The Unruh Effect

Alan Müller

Institute of Theoretical Physics São Paulo State University

Seminar of QFT I, 2020

< (□) ト < 三

EL OQA

Outline

- Manifolds
 - The Definition
 - Vectors
 - Tensors
 - The Metric
- 2 Curvature
 - Covariant Derivatives
 - The Riemann Curvature Tensor
 - Killing Vectors
- Quantum Field Theory in Curved Spacetime
 - The Scalar Field in Curved Spacetime
 - The Unruh Effect

ъ

The Definition Vectors Tensors The Metric

Outline

- Manifolds
 - The Definition
 - Vectors
 - Tensors
 - The Metric

2 Curvature

- Covariant Derivatives
- The Riemann Curvature Tensor
- Killing Vectors

3 Quantum Field Theory in Curved Spacetime

- The Scalar Field in Curved Spacetime
- The Unruh Effect

315

The Definition Vectors Tensors The Metric

Pieces Which Look Flat

- A manifold is a set M, together with a collection of subsets $\{U_{\alpha}\}$, such that:
 - Each U_{α} has a bijection ϕ_{α} with an open subset of \mathbf{R}^n

a bunch of open balls

(coordinate systems)

- What we call x^{μ} is short for $(\phi_{lpha})^{\mu}$
- Each point of *M* is in at least one U_α (every point is described by a coordinate system)
- There are C^{∞} transition functions between coordinate systems (coordinate transformations)
- Summary: a manifold is a set made of subsets which look like **R**ⁿ

The Definition Vectors Tensors The Metric

Coordinate Systems and Transformations

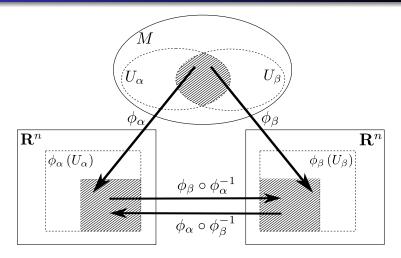


Figure: Coordinate systems and transformations.

The Definition Vectors Tensors The Metric

Outline

- Manifolds
 - The Definition
 - Vectors
 - Tensors
 - The Metric
- 2 Curvature
 - Covariant Derivatives
 - The Riemann Curvature Tensor
 - Killing Vectors
- 3 Quantum Field Theory in Curved Spacetime
 - The Scalar Field in Curved Spacetime
 - The Unruh Effect

315

The Definition Vectors Tensors The Metric

Directional Derivative Operators

- A vector at a point p is a linear function V : F → R obeying the Leibniz rule (F is the set of all C[∞] scalar fields)
- Intuition: every curve $\gamma: \mathbf{R} \to M$ parametrized by λ and which goes through p defines a vector

$$V(f) \equiv \left. \frac{d}{d\lambda} \left(f \circ \gamma \right) \right|_{p} \in \mathbf{R}$$

• Leibniz rule:

$$V(fg) = \left. \frac{df}{d\lambda} \right|_{p} g(p) + f(p) \left. \frac{dg}{d\lambda} \right|_{p}$$

글 🛌 글 🔁

The Definition **Vectors** Tensors The Metric

The Tangent Space

- The set of all vectors at a point *p* forms a vector space called the **tangent space** *T_p*
- Given a coordinate system x^μ, partial derivatives ∂_μ form a basis for T_p:

$$V = \frac{d}{d\lambda} = \underbrace{\frac{dx^{\mu}}{d\lambda}}_{\equiv V^{\mu}} \partial_{\mu}$$

• We denote these vectors generically by their components V^{μ} in some coordinate system

The Definition Vectors Tensors The Metric

Vector Transformation Law

• From the chain rule of derivatives we find the **vector transformation law**:

$$egin{aligned} \mathcal{V}' &= \mathcal{V} \Rightarrow \mathcal{V}'^{\mu} \partial'_{\mu} = \mathcal{V}^{\mu} \partial_{\mu} = \mathcal{V}^{\mu} rac{\partial x'^{
u}}{\partial x^{\mu}} \partial'_{
u} \ \Rightarrow \boxed{\mathcal{V}'^{\mu} = rac{\partial x'^{\mu}}{\partial x^{
u}} \mathcal{V}^{
u}} \end{aligned}$$

