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1 Lecture 1: Review of path integral and operator for-
malism and the Feynman diagram expansion

In this first lecture, I will review some important material from Quantum Field Theory I,
just to set up the notation.

Conventions.
I will use theorist’s conventions throughout, with A~ = ¢ = 1, which means that, e.g.
[E] = [1/z] = 1. I will also use the mostly plus metric, for instance in 341 dimensions with

signature — + ++.

Path integrals.

In quantum field theory, the classical field ¢(z) is replaced by the VEV of a quantum
operator ngS,

(01()|0) = / DS (z). (1.1)

Here the path integral measure is defined as integration over the points of a discretized path,
in the limit of infinite number of points on the path,

N

Dqﬁz}\}i_r)noon/dqﬁ(xi). (1.2)

Scalar field.
For a scalar field, the action is typically of the type

S = / d*z L = / dz [—éauqb@“gb - %m%bz = V(cb)]
- [a Bcb — SV — gm?e? - vw»} 7 (1.3)

though the kinetic term can be more complicated also. Note that the mass term was written
separately, since it is quadratic, though technically it is part of the potential V' (¢).

One can define objects more general than the field VEV (of which the field VEV is a
particular case), that are the objects to be studied in quantum field theory, the correlation
functions, or Green’s functions, or n-point functions,

Go(@1, s ) = (O|T{H(21)...0(x,) }]0) = / DS (21)...0(z). (1.4)

Here T denotes time ordering. Note that ¢ is a highly oscillatory phase, so this Green’s
function is hard to define rigorously, since it is not well behaved at infinity.

It is much easier to go to Euclidean space, by doing a Wick rotation, ¢t = —itp.

In quantum mechanics, one obtains the Feynman-Kac formula relating the transition am-
plitude in Euclidean space, expressed as a path integral, with the usual statistical mechanics
partition function,

Z(8) = Tefe ) = / dg’ S onlg)Pe B = / dq(q, B1q,0)
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(1.5)

/'qu—SE[Q]

Here as usual 5 = 1/kgT and the Euclidean action Sg is defined by 1Sy, = —Skg.

In quantum field theory, where we have a space () dependence, and one usually is
interested in the vacuum functional, i.e. the transition between asymptotic vacuum states,
we consider the limit of infinite periodicity, ¢(Z,tg + ) = ¢(Z,tg) (or zero temperature
T =1/p3), where  — oo. The Euclidean action for a scalar field is

q(tg+B8)=q(tr)

Selol = [ s | 50,00,0-+ e’ + V(o). (16)

The Euclidean space correlation functions are defined in a similar manner,
GO (zy,..,x /nge Sellgy(zy)...p(zn) | (1.7)
the advantage being that now instead of a highly oscillatory phase, we have a highly decaying

weight e™°#, sharply peaked on the classical action S,. The generating functional of the
correlation functions is called the partition function and is given by

ZBN ] = / Dpe eI+ ¢ = (0]0); | (1.8)
where we have defined

J o= /dda:J(x)qb(x). (1.9)

The correlation functions are obtained from their generating functional as usual,

P (arsonry) = ([ Doesiiese
g | 2L

= Z|J . 1.10
6J(x1) 6J () [ ] 0 (1.10)

Note that we can define the partition function at finite temperature (finite periodicity

8),

778, J] = Tr[e PH7] = / DpeSeloltTo (1.11)

(@ tp+B)=¢ (k)
From it we can start to define quantum field theory at finite temperature, but we will not
do it here.

Canonical quantization and operator formalism.

To canonically quantize a real scalar field, one expands it and its canonical conjugate
momentum 7 in Fourier modes,

o(7,t) = / b L (50677 4 al (5, e
Y (27T)3 2wp p? p’



r(@t) = / % (—z\/%> (a(F, )6 — ot (. £)e=77) | (1.12)

where w, = \/p? + m2. From the KG equation of motion for the scalar field, one finds that
a(p,t) = aze="“rt.
Canonical quantization is achieved through the equal time commutation relations between

¢ and its canonical conjugate momentum,
67, 1), 7(7, 1)) = 6O @ — ), [6(F,), 67 8)] = [n(7,0), 7@, )] =0, (1.13)
From them, we obtain the usual algebra for the creation and anihilation operator coefficients,

la(g, 1), (0, )] = (27)°6°%) (7 — §). (1.14)

For free scalars, one uses Heisenberg picture operators,
bu(F, ) = et p(F)e (1.15)

where ¢(Z) is a Schrédinger picture operator. As a reminder, in the Schrédinger picture,
operators are time-independent and the states evolve in time with the Hamiltonian, whereas
in the Heisenberg picture it is the opposite: operators evolve in time with the Hamiltonian,
and the states are time-independent.

For interacting scalars however, the useful representation is the interaction (Dirac) pic-
ture. One splits the Hamiltonian into a free (quadratic) part and an interaction part,

Then the interaction picture operators are obtained by a canonical transformation with the
free part Hy,

G1(T,1) = MU0 (F, tg)e ol —10), (1.17)

Now states evolve with the interaction Hamiltonian, and operators with the free Hamiltonian,

0 3
zhalw(t» = Hy|vi(t))

O A) = (A, F (118)
where H; 1 is the interacting Hamiltonian operator in the interaction picture.

In the interacting quantum field theory, ¢(Z,t) denotes the Heisenberg operator ¢ (%, t),
and is the object we are interested in, together with the true vacuum of the full theory |2).
On the other hand, for calculational purposes, we use the vacuum |0) of the free theory, and
the interaction picture fields, since we find that

<Z51(f, t) _ eiﬂo(tfto)gb(i." to)efiﬁo(tfto)

d3p 1 ip-x —ip-x
_ /(%)3 —(ape™ + ale ) . (1.19)

p

x0=t—t0;p°=FE}



The vacuum of the free theory satisfies that az|0) = 0 for all . On the other hand, the objects
we want to calculate are Green’s functions of the full theory, like the 2-point function (full
propagator), (QT{¢(x)p(y)}|<2).

We find them using perturbation theory, in terms of interaction picture objects, like the
propagator. The propagator depends on a contour of complex integration, but the most
commonly used one in quantum field theory is the Feynman propagator,

d*p —q

w(z=y), 1.20
(2m)4 p?2 + m? — iee ( )

Di(x — y) = (O[T {r(x)é1 () }|0) = /

Other examples of propagators are the retarded and advanced propagators. But the Feynman
propagator arises as the natural analytical continuation from Euclidean space. In Euclidean
space, the propagator is uniquely defined, since there are no poles to be avoided using
complex integration and contours, and it is given by

ddp et (z—y)
Alx,y) = | ————- 1.21
@) = [ (1.21)
The relation between the full correlation functions and the interaction picture objects
is given by the Feynman theorem, written for generality in terms of operators O that can
specialize to the usual case of ¢(x), as

 {T{Os(21)..O1 () exp [—i I dtHL,(t)} 1/0)
<Q|T{(9H(x1)....(’)H(xn)}|Q>:T lim —
—oo(1i) (1T {exp | =i J T, dtH,1(1)] }10)

(1.22)
By expanding the right hand side, we can calculate perturbatively in terms of the free vacuum
and operators with time evolution given by Hy, i.e. interaction picture operators.

