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ABSTRACT

Haag’s theorem has been interpreted as establishing that quantum field theory cannot

consistently represent interacting fields. Earman and Fraser have clarified how it is pos-

sible to give mathematically consistent calculations in scattering theory despite the the-

orem. However, their analysis does not fully address the worry raised by the result. In

particular, I argue that their approach fails to be a complete explanation of why Haag’s

theorem does not undermine claims about the empirical adequacy of particular quantum

field theories. I then show that such empirical adequacy claims are protected from Haag’s

result by the techniques that are required to obtain theoretical predictions for realistic

experimental observables. I conclude by showing how Haag’s theorem is illustrative of a

general tension between the foundational significance of results that can be obtained in

perturbation theory and non-perturbative characterizations of the content of quantum

field theory.
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1 Introduction

Despite the often noted empirical successes of the standard model of particle

physics, the quantum field theories on which it is based have been shown to be

mathematically questionable in a number of respects. One such mathematical

problem is captured by a result originally proved by Haag ([1955]), and
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subsequently generalized by Hall and Wightman ([1957]).1 Haag’s theorem

has received significant attention because it raises the spectre of inconsistency

in the context of interacting quantum field theories. For example, Teller

([1995], p. 115) claims that because of the theorem ’there appears to be no

known consistent formalism within which interacting quantum field theory

can be expressed’.2 If this claim were correct, then it would be difficult to

understand how so much empirical evidence has been accumulated for the

interacting quantum field theories that make up the standard model. Roughly,

the theorem shows that the assumptions required to form the interaction pic-

ture in which scattering theory calculations are carried out are consistent only

in the case of non-interacting theories. In this sense, the theorem does establish

the inconsistency of a set of assumptions that are sometimes simultaneously

assumed to hold in interacting quantum field theories. In this article, I show

why this does not undermine the empirical adequacy claims that are taken to

support the quantum field theories that make up the standard model.

Earman and Fraser have made progress in this direction by arguing that

previous attempts to articulate the foundational significance of the theorem

tend toward ‘overstatement’ and even ‘hyperventilation’ (Earman and Fraser

[2006], p. 305, 323). Their analysis leads them to three central conclusions:

First, the theorem emphasizes the importance of unitarily inequivalent repre-

sentations of the canonical commutation relations, whose existence in quan-

tum field theory distinguish it from non-relativistic quantum mechanics.

Second, it makes it clear that non-Fock representations have an important

role to play in quantum field theory. Finally, they claim that the theorem

undermines the standard interaction-picture formalism and the approaches

to scattering theory that depend on it. In particular they claim that ‘while

Haag’s theorem does not show that no quantum field theory exists which

differs from a free field theory, it does pose problems for some of the tech-

niques used in textbook physics for extracting physical predictions from the

theory’ (Earman and Fraser [2006], p. 306). They diagnose the strong reaction

to the theorem in the literature as referring to this fact (Earman and Fraser

[2006], pp. 306–7). While I agree with the first two conclusions that they draw

concerning the importance of the theorem, this article provides further ana-

lysis of the third. This further analysis is necessary in order to properly under-

stand how Haag’s theorem bears on the issues of consistency and empirical

adequacy for quantum field theory.3 The textbook calculations they refer to

have played an important role in establishing the empirical adequacy of

1 The complex historical development of the theorem has been recounted by Lupher ([2005]).
2 Earman and Fraser note that similar claims can be found in (Barton [1963], p. 157); (Huggett

and Weingard [1994], p. 376); (Sklar [2000], p. 28).
3 Earman and Fraser agree; they note that their analysis leaves ‘unfinished business in explaining

why perturbation theory works as well as it does’ (Earman and Fraser [2006], pp. 306–7).

Michael E. Miller2

 at Periodicals D
ept U

niversity L
ibraries N

orthern Illinois U
niversity on Septem

ber 1, 2016
http://bjps.oxfordjournals.org/

D
ow

nloaded from
 

Deleted Text: paper 
Deleted Text: ), 
Deleted Text: p. 
Deleted Text: ), 
Deleted Text: ), 
Deleted Text: -
Deleted Text: 30
Deleted Text: paper 
http://bjps.oxfordjournals.org/


particular models of the theory. If Haag’s theorem shows such calculations to

be predicated on an inconsistent set of assumptions, then those empirical

adequacy claims are unreliable.

Scattering theory calculations are the basis for comparison between quan-

tum field theories and experiments, and thus some explanation for why field-

theoretic scattering theory matches empirical data, despite Haag’s result, is

required. In order to explain this success, Earman and Fraser appeal to a

mathematically rigorous formalism for scattering theory due to Haag and

Ruelle that circumvents Haag’s theorem. While this formalism does demon-

strate that scattering theory can be formalized in a mathematically consistent

manner, the existence of such a formalism does not fully resolve the worry

raised by Haag’s theorem because it does not explain why theoretical predic-

tions for realistic experimental observables give empirically adequate results.

There is, however, a clear reason why such theoretical calculations are not

undermined by Haag’s theorem; namely, in those cases where the interaction

picture is employed, the calculational techniques that are required to extract

predictions from empirically adequate field theories violate some of the as-

sumptions required to prove the theorem. In other cases, the theoretical cal-

culations that are used to compare to experimental data simply do not use the

interaction picture in any way. It is these facts that explain why Haag’s the-

orem does not directly undermine claims about the empirical adequacy of

quantum field theories.

