) run over all diffeomorphisms and Weyl rescalings then ĥζ = ĥ + δh

runs over all metrics. Given some functional of the metric, F [h], we can rewrite the path integral:∫
Dh F [h] =

∫
D(P · ε)DΛ̃F [hg] det

∂P · ε, Λ̃

∂ε, Λ
. (23)

where we introduced the Jacobian determinant for the integral over the gauge parameters ζ, which can be trivially

evaluated:

det
∂P · ε, Λ̃

∂ε, Λ
=

∣∣∣∣P 0

∗ 1

∣∣∣∣ = detP
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where the ∗ indicates that the value doesn’t matter since it’s multiplied by 0 in the evaluation of the determinant.

Therefore, Eq. (20) becomes:

Z =

∫
Dζ DX detP exp

[
iS[X, ĥζ ]

]
(24)

Note that S[X, ĥζ ] = S[Xζ−1

, ĥ] because the action invariant under combined diffeomorphisms and Weyl transforma-

tions. If and only if the functional measure is also invariant, then we can perform such a gauge transformation to

obtain:

Z =

∫
DζDXζ−1

e
iS

[
Xζ
−1
, ĥ

]
detP (25)

and we can relabel Xζ−1 → X. Then Dζ factors out and yields an overall volume of the group of diffeomorphisms

and Weyl rescalings, which was our goal. Omitting this overall factor we arrive at

Z =

∫
DX eiS[X, ĥ] detP (26)

Notice however that the measure DζDX is in general invariant only under diffeomorphisms, not under Weyl rescalings.

Later we will find that criticality (i.e. a = 1, d = 26) is equivalent to the absence of this total Weyl anomaly in the

quantum measure.

Also we assumed that every metric h can be written as h = ĥζ for precisely one ζ. However, the conformal Killing

transformations are residual gauge symmetries not fixed in the previous treatment. These extra parametrisations must

not be included in the path integral in order to avoid overcounting, so they must be fix when computing scattering

amplitudes. Also if the string worldhseets have complicated topology the metric contains extra parameters, called

moduli, not accounted for by local gauge transformations ζ. We must therefore sum over these moduli separately.

We may use the Faddeev-Popov procedure to write the determinant of P cab in terms of fermionic ghost c and

antighosts b:

detP =

∫
Db(ab)Dcd exp

(
1

4π

∫
d2σ

√
−ĥbabP dabcd

)
(27)

Here b(ab)(σ
a) transforms as a symmetric traceless tensor on the worldsheet and cd(σa) as a vector, and the factor 1

4π

in the exponential is merely conventional. These ghosts are fermionic objects with integer spin. After integration by

parts in the ghost action:

Z =

∫
DXDbDc ei(SX+Sg) (28)

where:

SX = − 1

2α′

∫
d2σ

√
−ĥĥab∂aX · ∂bX, Sg = − i

2π

∫
d2σ

√
−ĥĥabcdDab(ab).

• The equation of motion for ca is given by P · c = 0. Therefore the normalisable solutions for ca are in one-to-one

correspondence with the conformal Killing vectors, which are the generators of the residual symmetry.

• The equation of motion for b(ab) is Dab
ab = 0.

Let’s use the Minkowski metric as the reference metric: ĥab = ηab. The matter and ghost action in flat lightcone

coordinates read

SX + Sg[b, c] =
1

π

∫
d2σ

[
1

α′
∂+X · ∂−X + i(c+∂−b++ + c−∂+b−−)

]
.

From the traceless of the symmetric tensor bab we see that b+− = b−+ = 0. The equations of motion for the ghosts

become:

∂+b−− = ∂−b++ = 0, ∂+c
− = ∂−c

+ = 0. (29)
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provided the boundary terms obey ∫
dτ (c+δb++ − c−δb−−)

∣∣∣∣σ=π

σ=0

= 0

that we pick in the process of varying the action. As before we can classify the boundary conditions and solutions by:

• Closed string: b(σ + π) = b(σ) and c(σ + π) = c(σ). The most general solution:

b++ = 4
∑
n

b̃ne
−2inσ+ , b−− = 4

∑
n

bne
−2inσ− , (30)

c+ =
1

2

∑
n

c̃ne
−2inσ+ , c− =

1

2

∑
n

cne
−2inσ− . (31)

The normalization is chosen such as to lead to nice expressions for the anti-commutator in the quantum theory.