For calculations, we use the Wick theorem, which relates the time ordering with the

normal ordering,
T{p1(x1)...01(x)} = N{ps(x1)...01(x,,) + all possible contractions}. (1.23)

Since in between (0| and |0), the normal ordering of a nontrivial interaction picture operator
(written in terms of a’s and a'’s) gives zero, the only nonzero result is given by the full
contraction, which is just a c-number.

In the path integral formalism, there is an equivalent of the Wick theorem. One first
writes the Dyson formula, which reads

Z[J] = <0‘e—51[<$]€fdd$‘7($)¢3($)|0>
_ /D¢e—50[¢]+n7'¢e—51[¢}. (1.24)

Note that the vacuum of the free theory is used, but inside the VEV we have the missing
terms that allow to make up the usual e=*7*¢ in the path integral, using the weight e=%.



Then we can easily calculate the partition function of the free theory,
ZolJ] = e2727(0|0), (1.25)

where (0]0)o is an irrelevant normalization constant. Then the Wick theorem for path inte-
grals is written in two forms. The first is

Z[J] = _fd xv(éJ(’“))Zo[J] —fddxv(“@)) A ) (1.26)
and the second is
Z[J] = eriedis {e—f dde<¢>+J-¢H
$=0
_ 1 d, . d Y Y — [dizV ($)+J-¢
= exp {2 /d x dyA(x — y)&b(x) 5¢(y)] {e }‘¢:0. (1.27)

While it would seem that by these formulas we have solved quantum field theory, since we
have a closed form expression for the partition function, it is not so, since the expression is
formal: it is understood only as a formal perturbative expansion for the exponentials. There
are divergences in the terms of the expansion that need to be regulated, etc.

To find the correlation functions of the full (interacting) theory, we need to get rid of the
vacuum bubbles. As seen from the denominator of the Feynman theorem, this is done by
dividing with the partition function (zero point function). Diagramatically (to be defined
soon), one obtains only the connected diagrams, giving

L 6Z[J]  o(=WI[J))

ZI6J(x) — 0J(z) (1.28)

solved by
Z[J) = Ne "L, (1.29)

Here W{J] is called the free energy, from the analogy with condensed matter, and as we see
is the generating functional of the connected diagrams. A is an irrelevant normalization
constant (it cancels out).

Feynman rules in z space (Euclidean).

The Feynman rules in Euclidean coordinate space are as follows:

0. Draw all Feynman diagrams.

1. A line between z and y corresponds to the Euclidean Feynman propagator A(zx,y).

2. For an interaction potential V' = \¢”, we have p-legged vertices. For each vertex, we
have a factor of (—\) and an integration over the position of the vertex, [ d%z.

3. Then we obtain the value for the Feynman diagram D with external points 1, ..., z,
nand internal points yy, ..., yx, integrated over,

ng) =Ip(x1, ..., Tpi Y1, s YN ) (1.30)

and the correlation function is given as a sum over diagrams and number of vertices,

Go(zy, ... x Z > (@, ). (1.31)

N>0 dlags D



Simplified rules.

There is a simplified version of the Feynman rules that is usually used. We rewrite the
potential as V' = \,¢?/p! (i.e., A = \,/p!). Then the vertex is [ d%x(—)\,), but we write
only the topologically inequivalent diagrams and divide by the statistical weight factor or
symmetry factor S,

_ NIph”
~ #of equiv. diags.

= #of symmetries of diagram. (1.32)

Feynman rules in p space.

Because of translational invariance of the theory, which implies momentum conservation,
the Fourier transform G of the correlation function can be redefined by an overall momentum
conservation delta function,

Gn(p1, .oy pn) = /Hddxieizfpjij(scl, o) = (20)0 D (py + o+ po)Ga(pry ooy Do)

(1.33)
The simplest case is the free 2-point function, i.e. the propagator. Corresponding to the
Feynman propagator A(x — y), we have the Euclidean space propagator

1

Alp) = e (1.34)

corresponding to G above.

The rules in momentum space have:

-propagator A(p).

-vertex (—A\).

-external line e =%,

-Then one needs to impose momentum conservation, i.e. multiply by (27)%5@ (> 2
at each vertex, and integrate, [ d’p/(2m)?, over all internal momenta.

-divide by the symmetry factor.

Simplified momentum space rules.

We can write simplified momentum space rules, to get rid of the momentum conservation
delta functions. We only introduce independent loop momenta ly, ...,1; (integration vari-
ables). If it is not entirely obvious what is the number of loops of the diagrams, one can use
the formula L = V(p/2 — 1) — E/2 + 1 to calculate it. Here V' is the number of vertices,
p the order of vertices, £ the number of external lines. We write the momenta on each
internal line in terms of the external momenta and the loop momenta [; using momentum
conservation at the vertices.

-We must integrate over these loop momenta, [ d%;/(2m)%... [ d;/(27)<.

-External lines have momenta p;, and internal lines dependent momenta ¢;, depending
on p; and [;.

-An external line gives then 1/(p} 4+ m?), and an internal line 1/(q; + m?).

-As before, the vertex is (—\), we divide by the symmetry factor S and sum over diagrams.

Classical field.



As we mentioned at the beginning of the lecture, the classical field is replaced by the
VEV of the quantum operator. More precisely, considering the field in the presence of a
source J, one defines the classical field ¢q by the VEV in the |0); vacuum, and divides by
the normalization,

o {0lgl0),
¢cl = ¢(xﬂ J) - J<O‘O>J . (135)
Therefore one obtains
1 SgltTd oy O __ 0
Gl = 7171 /nge top(x) = 57(7) In Z[J] = 57(7) W1J]. (1.36)

Quantum effective action.

Whereas classically, we have the classical action S[¢] depending on the classical field ¢,
quantum mechanically we have the quantum effective action that includes quantum correc-
tions, and depends on the classical field ¢ . It is the Legendre transform of the free energy
WJ],

Llga] = W[J] +/dde(x)¢d(x). (1.37)

In the same way as classically, ¢(x) satisfies the classical equation of motion with a source,
05[9]

=J(2), 1.38

so(a) ~ 1) (1:38)

quantum mechanically we have a precise analog of it, namely

5F[¢cl]
5¢cl(x)

The quantum effective action I' is the generator of the 1PI (one particle irreducible)
diagrams, except for the 2-point function, where there is an extra term.