This situation shows that Haag’s theorem is illustrative of a general tension

that exists in much of the literature engaged in the philosophical appraisal of

the foundations of quantum field theory. It is often unclear how fully math-

ematically rigorous models inform claims about the actual world because they

are defined in a reduced number of spacetime dimension or do not represent

realistic interactions. Conversely, it is often not obvious whether one should

assign interpretive significance to the changes in the mathematical formalism

that are required to render calculations of physical observables well defined. A

complete understanding of the significance of Haag’s theorem requires ana-

lysis of how it bears on both of these problems. I argue that Haag’s theorem

should be understood as a constraint on the nature of the relation between

results obtained in perturbation theory and exact non-perturbative character-

izations of quantum field theories, in the sense that it rules out one particular

method for forming the infrared limit of a fully regularized theory.

My argument proceeds as follows: The second section briefly introduces the

interaction-picture formalism for scattering theory and explains how Haag’s

theorem shows that it is predicated on an inconsistent set of assumptions. In

the third section, I consider Earman and Fraser’s explanation of the success of

scattering theory and show that it does not resolve the worry that empirical

adequacy claims are undermined by the result. The fourth section shows how

Haag’s Theorem and Empirical Adequacy 3
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the calculational techniques required to obtain empirical predictions avoid

Haag’s theorem by considering examples of calculations in quantum electro-

dynamics and quantum chromodynamics. In the concluding section, I address

how Haag’s theorem bears on the relation between perturbative calculations

and exact non-perturbative structure.

2 Haag’s Theorem and the Interaction Picture

Haag’s theorem undermines the interaction picture and the standard ap-

proach to scattering theory. It does so by showing that the assumptions

required to formulate the interaction picture are inconsistent with the presence

of a non-trivial interaction in the theory. Thus, when the interaction picture is

used for calculations in theories that contain interactions like quantum elec-

trodynamics, the calculations possess an apparent mathematical inconsist-

ency. Furthermore, there is good reason to worry that this renders empirical

adequacy claims for particular field theories unreliable. Scattering theory pro-

vides the critical connection between a quantum field theory and experimental

observables such as cross-sections. Empirical adequacy claims for quantum

field theories are based on the agreement between cross-sections calculated

with scattering theory and cross-sections observed in experiments with particle

accelerators. When the quantum field theories of the standard model are used

in such calculations, they yield results that closely match the observed values

for the quantities. Much of the direct evidence for the empirical adequacy of

the standard model is derived, either directly or indirectly, from comparisons

of this sort. In some cases, these theoretical calculations use the interaction-

picture formalism that is undermined by Haag’s theorem. In this way, the

theorem seems to show that the formalism that has produced what can be

counted among the most precisely confirmed predictions of any physical

theory is mathematically inconsistent.

The interaction picture is an intermediate between the Schrödinger picture,

in which states evolve in time under the full Hamiltonian and operators are

stationary, and the Heisenberg picture, in which states are stationary and

operators evolve under the full Hamiltonian.4 States and operators in the

interaction picture are given the subscript ‘I’. The time evolution of operators

in the Heisenberg picture is determined by the Heisenberg equation of motion:

qOH ðtÞ=qt ¼ �i OH ðtÞ;H½ �. Operators in the Schrödinger picture are related to

the Heisenberg picture by the transformation, OS ¼ e�iHtOH ðtÞe
iHt, and the

states are related by cSðtÞ ¼ e�iHtcH . These transformations leave the matrix

elements of corresponding operators invariant,

4 Throughout, the subscripts H and S denote the Heisenberg and Schrödinger picture, respect-

ively. The Hamiltonian is the same in the Heisenberg and Schrödinger pictures, and thus does

not need a subscript.
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HhcjOH ðtÞjuiH¼HhcjeiHte�iHtOH ðtÞe
iHte�iHtjciH ð1Þ

¼ShcðtÞjOSjuðtÞiS;

and in this sense they are empirically equivalent. The interaction picture is

formed by writing the full Hamiltonian as H ¼ H0 þH1, where H0 is the free

Hamiltonian and H1 characterizes the interaction. The interaction picture is

then defined by letting the evolution of the operators be implemented by H0

and the evolution of the states be implemented by H1. It is connected to the

Schrödinger picture by the transformations OI ðtÞ ¼ eiH0
S

tOSe�iH0
S

t and

cI ðtÞ ¼ eiH0
S

tcSðtÞ. All three pictures agree at t¼ 0, as cI ð0Þ ¼ cSðOÞ ¼ cH

and OI ð0Þ ¼ OH ð0Þ ¼ OS.

These relations allow for the perturbative expansion of the time evolution

operator, which is defined by the relation cðt1Þ ¼ Uðt1; t0ÞcI ðt0Þ. Using the

transformations connecting the pictures it, can be shown that

Uðt; t0Þ ¼
X1
n¼0

ð�iÞn

n!

Z t

t0

dt1 � � �

Z t

t0

dtnTðH1
I ðt1Þ . . . H1

I ðtnÞÞ: ð2Þ

The S-matrix can then be defined in terms of the time evolution operator by,

Sjk ¼ lim
t2!1

lim
t1!�1

ukjUðt2; t1Þjuji; ð3Þ

and thus inserting the expansion for the time evolution operator yields the

Dyson expansion for the S-matrix,

S ¼
X1
n¼0

ð�iÞn

n!

