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Pieces Which Look Flat

A manifold is a set M, together with a collection of subsets
{Uα}, such that:

Each Uα has a bijection φα with an open subset of Rn︸ ︷︷ ︸
a bunch of open balls

(coordinate systems)
What we call xµ is short for (φα)µ

Each point of M is in at least one Uα
(every point is described by a coordinate system)
There are C∞ transition functions between coordinate systems
(coordinate transformations)

Summary: a manifold is a set made of subsets which
look like Rn
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Coordinate Systems and Transformations

Figure: Coordinate systems and transformations.
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Directional Derivative Operators

A vector at a point p is a linear function V : F → R obeying
the Leibniz rule (F is the set of all C∞ scalar fields︸ ︷︷ ︸

f :M→R

)

Intuition: every curve γ : R→ M parametrized by λ and
which goes through p defines a vector

V (f ) ≡ d
dλ (f ◦ γ)

∣∣∣∣
p
∈ R

Leibniz rule:

V (fg) = df
dλ

∣∣∣∣
p

g (p) + f (p) dg
dλ

∣∣∣∣
p
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The Tangent Space

The set of all vectors at a point p forms a vector space called
the tangent space Tp

Given a coordinate system xµ, partial derivatives ∂µ form a
basis for Tp:

V = d
dλ = dxµ

dλ︸︷︷︸
≡V µ

∂µ

We denote these vectors generically by their components V µ

in some coordinate system
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Vector Transformation Law

From the chain rule of derivatives we find the vector
transformation law:

V ′ = V ⇒ V ′µ∂′µ = V µ∂µ = V µ∂x ′ν
∂xµ ∂

′
ν

⇒ V ′µ = ∂x ′µ
∂xν V ν

Compare with the Lorentz transformation

V ′µ = ΛµνV ν

Alan Müller The Unruh Effect



Manifolds
Curvature

Quantum Field Theory in Curved Spacetime

The Definition
Vectors
Tensors
The Metric

Coordinate Basis

Figure: Coordinate basis.
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Another Kind of Vector

A dual vector at a point p is a linear function ω : Tp → R
The set of all dual vectors at a point p forms a vector space
called the cotangent space T ∗p

The set
(
T ∗p
)∗ can be identified with Tp

(so a vector is a linear function V : T ∗p → R)

Example
Given a coordinate system xµ, the functions defined by
dxµ (∂ν) = δµν form a coordinate basis for the cotangent space.
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It Transforms as a Covariant Vector

Expansion in coordinate basis: ω = ωµdxµ

Component notation: ωµ
Dual vector transformation law:

ω′µ =
(

Λ−1
)ν

µων −→ ω′µ = ∂xν
∂x ′µων
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A Multilinear Map

A (k, l) tensor at a point p is a multinear function
T : T ∗p × ...× T ∗p︸ ︷︷ ︸

k

× Tp × ...× Tp︸ ︷︷ ︸
l

→ R

The set of all tensors at p forms a vector space

Examples
A vector is a (1, 0) tensor and a dual vector is a (0, 1) tensor.
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A Product Between Tensors

The outer product of a (k, l) tensor T with an (m, n) tensor
S is a (k + m, l + n) tensor T ⊗ S defined by

T ⊗ S
(
ω1, ..., ωk , ωk+1, ..., ωk+m; v1, ..., vl , vl+1, ..., vl+n

)
= T

(
ω1, ..., ωk , v1, ..., vl

)
S
(
ωk+1, ..., ωk+m, vl+1, ..., vl+n

)
(things we are used to writing as Tµ1...µk

ν1...νl Sµk+1...µk+m
νl+1...νl+n)

Example
The outer product ∂µ1 ⊗ ...⊗ ∂µk ⊗ dxν1 ⊗ ...⊗ dxνl forms a
coordinate basis for the vector space of tensors at a point.
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It Transforms as a Tensor

Expansion in coordinate basis:
T = Tµ1...µk

ν1...νl∂µ1 ⊗ ...⊗ ∂µk ⊗ dxν1 ⊗ ...⊗ dxνl

Component notation: Tµ1...µk
ν1...νl

Tensor transformation law:

T ′µ1...µk
ν1...νl = Λµ1σ1 ...Λµk

σk

(
Λ−1

)ρ1
ν1 ...