• Open string: Boundary terms must vanish at σ = 0 and σ = π separately. One way of doing that:

c+(σ+)

∣∣∣∣
σ=0, π

= c−(σ−)

∣∣∣∣
σ=0, π

and b++(σ+)

∣∣∣∣
σ=0, π

= b−−(σ−)

∣∣∣∣
σ=0, π

(32)

The most general solution:

c± =
∑
n

cne
−inσ± , b±± =

∑
n

bne
−inσ± (33)

The conjugate momentum of the anti-ghost field b±± follows from the action as

Πb±± =
δSg[b, c]

δ∂τ b±±
=

i

2π
c± (34)

with canonical Poisson-bracket relation{
b±±(τ, σ), Πb±±(τ, σ′)

}
P.B.

= δ(σ − σ′).

To quantise this system we must take into account the fermionic nature of the b and c-fields. As is well-known

from quantisation of fermions in QFT, the correct procedure is to replace the Poisson-bracket by −i times the anti-

commutator. Thus,{
b++(τ, σ), c+(τ, σ′)

}
= 2πδ(σ − σ′),

{
b−−(τ, σ), c−(τ, σ′)

}
= 2πδ(σ − σ′) (35)

This corresponds to the anti-commutator relations for the modes:

{cm, bn} = δm+n,0, {cm, cn} = {bm, bn} = 0 (36)

with the same relations obeyed in addition by c̃′n, b̃n for the closed string.

The ghost-energy momentum tensor T (g) follows from the full non-gauge fixed action as

T
(g)
ab =

4π√
−h

δSg[b, c, h]

δhab
. (37)

In the lightcone gauge its non-vanishing components are:

T
(g)
++ = −i

(
2b++∂+c

+ + (∂+b++)c+
)

=
1

2

∑
n

L̃(g)
n e−2inσ, (38)

T
(g)
−− = −i

(
2b−−∂−c

− + ∂−b−−
)
c−) =

1

2

∑
n

L(g)
n e−2inσ (39)

with corresponding Virasoro generators, for the closed string:

L(g)
n = − 1

4π

∫ π

0

dσe−2inσT−−, L̃(g)
n = − 1

4π

∫ π

0

dσe2inσT++
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and similar formulae for the open string. In terms of modes we can check that:

L(g)
m =

∑
n

(m− n)bm+nc−n (40)

which is valid classically. At the quantum level the Virasoro operators are defined as the normal ordered analogue of

this classical expression. Normal ordering requires lower-level modes to the left. Due to the anti-commuting nature

of the modes, we pick up a minus sign in this process if we have to change the order of the modes, i.e.

: bmbn :=

{
bmbn, if m ≤ n
−bnbm, if n < m.

(41)

and similarly for : cmcn : as well as for : bmcn :. Then,

L(g)
m =

∑
n

(m− n) : bm+nc−n : . (42)

This yields the Ghost Virasoro-algebra (check it as an exercise):[
L(g)
m , L(g)

n

]
= (m− n)L

(g)
m+n +

1

6
(m− 13m3)δm+n,0.

Notice that the central charge would be −26. The generators L
(g)
m are bilinears in the fermionic ghost modes and thus

bosonic. This is why they indeed satisfy commutator (as opposed to anti-commutator) relations. The algebra of the

conformal transformations of the full action S = SX + Sg is generated by the combined Virasoro generators

Ltotm = L(X)
m + L(g)

m − atotδm,0, (43)

where we conventionally include a total normal ordering constant atot into the definition of Ltotm , which is the sum of

the normal ordering constant for the X and for the ghost fields,

atot = a(X) + a(g).

with atot as the total normal ordering constant in the definition of Ltotm ,

atot = a(X) + a(g) = a.

a(X) corresponds to d − 2 physical transverse of the X-oscillations together with a contribution from the X0 and

Xd−1 unphysical components because we are in a covariant gauge. We could compute a(g) and a(g) in terms of the

number of space-time dimensions [5]. However we can directly derive the total contribution which would involve only

the physical degrees of freedom, since the ghost system cancels the contribution from the unphysical non-transverse

polarisations a feature that also appears in the BRST quantisation.

It’s easy to verify that the combined Virasoro generators satisfy the commutation relations

[
Ltotm , Ltotn

]
= (m− n)Ltotm+n + δm+n,0

(
ctot

12
(m3 −m) + 2m(a− 1)

)
(44)

where ctot = d − 26 is called a central term. This central term generates an anomaly in the Weyl invariance of the

full action SX + Sg, because the Virasoro algebra for the generators is modified. The only way to eliminate the Weyl

anomaly is when

d = 26, a = 1.

This tells us that the X-theory must cancel the conformal anomaly of the ghost system, so that the anomaly of the

full quantum theory is absent; which is called criticality. What is actually fixed is not the number of spacetime

dimensions, but the central extension of the embedding c(X) = d.
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E. BRST quantization

The full action SX + Sg after gauge fixing hab = ηab enjoys a global, fermionic, residual symmetry. Let ε be a

constant Grassmann parameter. Then this symmetry is generated by the transformations:

δεX
µ = ε(c+∂+ + c−∂−)Xµ, (45)

δεc
± = ε(c+∂+ + c−∂−)c±, (46)

δεb±± = iε(T
(x)
±± + T

(g)
±±). (47)

Note that the transformations of Xµ are just the conformal Killing transformations with fermonic parameter εc±.