Z 1
�1

dt1 � � �

Z 1
�1

dtnTðH1
I ðt1Þ . . . H1

I ðtnÞÞ; ð4Þ

where the time-ordered product rearranges the operators in the order of des-

cending time argument. In general, H1
I is a product of free field operators

describing the interaction between the fields. Evaluating the time-ordered

product of these products of field operators in the Dyson expansion can be

simplified through an application of Wick’s theorem. This theorem allows for

the time-ordered products in the expansion to be rewritten as a sum of con-

tracted normal products, which are vacuum expectation values of time-

ordered interaction-picture field operators.5 This technique allows for the per-

turbative evaluation of S-matrix elements for processes involving particular

initial and final states. The interaction picture is essential for this perturbative

evaluation because for t ¼ ±1 in the interaction picture, the Hilbert space

representation is simply the Fock representation for the free field. This makes

5 A detailed explanation can be found in, for example, (Greiner and Reinhardt [1996]).
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it possible to explicitly calculate vacuum expectation values of products of

interaction-picture field operators.6

There are three primary obstacles to the well-definedness of this approach

to the perturbative evaluation of field theoretic quantities, only one of which is

related to Haag’s theorem.7 The first two problems with the perturbative

evaluation of Equation (4) come from the presence of ultraviolet and infrared

divergences, respectively. Both types of divergences render individual terms in

the sum infinite and thus the whole expression ill defined. There are techniques

for isolating and controlling these divergences. These methods, and how they

restore the validity of perturbative evaluation of Equation (4) will be discussed

in Section 4. The third problem is that one is considering the sum of an infinite

set of terms and it must be determined whether that sum converges. There is

reason to think that in empirically interesting models it does not.8 The final

section of this article explains an approach to understanding the meaningful-

ness of perturbation theory in the face of this third problem. Of the three

obstacles to assigning meaning to the expression for the S-matrix, only the

presence of infrared divergences is related to Haag’s theorem. This class of

divergences prevents the establishment of a global unitary transformation

between the free and interacting fields, a critical assumption required for

forming the interaction picture.

Earman and Fraser provide a clear exposition of Haag’s ([1955]) original

argument and explain how Hall and Wightman ([1957]) generalized the the-

orem.9 My aim here is to review some of the standard assumptions that go into

the proof of the theorem and to show how the theorem undermines the exist-

ence of a global unitary transformation connecting the free and interacting

fields. As Earman and Fraser correctly note, all of the assumptions required

for the proof of the theorem are adopted in the approach to scattering theory

based on the interaction picture. Many of these assumptions are also taken as

axioms in the Wightman formalism for quantum field theory.10 Others are

introduced specifically for the construction of the interaction picture for the

perturbative evaluation of observables. The Wightman formalism consists of a

set of statements about the properties of a collection of vacuum expectation

values for a theory that together exhaust its physical content. They capture

6 This is not clear in the other pictures because one does not have an explicit representation of the

field operators at asymptotic times.
7 A clear discussion of all three problems can be found in (Haag [1992], pp. 70–1).
8 There are arguments going back to (Dyson [1952]) that suggest that the expansion in fact

diverges in empirically interesting models. This has been confirmed rigorously in some simplified

models.
9 Haag’s original version of the theorem fails to be fully general since it restricts attention to a

particular class of Hamiltonians. The generalization due to Hall and Wightman closes this gap

by extending Haag’s result to cover all Hamiltonians. Additional helpful exposition can be

found in (Duncan [2012]).
10 For the details of this approach, see, for example, (Streater and Wightman [1964], pp. 96–102).
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physical principles that are assumed to obtain for the objects described by the

perturbative evaluation of field theoretic quantities. As Duncan ([2012], p.

366) explains, the proof of Haag’s theorem can be understood as proceeding

in two stages: In the first stage, it is shown that if two collections of field

operators are globally unitarily equivalent, then the vacuum expectation

values of products of those field operators at equal times must be identical.

The second step is to show that this equality extends to arbitrary spacetime

arguments of the fields. An application of the Wightman reconstruction the-

orem then ensures that the conclusion for field theories characterized in terms

of vacuum expectation values also applies to field theories characterized in

terms of operators acting on a Hilbert space.

Consider two neutral scalar fields uj; j ¼ 1; 2, with conjugate momenta �j,

where for each j, ðuj; pjÞ is an irreducible representation of the equal time

canonical commutation relations,

½ujð~x; tÞ; pjð~x
0
; tÞ� ¼ idð~x � ~x0Þj ¼ 1; 2 ð5Þ

½ujð~x; tÞ;ujð~x
0
; tÞ� ¼ ½pjð~x; tÞ; pjð~x

0
; tÞ� ¼ 0:

Suppose further that the Euclidean transformations consisting of translations,

~a, and rotations, R, are implemented by unitary operators Ujð~a;RÞ,

Ujð~a;RÞujð~x; tÞU�1
j ð~a;RÞ ¼ ujðR~x þ ~a; tÞ ð6Þ

Ujð~a;RÞpjð~x; tÞU�1
j ð~a;RÞ ¼ pjðR~x þ ~a; tÞ:

These are standard assumptions used in perturbative calculations and in the

Wightman formalism. Finally, suppose that at some time, t, the fields are

related by a unitary transformation, V(t),

u2ð~x; tÞ ¼ V ðtÞu1ð~x; tÞV
�1ðtÞ; p2ð~x; tÞ ¼ V ðtÞp1ð~x; tÞV�1ðtÞ: ð7Þ

This is an assumption necessary for the construction of the interaction picture.