Therefore the partition function Z[J] generates all diagrams, the free energy W/[.J| gen-
erates the connected diagrams, the effective action I'[¢| generates the 1PI diagrams except
at 2-points, and we also have that the classical action S generates the tree diagrams.

S-matrix.

To get contact with experiments, we need to define objects that can be related to mea-
surable quantities. Such an object is the S-matrix.

We define Heisenberg picture states (time independent) that have well isolated wavepack-
ets at t = —oo (but are interacting, or mixed, at ¢t = 400), |{Ej}>in, and states that have
well isolated wavepackets at t = 400 (but are interacting, or mixed, at ¢t = —o00), [{pi})out-
We also define Schrédinger picture states (time dependent) with the same momenta, ({p;}|
and |{EJ}> Then the S matrix between the Schrodinger picture states is defined as

{PHSHED) = out ({5 HE in: (1.40)
Reduction formula (LSZ).

= J(z). (1.39)
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Until now we have worked with correlation functions. But these objects are rather ab-
stract, and we saw above that physical objects we want to calculate are S-matrices. Fortu-
nately, there is a relation between them, given by the LSZ formula. One first defines the
Fourier transform of the correlation functions of the full (interacting) theory,

Gt (P RY) = H / dH / dtye™5 (QUT{G(1) .0 () (Y1) b () HEY).

(1.41)

Then the S-matrix is obtained from the correlation function G,,1,, by going near on-shell

for the external lines and dividing with the full inverse propagators for the external lines,
except for the factor of Z being replaced by v/ Z,

o ) P2 +m — e k2+m
out<{z%-}|{f~@-}>outzpzH lim H J H G,Hm(pz,k:“) (1.42)

2.2 2
m,k].—>mi:1

Diagramatically, the S-matrix minus the trivial one (identity) is given by the sum of the
connected, amputated Feynman diagrams, times a v/Z factor for each external leg, i.e.

{pi}|S — 1|{k b= (Z connected, amputated Feynman d1agrams> x (VZ)"m.(1.43)

Fermions
Dirac fermions 1, are understood as representations of the Clifford algebra

{2 =2¢"1, (1.44)

i.e. column vector objects on which the gamma matrices act. We can also understand them
as spinorial representations of the Lorentz (or Poincaré) algebra. But the Dirac fermion
representation of the Lorentz algebra is not irreducible. In 341 dimensions, the irreducible
representations are either of the Weyl or Majorana type.
One first defines the 5 object as the product of the gamma matrices up to a fixed phase,
in my conventions
75 = —in"yly*y (1.45)
Note that there are various conventions for the phase, but generally one chooses to have
73 = 1. Indeed, then we can define projectors Pr g = (1 £ 75)/2 onto the irreducible Weyl

representations, defined as
1+~
ViR= " 2. (1.46)

. . . T 0 .
Note that in the Weyl representation for the gamma matrices, v; = ( 0 — ]1> , SO the irreps

are the two upper components of ¢p and the two lower components of ¢ p.
One defines then the conjugate representation ¢ as ¢ = YTiyY. Note again that various
conventions in the literature for ¢ differ by a phase. The action in Minkowski space is then

Sy = —/d%zﬁ(y“@u +m)i (1.47)

11



and in Euclidean space without the overall minus.

The other type of irreducible representation is a real-type representation, the Majorana
representation, obtained by imposing a reality constraint. Defining a C-matrix with certain
properties, satisfied in 3+1 dimensions by the choice C' = —iy"+?, the Majorana condition
relates the Dirac conjugate 1) with the Majorana conjugate v = 7 C, i.e.

v =yTC. (1.48)

Fermionic path integrals are written in terms of Grassmann variables, i.e. anticommuting
objects 1 with {¢,1} = 0. The Gaussian integral on Grassmann space gives

/ d'ze® AT = 2"2\/det A (1.49)

where for commuting objects it gives o< 1/v/det A.
The addition of fermions means new propagators and vertices in the Feynman rules.
The fermionic Euclidean space propagator is

1 . »
. _ L _Zhim (1.50)
ip+m  —p+im  p?+m?

whereas in Minkowski space the Feynman propagator is

L —tm (151)
P+ m* — i€
For a Yukawa interaction
[ dzgivo. (1.52)

the vertex is (—g) in the Euclidean case, and (—ig) in the Minkowski case.

A fermion loop adds a minus sign to the Feynman rules.

Gauge fields

In covariant quantization (Gupta-Bleuler), we write the expansion of the gauge field in
a similar manner with the case of the scalar field,

3
S e N (k) + a (ke (1.53)
A=0

K
Au(x):/@ﬂ_)g\/m

where eff‘)(k:) are 4 polarizations. The 0 and 3 polarizations are unphysical, and the 1 and 2
are physical, transverse polarizations, satisfying k“eg’m =0.

The gauge condition is imposed on the part of positive frequency of the operator, i.e. the
annihilation part of A,, acting on physical states,

A (z)y) =0, (1.54)

12



which defines the physical states |¢). Since k:“ef}’z) = 0, on the momentum modes we obtain
the condition

(@ (k) 4+ a® (k)]|w) = 0. (1.55)

To define a photon propagator, we must add a gauge fixing term to the action. If not,
the action has zero modes (due to the gauge invariance), which makes it impossible to invert
the kinetic operator. The gauge-fixed Lagrangean in Minkowski space is

1 1
L=—-F ——(0"A,)* 1.56
4 nv 2@( N) ( )
From it, we obtain the propagator
1 k. k,
GWO)(k) = % (% —(1—a) 22 ) : (1.57)

In the so-called ”Feynman gauge” (it is not really a gauge, just a choice) o = 1, the propa-
gator becomes just the scalar propagator Gfg,)(k’) = 0, /K2

QED S-matrix Feynman rules.

The Euclidean Lagrangean for QED is

1 _
LB = JFL, + (P +m), (1.58)
where D,, = 0, — ieA,,. The Minkowski Lagrangean is

L= —}ley — (P +m)p. (1.59)

-The e~ ety vertex, with respective indices o, f and p is +ie(7,)qap in Euclidean space,
and +e(,)qas in Minkowski space.