This symmetry is named BRST symmetry (after Becchi, Rouet, Stora, Tyutin). Via Noether’s theorem one can define

a BRST charge operator QB as the conserved charge associated with a suitable BRST current.

As always, this charge will then generate the underlying symmetry. Explicit application of the Noether procedure

confirms that the BRST charge is fermonic as expected. It generates the BRST symmetry in the sense that

δεX
µ = ε[QB , X

µ], δεc
± = ε

{
QB , c

±}, δεb±± = ε{QB , b±±}. (48)

One can show explicitly that (for open strings):

QB =
∑
m

: (L
(X)
−m + L

(g)
−m − aδm,0)cm : (49)

does the job (and analogously for the left- and right-moving charges in the closed string). In particular Q†B = QB .

An important property of the BRST symmetry is that it is nilpotent:

δεδε′Φ = 0 for Φ ∈ {Xµ, b, c},

which means that the charge is nilpotent Q2
B = 0. In the quantum theory, the evaluation of Q2

B = 1
2{QB , QB} is

complicated by normal ordering subtleties. By an explicit computation it can be found that:

Q2
B =

1

2
{QB , QB} =

1

2

∑
m,n

(
[
Ltotm , Ltotn

]
+ (m− n)Ltotm+n)c−mc−n, (50)

which vanishes if and only if the full Virasoro algebra is non-anomalous, the same case for the critical string with

(d = 26, a = 1). This means that consistency of the BRST symmetry is equivalent to absence of the total Weyl

anomaly.

The nice property of BRST symmetry is that it gives the correct physical state condition. A physical state must

be gauge invariant. Given the relation between the gauge transformations and the BRST symmetry it is therefore

reasonable to expect that a physical state must be invariant under a BRST transformation. A necessary condition

for a state to be physical is that:

QB |phys〉 = 0.

Indeed since QB acts on X as the (residual) symmetry this implements in particular the constraints resulting from

gauge fixing (here the Virasoro constraints). This, however, is not enough. Namely there exists a large set of trivially

physical states given by

|χ〉 = QB |Ψ〉 , for |Ψ〉 arbitrary (51)

because of the nilpotence of QB . These states are null, i.e. they are orthogonal to all physical states including

themselves, 〈phys|χ〉 = 〈phys|QB |Ψ〉 = 〈phys|Q†B |Ψ〉 = 0. and 〈χ|χ〉 = 〈Ψ|Q2
B |Ψ〉 = 0. States in the kernel of QB ,

|χ〉 such that QB |χ〉 = 0, are called Q-closed, while those in the image of QB , |χ〉 = QB |Ψ〉, are called Q-exact.
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To define a positive norm Hilbert space we need to divide the set of Q-closed states by the set of Q-exact states, which

is given by

HBRST =
Hclosed

Hexact
= cohomology of QB .

States differing by elements of Hexact are in the same equivalence class:

|Ψ〉 ≡ |Ψ〉+QB |χ〉 (52)

The concept of a cohomology as the kernel over the image is defined in mathematics for every nilpotent operator.

The probably most famous example is the exterior derivative d that maps a p-form to a p + 1-form. In this context

the p-th cohomology group is defined as Hp = closed p-forms
exact p-forms .

F. Representation theory

o make all of this explicit we need to define a vacuum |0〉 =
∣∣0(X)

〉
⊗
∣∣0(g)

〉
for the full theory defined by

Stot = S(X) + S(g), act with creation operators associated with X, b and c on each factor and then implement the

physical state condition. As before cn, bn, for n < 0 act a s creators, while for n > 0 act as annihilators. This is

consistent with the normal ordering prescription (”creators to the left”) and with the form of the zero-level Virasoro

generator

L
(g)
0 =

∞∑
n=1

(nb−ncn + nc−nbn).

Since the ghost Hamiltonian H(g) ∝ L
(g)
0 we are reassured that b−n, c−n take the role of creators. There is an

important difference compared to the X-sector, though: Since the zero modes b0, c0 do not appear in L
(g)
0 they must

be treated separately. From the anti-commutation relations we deduce that the zero-modes c0, b0 form an algebra

defined by

c20 = b20 = 0, {c0, b0} = 1 (53)

A state in the ghost sector must furnish a representation of this algebra. The smallest representation contains two

states |↑〉 , |↓〉 such that

c0 |↓〉 = |↑〉 , c0 |↑〉 = 0, b0 |↑〉 = |↓〉 , b0 |↓〉 = 0. (54)

We could make two inequivalent choices for the full vacuum:

• ∣∣0tot
〉

=
∣∣∣0(X)

〉
⊗ |↑〉 ≡ |0, ↑〉

The vacuum is annihilated by c0 and by αn , cn, bn with n > 0.

