Dirac Spinors in Graphene: A Good Analogy?
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Why in layers?
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Revisiting: Non-interacting electrons in a periodic potential
— “Bloch” states

m Description:

N 2
Pi
H= E - 2m+ Vperiodic(r) (1)
1=

m Reduces to single-particle
problem
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Review of Periodic Potentials
Properly approaching the problem. . .

Assume infinte 2D crystal lattice with ions at positions

R, = na; + may n e 7? (2)

m Potential invariant w.r.t.
crystal symmetry group; in
particular: Translation.

m Thus [Tg,, H] =0, and we
can strive for

simultaneous eigenstates of
all T, and H.
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Result
Any solution 9 (r) of

HY(r) = Egi(r)  Vn € N>: TR,u(r) = tayi(r)

can be written as
P(r) =e*" u(r),

where u(r) exhibits the full translational symmetry of the
crystal, i.e.
Vn € N3: Tg,u(r) = u(r)

and k such that e = 0,j = 1,2, 3. (periodic boundary
conditions)

(3)

(4)

(5)

|
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Ambiguity of of quasi-momentum k: An 1D Example

—cos(53)

u(x)=e

R(7)

m also satisfies
a-periodicity!

m choice of k
and u(x)
ambigious!

|
R()
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An one-dimensional visualization

| ¢
!
. . \
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\
spectrum

/
\
. \
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m obtain a discontinuous, \ i
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deformed free-particle ! /
e /
spectrum \ /
\\\///
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An one-dimensional visualization

m Hy = Ex)y gives rise to
spectrum

m due to the equivalence on
reciprocal space, possible
to attribute each Ej to
some k € (—m/a,7/a)
(first Brillouin zone).
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An one-dimensional visualization

m Hvyy = Extpy gives rise to
spectrum

m due to the equivalence on
reciprocal space, possible
to attribute each Ej to
some k € (—m/a,7/a)
(first Brillouin zone).

— Energy bands
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Reciprocal space and Brillouin zones

We have seen: Ambiguity in one-dimensional case

In general, introduce Reciprocal Lattice

RL := {KGRQIVn€Z2:e"K'R":1} (6)

Declare equivalence relation on Reciprocal Space
Vk,k' €R?: [k~ k' < IKeRL: kK =k+K] (7)

We can reduce everything to R?/. = R?/RL

One possibility: Brillouin zone

BZ:= {k € R?| ¥K € RL\{0}: [k| < |K — K[} (8
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Note: The unit cell contains two (identical) carbon atoms.

ai
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Constructing the reciprocal lattice. . .

ai
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Constructing the reciprocal lattice. . .

ai

a
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Constructing the reciprocal lattice. . .
by
ai

a
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Tight-Binding Ansatz for Graphene

Suppose p,(r) represents the p,-orbital of a carbon atom, i.e.,

Ho(rpar) = E. peln). (9)
wlog. =0

The total Hamiltonian is given by

2
H:%+ S (Ve(r—ra—Rn)+ Ve(r—re—Rn).

ne(zt)’
(10)
We make an approximate ansatz
\Uk(r) = CA(k) Z eik'R"pz(l‘ —rap— Rn)
nG(Zi)2 (11)
+ca(k) Z ek Rnp (r —rg — Rp).
ne(Zi)2
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Tight-Binding Ansatz for Graphene

We basically restricted ourselves to the subspace spanned by
the functions

1 ik
e =13 > “Frpo(r—ra—Rn) (12)
ne(Z§)2
and 1
BN=13 X HFplr—rs Ry (13)

ne(Z%)2

Note that (% | gof,> =0and (¢f | H | gpf,) = 0 whenever

k # k'. The subspaces spanned by {@f, gof} for each k are
thus orthogonal to each other and the Hamiltonian does not
couple these subspaces. Thanks to this fact our ansatz is a
good one.
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Tight-Binding Ansatz for Graphene

We then look for the minimum and maximum of the equation

(Wi | H | Vi)

<E>\|’k = (W [ W) (14)

and the corresponding coefficients ca(k) and cg(k). It follows
CrlHIeE) (CA(k)>
erlHlee) ) \ Bk
)< B (Prle) (wlek) cA(k)
(k) ((@DBIW tlog) ) (CB(k)) (15)
k)'H

(k)c(k) _ c(k)TH(k)c(k)
()TS(k)C(k) c(k)fe(k)

Ak Bk <<Pf|H|‘Pk>
(E _( ()7 7l )(< 5 Hlf)
=

/\/\ o~ o~

Simplification: Suppose S(k) = 1o, i.e (¢} | ¥5) = 0.4
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Tight-Binding Ansatz for Graphene

= Now we can use the min-maa-theorem® that states that
the minimum and maximum correspond to the eigenvalues
of H(k) and is attained precisely by the eigenvectors.

= Found a new eigenvalue problem!

m It remains to calculate H(k).

m Tight-binding = “take only nearest neighbour interactions

into account”
(R | H| o) = 0= (0 | H|¢k) (16)

(i | H| @) = —voalk) = (9B | H| ) (17)

where ' '
alk)=1+ e ka4 o—ikay (18)
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Tight-Binding Ansatz for Graphene

We found
0 —voa(k)
H k — I
(k) (_W(k)* ‘
where ' _
alk) =1+ e ka4 o—ikay
Eigenvalues:

E+(k) = £70la(k)]

= i\/3+2 cos(k-a1)+2 cos(k-az)+2 cos(k-(a1—a2))
Note that at

1
KL= (b1+b2):|:6(b2—b1)

N -

we have

E (Ky)=E_(Ky)=0.