—
-The incoming photon external line is A,|p) = €,(p).
r
-The outgoing photon external line is (p|A, = € (p).
M
-The incoming electron external line is ¥|p, s) = u®(p).
1
-The outgoing electron external line is (p) s|t) = u*(p).
—
-The incoming positron external line is ¢|k, s) = v°(k).
u
-The outgoing positron external line is (k, s|t) = v*(k).
-The fermion propagator is
_ (Pram) (1.60)
PP m?—ic |

-The photon propagator is

k,k
(g — (1= )= 1.61
k? —ie (g# (1=a) k? — ie) (1.61)

13
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a) Euclidean Green’s fcts. o< b)S matrix Minkowski

¢) S—matrix external lines:

—/ <P s
A o=ttt =S <F AT =0
— P S = <
TN =0 <= < e
a— g S 7 S
TIre =50 <k = =0
‘ k k

Figure 1: Relevant Feynman rules for Green’s functions and S-matrices.

-There is a minus sign for a fermion loop.
The rules are summarized in Fig.1.

Important concepts to remember
e All of them, since it is a review...

Further reading: See my lecture notes for QFT I [1].
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Exercises, Lecture 1

1) Use the Feynman rules to write down the integral expression for the following diagram
(Fig.2) for scattering of photons in QED (the diagram is a fermion loop, cut into two loops
by a photon line, and with 4 external photon lines).

> >

<

" NSN\SNf—s—CC—<— "\ VSV

Figure 2: Two-loop QED Feynman diagram.

2) Write down the x-space and the p-space Feynman rules coming from the 4 dimensional
Lagrangean in Euclidean space:

1 & Nl F, F’” Y
£:+§Z 0u') +m’( ( +Z <¢ ) ) Ve Y ¢'6'0.070m”.
=1

=1 I,J=1
(1.62)
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2 Lecture 2. One-loop divergences, renormalizability
and power counting
In this lecture we will analyze possible divergences in loop integrals, in particular we will look

at one-loop, and how to determine if a theory contains divergences using power counting.
Finally we will define power counting renormalizability and distinguish between theories

based on it.

Figure 3: One-loop divergence in ¢* theory for the 2-point function.

We have seen in the first semester hints of the fact that loop integrals can be divergent,
giving infinite values for Feynman diagrams.

For example, in A\¢* theory in Euclidean space, consider the unique one-loop O(\) di-
agram, a loop connected to the free line (propagator) at a point, see Fig.3. It is given

by
dPq 1
—)\/ ( (2.1)

2m)P ¢ +m?’

Since the integral is

Qp_y D-1 1 D-3
= _A(27r)D /q dQW ~ /dqq ) (2.2)

it is divergent in D > 2 and convergent only for D < 2. In particular, in D = 4 it is
quadratically divergent

A
N/ qdq ~ \*. (2.3)

We call this kind of divergence "ultraviolet”, or UV divergence, from the fact that it is at
large energies (4-momenta), or large frequencies.

Note also that we had one more type of divergence for loop integrals that was easily dealt
with, the fact that when integrating over loop momenta in Minkowski space, the propagators
can go on-shell, leading to a pole, which needed to be regulated. But the ie prescription
dealt with that. Otherwise, we can work in Euclidean space and then analytically continue to
Minkowski space at the end of the calculation. This issue did not appear at tree level, when
the propagators have fixed momenta, and are not on-shell, but it appears in loop integrals.

Let us now consider an example of a diagram that has all types of divergences, a one-loop
diagram for the 2k-point function in A¢**2 theory with & momenta in, then two propagators

16



Figure 4: One-loop diagram in ¢**2 theory, for the 2k-point function.

forming a loop, and then k lines out, as in Fig.4. The incoming momenta are called pq, ..., px
and sum to p = Zle p;- Then the two propagators have momenta g (loop variable) and
q — p, giving for the diagram

A2 dPq 1

2 ) COP @ D —pP )
Again, we can see that at large ¢, it behaves as

/ ¢""dg (2.5)

q4

(2.4)

so is convergent only for D < 4. In particular, in D = 4 it is (log) divergent, and this again
is an UV divergence. From this example we can see that various diagrams are divergent in
various dimensions.

As mentioned, the poles in the propagators when we go to Minkowski space mean that
a priori there are these divergences as well, but they are regulated by the Feynman ie
prescription.

But this diagram has also another type of divergence, namely at low ¢ (¢ — 0). This
divergence appears only if we have m?> = 0 AND p*> = 0. Thus only if we have massless
particles, and all the particles that are incoming on the same vertex sum up to something
on-shell (in general, the sum of on-shell momenta is not on-shell). Then the integral is

~faof q@q—dzqqm (26)

and in the integral over angles, there will be a point where the unit vector on ¢, ¢, satisfies

G - p = 0 with respect to the (constant) unit vector on p, p. Then we obtain
d
iy (2.7)
q

i.e., log divergent. We call this kind of divergences ”infrared” or IR divergences, since they
occur at low energies (low 4-momenta), i.e. low frequencies.
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Thus we have two kinds of potential divergences, UV and IR divergences. The UV
divergences are an artifact of perturbation theory, i.e. of the fact that we were forced
to introduce asymptotic states as states of the free theory, and calculate using Feynman
diagrams. As such, they can be removed by redefining the parameters of the theory (like
masses, couplings, etc.), a process known as renormalization, which will be studied next in
this course. But these UV divergences are a characteristic of the theory, hence their presence
tells us we need to do something to define better the theory.

A nonperturbative definition is not in general available, in particular for scattering pro-
cesses it isn’t. But for things like masses and couplings of bound states (like the proton
mass in QCD, for instance), one can define the theory nonperturbatively, for instance on
the lattice, and then we always obtain finite results. The infinities of perturbation theory
manifest themselves only in something called the renormalization group, which will also be
studied later in this course.

By contrast, the IR divergences are genuine divergences from the point of view of the
Feynman diagram (can’t be reabsorbed by redefining the parameters). But they arise because
the Feynman diagram we are interested in, in the case of a theory with massless external
states, and with external states that are on-shell at the vertex, are not quantities that can
be experimentally measured. Indeed, for a massless external state (m = 0), of energy F,
experimentally we cannot distinguish between the process with this external state, or with
it and another emitted ”soft and/or collinear particle”, namely one of m = 0 and £ ~ 0
and/or parallel to the first. If we include the tree level process for that second process at
the same order in the coupling constant (order A\? for the diagram under study), and sum
it together with the first (loop level), we obtain a finite differential cross section (which
can be experimentally measured), for a given cut-off in energy and/or angle of resolution
between two particles. Therefore this divergence arises because the quantity we study is
not a physical one; a physical measurement always has a minimal resolution for the energy
(minimal detectable energy) and the angle between emitted particles. Only by summing over
processes that cannot be distinguished by the physical detector do we get a finite quantity.

Thus the physical processes are always finite, in spite of the infinities in the Feynman
diagram.

Analytical continuation

A question which one could have already asked is: Is Wick rotation of the final result the
same with Wick rotation of the integral to Minkowski space, followed by evaluation?