• ∣∣0tot
〉

=
∣∣∣0(X)

〉
⊗ |↓〉 ≡ |0, ↓〉

The vacuum is annihilated by b0 and by αn , cn, bn with n > 0.

To gain some intuition which is the correct one we evaluate the BRST condition on the special subset
∣∣Ψ(X)

〉
⊗ |↑〉

and, respectively,
∣∣Ψ(X)

〉
⊗ |↓〉 contained in the spectrum that results from the two choices of vacua.

Consider first case 2.). The physical state condition implies QB |χ〉 = 0. For |χ〉 =
∣∣Ψ(X)

〉
⊗ |↓〉 this gives

0 = QB |χ〉 =
∑
m

: (L
(X)
−m +

1

2
L

(g)
−m − aδm,0)cm : |χ〉 . (55)
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Using cm |χ〉 = bm |χ〉 = 0 for m > 0 and setting a = 1 this becomes

0 = QB |χ〉 =

[
(L

(X)
0 − 1)c0 +

∑
m>0

c−mL
(X)
m

]
|χ〉 . (56)

Evaluating the action of the ghost modes on the vacuum yilds

(L
(X)
0 − 1) |χ〉 = 0 and L(X) |χ〉 = 0, ∀m > 0.

This recovers the correct constraints. By contrast, case 1.) with vacuum |0, ↑〉 does not allow us to recover the known

constraints in this simple fashion. This suggests that only |0, ↓〉 is a meaningful vacuum. Note that the two vacua are

distinguished by the defining property b0 |0, ↓〉 = 0.

This means that positive norm physical states are the states QB |Ψ〉 = 0 modulo |Ψi〉 = QB |χ〉 built on |0tot〉 =

|0, p〉(X) ⊗ |↓〉(g) that satisfy in addition b0 |ψ〉 = 0.

Now we can deduce the number of physical states in the bosonic open string spectrum. For the first level we

make the ansatz

|Ψ〉 = (ξµα
µ
−1 + βb−1 + γc−1)

∣∣0tot〉 .
This gives us 26 + 2 states to begin with.

• From b0 |Ψ〉 = 0 we deduce 0 = {QB , b0} |Ψ〉 = Ltot0 |Ψ〉. This yields the mass shell condition p2 = 0.

• QB |Ψ〉 = 0 leads to

0 = ((p · ξ)c−1 + βp · α−1) |0〉tot

which is satisfied by p·ξ = 0 and β = 0. Thus requiring Q-closedness therefore removes the unphysical anti-ghost

excitations as well as all polarizations that are not orthogonal to the momentum, thereby eliminating 2 out the

26+2 original states.

• To analyze |Ψ〉 ≡ |χ〉+QB |χ〉 we observe that for a general state |χ〉 = (χ · α−1 + β′b−1 + γ′c−1)ket0tot at level

n=1 we have:

QB |χ〉 = ((p · χ′)c−1 + β′p · α−1)
∣∣otot〉 .

This shows that c−1 |0tot〉 is BRST exact and the polarisation vector is only defined up to the equivalence

χµ ≡ χµ + β′pµ, β′ ∈ C.

Thus we are left with 24 physical positive norm states. This is the exact same number of states that we would have

obtained in the gauge fixed canonical quantization of Xµ without ghost, as required.

III. FUNCTIONAL METHODS IN THE RNS FORMALISM

A. Superstring theory in the RNS formalism

Untill now we have consider a theory that only has bosonic coordinates, described by an action that contains

kinetic terms for bosons propagating on the worldsheet. It seems natural that, in order to produce fermions in the

spectrum as we desire in a theory that is supposed to be able to describe our world, we should add the kinetic terms

of some fermion. This is one of the motivations for writing a supersymmetric action. Also it can be shown that

tachyons appear in the bosonic string spectrum (we have not explored for tachyons in the string spectrum since it’s

not relevant for developing path integral methods), which are unphysical since they imply an instability of the vacuum.

We may generalize the bosonic string action to include supersymmetry which can be shown to elimination tachyons

in a consistent theory. The most common approaches to superstrings:
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• Ramond-Neveu-Schwarz (RNS) formalism which is supersymmetric on the string world-sheet.

• Green-Schwarz (GS) formalism, supersymmetric in ten-dimensional Minkowski space-time or in other back-

ground space-time geometries.

• The pure spinors formalism that is both supersymmetric in the world-sheet and space-time.