• Compare with the Lorentz transformation

$$V^{\prime\mu} = \Lambda^{\mu}{}_{\nu}V^{\nu}$$

→ < Ξ → <</p>

●▶ 三三 のへの

The Definition Vectors Tensors The Metric

Coordinate Basis

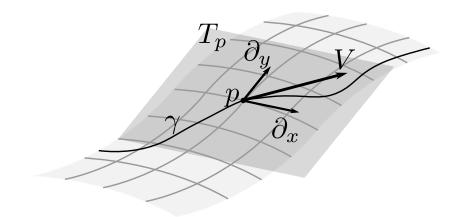


Figure: Coordinate basis.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ ◆ □ ▼ の < ○

The Definition Vectors Tensors The Metric

Another Kind of Vector

- A dual vector at a point p is a linear function $\omega : T_p \to \mathbf{R}$
- The set of all dual vectors at a point p forms a vector space called the cotangent space T^{*}_p
 - The set (T^{*}_p)^{*} can be identified with T_p (so a vector is a linear function V : T^{*}_p → R)

Example

Given a coordinate system x^{μ} , the functions defined by $dx^{\mu}(\partial_{\nu}) = \delta^{\mu}_{\nu}$ form a **coordinate basis** for the cotangent space.

The Definition Vectors Tensors The Metric

It Transforms as a Covariant Vector

- Expansion in coordinate basis: $\omega = \omega_{\mu} dx^{\mu}$
- Component notation: ω_{μ}
- Dual vector transformation law:

$$\omega'_{\mu} = \left(\Lambda^{-1}\right)^{\nu}{}_{\mu}\omega_{\nu} \longrightarrow \boxed{\omega'_{\mu} = \frac{\partial x^{\nu}}{\partial x'^{\mu}}\omega_{\nu}}$$

글 눈

The Definition Vectors **Tensors** The Metric

Outline

- Manifolds
 - The Definition
 - Vectors

Tensors

• The Metric

2 Curvature

- Covariant Derivatives
- The Riemann Curvature Tensor
- Killing Vectors

3 Quantum Field Theory in Curved Spacetime

- The Scalar Field in Curved Spacetime
- The Unruh Effect

글 🛌 글 🔁

The Definition Vectors **Tensors** The Metric

A Multilinear Map

Examples

A vector is a (1,0) tensor and a dual vector is a (0,1) tensor.

三日 のへの

イロト イポト イヨト イヨト

The Definition Vectors **Tensors** The Metric

A Product Between Tensors

• The **outer product** of a (k, l) tensor T with an (m, n) tensor S is a (k + m, l + n) tensor $T \otimes S$ defined by

$$T \otimes S\left(\omega^{1}, ..., \omega^{k}, \omega^{k+1}, ..., \omega^{k+m}; v_{1}, ..., v_{l}, v_{l+1}, ..., v_{l+n}\right)$$

= $T\left(\omega^{1}, ..., \omega^{k}, v_{1}, ..., v_{l}\right) S\left(\omega^{k+1}, ..., \omega^{k+m}, v_{l+1}, ..., v_{l+n}\right)$

(things we are used to writing as $T^{\mu_1...\mu_k}{}_{\nu_1...\nu_l}S^{\mu_{k+1}...\mu_{k+m}}{}_{\nu_{l+1}...\nu_{l+n}}$)

Example

The outer product $\partial_{\mu_1} \otimes ... \otimes \partial_{\mu_k} \otimes dx^{\nu_1} \otimes ... \otimes dx^{\nu_l}$ forms a **coordinate basis** for the vector space of tensors at a point.