Let us look at the simplest one-loop diagram in Euclidean space (in A\¢?, already discussed

above)
D
1
/ 47 . (2.8)
(2m)P ¢* +m?

In Minkowski space it becomes

/ dPq 1 +./ dP~1q /qu 1 (2.9)
—q =4 | ——— [ = .
(2m)P g% + m? — ie (2m)P-1 21T @3 — 2 —m? +ie’

where now ¢? = —¢2 + ¢*.

18



—"Efq+i2 A C

Figure 5: Wick rotation of the integration contour.

Then the poles are at ¢y — ie and —g + i€, where gy = v/ ¢* + m?. The Minkowski space
integration contour is along the real axis in the gy plane, in the increasing direction, called
Cg. On the other hand, the Euclidean space integration contour Cf is along the imaginary
axis, in the increasing direction, see Fig.5. As there are no poles in betweeen Cr and C}
(in the quadrants I and IIT of the complex plane, the poles are in the quadrants IT and IV),
the integral along C7 is equal to the integral along Cg (since we can close the contour at
infinity, with no poles inside). Therefore, along C7, qo = iqp, with ¢p real and increasing,
and therefore dqy = idqp, so

[ datd = [ dat) = [ Gt [ o (2.10)
) = o) = —1)1 ) .

A (2m)P P+ (o) +m? —ie

which gives the same result as the Euclidean space integral, after we drop the (now unnec-

essary) —ie.
However, in general it is not true that we can easily analytically continue. Instead, we
must define the Fuclidean space integral and Wick rotate the final result, since in general this
will be seemingly different than the continuation of the Minkowski space integral (rather, it
means that the Wick rotation of the integrals is subtle). But the quantum field theory per-
turbation in Euclidean space is well-defined, unlike the Minkowski space one, as we already
saw, so is a good starting point.
Let’s see an example of this situation. Consider the second integral we analyzed, now in
Minkowski space
X2 [ dPq 1 1
2 ) 2m)Pq2+m?—ie(q—p)?+m?—ie

(2.11)

We deal with the two different propagators in the loop integral using the Feynman trick.
We will study it in more detail next class, but this time we will just use the result for two
propagators. The Feynman trick for this case is the observation that

1

15 /0 dr[zA+ (1 —2)B]?, (2.12)
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(which can be easily checked) which allows one to turn the two propagators with different
momenta into a single propagator squared. Indeed, now we can write

[
2 | @n)P

/0 dz[r(qg—p)* + (1 —2)¢® + (v + 1 — ) (m? —ie)] 2 (2.13)

The square bracket equals ¢? + xp? — 2xq - p + m? — ie. Changing variables to ¢'* = ¢* — xp*
allows us to get rid of the term linear in q. We can change the integration variable to
¢, since the Jacobian for the transformation is 1, and then the square bracket becomes

q? + z(1 — x)p* + m? — ie. Finally, the integral is

(=iN)? d”¢ [ 2 2 2 12
5 2n7 J, dz[q” 4+ z(1 — z)p® + m* —ie] ™%, (2.14)
which has poles at
@G =g +m*—ic+ax(l—2)p (2.15)

If p? > 0, this is the same as the in the previous example, we just redefine m?: the poles
are outside quadrants I and III, so we can make the Wick rotation of the integral without
problem. However, if p? < 0 and sufficiently large in absolute value, we can have ¢ < 0, so
the poles are now in quadrants I and III, and we cannot simply rotate the contour Cg to
the contour C7, since we encounter poles along the way. So in this case, the Wick rotation
is more subtle: apparently, the Minkowski space integral gives a different result from the
Euclidean space result, Wick rotated. However, the latter is better defined, so we can use it.

Power counting

We now want to understand how we can figure out if a diagram, and more generally a
theory, contains UV divergences. We do this by power counting. We consider here scalar
A @™ theories.

Consider first just a (Euclidean space) diagram, with L loops and E external lines, and
I internal lines and V' vertices. The loop integral will be

L diq ! 1
[D(plw"apE;m):/H = (216)
a=1

(2m)d P q]2- +m2’

where ¢; = ¢;(pi, ¢a) are the momenta of the internal lines (which have propagators 1/(¢; +
m?)). More precisely, they are linear combinations of the loop momenta and external mo-

menta,
L E
q; = Z Cjaqa T+ Z CjiDi- (2.17)
a=1 i=1

Like we already mentioned in Lecture 11 of QFT I, L = I — V + 1, since there are [
momentum variables, constrained by V' delta functions (one at each vertex), but one of the
delta functions is the overall (external) momentum conservation.

If we scale the momenta and masses by the same multiplicative factor ¢, we can also
change the integration variables (loop momenta ¢,) by the same factor ¢, getting H§:1 dlq —

thP H§=1 diq, as well as q; — tq;, and ¢* + m? — t*(¢*> + m?), giving finally
Ip(tps; tm) = PV 5 (pi;m) | (2.18)
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where

w(D) = dL — 21 (2.19)

is called the superficial degree of divergence of the diagram D, since it is the overall dimension
for the scaling above.

Theorem This gives rise to the following theorem: w(D) < 0 is necessary for the con-
vergence of Ip. (Note: but is not sufficient!)

Proof: We have ;

[[@+m* <O g +m?. (2.20)

=1 i=1

Then for large enough ¢, there is a constant C' such that

I I L E 2 L
Z(qlz +m?) = Z (Z CiaGa t Z Cz‘ij) +m?| < C’Z @, (2.21)
i=1 i=1 a=1 j=1 a=1

as we can easily see. Then we have

L
1 d’q 1 rPL=1dy
1D>—/ >/ e (2.22)
c! Zq§>A2,£[1(27T)d ) L SN

a=1 qa

where we used the fact that Z§=1 @ = 2%;1 q3; is a sum of dL terms, which we can
consider as a dL-dimensional space, and the condition Y__ ¢2 > A?, stated before as ¢, being
large enough, now becomes the fact that the modulus of the dL-dimensional ¢,; is bounded
from below. We finally see that if w(D) = dL — 21 > 0, Ip is divergent. The opposite
statement is that if Ip is convergent, then w(D) < 0, i.e. w(D) < 0 is a necessary condition
for convergence. q.e.d.

As we said, the condition is necessary, but not sufficient. Indeed, we can have subdiagrams
that are superficially divergent (w(Ds) > 0), therefore divergent, then the full diagram is
also divergent, in spite of having w(D) < 0.