Let’s study the RNS formalism in the simplest case of N = 1 supersymmetry in the world-sheet. The desired action

is obtained by adding the Dirac action for D free massless fermions to the free theory of D massless bosons.

S = − 1

2π

∫
d2σ
[
hab∂aX

µ∂bX
ν − iψ̄µρa∂aψµ

]
(57)

where we are considering α′ = 1/2, and ψµA is a D-plet of Majorana spinors (which means they are two-component

real spinors ψµ− and ψµ+) transforming in the vector representation of the Lorentz group SO(D − 1, 1), and ρa are

two-dimensional Dirac matrices.

It may seem counterintuitive to introduce an anticommuting field ψµ that transforms as a vector (bosonic repre-

sentation) of SO(D− 1, 1). This choice simply maps in space-time, bosons to bosons and fermions to fermions. The

Lorentz group SO(D − 1, 1) is an internal symmetry in the world sheet view, and the spin and statistics theorem

says nothing whether anticommuting fields should transform as vectors or spinors under an internal symmetry.

The action can be expressed in light cone coordinates as

S =
1

π

∫
d2σ(2∂+X · ∂−X + iψ− · ∂+ψ− + iψ+ · ∂−ψ+) (58)

We may derive equations of motion in the light cone coordinates, for bosonic coordinates we would recover the previous

results in (7), and for the fermionic coordinates:

∂+ψ− = 0 and ∂−ψ+. (59)

The energy momentum tensor of the RNS string follows from the action:

Tab = ∂aX
µ∂bXµ +

1

4
ψ̄µρa∂bψµ +

1

4
ψ̄µρβ∂aψµ − trace. (60)

The action is also invariant under a transformation

δXµ = ε̄ψµ and δψµ = ρa∂aX
µε

where ε is a constant infinitesimal Majorana spinor. There is a conserved current that can be constructed by taking

the ε parameter to be non-constant, so we may find the total variation of the action under such variation:

δS ∼
∫
d2σ (∂aε̄)J

a, where JaA = −1

2
(ρbρaψµ)A∂βX

µ. (61)

Written in terms of world sheet light-cone coordinates, the non-zero components of the energy-momentum tensor and

supercurrent are:

T++ = ∂+Xµ∂+X
µ +

i

2
ψµ+∂+ψ+µ, T−− = ∂−Xµ∂−X

µ + i
i

2
ψµ−∂−ψ−µ, (62)

J+ = ψµ+∂+Xµ and J− = ψµ−∂−Xµ. (63)

From equations of motion in the world-sheet metric, it can be shown that analogous to the bosonic case we have

J+ = J− = T++ = T−− = 0. By considering variations of the fields ψ± one requires the vanishing of the boundary

terms in the variation of the action,

δS ∼
∫
dτ

(
ψ+δψ+ − ψ−δψ−

∣∣∣∣
σ=π

− ψ+δψ+ − ψ−δψ−
∣∣∣∣
σ=0

)
= 0. (64)
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B. R and NS sectors

Let’s focus on the open string case with Neumann conditions for the embeddings Xµ. In the opens string case

the two terms in (64) must vanish separately. This is satisfied if ψµ+ = ±ψµ− at each end of the string. The relative

sign between ψµ+ and ψµ− is a matter of convention. We may choose ψµ+
∣∣
σ=0

= ψµ−
∣∣
σ=0

, and the sign at the other end

of the string is the one physically meaningful.

• Ramond boundary condition: Choosing both ends of the string with the same sign:

ψµ+

∣∣∣∣
σ=π

= ψµ−

∣∣∣∣
σ=π

(65)

This boundary condition gives rise to space-time fermions in the case of open strings. The mode expansion of

the fermionic field in the R sector:

ψµ−(σ, τ) =
1√
2

∑
n∈Z

dµne
−in(τ−σ), ψµ+(σ, τ) =

1√
2

∑
n∈Z

dµne
−in(τ+σ) (66)

The Majorana condition requires these expansion to be real, hence dµ−n = dµ†n . The normalization factor is just

a matter of convenience.

• Neveu-Schwarz boundary condition: Choosing an relative minus sign:

ψµ+

∣∣∣∣
σ=π

= − ψµ−

∣∣∣∣
σ=π

(67)

This NS boundary condition gives rise to space-time bosons. The mode expansions:

ψµ−(σ, τ) =
1√
2

∑
r∈Z+ 1

2

bµr e
−ir(τ−σ), ψµ+(σ, τ) =

1√
2

∑
r∈Z+ 1

2

bµr e
−ir(τ+σ) (68)

From now on we follow the convention m, n ∈ Z while r, s ∈ Z + 1
2 .