These assumptions are sufficient to show that if there are unique normalizable

Euclidean invariant states j0ji,
11 then they must be related by cj02i ¼ V ðtÞj01i,

where jcj ¼ ±1. From this, the equality of the vacuum expectation values for

products of equal time field operators follows directly.12 The extension of this

equality to arbitrary spacetime arguments requires additional assumptions.

Critically, the extension requires the full Poincaré invariance of the theory.

11 Earman and Fraser ([2006], pp. 321-2) note that this assumption follows from the classification

of representations of the inhomogeneous Lorentz group.
12 The details of the calculation are given in (Duncan [2012], pp. 367–8).

Haag’s Theorem and Empirical Adequacy 7
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Specifically, if ð~a;�Þ are Poincaré transformations implemented by the unitary

operators Tjð~a;�Þ, then the fields transform as

Tjð~a;�ÞujðxÞ ¼ ujð�~x þ ~aÞ; ð8Þ

and the j0ji satisfy

Tjð~a;�Þj0ji ¼ j0ji: ð9Þ

The content of Hall and Wightman’s generalization of Haag’s argument is

that on these assumptions, if u1 is a free field then its vacuum expectation

values are equal to those of u2. This entails that they will also agree on all of

their S-matrix elements.

Another way to state the content of the theorem is that if one assumes that

the fields belong to the same Hilbert space representation, then if one of the

fields is free, they are both free. It follows that free and interacting fields

cannot belong to the same Hilbert space representation, an assumption on

which the perturbative evaluation of field theoretic quantities in the inter-

action picture is predicated. For this reason, Haag’s theorem undermines

the approach to scattering theory based on the interaction picture in any

theory satisfying the conditions of the theorem. Earman and Fraser ([2006],

p. 322) claim that ‘the problem brought to light by Haag’s theorem is not

directly related to the employment of perturbation theory as an approxima-

tion method; all of the assumptions of [Haag’s] theorem are embraced before

the perturbation series is even introduced’. This is a point that merits further

clarification. They are correct that the theorem is not concerned with the

expansion of field theoretic quantities in a power series in general. What

Haag’s theorem undermines is precisely the perturbative evaluation of field

theoretic observables in the interaction picture in particular. This is under-

mined by the theorem because the strategy that this method adopts for per-

turbative evaluation of observables requires the existence of a global unitary

transformation connecting the free and interacting fields that the theorem

shows not to exist.

The Hall and Wightman generalization of the theorem holds for any pair of

neutral scalar fields and any Hamiltonian satisfying the conditions of the

theorem. In order to determine whether more physically relevant theories

are plagued by an analogous result requires determining whether the result

applies in the case of theories involving higher spin fields and in theories that

couple different kinds of fields together. Generalizations of the theorem show

that the interaction picture does not exist in all cases in which the free and

interacting Hamiltonians are defined on a continuum spacetime with the full

Poincaré group as its spacetime symmetries and differ non-trivially. For the

case of uncharged scalar fields, this level of generality is already present in the

Hall–Wightman version of the theorem introduced here. Duncan has argued

Michael E. Miller8
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that as the complexity of the interaction in a theory grows, it is increasingly

likely that there will fail to be unitary transformations connecting the Fock

states of the free and interacting theories; and thus when more physically

relevant interactions are considered, there is good reason to expect that an

analogue of Haag’s theorem will obtain.13 For this reason, the theorem seems

to show that empirical adequacy claims based on interaction-picture calcula-

tions are unreliable.

3 Earman and Fraser on the Success of Scattering Theory

This section considers how Earman and Fraser attempt to explain the success

of scattering theory despite Haag’s theorem. Their two part explanation ap-

peals to techniques from axiomatic and constructive field theory. More spe-

cifically, they appeal to Haag–Ruelle scattering theory and theorems that

establish the existence of local unitary equivalence between free and interact-

ing theories. It should be made clear that they do not present their explanation

as a full answer to the question of why the interaction picture and perturbation

theory work. Instead they claim to ‘point to what [they] believe is a critical

piece in the overall scheme’ (Earman and Fraser [2006], p. 322), and later they

claim to have ‘indicated one route to such an explanation’ ([2006], p. 333).

They are not explicit about what, in their view, is missing from their account.

This section explicitly identifies a critical respect in which their explanation of

the success of perturbative calculations in scattering theory is deficient.

The first part of Earman and Fraser’s explanation relies on the fact that

Haag’s theorem spoils global unitary equivalence, but it does not necessarily

rule out local unitary equivalence. In some cases, local unitary equivalence can

be established, and they claim that when this is the case it underwrites a ‘a

perfectly good sense in which the interaction picture and perturbation theory

do work [. . .] at least for physical quantities that matter for explaining experi-

mental outcomes’ (Earman and Fraser [2006], pp. 323–4). What they seem to

have in mind is that what are measured are observables corresponding to

localized spacetime regions. To illustrate how this explanation works, they

consider the example of a theory of two free scalar fields with different masses,

um1
and um2

, with the masses related by m2 ¼ m1 þ dm. In this case, they note

that local unitary equivalence can be rigorously established.14

13 For a more detailed discussion of the generalization of the theorem see (Duncan [2012], pp.

363–9).
14 The precise sense of local unitary equivalence that they appeal to is the following: ‘Given any

bounded region B � R
3 and the free fields um1

; pm1
and um2

; pm2
acting on the respective Hilbert

spaces, H1 and H2, there is a unitary map VB : H1
~H2 such that VBum1

ðf ÞV�1
B ¼ um2

ðf Þ and VB

pm1
ðf ÞV�1

B ¼ pm2
ðf Þ for all suitable test functions f with support in B’ (Reed and Simon [1975], p.