The Definition Vectors **Tensors** The Metric

It Transforms as a Tensor

- Expansion in coordinate basis: $T = T^{\mu_1 \dots \mu_k}{}_{\nu_1 \dots \nu_l} \partial_{\mu_1} \otimes \dots \otimes \partial_{\mu_k} \otimes dx^{\nu_1} \otimes \dots \otimes dx^{\nu_l}$
- Component notation: $T^{\mu_1...\mu_k}_{\nu_1...\nu_l}$
- Tensor transformation law:

$$T^{\prime\mu_1\dots\mu_k}{}_{\nu_1\dots\nu_l} = \Lambda^{\mu_1}{}_{\sigma_1}\dots\Lambda^{\mu_k}{}_{\sigma_k} \left(\Lambda^{-1}\right)^{\rho_1}{}_{\nu_1}\dots\left(\Lambda^{-1}\right)^{\rho_l}{}_{\nu_l}T^{\sigma_1\dots\sigma_k}{}_{\rho_1\dots\rho_l}$$

$$\longrightarrow T'^{\mu_1\dots\mu_k}{}_{\nu_1\dots\nu_l} = \frac{\partial x'^{\mu_1}}{\partial x^{\sigma_1}}\dots\frac{\partial x'^{\mu_k}}{\partial x^{\sigma_k}}\frac{\partial x^{\rho_1}}{\partial x'^{\nu_1}}\dots\frac{\partial x^{\rho_l}}{\partial x'^{\nu_l}}T^{\sigma_1\dots\sigma_k}{}_{\rho_1\dots\rho_l}$$

・ロト ・母 ト ・ヨ ト ・ヨ ト ・ の への

The Definition Vectors Tensors **The Metric**

Outline

Manifolds

- The Definition
- Vectors
- Tensors
- The Metric

2 Curvature

- Covariant Derivatives
- The Riemann Curvature Tensor
- Killing Vectors

3 Quantum Field Theory in Curved Spacetime

- The Scalar Field in Curved Spacetime
- The Unruh Effect

글 🛌 글 🔁

The Definition Vectors Tensors **The Metric**

A Special Kind of Tensor

• A metric is a (0,2), symmetric, nondegenerate tensor field

a tensor $\forall p \in M$

(古) 문 ((日) (H) (H

- Rank (0,2): takes two vectors and gives a real number (inner product in tangent spaces)
- Symmetric: $g_{\mu\nu} = g_{\nu\mu}$
- Nondegenerate: determinant doesn't vanish (inverse metric)
- For every point p ∈ M, one can always find a set of locally inertial coordinates such that g_{µν} is in canonical form (+1's and −1's)
 - Convention:
 - Riemannian: all plus (positive-definite)
 - Lorentzian: one single minus \longrightarrow spacetime!

Vectors Tensors The Metric

A Norm

• We classify a vector V^{μ} in the following way

if
$$g_{\mu\nu}V^{\mu}V^{\nu}$$
 is $\begin{cases} < 0, \quad V^{\mu} \text{ is timelike} \\ = 0, \quad V^{\mu} \text{ is null} \\ > 0, \quad V^{\mu} \text{ is spacelike} \end{cases}$

- In locally inertial coordinates (t, x, y, z) at a point p, a timelike vector is said to be
 - Future-directed if it has a component in the direction of ∂_t
 - **Past-directed** if it has a component in the direction of $-\partial_t$

Example

Trivial examples are future-directed ∂_t and past-directed $-\partial_t$.

Covariant Derivatives The Riemann Curvature Tensor Killing Vectors

Outline

- Manifolds
 - The Definition
 - Vectors
 - Tensors
 - The Metric
- 2 Curvature

Covariant Derivatives

- The Riemann Curvature Tensor
- Killing Vectors

3 Quantum Field Theory in Curved Spacetime

- The Scalar Field in Curved Spacetime
- The Unruh Effect

-

Covariant Derivatives The Riemann Curvature Tensor Killing Vectors

Partial Derivatives Do Not Transform As We Want

- Partial derivatives do not transform properly
 - Scalars:

$$\partial'_{\mu}\phi' = \frac{\partial x^{\nu}}{\partial x'^{\mu}}\partial_{\nu}\phi \quad \checkmark$$