In the case of closed strings (which is not much relevant for the rest of the review) we would need to choose

between the possible periodic boundary conditions that make the boundary term to vanish:

ψ±(σ, τ) = ±ψ±(σ + π, τ). (69)

The positive sign gives periodic boundary conditions while the negative on gives antiperiodic boundary conditions.

We may impose periodicity (R) or antiperiodicity (NS) of the right- and left-movers separately. For the right movers

one can choose:

ψµ−(σ, τ) =
∑
n

dµne
−2inσ− , or ψµ−(σ, τ) =

∑
r

bµr e
−2irσ− (70)

ψµ+(σ, τ) =
∑
n

d̃µne
−2inσ+ , or ψµ+(σ, τ) =

∑
r

b̃µr e
−2irσ+ (71)

Therefore we have 4 possibilities for pairing the left- and right-movers for the closed strings. The NS-NS and R-R

sectors are space-time bosons, while NS-R and R-NS sectors are space-time fermions.

For now on the discussion focus solely on open strings, the extension for open strings is straightforward. The

Fourier modes for the space-time coordinates Xµ have the same commutation relations as with bosonic strings,

[αµm, α
ν
n] = mδm+n,0η

µν (72)

For closed strings there would be a second set with modes α̃µm. The fermionic coordinates obey the Dirac equation

on the world sheet, with canonical anticommutation relation given by:

{ψµA(σ, τ), ψνB(σ′, τ)} = πδABδ(σ − σ′) (73)
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so that inserting the mode expansions we would find:

{bµr , bνs} = ηµνδr+s,0 and {dµm, dνn} = ηµνδm+n,0. (74)

There is an important discussion on how to construct the superstring spectrum using these operators on the states

of the R or NS sectors, the reader is refereed to any of the recommended textbooks for this discussion. We shall

concentrate on finding the central charges for each sector. The super-Virasoro generators are modes of the energy

momentum tensor Tab and supercurrent JaA. For the open string:

Lm =
1

π

∫ π

−π
dσeimσT++ = L(b)

m + L(f)
m (75)

• The bosonic mode contribution is given by:

L(b)
m =

1

2

∑
r

: α−n · αm+n : . (76)

• The contribution from the fermionic modes in the NS sector:

L(f)
m =

1

2

∑
r

(r +
m

2
) : b−r · bm+r : . (77)

The modes of the supercurrent can be written as:

Gr =

√
2

π

∫ π

−π
dσ eirσJ+ =

∑
n

α−n · bn+r. (78)

• The contribution from the fermionic modes in the R sector:

L(f)
m =

1

2

∑
n

(n+
m

2
) : d−n · dm+n : . (79)

The modes of the supercurrent can be written as:

Fm =

√
2

π

∫ π

−π
dσ eimσJ+ =

∑
n

α−n · dn+m (80)

Now we can determine the super-Virasoro algebra for the modes of the energy momentum tensor and the supercurrent.

• For the R sector:

[Lm, Ln] = (m− n)Lm+n +
D

8
m3δm+n,0, (81)

[Lm, Fn] =
(m

2
− n

)
Fm+n, (82)

{Fm, Fn} = 2Lm+n +
D

8
m2δm+n,0. (83)

• For the NS sector:

[Lm, Ln] = (m− n)Lm+n +
D

8
m(m2 − 1)δm+n,0, (84)

[Lm, Gr] =
(m

2
− r
)
Gm+r, (85)

{Gr, Gs} = 2Lr+s +
D

2

(
r2 − 1

4

)
δr+s,0. (86)
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When quantizing the RNS string one can only require that the positive modes of the Virasoro generators annihilate

the physical state. In the NS sector the physical-state conditions are:

Gr |φ〉 = 0, Lm |φ〉 = 0, (L0 − aNS) |φ〉 = 0. (87)

where r > 0, m > 0, and aNS is a constant introduced to allow for the normal-ordering ambiguity. Similarly, the

physical state conditions in the R sector:

Fn |φ〉 = 0, Lm |φ〉 = 0, (L0 − aR) |φ〉 = 0. (88)

From the expressions we can identify the central charges for each sector. By an analogous development respect with

bosonic string theory, we will be able to identify the critical values for aNS , aR and D for the theory to be Lorentz.

It can be found with such results that no tachyons would be present [4]. However that is a whole other discussion, we

will focus on developing the Faddeev–Popov ghosts using path integrals and and derive its central charges, as in the

bosonic case. Futhermore we classify from the chirality of the string spectrum 3 of the 5 types of superstring theories,

namely type I, type IIA and type IIB, however this detail is not relevant for the present discussion.