329).

Haag’s Theorem and Empirical Adequacy 9
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For Earman and Fraser, this shows why perturbation theory can be used to

explain the results of experiments on local observables using such a theory.

They note that this solution to the problem is also a viable one in the case of

ðu4Þ2 theory, the theory of a self-interacting neutral scalar field in one space

and one time dimension. While this is a more physically relevant interaction

than the mass shift in their first example, it is highly simplified in that it is

defined in reduced spacetime dimension. Many of the models that have suc-

cessfully been constructed are defined in fewer than four spacetime dimensions

because such models tend to have less severe divergences. Earman and Fraser

explain that since ðu4Þ2 theory does not have ultraviolet divergences and the

restriction to bounded regions of spacetime involved in the definition of local

unitary equivalence removes the possibility of infrared divergences, it was to

be expected that local unitary equivalence could be established in this case.

They then note that in higher spacetime dimensions the ultraviolet problems

become worse, the full power of renormalization methods is required for the

theory to be well defined, and local unitary equivalence is spoiled. Earman and

Fraser then declare that ‘Haag’s theorem is not responsible for the problems

created by ultraviolet divergences, so solving them is beyond the scope of this

paper’ (Earman and Fraser [2006], p. 323). It is true that Haag’s theorem

captures a mathematical problem associated with infrared and not ultraviolet

divergences. However, in the next section I will argue that in order to under-

stand the success of the perturbative evaluation of scattering matrix elements,

all three mathematical problems with Equation (4) need to be resolved. In this

sense, the solution to the problem of ultraviolet divergences does play a role in

restoring the validity of the interaction picture. What should be noted at this

point is that solving the problem provided by appeal to local unitary equiva-

lence is only demonstrably valid in the case of a handful of simplified models,

and not in the field theories in four-dimensional Minkowski space that make

up the standard model. Since such realistic theories all contain ultraviolet

divergences, there is good reason to expect that local unitary equivalence

will be spoiled in those cases as well.

The second part of Earman and Fraser’s explanation is an appeal to the

formalism for scattering theory developed by Haag and Ruelle.15 This frame-

work begins by assuming that the theory in question satisfies the Wightman

axioms and then stipulates that they also satisfy an additional condition on the

spectrum of the Hamiltonian to ensure the existence of a mass gap.16 The

central idea of their framework is to rigorously construct the Hilbert spaces

Hin and Hout spanned by the states before and after the scattering using

15 (Haag [1958]); Ruelle [1962]).
16 That is, it is required that the operator P2 ¼ PmPm has an isolated eigenvalue m2 > 0, corres-

ponding to the single particle states, and the remaining part of the spectrum is continuous,

beginning at ð2mÞ2. See, for example, (Iagolnitzer [1993], p. 72) for further discussion.
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elements from the full Hilbert space,H, in the asymptotic limit where t!~±1.

Earman and Fraser ([2006], p. 326) note: ‘This formalism is not subject to

Haag’s theorem because—unlike the interaction picture—it neither posits nor

entails the existence of a unitary transformation connectingH (orHin orHoutÞ

toHF that relates the interacting field to a free field’. This approach thus seems

to afford the possibility of circumventing the problem raised by Haag’s the-

orem entirely.17

With respect to the interpretive significance of this formalism, Earman and

Fraser note that ‘the Haag–Ruelle approach shows how to maneuver around

[Haag’s theorem] to obtain in QFT analogues for most of the significant fea-

tures of ordinary scattering theory’. They do not raise any particular features

as examples, but it is certainly true that for the models to which the Haag–

Ruelle theory applies, the formalism shows how to obtain many of the features

of standard scattering theory without running afoul of Haag’s theorem. One

of the central benefits of the constructive approach to scattering theory is that

it goes even further and affords explanations for features of the perturbative

treatment of the theory that typically must be taken as assumptions.18

Moreover, since explicit models can be constructed, it is clear that the

Haag–Ruelle theory is based on a mathematically consistent framework.

This part of Earman and Fraser’s explanation of the success of scattering

theory is limited in very much the same way as the first part. In particular, it can

only be shown to be valid in certain simplified models,19 and it is not clear that

the explanatory significance can be exported from those models to cases of

experimental interest. There is no known model of a field theory with local

gauge symmetry defined in four-dimensional Minkowski space that satisfies

the Wightman axioms and exhibits a mass gap. The field theories that make

up the standard model are all, however, local gauge theories. This undermines

the ability of the Haag–Ruelle theory to explain the success of scattering theory

in realistic theories in a straightforward way.