• Vectors:

$$\begin{aligned} \partial'_{\mu}V^{\prime\nu} &= \frac{\partial x^{\sigma}}{\partial x^{\prime\mu}} \partial_{\sigma} \left(\frac{\partial x^{\prime\nu}}{\partial x^{\rho}} V^{\rho} \right) \\ &= \frac{\partial x^{\sigma}}{\partial x^{\prime\mu}} \frac{\partial x^{\prime\nu}}{\partial x^{\rho}} \partial_{\sigma} V^{\rho} + \frac{\partial x^{\sigma}}{\partial x^{\prime\mu}} \frac{\partial^{2} x^{\prime\nu}}{\partial x^{\sigma} \partial x^{\rho}} V^{\rho} \quad \bigstar \end{aligned}$$

Covariant Derivatives The Riemann Curvature Tensor Killing Vectors

Generalization

$$\Gamma^{\sigma}_{\mu
u}=rac{1}{2}g^{\sigma
ho}\left(\partial_{\mu}g_{
u
ho}+\partial_{
u}g_{
ho\mu}-\partial_{
ho}g_{\mu
u}
ight)$$

• Scalars:
$$abla \mu \phi = \partial_{\mu} \phi$$

- Contravariant vectors: $\nabla_{\mu}V^{\nu} = \partial_{\mu}V^{\nu} + \Gamma^{\nu}_{\mu\lambda}V^{\lambda}$
- Covariant vectors: $\nabla_{\mu}\omega_{\nu} = \partial_{\mu}\omega_{\nu} \Gamma^{\lambda}_{\mu\nu}\omega_{\lambda}$
- Tensors:

$$\nabla_{\sigma} T^{\mu_{1}\dots\mu_{k}}{}_{\nu_{1}\dots\nu_{l}} = \partial_{\sigma} T^{\mu_{1}\dots\mu_{k}}{}_{\nu_{1}\dots\nu_{l}}$$

$$+ \Gamma^{\mu_{1}}_{\sigma\lambda} T^{\lambda\dots\mu_{k}}{}_{\nu_{1}\dots\nu_{l}} + \dots + \Gamma^{\mu_{k}}_{\sigma\lambda} T^{\mu_{1}\dots\lambda_{l}}{}_{\nu_{1}\dots\nu_{l}}$$

$$- \Gamma^{\lambda}_{\sigma\nu_{1}} T^{\mu_{1}\dots\mu_{k}}{}_{\lambda\dots\nu_{l}} - \dots - \Gamma^{\lambda}_{\sigma\nu_{l}} T^{\mu_{1}\dots\mu_{k}}{}_{\nu_{1}\dots\lambda}$$

- 4 同 ト 4 ヨ ト 4 ヨ ト クタク

Covariant Derivatives The Riemann Curvature Tensor Killing Vectors

Outline

- Manifolds
 - The Definition
 - Vectors
 - Tensors
 - The Metric

2 Curvature

• Covariant Derivatives

• The Riemann Curvature Tensor

Killing Vectors

3 Quantum Field Theory in Curved Spacetime

- The Scalar Field in Curved Spacetime
- The Unruh Effect

315

Covariant Derivatives The Riemann Curvature Tensor Killing Vectors

The Definition

• The **Riemann tensor field** is defined from the Christoffel symbols as

$$R^{\rho}{}_{\sigma\mu\nu} = \partial_{\mu}\Gamma^{\rho}_{\nu\sigma} - \partial_{\nu}\Gamma^{\rho}_{\mu\sigma} + \Gamma^{\rho}_{\mu\lambda}\Gamma^{\lambda}_{\nu\sigma} - \Gamma^{\rho}_{\nu\lambda}\Gamma^{\lambda}_{\mu\sigma}$$

• Flat spacetime $\Leftrightarrow R^{
ho}{}_{\sigma\mu\nu} = 0$ everywhere

315

Covariant Derivatives The Riemann Curvature Tensor Killing Vectors

Outline

- Manifolds
- The Definition
- Vectors
- Tensors
- The Metric

2 Curvature

- Covariant Derivatives
- The Riemann Curvature Tensor
- Killing Vectors
- 3 Quantum Field Theory in Curved Spacetime
 - The Scalar Field in Curved Spacetime
 - The Unruh Effect