We can take an example in \¢? theory in D = 4 the one in Fig.6: a circle with 3
external lines connected with it, with a subdiagram D, connected to the inside of the circle:
a propagator line that has a loop made out of two propagators in the middle. The diagram
has Ip = 9,Vp = 7, therefore Lp = Ip —Vp+1 =9—7+1 = 3, and then w(D) =
dLp—2Ip =4-3—2-9 = —6 < 0. However, the subdiagram has Ip, = 2, Vp, = 2, therefore
Lp,=2—-2+1=1, and then w(D;) =4-1—2-2 = 0, therefore we have a logarithmically
divergent subdiagram, and therefore the full diagram is also logarithmically divergent.

We can then guess that we have the following

Theorem (which we will not prove here) w(D;) < 0, VD, 1PI subdiagrams of D <
Ip(py,...,pp) is an absolutely convergent integral.

We note that the = implication should obviously be true, and moreover is valid for any
field theory. But the < implication is true only for scalar theories. If there are spin 1/2
and spin 1 fields, then w(D) < 0 is not even necessary, since there can be cancellations
between different spins, giving a zero result for a (sum of) superficially divergent diagram(s)
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Figure 6: Power counting example: diagram is power counting convergent, but subdiagram
is actually divergent.

(hence the name superficial degree of divergence, it is not necessarily the actual degree of
divergence).

We can now write a formula from which we derive a condition on the type of divergencies
we can have.

We note that each internal line connects to two vertices, and each external line connects
only one vertex. In a theory with > \,¢"/n! interactions, we can have a number n = n,
of legs at each vertex v, meaning we have

%
2N+ E=> n,. (2.23)
v=1
Then the superficial degree of divergence is
d—2 . = (d-2
wu»zdL—ZL_u—zﬂ—dv+d_d——3—E+§;( 27%—d>, (2.24)
where in the second equality we used L = I — V + 1 and in the last equality we have used
2 +E =) n,.
Since the kinetic term for a scalar is — [ d%x(9,¢)?/2, and it has to be dimensionless,
we need the dimension of ¢ to be [¢] = (d — 2)/2. Then since the interaction term is

— [ diz\,¢™/n!, we have
d—2

] =d—n[¢] =d — Moy (2.25)

meaning that finally
1%

MD):d—i%EE—E:MJ (2.26)
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Thus we find that if [\,] > 0, there are only a finite number (and very small) of divergent
n-point functions (where n = E is the number of external lines). If [A,] > 0, then there are
also a finite number of diagrams. Indeed, first, we note that by increasing the number of
external lines, we get to w(D) < 0. Then, if [A\,] > 0 we get to w(D) < 0 also by increasing
V', the number of vertices.

As an example, consider the limiting case of [A\,] = 0, and d = 4. Then w(D) = 4—E, and
only £ =0,1,2,3,4 give divergent results, irrespective of V. Since E = 0, 1 are not physical
(E = 0 is a vacuum bubble, and E = 1 should be zero in a good theory), we have only
E = 2,3,4, corresponding to 3 physical parameters (physical parameters are defined by the
number of external lines, which define physical objects like n-point functions). For [A,] > 0,
any vertices lower w(D), so we could have even a smaller number of E’s for divergent n-point
functions, since we need at least a vertex for a loop diagram. In higher dimensions, we will
have a slightly higher number of divergent n-point functions, but otherwise the same idea
applies.

Such theories, where there are a finite number of n-point functions that have divergent
diagrams, is called renormalizable, since we can absorb the infinities in the redefinition
of the (finite number of) parameters of the theory, the parameters being in one to one
correspondence with the 1PI n-point functions.

Therefore we have 3 possibilities:

A) If there is some [\,] < 0, we can make divergent diagrams for any n-point function
(any FE) with A, vertices just by increasing V. Therefore there are an infinite number
of divergent 1PI n-point functions that would need redefinition, so we can’t make this by
redefining the parameters of the theory. Such a theory is called nonrenormalizable. Note
that a nonrenormalizable theory can be so only in perturbation theory, there exist examples
of theories that are perturbatively nonrenormalizable, but the nonperturbative theory is
well-defined. Also note that we can work with nonrenormalizable theories in perturbation
theory, just by introducing new parameters at each loop order. Therefore we can compute
quantum corrections, though the degree of complexity of the theory quickly increases with
the loop order.

B) If there is some [A,] = 0, and the rest of [A,] > 0, that means that there is a finite
number of 1PI divergent n-point functions, which means that the theory is renormalizable.

C) If all [A\,] > 0, there are only a finite number of diagrams that are divergent, which
means that we can actually fully renormalize the theory in practice, not just in principle.
The theory is then called super-renormalizable.

Examples.

Consider scalar field theories with all power laws, >~ -, A,¢"/n!. Then the condition for
the theory to be renormalizable is [A,] > 0, which gives

<2
n< o5
d=2. Then in 2 dimensions all n are renormalizable, in fact super-renormalizable, since
then [A,] = 2, and w(D) = 2 — 2V becomes < 0 as V' is increased.
d=3. The above condition gives n < 6, with equality for n = 6, which means that
¢, ¢*, ¢° are super-renormalizable and ¢° is just renormalizable.

(2.27)
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d=4. The condition above gives n < 4, with equality for n = 4, which means that ¢? is
super-renormalizable and ¢* is just renormalizable.

d=5. The condition above gives n < 10/3, which means that only ¢* is renormalizable,
and actually is super-renormalizable.

d=6. The condition gives n < 3, which means that only ¢* is renormalizable.

d>6. There are no renormalizable interactions.

Divergent ¢* 1PI diagrams in various dimensions.

Ind=2,[\] =2 and w(D) =2 — 2V, which means that only the V' = 1 diagram is
divergent (the 2-point one-loop diagram).

Ind=3,[\]=1and w(D) =3— E/2—V, which means that the only 1PI diagrams
are the V' =1, E = 2 diagram (one-loop) and the V = 2, E = 2 diagram (2-loops).

Ind=4,[\] =0, s0wD) =4—FE, so all the diagrams of the 2,3 and 1PI 4-point
functions are divergent.

Important concepts to remember

e Loop diagrams can contain UV divergences (at high momenta), divergent in diagram-
dependent dimensions, and IR divergences, which appear only for massless theories
and for on-shell total external momenta at vertices.

e UV divergences can be absorbed in a redefinition of the parameters of the theory
(renormalization), and IR divergences can be cancelled by adding the tree diagrams
for emission of low momentum (E ~ 0) particles, perhaps parallel to the original
external particle.

e Wick rotation of the result of the Euclidean integrals can in general not be the same
as Wick rotation of the Euclidean integral, since there can be poles in between the
Minkowskian and Euclidean contours for the loop energy integration. We can work
in Euclidean space and continue the final result, since the Euclidean theory is better
defined.

e Power counting gives the superficial degree of divergence of a diagram as w(D) =
dL — 21.

e In a scalar theory, w(D) < 0 is necessary for convergence of the integral Ip, but in
general is not sufficient.

e In a scalar theory, w(Ds) < 0 for any 1PI subdiagram Dy of a diagram D < Ip is
absolutely convergent.

e Theories with couplings satisfying [A\,] > 0 are renormalizable, i.e. one can absorb the
infinities in redefinitions of the parameters of the theory, while theories with [A,] < 0
are nonrenormalizable, since we can’t (there are an infinite number of different infinities

to be absorbed).
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e If all the [A,] > 0, the theory is super-renormalizable: it has only a finite number of
divergent 1PI diagrams.