(
Λ−1

)ρl
νl T σ1...σk

ρ1...ρl

−→ T ′µ1...µk
ν1...νl = ∂x ′µ1

∂xσ1 ...
∂x ′µk

∂xσk

∂xρ1
∂x ′ν1 ...

∂xρl

∂x ′νl
T σ1...σk

ρ1...ρl
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A Special Kind of Tensor

A metric is a (0, 2), symmetric, nondegenerate tensor field︸ ︷︷ ︸
a tensor ∀p ∈ M

Rank (0, 2): takes two vectors and gives a real number
(inner product in tangent spaces)
Symmetric: gµν = gνµ
Nondegenerate: determinant doesn’t vanish
(inverse metric)

For every point p ∈ M, one can always find a set of
locally inertial coordinates such that gµν is in
canonical form (+1’s and −1’s)

Convention:
Riemannian: all plus (positive-definite)
Lorentzian: one single minus −→ spacetime!
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A Norm

We classify a vector V µ in the following way

if gµνV µV ν is


< 0, V µ is timelike
= 0, V µ is null
> 0, V µ is spacelike

In locally inertial coordinates (t, x , y , z) at a point p, a
timelike vector is said to be

Future-directed if it has a component in the direction of ∂t
Past-directed if it has a component in the direction of −∂t

Example
Trivial examples are future-directed ∂t and past-directed −∂t .
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Partial Derivatives Do Not Transform As We Want

Partial derivatives do not transform properly
Scalars:

∂′µφ
′ = ∂xν

∂x ′µ ∂νφ "

Vectors:

∂′µV ′ν = ∂xσ
∂x ′µ ∂σ

(
∂x ′ν
∂xρ V ρ

)
= ∂xσ
∂x ′µ

∂x ′ν
∂xρ ∂σV ρ + ∂xσ

∂x ′µ
∂2x ′ν
∂xσ∂xρV ρ 8
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Generalization

The covariant derivative ∇µ generalizes the partial
derivative ∂µ and is defined from the Christoffel symbols

Γσµν = 1
2gσρ (∂µgνρ + ∂νgρµ − ∂ρgµν)

Scalars: ∇µφ = ∂µφ
Contravariant vectors: ∇µV ν = ∂µV ν + ΓνµλV λ

Covariant vectors: ∇µων = ∂µων − Γλµνωλ
Tensors:

∇σTµ1...µk
ν1...νl =∂σTµ1...µk

ν1...νl

+ Γµ1
σλTλ...µk

ν1...νl + ...+ Γµk
σλTµ1...λ

ν1...νl

− Γλσν1T
µ1...µk

λ...νl − ...− Γλσνl
Tµ1...µk

ν1...λ
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The Definition

The Riemann tensor field is defined from the
Christoffel symbols as

Rρ
σµν = ∂µΓρνσ − ∂νΓρµσ + ΓρµλΓλνσ − ΓρνλΓλµσ

Flat spacetime ⇔ Rρ
σµν = 0 everywhere
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Killing Vectors

A Killing vector field Kµ is one which satisfies
Killing’s equation

∇(µKν) = 0
Given Kµ, there’s a coordinate system such that
K = ∂σ∗ ⇔ ∂σ∗gµν = 0, for some coordinate xσ∗

Symmetry under xσ∗ → xσ∗ + aσ∗
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Generalizing a Theory
Flat spacetime:

S =
∫

dnxL (φi , ∂µφi )

Curved spacetime:
ηµν −→ gµν
Require coordinate-invariance

∂µ −→ ∇µ dnx ′ −→ dnx
√
−g

Assert that the theory remains true:

S =
∫

dnx
√
−gL̂ (φi ,∇µφi )︸ ︷︷ ︸

≡L

∂L̂
∂φi
−∇µ

[
∂L̂

∂ (∇µφi )

]
= 0
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The Scalar Field in Flat Spacetime
Lagrangian:

L = −1
2η

µν∂µφ∂νφ−
1
2m2φ2

EOM: (
�−m2

)
φ = 0

where � ≡ ηµν∂µ∂ν
Positive-frequency modes:

∂t fk = −iωk fk
in some globally inertial coordinate system
Field mode expansion:

φ ∝
∫

dk
(
ak fk + a†k f ∗k

)
Alan Müller The Unruh Effect
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The Scalar Field in Curved Spacetime
Lagrangian:

L =
√
−g

(
−1
2gµν∂µφ∂νφ−

1
2m2φ2

)
EOM: (

�−m2
)
φ = 0

where � ≡ gµν∇µ∇ν
Positive-frequency modes:

∂σ∗fk = −iωk fk
where ∂σ∗ is a future-directed Killing vector in some
coordinate system
Field mode expansion:

φ ∝
∫

dk
(
ak fk + a†k f ∗k

)
Alan Müller The Unruh Effect
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The Problem

Is there any such future-directed Killing vector in my
spacetime at all?
If there are more than one, which one I should I use to define
positive-frequency modes?

Each one is a partial derivative in a particular coordinate
system, is there any coordinate system which is preferred?

Alan Müller The Unruh Effect
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Two Sets of Modes
Suppose two such Killing vectors:

∂σ∗ in some coordinate system xµ
∂ρ∗ in some coordinate system yµ

Positive-frequency modes:

∂σ∗fi = −iωi fi ∂ρ∗gi = −iωigi

(i is just notation, can be discrete or continuous)
Field mode expansion:

φ ∝
∑

i

(
ai fi + a†i f ∗i

)
φ ∝

∑
i

(
bigi + b†i g∗i

)
Vacuum states:

ai |0f 〉 = 0 bi |0g〉 = 0
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Bogolubov Transformations
Both sets must be a basis for the same function space

The transformations between these two sets are called the
Bogolubov transformations:

gi =
∑

j

(
αij fj + βij f ∗j

)
fi =

∑
j

(
α∗jigj − βjig∗j

)
The expansion coefficients (now promoted to creation and
annihilation operators) must transform accordingly in order to
describe the same field:

ai =
∑

j

(
αjibj + β∗ji b

†
j

)
bi =

∑
j

(
α∗ijaj − β∗ij a

†
j

)
Alan Müller The Unruh Effect
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Vacuum Is Relative

Number operator of i-th g-mode:

ngi = b†i bi =
∑
jk

(
αija†j − βijaj

) (
α∗ikak − β∗ika†k

)
Calculating f -VEV of ngi :

〈0f |ngi |0f 〉 =
∑
jk
βijβ

∗
ik〈0f |aja†k |0f 〉 ∝

∑
jk
βijβ

∗
ikδjk =

∑
j
|βij |2

No reason to believe it’s zero:

〈ngi〉f -vacuum 6= 0

Alan Müller The Unruh Effect
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Massless Scalar in 2D

Massless scalar field:
�φ = 0

Two-dimensional Minkowski space in globally inertial
coordinates:

ds2 = −dt2 + dx2

Alan Müller The Unruh Effect



Manifolds
Curvature

Quantum Field Theory in Curved Spacetime

The Scalar Field in Curved Spacetime
The Unruh Effect

An Accelerated Observer

Trajectory of an observer with acceleration α:

t (τ) = 1
α

sinh (ατ)

x (τ) = 1
α

cosh (ατ)

Indeed, we can show that

aµaµ = α2

where aµ ≡ d2xµ
/

dτ2 is 4-acceleration

Alan Müller The Unruh Effect
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Rindler Coordinates
From globally inertial coordinates (t, x) to Rindler
coordinates (η, ξ):

t = 1
aeaξ sinh (aη) x = 1

aeaξ cosh (aη) x > |t|

where a is some constant parameter
In these coordinates, the accelerated trajectory becomes

η (τ) = α

a τ (varies)

ξ (τ) = 1
a ln

( a
α

)
(constant)

Something similar can be shown for x < − |t|:

t = −1
aeaξ sinh (aη) x = −1

aeaξ cosh (aη) x < − |t|
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A Timelike Killing Vector