-

Covariant Derivatives The Riemann Curvature Tensor Killing Vectors

Killing Vectors

• A Killing vector field K^{μ} is one which satisfies Killing's equation

$$\nabla_{(\mu}K_{\nu)}=0$$

• Given K^{μ} , there's a coordinate system such that $K = \partial_{\sigma^*} \Leftrightarrow \partial_{\sigma^*} g_{\mu\nu} = 0$, for some coordinate x^{σ^*}

• Symmetry under $x^{\sigma^*} \rightarrow x^{\sigma^*} + a^{\sigma^*}$

▲御▶ ▲ヨ▶ ▲ヨ▶ ヨヨ わなび

The Scalar Field in Curved Spacetime The Unruh Effect

Outline

- Manifolds
 - The Definition
 - Vectors
 - Tensors
 - The Metric
- 2 Curvature
 - Covariant Derivatives
 - The Riemann Curvature Tensor
 - Killing Vectors
- 3 Quantum Field Theory in Curved Spacetime
 - The Scalar Field in Curved Spacetime
 - The Unruh Effect

-

The Scalar Field in Curved Spacetime The Unruh Effect

Generalizing a Theory

• Flat spacetime:

$$S = \int d^n x \mathcal{L} \left(\phi_i, \partial_\mu \phi_i \right)$$

- Curved spacetime:
 - $\eta_{\mu\nu} \longrightarrow \mathbf{g}_{\mu\nu}$
 - Require coordinate-invariance

$$\partial_{\mu} \longrightarrow \nabla_{\mu} \qquad d^{n}x' \longrightarrow d^{n}x\sqrt{-g}$$

• Assert that the theory remains true:

$$S = \int d^{n}x \underbrace{\sqrt{-g}\hat{\mathcal{L}}(\phi_{i}, \nabla_{\mu}\phi_{i})}_{\equiv \mathcal{L}}$$
$$\frac{\partial \hat{\mathcal{L}}}{\partial \phi_{i}} - \nabla_{\mu} \left[\frac{\partial \hat{\mathcal{L}}}{\partial (\nabla_{\mu}\phi_{i})} \right] = 0$$

-

Alan Müller

The Unruh Effect

The Scalar Field in Curved Spacetime The Unruh Effect

The Scalar Field in Flat Spacetime

• Lagrangian:

$$\mathcal{L} = -rac{1}{2}\eta^{\mu
u}\partial_{\mu}\phi\partial_{
u}\phi - rac{1}{2}m^{2}\phi^{2}$$

• EOM:

$$\left(\Box - m^2\right)\phi = 0$$

where $\Box\equiv\eta^{\mu\nu}\partial_{\mu}\partial_{\nu}$

• Positive-frequency modes:

$$\partial_t f_k = -i\omega_k f_k$$

in some globally inertial coordinate system

• Field mode expansion:

$$\phi \propto \int dk \left(\mathsf{a}_k f_k + \mathsf{a}_k^\dagger f_k^st
ight)$$

The Scalar Field in Curved Spacetime The Unruh Effect

The Scalar Field in Curved Spacetime

• Lagrangian:

$$\mathcal{L} = \sqrt{-g} \left(-\frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - \frac{1}{2} m^2 \phi^2 \right)$$

• EOM:

$$\left(\Box-m^2\right)\phi=0$$

where $\Box \equiv g^{\mu\nu} \nabla_{\mu} \nabla_{\nu}$

• Positive-frequency modes:

$$\partial_{\sigma^*} f_k = -i\omega_k f_k$$

where ∂_{σ^*} is a future-directed Killing vector in some coordinate system

• Field mode expansion:

The Scalar Field in Curved Spacetime The Unruh Effect

The Problem

- Is there any such future-directed Killing vector in my spacetime at all?
- If there are more than one, which one I should I use to define positive-frequency modes?
 - Each one is a partial derivative in a particular coordinate system, is there any coordinate system which is preferred?