Further reading: See chapters 5.1,5.2 in [5], 9.1 in [2] and 4.2 in [4].
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Exercises, Lecture 2

1) Consider the one-loop diagram below, for arbitrary masses of the various lines. Check
whether there are any divergences.

p2 p3

pl

Figure 7: One loop Feynman diagram. Check for divergences.

2) Check whether there are any UV divergences in the D = 3 diagram in A\¢* theory in
Fig.8.

Figure 8: Check for UV divergences in this Feynman diagram.

3) Consider the Lagrangeans

L1 = +5(0u0) + 96%(0,0)° 228)

in 4 Euclidean dimensions, and
1 1 v m2 a2¢?
Lo = 3 VIR + 5v/50,00,09" + VG 5-e (2:20)
N
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in 2 Euclidean dimensions, where R is the Ricci scalar for gravity.

Are these Lagrangeans renormalizable, superrenormalizable, or non-renormalizable? If
they are renormalizable or superrenormalizable, write down the superficially divergent dia-
grams.
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3 Lecture 3. Regularization, definitions: cut-off, Pauli-
Villars, dimensional regularization, general Feynman
parametrization

In this lecture we will describe methods of regularization, that will be used for renormal-
ization. We already saw a few methods of regularization, i.e. making finite the integrals.

Cut-off regularization

The simplest is cut-off reqularization, which means just putting upper and lower bounds
on the integral over the modulus of the momenta, i.e. a |p|mae = A for the UV divergence,
and an |p|,q, = € for the IR divergence. It has to be over the modulus only (the integral over
angles is not divergent), and then the procedure works best in Euclidean space (since then
we don’t need to worry about the fact that —(pg)?+p? = A? has a continuum of solutions for
Minkowski space). Note that having a |p|mae, = A is more or less the same as considering a
lattice of size A~! in Euclidean space, which breaks Euclidean (”Lorentz”) invariance (since
translational and rotational invariance are thus broken). For this reason, very seldom we
consider the cut-off regularization.

There are many regularizations possible, and in general we want to consider a regulariza-
tion that preserves all symmetries that play an important role at the quantum level. If there
are several that preserve the symmetries we want, all of them can in principle be used (we
could even consider cut-off regularization, just that then we would have a hard time showing
that our results are consistent with the symmetries we want to preserve).

ptq
c)

Figure 9: Examples of one-loop divergent diagrams.

Let’s see the effect of cut-off regularization on the simplest diagram we can write, a loop
for a massless field, with no external momentum, but two external points, i.e. two equal
loop propagators inside (see Fig.9a):

/d4p L _ % /Apsdp—ilné (3.1)
@2m)t(p?)?  (@2m*). pt 8w € '

As we said, we see that this has both UV (for A — o0) and IR (for ¢ — 0) divergences.
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Infinite sums

Sometimes, we can turn integrals into infinite sums, like in the case of the zero point
energy, where a first regularization, putting the system in a box of size L, allows us to
get a sum instead of an integral: ) /fw,/2. The sum however is still divergent. When
one calculates the one-loop fluctuations around some classical background, the action is
approximated by the classical part plus a quadratic fluctuation,

S50ty / 56 [0, + U”(60)] 66 . (3.2)

where ¢ = ¢ — ¢g, ¢ is the classical value for the field, giving the on-shell action S, and
U(¢) is the potential. Then the partition function is found to be

71/2 iEnT
(]

Z[J) = N det [(0,0" + U"(¢))o1s] = . = Y e (3.3)

where the constant A includes e <, and the ... involve some calculations that will not be
reproduced here. The zero-point energy Fj is given by

h
By =3 > wn, (3.4)

where w,, are given by the eigenvalues of the spatial part of the quadratic operator,
(=¥ + U (60) )1, (&) = win, (7). (3.5)

Then there were various ways of regularizing the sum. We can deduce that if the result
depends on the method of regularization, there are two possibilities:

e perhaps the result is unphysical (can’t be measured). This is what happens to the
full zero-point energy. Certainly the infinite constant (which for instance in an e~ ®r
regularization is something depending only on L) is not measurable.

e perhaps some of the methods of regularization are unphysical, so we have to choose
the physical one.

An example of a physical calculation is the difference of two infinite sums. This is what
usually happens. In the example of the Casimir effect (the attractive force between two
infinite conducting plates due to the vacuum energy), the difference between two geometries
(two values for the distance d between two parallel plates) gives a physical, measurable
quantity. Another example is the difference between two vacua, say a vacuum with a soliton
and a trivial vacuum, with no soliton. In general then, we will have

th(LI) hw?(f)
> . - . (3.6)

n
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For the case of the quantum corrections to masses of solitons, one considers the difference
between quantum fluctuations () fuww,/2) in the presence of the soliton, and in the vacuum
(without the soliton), and this gives the physical calculation of the quantum correction to
the mass of the soliton.

Note that it would seem that we could write

W _ 5 @
Z(“ﬂ Q_h“" > (3.7)

n

and calculate this, but this amounts to a choice of regularization, called mode number (n)
regularization. Indeed, we have now oo — 0o, so unlike the case of finite integrals, now giving
the > operator as a common factor is only possible if we choose the same number N as
the upper bound in both sums (if one is N, and the other N + a say, with a ~ O(1), then
obviously we obtain a different result for the difference of two sums).

This may seem natural, but there is more than one other way to calculate: for instance,
we can turn the sums into integrals in the usual way, and then take the same upper limit
in the integral (i.e., in energy), obtaining energy/momentum cut-off reqularization. The
difference of the two integrals gives a result differing from mode number cut-off by a finite
piece.

For > hw,/2, there are other regularizations as well: for instance zeta function regular-
ization, heat kernel regularization, and ) w, — > w,e” .

Pauli-Villars regularization.