(19)

(20)

(22)

(23)
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in Graphene

(24)

:I:\/3+2 cos(k-a1)+2 cos(k-ap)+2 cos(k-(a1—az))

Ex (k)=
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in Graphene
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Indeed, for k = K4+ + dk, we have

\/_703

Ey (k) ~ £ Y0 5k| = +hive|ok|, (25)

where we defined the Fermi velocity

V3v0a

FT Top

~ 8.5 x 10°ms ™! = 3% x speed of light (26)

that is the electronic group velocity of wave packets.

What is the form of the Hamiltonian in the promixity of the
points K47
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Dispersion at the Dirac Points

V3702 0
HIK=+ok)~ =5 —0ky + i0ky
hvg
V3702 0
HK +ok)~ =7 | 5k, + iok
—— y X
hVF
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 Dispersion at the Dirac Pois
H(K_ + 5k) ~ ‘/5270" (i ﬂ (27)
~——
hvg
000~ 2 g )9
~——
hvg

30/37



Dispersion at the Dirac Points

H(K_ + 6k) ~ V3103 ( 0 ‘.‘X> (27)

2\ —Okysiiokx 0
hvg
H(K Sk) ~ \/gfyoa 0 5.X
o0 7o ok o 9
hVF

Let us modify our ansatz:

Vi (r) = ca(k) Z ek Rnp (r —ra—R,) (29)
nG(Zif

+ cg(k) Z e*Rap (r — rg — Rp).
ne(Z{)2
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Dispersion at the Dirac Points

HOK_ 4 5k) ~ VENE ( 0 -x> (27)

2 —Okytiok 0
hvg
V302 0 0
H(K; + 6k) =~ ;0 J—— ?X (28)
hVF

Let us modify our ansatz:

Vi (r) = ca(k) Z ek Rnp (r —ra—R,) (29)
nG(Z’l-)2

e (k) Z e*Rrp,(r—rg — Ry).

ne(zt)”
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Dispersion at the Dirac Points

H(K_ + 6k) ~ V3102 < 0 ‘5""‘Y> (27)

> \okummiok, O
hve
V3va 0 0
H(K .. + 0k) ~ ;0 . . k’o‘ky (28)
hVF

Let us modify our ansatz:

Vi (r) = ca(k) Z ek Rnp (r —ra—Ry) (29)
nE(Zif

8 cp (k) Z e*Rap (r — rg — Rp).

ne(Z%)2
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Dispersion at the Dirac Points

H(K_ + 6k) ~ \@2703 Sk o (27)

——
hvg

H(K + 6k) ~ \Moa Skeot (28)

H/—/
hvg

Let us modify our ansatz:

\Uk(r) = CA(k) Z eik'R"pz(r —rp— Rn) (29)

ne(Z’l-)2
+W (k) Z ek Rnp (r—rg— Rp).
ne(7h)’
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H(K_ + 6k) ~ % (30)

——
hvg

H(K . + 0k) ~ % (31)

~——
hvg

It definitively “looks like” the Weyl equation o#p,1 = 0!

A word of warning

The states Wy are not eigenvectors of the momentum operator
p! Even worse, dk is not even remotely related to the
expectation value of p in the state Wi 45!

Anyway, as long as we do not take the analogy too literally, it

is a valid comparison between wave phenomenal
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Massless Dirac fermions?

We can build a four-component object:

| o) = 4 (0k) | 0k 15k) — icg (5K) | 0k 1 ok)

. (32)
+icg (0k) | Pk, +o1) + €4 (5K) | 0k 1ok)
With respect to the ordered basis
(1 ¢k wor) =7 | oR vsidsi | PR vsicds| Pkovan)), (33)
the joint Hamiltonian is given by
—0k - o 0
H(5k) = hvr < 0 Sk 0_) . (34)

This looks like the massless Fermi-Dirac Hamiltonian in the
Weyl representation!

HiP == (5%) (-2,%) = (7675)  ©9)
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Energy eigenstates

Suppose Jk = |k| (§°S(g))) and denote by £ = 41 the valley

K¢. The positive (s = +1) and negative (s = —1) energy
eigenstates for the valley K¢ are given by

v = (5 Sle,-a> - (36)

H(K¢ + 5k)yS = Tive € (0k - o) ¢§ = shve|dk|ys (37)

Check that:

s = +1 for the “conduction” band and s = —1 for the “valence
band”. Note that the pseudohelicity eigenvalue of 1/J§ is &s.
This introduces an artificial distinction of the two valles K
and K_.
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Similarities: Differences:
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Similarities: Differences:
m linear dispersion m only in the rest frame!
m pseudohelicity well-defined m pseudohelicity arbitrary
for each Dirac point between Dirac points
m we can indeed model m it is scattering of “massless
scattering of “massless Dirac fermions” at a
Dirac fermions” potential

Dirac fermions only exist in 1+ 3 dimensions due to the double
cover SL(2,C) — SO(1, 3) of the Lorentz group.

The “massless Dirac fermions” of Graphene appear in a 1 + 2
dimensional system, with “z-momentum” always equal to zero.
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Leads to:
® no intravalley backscattering (= high mobility)

m Klein tunneling (we cannot electrostatically confine charge
carriers)

m half integer quantum hall effect
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Thank you for your attention!
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