The Scalar Field in Curved Spacetime The Unruh Effect

Two Sets of Modes

- Suppose two such Killing vectors:
 - ∂_{σ^*} in some coordinate system x^μ
 - $\partial_{
 ho^*}$ in some coordinate system y^μ
- Positive-frequency modes:

$$\partial_{\sigma^*} f_i = -i\omega_i f_i \qquad \partial_{\rho^*} g_i = -i\omega_i g_i$$

(*i* is just notation, can be discrete or continuous)

• Field mode expansion:

$$\phi \propto \sum_{i} \left(a_{i} f_{i} + a_{i}^{\dagger} f_{i}^{*} \right) \qquad \phi \propto \sum_{i} \left(b_{i} g_{i} + b_{i}^{\dagger} g_{i}^{*} \right)$$

Vacuum states:

$$\boxed{a_i|0_f\rangle=0} \qquad \boxed{b_i|0_g\rangle=0}$$

The Scalar Field in Curved Spacetime The Unruh Effect

Bogolubov Transformations

- Both sets must be a basis for the same function space
 - The transformations between these two sets are called the **Bogolubov transformations**:

$$g_{i} = \sum_{j} \left(\alpha_{ij} f_{j} + \beta_{ij} f_{j}^{*} \right)$$
$$f_{i} = \sum_{j} \left(\alpha_{ji}^{*} g_{j} - \beta_{ji} g_{j}^{*} \right)$$

• The expansion coefficients (now promoted to creation and annihilation operators) must transform accordingly in order to describe the same field:

$$\begin{aligned} \mathbf{a}_{i} &= \sum_{j} \left(\alpha_{ji} \mathbf{b}_{j} + \beta_{ji}^{*} \mathbf{b}_{j}^{\dagger} \right) \\ \mathbf{b}_{i} &= \sum_{j} \left(\alpha_{ij}^{*} \mathbf{a}_{j} - \beta_{ij}^{*} \mathbf{a}_{j}^{\dagger} \right) \end{aligned}$$

The Unruh Effect

The Scalar Field in Curved Spacetime The Unruh Effect

Vacuum Is Relative

• Number operator of *i*-th *g*-mode:

$$n_{gi} = b_i^{\dagger} b_i = \sum_{jk} \left(\alpha_{ij} a_j^{\dagger} - \beta_{ij} a_j \right) \left(\alpha_{ik}^* a_k - \beta_{ik}^* a_k^{\dagger} \right)$$

• Calculating *f*-VEV of *n_{gi}*:

$$\langle 0_f | n_{gi} | 0_f \rangle = \sum_{jk} \beta_{ij} \beta_{ik}^* \langle 0_f | a_j a_k^{\dagger} | 0_f \rangle \propto \sum_{jk} \beta_{ij} \beta_{ik}^* \delta_{jk} = \sum_j |\beta_{ij}|^2$$

• No reason to believe it's zero:

$$\langle n_{gi} \rangle_{f-vacuum} \neq 0$$

The Scalar Field in Curved Spacetime The Unruh Effect

Outline

- Manifolds
 - The Definition
 - Vectors
 - Tensors
 - The Metric
- 2 Curvature
 - Covariant Derivatives
 - The Riemann Curvature Tensor
 - Killing Vectors

Quantum Field Theory in Curved Spacetime

- The Scalar Field in Curved Spacetime
- The Unruh Effect

315

The Scalar Field in Curved Spacetime The Unruh Effect

Massless Scalar in 2D

• Massless scalar field:

$$\Box \phi = \mathbf{0}$$

• Two-dimensional Minkowski space in globally inertial coordinates:

$$ds^2 = -\mathrm{d}t^2 + \mathrm{d}x^2$$

글 🛌 글 글

The Scalar Field in Curved Spacetime The Unruh Effect

An Accelerated Observer

• Trajectory of an observer with acceleration α :

$$t(\tau) = \frac{1}{\alpha} \sinh(\alpha \tau)$$
$$x(\tau) = \frac{1}{\alpha} \cosh(\alpha \tau)$$

Indeed, we can show that

$$a^{\mu}a_{\mu} = \alpha^2$$

where $a^{\mu} \equiv \left. d^2 x^{\mu} \right/ d \tau^2$ is 4-acceleration

The Scalar Field in Curved Spacetime The Unruh Effect

Rindler Coordinates

From globally inertial coordinates (t, x) to Rindler coordinates (η, ξ):

$$t = \frac{1}{a}e^{a\xi}\sinh(a\eta)$$
 $x = \frac{1}{a}e^{a\xi}\cosh(a\eta)$ $x > |t|$

where a is some constant parameter

• In these coordinates, the accelerated trajectory becomes

$$\eta(\tau) = \frac{\alpha}{a}\tau \qquad \text{(varies)}$$

$$\xi(\tau) = \frac{1}{a}\ln\left(\frac{a}{\alpha}\right) \qquad \text{(constant)}$$