In these coordinates, our metric looks like

ds2 = e2aξ
(
−dη2 + dξ2

)
We immediately see ∂ηgµν = 0⇒ ∂η is a Killing vector
Performing a coordinate transformation on this vector,

∂η = ∂t
∂η
∂t + ∂x

∂η
∂x

= a (x∂t + t∂x )

For x > |t|, ∂η is future-directed, for x < − |t|, past-directed

Alan Müller The Unruh Effect
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Rindler Coordinates

x

t

η

ξ

Figure: Minkowski spacetime in Rindler coordinates.
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A Set of Modes

In these coordinates, our massless KG looks like

e−2aξ
(
−∂2η + ∂2ξ

)
φ = 0

The mode gk = (4πω)−1/2 e−iωη+ikξ solves this equation and
satisfies ∂ηgk = −iωgk
But we need −∂ηgk = −iωgk for x < − |t|, since there ∂η is
past-directed, so we impose

g (1)
k =


1√
4πω e−iωη+ikξ for x > |t|

0 for x < − |t|

g (2)
k =

0 for x > |t|
1√
4πω eiωη+ikξ for x < − |t|
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Mode Expansion

This way, we expand

φ =
∫

dk
(
b(1)

k g (1)
k + b(1)†

k g (1)∗
k + b(2)

k g (2)
k + b(2)†

k g (2)∗
k

)
The Rindler vacuum will be defined by

b(1,2)
k |0R〉 = 0

Our job:
Find Bogolubov coefficients relating Minkowski and Rindler
Calculate Minskowski VEV of the Rindler number operator

Shortcut: find a set of modes which share the same vacuum
as Minkowski
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A Shortcut

From the definition of the Rindler coordinates,

e−a(η−ξ) =
{

a (−t + x) x > |t|
a (t − x) x < − |t|

ea(η+ξ) =
{

a (t + x) x > |t|
a (−t − x) x < − |t|

Alan Müller The Unruh Effect
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Finding New Modes
Assuming k > 0, we have, for x > |t|,

√
4πωg (1)

k = aiω/a (−t + x)iω/a

For x < − |t|,
√
4πωg (2)

k = a−iω/a (−t − x)−iω/a

Taking complex conjugate and reversing momentum of g (2)
k ,

√
4πωg (2)∗

−k = aiω/aeπω/a (−t + x)iω/a

So the combination
√
4πω

[
g (1)

k + e−πω/ag (2)∗
−k

]
= 2aiω/a (−t + x)iω/a

works for both x > |t| and x < − |t| (an identical result is
obtained for k < 0)
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A New Set of Modes

A similar reasoning leads to
√
4πω

[
g (2)

k + e−πω/ag (1)∗
−k

]
= 2aiω/a (−t − x)iω/a

A new set of modes which share the same vacuum as
Minkowski:

h(1)
k = 1√

2 sinh (πω/a)

[
eπω/2ag (1)

k + e−πω/2ag (2)∗
−k

]
h(2)

k = 1√
2 sinh (πω/a)

[
eπω/2ag (2)

k + e−πω/2ag (1)∗
−k

]
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The Bogolubov Transformation

These define a Bogolubov transformation from g (1,2)
k to h(1,2)

k
We can use this to write the Bogolubov transformation
between operators:

b(1)
k = 1√

2 sinh (πω/a)

[
eπω/2ac(1)

k + e−πω/2ac(2)†
−k

]
b(2)

k = 1√
2 sinh (πω/a)

[
eπω/2ac(2)

k + e−πω/2ac(1)†
−k

]

where c(1,2)
k annihilates the Minkowski vacuum:

c(1,2)
k |0M〉 = 0
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Thermal Radiation

In the same manner as before,

〈nR〉M-vacuum = 1
e2πω/a − 1

δ (0)

The delta has to do with our use of nonsquare-integrable
modes

It is possible to obtain a finite result restricting the size of
spacetime and thus using wave packet modes

The factor we obtain reminds us of thermal radiation with
temperature

T = a
2π

Interpretation: an accelerated observer measures thermal
radiation in the Minkowski vacuum
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