At this stage one might object that none of the discussion up to this point

rules out the possibility that more physically relevant theories will be shown to

satisfy the Wightman axioms or some modified set of axioms characterizing

the non-perturbative content of the theory. This is certainly an open

17 It is not unique in this respect. As Bain ([2000]) has emphasized, the LSZ formalism is also able

to escape the force of Haag’s result in a related way.
18 These features include the presence of the clustering property. While in perturbative treatments

of the theory this property is simply assumed as a phenomenological constraint that rules out

dependence between far-separated scattering experiments, in the Haag–Ruelle formalism it can

be recovered as a consequence of the Wightman framework for quantum field theory. Another

such feature is the existence of the asymptotic states. Whereas in the LSZ formalism asymptotic

completeness is assumed, this feature is recovered as a theorem in the Haag–Ruelle formalism;

see (Strocchi [2013], p. 123) for further discussion.
19 The models in which the Haag–Ruelle theory can be shown to apply include weakly coupled

PðuÞ2; u4
3, and sine-Gordon2 theories; see (Summers [2012], pp. 11–12, 16–17, 24) for discussion.
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possibility, and if it was accomplished then empirically adequate theories

could be treated using Haag–Ruelle theory or some close analogue for the

new axiomatization. Moreover, if this were achieved, then Earman and Fraser

would have provided an adequate explanation for how scattering theory can

be done in a mathematically consistent manner despite Haag’s theorem.

However, there remains a clear sense in which their explanation is deficient

as a response to the question of why scattering theory works despite Haag’s

theorem.

In order to show that empirical adequacy claims for particular quantum

field theories are safe from the theorem, it must be shown that the theoretical

predictions that are actually used to match with data are not affected by

Haag’s result. For Earman and Fraser’s response to the theorem to be helpful

for this task, it would need to be the case that the theoretical predictions are

calculated using the constructive formalism to which they appeal. I have al-

ready noted the reason why this cannot be the case: the techniques they appeal

to are not demonstrably applicable in the cases of the theories of experimental

interest. In some cases, theoretical predictions have been calculated using the

interaction-picture formalism whose validity Haag’s result casts into doubt.

Other techniques for obtaining theoretical predictions are also used, but they

are not the constructive techniques to which Earman and Fraser appeal. For

these reasons, I claim that Earman and Fraser have not provided an explan-

ation of why empirical adequacy claims for quantum field theory are not

undermined by the theorem. As a result, a complete explanation for why

scattering theory works is still lacking. In the next section, I argue that the

techniques employed in the calculation of realistic experimental observables

render some of the assumptions of Haag’s theorem false. It is on this basis that

one can conclude that Haag’s theorem does not undermine empirical ad-

equacy claims.

4 Haag’s Theorem and Empirical Adequacy

If the theoretical calculations that are used to compare with experiments were

in fact shown to be invalid by Haag’s theorem, it would undermine much of

the direct evidence for the standard model. The concern about inconsistency

raised by the theorem can, however, be resolved by looking to the techniques

that are used in the calculations that are compared with experiments. In some

calculations, the interaction picture is not used; in other calculations, regular-

ization and renormalization techniques render some of the assumptions of

Haag’s theorem false and thus show how it is possible to obtain meaningful

answers using the interaction-picture formalism. In both cases I submit that

there is no stage in the calculation at which the quantities in question are ill
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defined because of Haag’s theorem and it is this fact that grounds the reliabil-

ity of empirical adequacy claims in the face of the theorem.

In theories with strong coupling, such as quantum chromodynamics at low

energies, the interaction-picture formalism is not used. Since the coupling is

strong, the parameter in which one is expanding is large and perturbation

theory cannot be expected to give meaningful answers.20 In this case, a differ-

ent approach to generating predictions is necessary. Strongly coupled theories

can be regularized by placement on a Euclidean lattice, and contributions to

expressions for physical observables can be approximated numerically.

Realistic modern experiments frequently have contributions from quantum

chromodynamic processes, and thus empirical adequacy claims are dependent

on these calculational techniques.21 Of course, in this case the interaction

picture simply is not employed at any point in the calculation, and Haag’s

theorem provides no obstacle to the calculation of experimental observables.

There are, however, cases in which the interaction picture is used to calcu-

late physical observables. This is the context in which Haag’s theorem raises a

legitimate concern about empirical adequacy claims. The interaction picture

was first introduced by Schwinger ([1948]). One of the motivations for its

introduction was to facilitate the calculation of the anomalous magnetic

moment of the electron and thus to provide a critical test of the empirical

adequacy of quantum electrodynamics. Since its introduction, the perturb-

ative evaluation of vacuum expectation values and S-matrix elements for

weakly coupled theories like quantum electrodynamics has relied on the inter-

action-picture formalism. An adequate explanation of the success of scattering

theory must show why such calculations give values that match empirical

data, despite Haag’s theorem.

Rendering the perturbative evaluation of S-matrix elements for interacting

quantum field theories well defined requires that all three problems with

Equation (4) by addressed. Regularization and renormalization techniques

are used to isolate and control the infrared and ultraviolet divergences in

the theory. There are several different regularization schemes that can be

used to control ultraviolet divergences. The simplest example of such an ultra-

violet regularization is the imposition of a short distance, or equivalently large

momentum, cut-off.22 When a long distance cut-off is also imposed to control

20 Quantum chromodynamics at high energy can be treated perturbatively because the coupling

runs to smaller values. However, this perturbative treatment requires that a regularization is

imposed. The significance of Haag’s theorem for perturbative evaluation of a fully regularized

theory is addressed below.
21 There is a sense in which these calculations are non-perturbative; namely, numerical values are

extracted from the theory by a method other than perturbation theory. Note that this is a

different sense of ‘non-perturbative’ from the one used throughout this article. I have reserved

this term for exact continuum models of axiomatic articulations of the content of the theory.
22 The details of regularization and renormalization techniques can be found in most standard

texts on quantum field theory. For a more comprehensive presentation see (Collins [1984]).
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the infrared divergences, the theory is reduced to a finite number of degrees of

freedom. Once a regularization is in place, the theory can be renormalized. At

the end of a calculation the regularizations can be removed by taking the limit

where the spacetime approaches continuous and infinite Minkowski space,

thus restoring the full symmetry properties of the theory.

