The Unruh Effect

Alan Miiller

Institute of Theoretical Physics
S3o Paulo State University

Seminar of QFT 1, 2020

Alan Miiller The Unruh Effect



Outline

@ Manifolds
@ The Definition
@ Vectors
@ Tensors
@ The Metric

© Curvature
@ Covariant Derivatives
@ The Riemann Curvature Tensor
o Killing Vectors

© Quantum Field Theory in Curved Spacetime
@ The Scalar Field in Curved Spacetime
@ The Unruh Effect n

Alan Miiller The Unruh Effect



The Definition

Manifolds Vectors

Outline

@ Manifolds
@ The Definition

Alan Miiller The Unruh Effect



Manifolds

The Definition

Pieces Which Look Flat

@ A manifold is a set M, together with a collection of subsets
{U,}, such that:
e Each U, has a bijection ¢, with an open subset of R"

a bunch of open balls
(coordinate systems)

e What we call x* is short for (¢a )"
e Each point of M is in at least one U,
(every point is described by a coordinate system)
e There are C* transition functions between coordinate systems
(coordinate transformations)
@ Summary: a manifold is a set made of subsets which
look like R"
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Figure: Coordinate systems and transformations. n
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Manifolds

Directional Derivative Operators

@ A vector at a point p is a linear function V : F — R obeying

the Leibniz rule (F is the set of all C* scalar fields)
—_
f:M—R

@ Intuition: every curve v : R — M parametrized by A and
which goes through p defines a vector

d

V(f)= —(foy)| €R
d\ p
o Leibniz rule:
_ df dg
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Manifolds

The Tangent Space

@ The set of all vectors at a point p forms a vector space called
the tangent space T,

@ Given a coordinate system x*, partial derivatives 9, form a

basis for Tp:
d dxH
V=—=—90
d\ dx *
——
=Ve

@ We denote these vectors generically by their components V*
in some coordinate system
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Vector Transformation Law

@ From the chain rule of derivatives we find the vector
transformation law:

V=V =V, =VHY, = V“aiw(‘?/
® s Oxt ¥
Ox'®
Vi = Z
= oxY

@ Compare with the Lorentz transformation

VI = N, VY
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Coordinate Basis

Figure: Coordinate basis. n
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Manifolds The Definition

Another Kind of Vector

@ A dual vector at a point p is a linear function w: T, — R

@ The set of all dual vectors at a point p forms a vector space
called the cotangent space T,

o The set (T;)* can be identified with T,
(so a vector is a linear function V : T — R)

Given a coordinate system x*, the functions defined by
dx* (0,) = ¢# form a coordinate basis for the cotangent space.
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It Transforms as a Covariant Vector

@ Expansion in coordinate basis: w = w,dx*
e Component notation: w,

@ Dual vector transformation law:

,  OxV

/
= —w
H Ox'H v

—1\¥
wuz(/\ ) pWy — | W
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A Multilinear Map

@ A (k, /) tensor at a point p is a multinear function
T:Tyx..xTyxTpx..xT,—=R

k I
@ The set of all tensors at p forms a vector space

A vector is a (1,0) tensor and a dual vector is a (0, 1) tensor.
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A Product Between Tensors

@ The outer product of a (k, /) tensor T with an (m, n) tensor
Sisa(k+ m,/+n)tensor T ® S defined by

1 k  k+1 k+m.
T®S (w e WL W T LW SV ey VI VI Ty eeey v,+,,>

_ 1 k k+1 k+
= T<w ey W ,v1,...,v/)5<w tw m,vH_l,...,vH_,,)

i 1ti M1k Hk+1---Hk
(things we are used to writing as T .y SHEE *'"u/+1...w+n)

The outer product 9, ® ... ® 9, ® dx"' ® ... ® dx” forms a
coordinate basis for the vector space of tensors at a point.
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It Transforms as a Tensor

@ Expansion in coordinate basis:
T =TH 0, 0, @ .. @0, @dx" @ ...@dx"

e Component notation: TH1-Hk,

@ Tensor transformation law:

p1 p1
T fk — AM1 Hic -1 -1 01...0%k
Tt = NG NG (M) (A, T,

141 Tk p1 pI
" _ Ox Ox'He Ox Ox

01...0k
vy —

Oxo1 " Ox%k Ox1 T OxVi PL---PI
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A Special Kind of Tensor

e A metric is a (0,2), symmetric, nondegenerate tensor field
a tensor Vp e M
o Rank (0,2): takes two vectors and gives a real number
(inner product in tangent spaces)
o Symmetric: g,, = g,
o Nondegenerate: determinant doesn’t vanish
(inverse metric)

e For every point p € M, one can always find a set of

locally inertial coordinates such that g, is in
canonical form (+1's and —1's)

o Convention:

e Riemannian: all plus (positive-definite)
o Lorentzian: one single minus — spacetime!
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The Metric