• Something similar can be shown for x < -|t|:

$$t = -\frac{1}{a}e^{a\xi}\sinh(a\eta) \qquad x = -\frac{1}{a}e^{a\xi}\cosh(a\eta) \qquad x < -|t|$$

The Scalar Field in Curved Spacetime The Unruh Effect

A Timelike Killing Vector

• In these coordinates, our metric looks like

$$ds^2 = e^{2a\xi} \left(-\mathrm{d}\eta^2 + \mathrm{d}\xi^2 \right)$$

- We immediately see $\partial_\eta g_{\mu\nu} = 0 \Rightarrow \partial_\eta$ is a Killing vector
- Performing a coordinate transformation on this vector,

$$\partial_{\eta} = \frac{\partial t}{\partial \eta} \partial_t + \frac{\partial x}{\partial \eta} \partial_x$$
$$= a (x \partial_t + t \partial_x)$$

• For x > |t|, ∂_{η} is future-directed, for x < -|t|, past-directed

The Scalar Field in Curved Spacetime The Unruh Effect

Rindler Coordinates

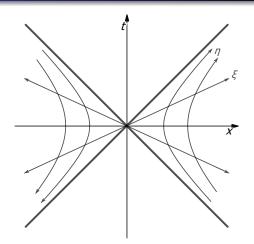


Figure: Minkowski spacetime in Rindler coordinates.

▲ロ▶ ▲圖▶ ▲필▶ ▲필▶ 三国市 釣Aで

The Scalar Field in Curved Spacetime The Unruh Effect

A Set of Modes

• In these coordinates, our massless KG looks like

$$e^{-2a\xi}\left(-\partial_{\eta}^{2}+\partial_{\xi}^{2}
ight)\phi=0$$

- The mode $g_k = (4\pi\omega)^{-1/2} e^{-i\omega\eta + ik\xi}$ solves this equation and satisfies $\partial_\eta g_k = -i\omega g_k$
- But we need $-\partial_{\eta}g_k = -i\omega g_k$ for x < -|t|, since there ∂_{η} is past-directed, so we impose

$$g_{k}^{(1)} = \begin{cases} \frac{1}{\sqrt{4\pi\omega}} e^{-i\omega\eta + ik\xi} & \text{for } x > |t| \\ 0 & \text{for } x < -|t| \end{cases}$$
$$g_{k}^{(2)} = \begin{cases} 0 & \text{for } x > |t| \\ \frac{1}{\sqrt{4\pi\omega}} e^{i\omega\eta + ik\xi} & \text{for } x < -|t| \end{cases}$$

The Scalar Field in Curved Spacetime The Unruh Effect

Mode Expansion

• This way, we expand

$$\phi = \int dk \left(b_k^{(1)} g_k^{(1)} + b_k^{(1)\dagger} g_k^{(1)*} + b_k^{(2)} g_k^{(2)} + b_k^{(2)\dagger} g_k^{(2)*} \right)$$

• The Rindler vacuum will be defined by

$$b_k^{(1,2)}|0_R
angle=0$$

- Our job:
 - Find Bogolubov coefficients relating Minkowski and Rindler
 - Calculate Minskowski VEV of the Rindler number operator
- Shortcut: find a set of modes which share the same vacuum as Minkowski

315

The Scalar Field in Curved Spacetime The Unruh Effect

(日)

A Shortcut

• From the definition of the Rindler coordinates,

$$e^{-a(\eta-\xi)} = \begin{cases} a(-t+x) & x > |t| \\ a(t-x) & x < -|t| \\ e^{a(\eta+\xi)} = \begin{cases} a(t+x) & x > |t| \\ a(-t-x) & x < -|t| \\ a(-t-x) & x < -|t| \end{cases}$$