C. Local symmetries of the action

Consider that the world-sheet metric hab depends on the σ, τ coordinates; so that we can explore the local

symmetries in the gauge fixed action (57). Reparametrization invariance and 2-dimensional local Lorentz invariance

on the world sheet can be implemented by replacing (57) for an action:

S1 = − 1

2π

∫
d2σ
√
−h
{
hab∂aX

µ∂µX
µ − iψ̄µρaDaψµ

}
. (89)

where we are suppressing the spinor indices, and h = det{hab}. The reader might wonder what do we even mean by

covariant derivative of an spinor.

For this purpose it’s useful to write the metric hab of a D-dimensional manifold M (in contrast with the world

sheet case that we have studied so far that is only 2 dimensional) in terms of orthogonal tangent vectors ea
′

a chosen

respect to some local inertial frame at each point of M . The index a′ is the name of each one of these tangent vectors,

and a is a vector index. ea
′

a is called vielbein, where bein is the suffix indicating frame and the prefix is a german

word indicating the dimension. We may express:

hab = ηa′b′e
a′

a e
b′

b , ηa
′b′ = habea

′

a e
b′

b . (90)

From now on we are free to represent e =
√
−h for the determinant of the vielbein, assuming a Minkowski signature.

The index a of ea
′

a transforms like any vector index under diffeomorphism of M , while the index a′ is simply

a name so it doesn’t change under diffeomorphism of M . However, since the introduction of ea
′

a involves arbitrary

choices at each space-time point, we are free to make local SO(D − 1, 1) transformations on the index a′, like local

Lorentz indices. Also SO(D− 1, 1) admits spinor representations, so spinor indices may be regarded as local Lorentz

indices. Analogous to an ordinary Yang-Mills potential field (or connection) Aµ one can introduce a spin connection

ωa
′b′

a as a gauge field for local Lorentz transformations. Under an infinitesimal Lorentz transformation by a parameter

Θa′b′ , the variation of the spin connection becomes:

δωa
′b′

a = ∂aΘa′b′ + [ωa, Θ]
a′b′

= (DaΘ)a
′b′ . (91)

The rules for the local Lorentz transformations of a spinor ψ are given by δψ = − 1
8Θa′b′ [ρa′ , ρb′ ]ψ, where we are

considering the Dirac matrices in D-dimensions. The covariant derivative of the spinor is:

Daψ = (∂a +
1

8
ωa
′b′

a Γa′b′)ψ (92)

In the special case of 2 dimensions the spin connection doesn’t contribute to covariant derivative of a spin term, so it

Da can be replaced by ∂a when it acts on a spin term. Also, in a curved world sheet we introduce ρµ(σ) = eaa′(σ)ρa
′
.
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Returning to the action in (89), it needs to be invariant under supersymmetry transformations, and because of

the term e =
√
−h this may be difficult. A clear way out is to introduce a supersymmetry field χa that is related

with the infinitesimal variation of the zweibein (now 2 dimensional frame). Defining:

S2 = − 1

π

∫
d2σ eχ̄aρ

bρaψµ∂bXµ, (93)

so the total action (S1 + S2) is now invariant under supersymmetry transformations (which the readers should check

by themselves, by verifying the variation of the total action is zero):

δXµ = ε̄ψµ, δψµ = −iρaε
(
∂aX

µ − ψ̄µχa
)

(94)

δea
′

a = −2iε̄ρa
′
χa, δχa = Daε, (95)

where ε is an infinitesimal Majorana spinor function of σ, τ . Here the term χAa(σ, τ) is a two component Majorana

spinor which is a world-sheet vector, called Rarita-Schwinger field (which is a 3/2-spin space-time fermion).

Futhermore, the action has 2 superconformal bosonic symmetries under the transformation:

δXµ, δψµ = −1

2
Λψµ, δea

′

a = Λea
′

a , δχa =
1

2
Λχa. (96)

with Λ(σ, τ) is a scalar function (the same scaling eφ factor that we encountered in bosonic string theory). There are

also 2 superconformal symmetries under the transformation

δχa = iρaη, δea
′

a = δψµ = δXµ = 0, (97)

where η(σ, τ) is an arbitrary Majorana spinor. The theory now has 4 local bosonic symmetries these allow us to

gauge the four components of ea
′

a = δa
′

a , and also 4 local fermionic symmetries, which implies that we can locally set

the four components of χa = 0.

D. Path integrals in RNS

The classical statement that χa can be gauge away means that it can always be expressed in the form:

χa = iρaη +Daε, (98)

and with reasonable boundary conditions this expression is unique. So we can change variables in the path integral

from χa to η and ε. After the change of variables, the integral from η and ε can be dropped, since they are symmetry

parameters and the action does not depend on them (this is an oversimplification, but the formal treatment leads to

the same conclusion). The change of variable lead to a Jacobian that will end up as a ghost path integral.