@ We classify a vector V* in the following way

<0, V*is timelike
if g VFVYis ¢ =0, V*is null
> 0, V*#is spacelike

@ In locally inertial coordinates (¢, x, y, z) at a point p, a
timelike vector is said to be

e Future-directed if it has a component in the direction of J;
e Past-directed if it has a component in the direction of —0;

Trivial examples are future-directed 9; and past-directed —0. n
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Curvature
Killing Vectors

Partial Derivatives Do Not Transform As We Want

@ Partial derivatives do not transform properly

o Scalars: O
;o OX
' = o n0w0 ¥
o Vectors:
ox° ox"v
/ v __ P
GV = 3x’“ag <8xf’ v )
o v 3,0 2 /v
_ 0x° Ox’ p 0x° 0%x b x
Ox' 9xr 7 Ox'" Ox%OxP
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Generalization

@ The covariant derivative V, generalizes the partial
derivative 0, and is defined from the Christoffel symbols

1
Mo = Egap (Ou8up + Ovgop — Op8ur)

Scalars: V¢ = 0,.¢

Contravariant vectors: V,V¥ = 9, V" + T, V*
Covariant vectors: V,w, = 0w, — Ff;ywA

o Tensors:

VU T'ulm'ukul...u/ :80 T'ulm'ukul...u/
1 Tk Mk 1. A
+ raAT vt t ra)\T 2]

A M1k A 410 [k
- rg-yl T Ayp e T rgyl T V1. A n
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The Definition

@ The Riemann tensor field is defined from the
Christoffel symbols as

A A
Re oy = Ol by = 0Ty + 03Ty = T\ o

o Flat spacetime < R”;,, = 0 everywhere
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Killing Vectors

e A Killing vector field K* is one which satisfies
Killing’s equation
VK =0

o Given K*, there's a coordinate system such that
K = 0y« < 058 = 0, for some coordinate x7

o Symmetry under x° — x7 + a%
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Generalizing a Theory

o Flat spacetime:

Sz/an£(¢i,5u¢i)

@ Curved spacetime:

° nmj ? guz/
e Require coordinate-invariance

Oy — V, d'x' — d"x\/—g
e Assert that the theory remains true:
5= [y gL (6:,9,9)
=L
oL oL | _ 0
0¢; (V,.91) n

-V,
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The Scalar Field in Flat Spacetime

o Lagrangian:

[ f%n‘“’auqb&,qb _ %m2¢2

e EOM:
(D - m2) ¢ =0
where [0 = *70,0,
@ Positive-frequency modes:

atfk = —ikak

in some globally inertial coordinate system
o Field mode expansion:

b o /dk (akfk 4 alfk*) &
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The Scalar Field in Curved Spacetime

o Lagrangian:
L= F( g""0,¢0,¢ — fm 2 )
e EOM:
(O-m?)g=0

where 00 = gV, V,,
@ Positive-frequency modes:

8(7* fk = —iwkfk

where J,+ is a future-directed Killing vector in some
coordinate system
@ Field mode expansion:

¢ o /dk (akfic + 2} ;) 23]
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The Problem

@ Is there any such future-directed Killing vector in my
spacetime at all?

@ If there are more than one, which one | should | use to define
positive-frequency modes?
e Each one is a partial derivative in a particular coordinate
system, is there any coordinate system which is preferred?
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Two Sets of Modes

@ Suppose two such Killing vectors:
@ J,+ in some coordinate system x*
e J,+ in some coordinate system y*

@ Positive-frequency modes:
O+ fi = —iwif; O0p+gi = —lwigi

(i is just notation, can be discrete or continuous)
@ Field mode expansion:

ooy (afi+alf’)  docd (bigi+bler)

@ Vacuum states:

[3il0) =0 | bi[0g) =0 B
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Bogolubov Transformations

@ Both sets must be a basis for the same function space
e The transformations between these two sets are called the
Bogolubov transformations:

& = (fy+ Bify)
J
fi=2 (g — big)
J
e The expansion coefficients (now promoted to creation and

annihilation operators) must transform accordingly in order to
describe the same field:

a=Y (a,-,-b,- + 5;.bj)

J

b; = Z (a}j-aj — ﬁ,-J*-aT) n

J
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Vacuum Is Relative

@ Number operator of i-th g-mode:

s = bl = 3 (3] — Byay) (oo - Fical)

Jjk
e Calculating f-VEV of ng;:

(0 ngil0f) = >~ BB (0rlajafl0r) o< > ByBicdu = > 185l
Jjk Jk J

@ No reason to believe it's zero:

<ngi> f-vacuum 7& 0
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Massless Scalar in 2D

@ Massless scalar field:
Op=0

@ Two-dimensional Minkowski space in globally inertial
coordinates:
ds? = —dt? + dx?
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An Accelerated Observer