The Unruh Effect

Finding New Modes

• Assuming k > 0, we have, for x > |t|,

$$\sqrt{4\pi\omega}g_k^{(1)} = a^{i\omega/a}\left(-t+x\right)^{i\omega/a}$$

• For x < -|t|.

$$\sqrt{4\pi\omega}g_k^{(2)} = a^{-i\omega/a} \left(-t - x\right)^{-i\omega/a}$$

• Taking complex conjugate and reversing momentum of $g_{\iota}^{(2)}$,

$$\sqrt{4\pi\omega}g^{(2)*}_{-k} = a^{i\omega/a}e^{\pi\omega/a}\left(-t+x\right)^{i\omega/a}$$

So the combination

$$\sqrt{4\pi\omega} \left[g_k^{(1)} + e^{-\pi\omega/a} g_{-k}^{(2)*} \right] = 2a^{i\omega/a} \left(-t + x \right)^{i\omega/a}$$

works for both x > |t| and x < -|t| (an identical result is obtained for k < 0) ◆母 ▶ ◆ ■ ▶ ★ ■ ▶ ● ■ ■ ● ● ●

The Scalar Field in Curved Spacetime The Unruh Effect

글 🛌 글 🔁

A New Set of Modes

• A similar reasoning leads to

$$\sqrt{4\pi\omega}\left[g_{k}^{(2)}+\mathrm{e}^{-\pi\omega/a}g_{-k}^{(1)*}\right]=2a^{i\omega/a}\left(-t-x\right)^{i\omega/a}$$

• A new set of modes which share the same vacuum as Minkowski:

$$\begin{aligned} h_k^{(1)} &= \frac{1}{\sqrt{2\sinh(\pi\omega/a)}} \left[e^{\pi\omega/2a} g_k^{(1)} + e^{-\pi\omega/2a} g_{-k}^{(2)*} \right] \\ h_k^{(2)} &= \frac{1}{\sqrt{2\sinh(\pi\omega/a)}} \left[e^{\pi\omega/2a} g_k^{(2)} + e^{-\pi\omega/2a} g_{-k}^{(1)*} \right] \end{aligned}$$

The Scalar Field in Curved Spacetime The Unruh Effect

The Bogolubov Transformation

- These define a Bogolubov transformation from $g_k^{(1,2)}$ to $h_k^{(1,2)}$
- We can use this to write the Bogolubov transformation between operators:

$$b_{k}^{(1)} = \frac{1}{\sqrt{2\sinh(\pi\omega/a)}} \left[e^{\pi\omega/2a} c_{k}^{(1)} + e^{-\pi\omega/2a} c_{-k}^{(2)\dagger} \right]$$
$$b_{k}^{(2)} = \frac{1}{\sqrt{2\sinh(\pi\omega/a)}} \left[e^{\pi\omega/2a} c_{k}^{(2)} + e^{-\pi\omega/2a} c_{-k}^{(1)\dagger} \right]$$

where $c_k^{(1,2)}$ annihilates the Minkowski vacuum:

$$c_k^{(1,2)}|0_M
angle=0$$

The Scalar Field in Curved Spacetime The Unruh Effect

Thermal Radiation

• In the same manner as before,

$$\langle n_R \rangle_{\text{M-vacuum}} = rac{1}{e^{2\pi\omega/a} - 1} \delta(0)$$

- The delta has to do with our use of nonsquare-integrable modes
 - It is possible to obtain a finite result restricting the size of spacetime and thus using wave packet modes
- The factor we obtain reminds us of thermal radiation with temperature

$$T = \frac{a}{2\pi}$$

• Interpretation: an accelerated observer measures thermal radiation in the Minkowski vacuum

For Further Reading

S. Carroll.

Spacetime and Geometry. Cambridge University Press, 2019.

R. Wald.

General Relativity.

The University of Chicago Press, 1984.

E. Frodden, N. Valdés.

Unruh Effect

Int. J. Mod. Phys. A33, 2018.

For Further Reading Thanks

Thanks! :)

三日 のへの

Ξ.⊁.

・ロト ・回ト ・ 回ト ・

Alan Müller The Unruh Effect