The full regularization that is imposed to control ultraviolet and infrared

divergences breaks the Poincaré invariance of the theory. Recall that this is an

essential assumption required to prove Haag’s theorem. In the fully regular-

ized theory, each contribution to the perturbative expansion is thus well

defined when it is evaluated. With the regularization in place the perturbative

expansion for the S-matrix elements defined by Equation (4) can proceed

order by order. The number of terms that must be summed to obtain the

contribution from each order grows rapidly, and thus the state of the art

only allows for perturbation theory calculations at a few orders for most

important observables. The essential thing to note is that what gets compared

to experimental data is the sum of the first few terms of the expansion. Since all

of the terms in the sum are well defined, when they are calculated, there simply

is no problem caused by Haag’s theorem. The perspective that I am advocat-

ing has recently been argued for by Duncan.23 He claims that ‘. . .the proper

response to Haag’s theorem is simply a frank admission that the same regu-

larizations needed to make proper mathematical sense of the dynamics of an

interacting field theory at each stage of a perturbative calculation will do

double duty in restoring the applicability of the interaction picture at inter-

mediate stages of the calculation’ (Duncan [2012], p. 370).24 I agree with

Duncan that the regularizations used to control the ultraviolet and infrared

divergences are what preserves the reliability of perturbative calculations in

the face of Haag’s theorem, but there is one further concern that must be

addressed.

One might worry that this resolution to the problem is not completely

general. In particular, there is more than one approach to regularizing and

renormalizing field theories. Moreover, each method has different effects on

the symmetries of the theory. Some methods break Poincaré invariance and

others break gauge invariance. Which technique gets used for a particular

calculation depends on which properties of the theory one wants to preserve.

Thus, to put the worry precisely, one might wonder if some of these techniques

leave the full Poincaré symmetry intact.25 If this were the case then it would

seem that such calculations are still subject to Haag’s theorem. Consider, for

example, the technique of dimensional regularization. Rather than imposing

23 Butterfield’s ([2015]) review of Duncan’s book draws attention to the importance of this

argument.
24 A similar perspective can also be found in (Strocchi [2013], p. 52).
25 I am grateful to Kerry McKenzie for pressing me on this point.
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cut-offs one continues the spacetime dimension to 4� ". This has the benefit

of preserving gauge invariance. The question of Poincaré invariance is more

sensitive as the exact spacetime symmetries of Minkowski space are not

restored until the dimension is continued back to 4. However, for the purposes

of my argument what is critical to note is that dimensional regularization also

affords the capability to control infrared divergences.26 In order to achieve

reliable perturbative results using dimensional regularization, the infrared di-

vergences must be addressed using such techniques.

In practice, empirical adequacy claims often involve sums of contributions

to different orders obtained using different regularization techniques.

Consider, for example, the calculation of the anomalous magnetic moment

of the electron. The best theoretical calculation of this observable matches

experimental data to more than 10 decimal places. The first order contribution

to this quantity was originally calculated by Schwinger ([1949]). During the

process of the calculation, he encounters an infrared divergence. To control it

he introduces a minimum wave number for the photons in the theory, which is

equivalent to the imposition of a maximum wavelength and thus a long dis-

tance cut-off.27 Since this quantity provides such a critical precision test of the

theory, significant effort has been dedicated to calculating additional orders of

perturbation theory beyond the leading term.28 Some intermediate orders can

be calculated analytically, but this analytic evaluation requires regularizations

that break Poincaré invariance. The highest orders require the computation of

a very large number of complicated terms and must be computed numerically.

This of course requires that the theory be reduced to a finite number of degrees

of freedom and so again Haag’s theorem is rendered inapplicable.

The real difficulty raised by Haag’s theorem then, is to understand why

contributions from the first few orders of perturbation theory give empirically

adequate results, even though when the full symmetries are restored by taking

the infinite volume limit and removing the ultraviolet regularization, the for-

malism used to obtain those results becomes ill defined. The best available

explanation of this fact is that the observables that get compared to experiment

are insensitive to the removal of the infrared cut-off.29 Through regularization

and renormalization, perturbation theory provides well-defined formal power-

series for such observables. The third problem with Equation (4) is the problem

26 For the details of this approach see (Gastmans and Meuldermans [1973]; Marciano and Sirlin

[1975]).
27 See Equation 1.107 of (Schwinger [1949], p. 801).
28 Kinoshita ([1990]), Roskies et al. ([1990]), Aoyama et al. ([2012]), Kinoshita ([2014])
29 Such observables are called infrared safe. In quantum electrodynamics, the KLN theorem

(Kinoshita [1962]; Lee and Nauenberg [1964]), motivated by work of Bloch and Nordsieck

([1937]) ensures that observables are infrared safe. In the case of quantum chromodynamics,

determining which observables are infrared safe is more difficult. See (Muta [2010]) for a de-

tailed discussion.
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of determining whether or not these formal power-series converge and thus

correspond to exact non-perturbative objects. Haag’s theorem is related to

this issue only in that it is an obstacle to the well-definedness of the individual

terms of the perturbative expansion, and I have argued that it is an obstacle that

is overcome through regularization and renormalization.