In 1+1 dimension, the Lorentz group is SO(1, 1) in the Minkowski world-sheet, and SO(2) in Euclidean world

sheet. SO(1, 1) has a single generator, which we might call W , and an SO(1, 1) representation is specified by its

eigenvalue, which is the spin, so in this case the eigenvalues of W will be integers or half-integers. The gravitino field

χaA has a vector index a corresponding to spin ±1, and a spinor index A that carries spin ±1/2. Altogether, χaA
has four components of spin ±1, ±1/2, i.e., 3/2, 1/2, -1/2 and -3/2 respectively. The gauge parameters η and ε are

spinors with two components each of spin ±1/2. The derivative operator Da is a vector with components of spin ±1.

Given a field V with components of various spin, let’s denote the spin q component of V as Vq, then (98) becomes:

δχ3/2 = D1ε1/2, δχ1/2 = D1ε−1/2 + η1/2; (99)

δχ−3/2 = D−1ε−1/2, δχ−1/2 = D−1ε1/2 + η−1/2. (100)

The change of variables from χ±1/2 to η±1/2 introduces a non trivial Jacobian, for example from χ3/2 to ε1/2 the

Jacobian is:

Jacobian3/2 = 1/ det
[
D

1/2→3/2
1

]
, (101)
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where the superscript 1/2 → 3/2 represents the operator mapping spin 1/2 to spin 3/2. We can represent this

determinant by ghost fields γ1/2 and β−3/2:

Jacobian3/2 =

∫
Dγ1/2Dβ−3/2 exp

[
− 1

π

∫
d2σβ−3/2D1γ1/2

]
. (102)

γ and β must be commuting fields since they are ghosts for an anticommuting symmetry. Likewise a change of

variables from χ−3/2 to ε−1/2 gives a Jacobian with commuting ghosts γ−1/2 and β3/2:

Jacobian−3/2 =

∫
Dγ−1/2Dβ3/2 exp

[
− 1

π

∫
d2σβ3/2D1γ−1/2

]
. (103)

The fields γ and β are called superconformal ghosts. The components of γ±1/2 make up a spinor γA. The components

of β±3/2 make up a vector-spinor βaA which is subject to the constraints ρaABβaB = 0.

The ghost action implied by the determinants (102) and (103) can be thus expressed as:

SFP = − i

2π

∫
d2σhabγ̄∂aβb. (104)

In the gauge hab = δab, the equations of motion imply that β3/2 and γ−1/2 are right-moving while the other components

are left-moving. By varying the action (104) respect to the world-sheet metric, we can compute the energy momentum

tensor and current for the ghosts:

T++ =
i

2
γ∂+β +

3i

2
β∂+γ, J

(g)
+ = βγ. (105)

In terms of mode expansions in the R-sector:

γ(τ) =
1√
2

∑
n

γne
−2inτ , β(τ) =

1√
2

∑
n

βne
−2inτ . (106)

The commutation relations implied by SFP are:

[γm, βn] = δm+n,0, [γm, γn] = [βm, βn] = 0. (107)

As defined here, γ is herminitian and β is antihermitian. β could be redefined by a factor i if we wanted. The

coefficients γm, βn are moded by integer numbers; for the bosonic sector we require half integer modes γr, βs.

Altogether the ghost contributions are:

L(g)
m =

∑
n

[
(m+ n) : bm−ncn : +

(
1

2
m+ n

)
: βm−nγn :

]
(108)

F (g)
m = −2

∑
n

[
b−nγm+n +

(
1

2
n−m

)
c−nγm+n

]
(109)

Also: {
F (g)
m , F (g)

n

}
= 2L

(g)
m+n − 5m2δm+n,0 (110)

which implies the ghost anomaly −5m2. We found before that the anomaly in the R sector is given by 1
2Dm

2 + 2aR.

Therefore the total anomaly

ctotR = −5m2 +
1

2
Dm2 + 2aR

cancels for D = 10 and aR = 0. In the NS sector one has

ctotNS = c(g) + c(X,ψ) =

[
1

4
− 5r2

]
+

[
1

2
D

(
r2 − 1

4

)
+ 2aNS

]
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which vanishes only for D = 10 and aNS = 1/2. As in the bosonic case, the quantum action has global fermionic

symmetry, namely BRST symmetry, which we could apply to obtain the same results of consistency of the theory

when D = 10. This procedure is very standard and it can be found in any of the references.

To summarize, now we have ten Xµ boson, ten ψµ fermions, conformal ghosts b, c and superconformal ghost γ and

β. The conditions for eliminating the Weyl anomaly in the theory is when D = 10, aR = 0 and aNS = 1
2 , and this

allows the BRST symmetry with conserved supercharge QB .
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