@ Trajectory of an observer with acceleration «:

t(r) =~ sinh (o)

x (1) = 1 cosh ()
(6
@ Indeed, we can show that
a'a, = o?
where a# = d?x*/ d7? is 4-acceleration

Alan Miiller The Unruh Effect



The Scalar Field in Curved Spacetime

Quantum Field Theory in Curved Spacetime The Unruh Effect

Rindler Coordinates

e From globally inertial coordinates (t, x) to Rindler
coordinates (7, ¢):

1 1
t = —e® sinh (an) x = =% cosh (an) x > |t]
a a

where a is some constant parameter
@ In these coordinates, the accelerated trajectory becomes
e

n(r) = 57 (varies)
§(r) = %In <;> (constant)

e Something similar can be shown for x < — |t|:
1 1
t = ——e®sinh (a = ——e* cosh (a < —|t
“esinh (an)  x=—efeosh(an)  x< -l |
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A Timelike Killing Vector

@ In these coordinates, our metric looks like

ds® = 22 (—dn2 + d£2)
o We immediately see 0,8, = 0 = 0, is a Killing vector
@ Performing a coordinate transformation on this vector,

ot . 0
0= 5,0+ af;ax

= a(x@t + t@x)

e For x > |t|, Oy is future-directed, for x < — |t|, past-directed
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Rindler Coordinates

\
£
n
£
X
Figure: Minkowski spacetime in Rindler coordinates. n
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A Set of Modes

@ In these coordinates, our massless KG looks like
2 2 2 _
e 2 (~02+02) =0

o The mode gy = (4mw)~Y/2 e=iwntikE solves this equation and
satisfies Opgx = —iwgk

o But we need —0,gx = —iwgi for x < — |t|, since there 0, is
past-directed, so we impose

O \/erwe_"‘“”“kg for x > |¢|
g 0 for x < —|t|
g(2) _Jo for x > |t|
k 1 iwn+ik& _
ris for x < — |t n
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Mode Expansion

@ This way, we expand
¢ /dk g(l)—}—b(l)T (1)= bl(<2)g152) +bl(<2)TgI£2)*>
@ The Rindler vacuum will be defined by

b2 |0R) =

@ Our job:

e Find Bogolubov coefficients relating Minkowski and Rindler
o Calculate Minskowski VEV of the Rindler number operator

@ Shortcut: find a set of modes which share the same vacuum
as Minkowski n
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A Shortcut

@ From the definition of the Rindler coordinates,
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Finding New Modes

@ Assuming k > 0, we have, for x > |t
\/Rgﬁ” = a/3 (—t 4 x)“/2

e For x < —|t|,

\/mgf) — a—iw/a (—t B X)fiw/a

. . . )

@ Taking complex conjugate and reversing momentum of g,”’,

47rwg£2k)* _ aiw/aemu/a (—t _|_X)iw/a
@ So the combination

Varw [g,gl) + e*””/aggz*} =23/ (—t + x)iw/"

works for both x > [t| and x < — |t| (an identical result is n
obtained for k < 0)
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A New Set of Modes

@ A similar reasoning leads to
4w [glgz) + e_m/ag(,l,z*} =2aw/a (—t— X)iw/a

@ A new set of modes which share the same vacuum as

Minkowski:
1
h(l) _ mw/2a (1) —rw/2a (2)*
k' = J2sinh (rw/a) [/ + e 2o
1
h(2) _ Tw/2a (2) —7w/2a (1)*
kT J2sinh (ra)a) [/ el
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The Bogolubov Transformation

@ These define a Bogolubov transformation from g,El’z) to hf(l’2)

@ We can use this to write the Bogolubov transformation
between operators:

1
b(l) __r [ amw/2a (1) —rw/2a (2)t
k 2sinh (mw/a) [e Ui Te “ }
1
b(2) _ ot [mw/2a (2) —7w/2a (1)T
k 2sinh (7w/a) [e U Te i }

where c(l’z) annihilates the Minkowski vacuum:

2 om) =0
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Thermal Radiation

@ In the same manner as before,

1

<nR>M—vacuum = m(s (0)

@ The delta has to do with our use of nonsquare-integrable
modes

e It is possible to obtain a finite result restricting the size of
spacetime and thus using wave packet modes

@ The factor we obtain reminds us of thermal radiation with

temperature
a
T=—
2w
@ Interpretation: an accelerated observer measures thermal n

radiation in the Minkowski vacuum
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For Further Reading

@ S. Carroll.

Spacetime and Geometry.
Cambridge University Press, 2019.

¥ R. Wald.
General Relativity.

The University of Chicago Press, 1984.

[d E. Frodden, N. Valdés.
Unruh Effect
Int. J. Mod. Phys. A33, 2018.
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