In this sense, part of the significance of Haag’s theorem is that it complicates

the relationship between the perturbative content of the theory and our best

available characterizations of its non-perturbative structure. Note however,

that the result is not unique in this respect. The question of how numerical

data from fully regularized theories is related to exact non-perturbative struc-

ture is a very general one, and about which much information is available

from sources other than Haag’s theorem. Even in quantum chromodynamics,

where the interaction picture is not used and there is no problem with Haag’s

theorem, a similar question arises. Results are calculated on a lattice and in

some cases give empirically adequate results. However, the full continuum

theory corresponding to the limits in which the regularizations are removed

has not been shown to be an exact model of the axioms that characterize the

structure of the theory.

5 Conclusion

I have argued that empirical adequacy claims are not undermined by Haag’s

theorem because the regularizations and renormalization required to give

clear meaning to the perturbative evaluation of vacuum expectation values

and S-matrix elements also quell the problems associated with the infrared

divergences implicated in Haag’s theorem. The constructive approach to field

theory takes as its starting point physical assumptions that are believed to

obtain in the empirically adequate models that can currently only be treated

perturbatively. According to this perspective, what axiomatic articulations of

the non-perturbative structure of the theory amount to are expressions of the

basic physical properties that need to be satisfied in the continuum and infinite

volume limits in order to have what can properly be counted as a relativistic

quantum field theory. However, as I have stressed above, the theories of the

standard model cannot be shown to satisfy the axioms. Obtaining numerical

information from them for comparison with experiment requires that they be

regularized in ways that render some of the conclusions that can be reached in

the unregularized theory, including Haag’s theorem, inapplicable. It follows

that achieving a complete understanding of why scattering theory does work

requires a resolution to the tension between the mathematical characterization

of the non-perturbative structure of the theory and the techniques that are

required to obtain successful empirical predictions using that structure.
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Reactions to Haag’s theorem are illustrative of a general tension which

exists among much of the literature that attempts to address the interpretation

of quantum field theory. It is not obvious what the rigorous models have to do

with the actual world because they are defined in a spacetime with dimension

other than four or without realistic interactions. At the same time, the modi-

fications to the mathematical formalism required to render the expressions

characterizing empirically relevant models well-defined, seem to correspond to

physically substantive changes according to standard approaches to interpret-

ation. There are two ways that this tension might be resolved. First, it could be

that further work will lead to existence proofs for more physically relevant

models. If this were achieved then the Haag–Ruelle formalism that Earman

and Fraser appeal to could underwrite the success of scattering theory directly.

Much of the literature appraising the philosophical significance of quantum

field theory seems to be predicated on the hope that this goal will be achieved.

In fact, some authors seem to think that this is a necessary condition for

quantum field theory to be a foundationally respectable theory, and that

absent such a development claims about perturbative field theory are math-

ematically unintelligible. However, there is no assurance that physically rele-

vant theories are in fact models of the axioms. If they are not, then one could

appropriately view the inability to construct models of the axioms as a source

of physical information. In this case, the success of scattering theory would

need to be accounted for in a more elaborate way.

Further evidence that a more elaborate account is necessary comes from

attempts to address the third, and in my opinion, the most important problem

with perturbative expansions for empirically adequate models. Even though

the first few terms in the expansion give a result which agrees closely with

experiment, when the contributions from higher orders of perturbation theory

are included, the series goes on to diverge. The divergence in question is in-

dependent from the ultraviolet and infrared divergences that are controlled

with regularization and renormalization. The perturbation series itself di-

verges, even once the theory has been renormalized to render each term in

the expansion finite. This is a problem not related to Haag’s theorem, which I

have argued is only a challenge to providing well-defined formal power series.

The question is whether these formal power series correspond to exact objects,

and the divergence of perturbation theory suggests that they do not.30 An

explanation of the success of scattering theory should also account for the

30 The reason divergence is only suggestive is that it does not rule out that the expansion can be

summed by a method such as Borel-summation which uniquely associates a divergent expansion

with an exactly determined object.
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fact that taking the first few terms of what are widely believed to be divergent

expansions give such remarkably accurate results.

The empirical adequacy of the first partial sums despite the eventual diver-

gence when the series is summed to all orders can, in fact, be explained. The

explanation is provided by the conjecture that empirically successful perturb-

ative expansions are asymptotic to exact solutions of a theory that generates

them.31 Asymptoticity is a precisely defined relation between a series expan-

sion and the function being expanded.32 The condition ensures that the dif-

ferences between the exact value of the function and the partial sums of the

series are appropriately small for each fixed order of perturbation theory.

When series satisfying this condition are summed to all orders, they typically

diverge. However, their first partial sums often approximate the exact value of

the function to many decimal places of accuracy. It is in this sense–that the

conjecture that empirically adequate expansions are asymptotic to some un-

known exact theory that generates them–that accounts for their success des-

pite their divergence.

Many non-perturbative structures can yield the same asymptotic expansion.

Thus, the conjecture that perturbation theory for a quantum field theory

yields asymptotic expansions does not uniquely fix what non-perturbative

structure lies behind the empirical success of the theory. The more elaborate

account I have in mind must address how well perturbative data can constrain

the non-perturbative structure of the theory, as well as the fact that the em-

pirical information that we glean from experiments seems to exhibit a level of

insensitivity to the exact non-perturbative structure. The analysis of this art-

icle shows that Haag’s theorem does not undermine empirical adequacy

claims, and it also shows that the theorem does not undermine the use of

perturbation theory as a guide to determining non-perturbative structure.
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