Returning to the loop integrals appearing in Feynman diagrams, we have other ways to
regulate. One of the oldest ways used is Pauli- Villars reqularization, and its generalizations.
These fall under the category of modifications to the propagator that cut off the high mo-
mentum modes in a smoother way than the hard cut-off |p|,.. = A. The generalized case
corresponds to making the substitution

1 R I Z ci(A;m?) | (3.8)

q2+m2 q2_|_m2 — q2_’_A12

and we can adjust the ¢; such that at large momentum ¢, the redefined propagator behaves

as
A2N

™~ ToON+2”
2N+

(3.9)

In other words, if in a loop integral, we need to have the propagator at large momentum
behave as 1/¢*V*2 in order for the integral to become finite, we choose a redefinition with
the desired N, and with ¢;’s chosen for the required high momentum behaviour.
In particular, the original Pauli-Villars regularization is
1 1 1 A? —m? A?

q2+m2 q2+m2 q2+A2 (q2_|_m2)(q2_|_A2) q4 ( )

We can easily see that it cannot be obtained from a normal modification of the action,
because of the minus sign, however it corresponds to subtracting the contribution of a very
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heavy particle. Indeed, physically it is clear that a heavy particle cannot modify anything
physical (for instance, a Planck mass particle cannot influence Standard Model physics). But
it is equally obvious that subtracting its contribution will cancel heavy momentum modes
in the loop integral, cancelling the unphysical infinities of the loop.

However, there is a simple modification that has the same result as the above Pauli-Villars
subtraction at high momentum, and has a simple physical interpretation as the effect of a
higher derivative term in the action. Specifically, consider the replacement of the propagator

1 1

q% + m2 — @ +m?+ ¢ /A? (3.11)
The usual propagator comes from
1 d*p 1 d*p 1
4, 2 _ - 200 ) — Z -1 _
[ g7 = [ Ghisewnton - [ GEsowa wen . (312
so the above replacement is obtained by adding to the action a higher derivative term:
1 (0%9) d'p (r*)?
4 2 2
= = [ —— —| ¢(—p). 1
[ ey |@u0r + O] = [ ow [+ B o (3.13)

Now consider a non-Pauli-Villars, but similar modification of the the loop integral, that
is strictly speaking not a modification of the propagator, but of its square. Consider the
same simplest loop integral, with two equal propagators, i.e.

= [ e (pzij)Q_ (zﬁ)

The new object in the square brackets is
2p2(A%2 —m?) + At —mt  2A?
(P2 + m2)2(p? + A2)? I’
so is now UV convergent. Since the object is UV convergent, we can use any method to

calculate it. In particular, we can take a derivative 9/dm? of it, and since I(A?) doesn’t
contribute, we get for the integral

0 NEETIC N dp -2 9 [ pldp
1) =100 = | s = 2y, e

where Q3 = 272 is the volume of the 3 dimensional unit sphere. Considering p? + m? = z,
so p*dp = (v — m?)dz /2, we get

= I(m?) — I(A?).

(3.14)

: (3.15)

, (3.16)

s, 1 [ (x—m?)dz 11
——I(m? A% = — / =———. 3.17
om? (m”, A% 872 J,2 a3 872 2m? (3.17)
Integrating this, we obtain I(m?), then
Im?, A2) = I(m?) — I(AY) = —— 1n 2 (3.18)
’ 16m2 " m?2’ '
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This object is UV divergent, as A — oo, and also divergent as m — 0 (IR divergent).

Derivative regularization

However, note that in the way we calculated, we really introduced another type of regu-
larization. It was implicit, since we first found a finite result by subtracting the contribution
with m — A, and then calculated this finite result using what was a simple trick.

However, if we keep the original integral and do the same derivative on it, after the
derivative we obtain a finite result,

0 [dp 1 dp 1 1
=2 =— = finite. 3.19
om? / (2m)* (p? + m?)? / (2m)4 (p? 4+ m2)3 16722m?2 nite ( )

and now the integral (and its result) is UV convergent, despite the integral before the deriva-
tive being UV divergent. Hence the derivative with respect to the parameter m? is indeed a
regularization. Both the initial and final results are however still IR divergent as m? — 0.
Now integrating, we obtain

d* 1 1 m?
/ (27:;4 CEE = 162 In — constant | (3.20)
which is still IR divergent as ¢ — 0. The UV divergence is now hidden as a possible infinite
integration constant.

However, all the regularizations we analyzed until now don’t respect a very important
invariance, namely gauge invariance. Therefore, 't Hooft and Veltman introduced a new
regularization to deal with the spontaneously broken gauge theories, namely dimensional
reqularization, rather late (early seventies), since it is a rather strange concept.

Dimensional regularization

Dimensional regularization means that we analytically continue in D, the dimension of
spacetime, results calculated for arbitrary D). This seems like a strange thing to do, given
that the dimension of spacetime is an integer, so it is not clear what can physically mean
a real dimension, but we nevertheless choose D = 4 + ¢. The sign has some significance as
well, but here we will just consider D =4 + e.

A relevant example for us, that will not only encode the features of dimensional regular-
ization, but will actually be the only way to obtain infinities in dimensional regularization,
is the case of the Euler gamma function, which is an extension of the factorial, n!, defined
for integers, to the complex plane. Again this is done by writing an integral formula,

I'(z) = /000 daa® e ™. (3.21)

Indeed, one easily shows that I'(n) = (n — 1)!, for n € N,, but the integral formula can be
extended to the complex plane, defining the Euler gamma function. The gamma function
satisfies
2I'(z) =T(z+ 1), (3.22)
an extension of the factorial property. But that means that we can find the behaviour at
z = € — 0, which is a simple pole, since
1

l'(e)=T(14+¢) ~T'(1)=1=T(e) ~ - (3.23)
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We can repeat this process,

(=1+el'(—14+¢)=T(e) =T (-1+¢€) ~ —%

(C24 (<24 €) = T(—1+€) = T(—2+ ) ~ 2% , (3.24)

etc. We see then that the gamma function has simple poles at all ['(—n), with n € N. In fact,
these poles are exactly the one we obtain in dimensional regularization, as we now show.

Consider first the simplest case, the tadpole diagram, with a single loop, of momentum
q, connected at a point to a propagator line, as in Fig.9b:

B dPq 1
I—/( (3.25)

2m)P ¢% + m?’

We now write

1 e 2,2
prare i / dae” ) (3.26)
q=+m 0
and then
e qu 2 o QQD,1 o 2
J = d —am? —agq® _ doe— o™ d D—-1_-—aq
/o " / 2m)P* / e <2w>D/0 "
— = —am? QDfl 1 > D_1 _
= /0 doe WW/O dxx € , (327)

and we use the fact that [°dwzzP/*7'e™® = T(D/2), and that the volume of the D-
dimensional sphere is

D+1
2m 2

r(54)
which we can easily test on a few examples, ; = 27/T'(1) = 27, Qy = 27%/2/T(3/2) =
232 (/7 )2) = 4rm, Q3 = 27%/T(2) = 272, Then we have Qp_I'(D/2) = 27P/2, s0

I = /OOO doe™ ™ (A7)~ 7 = %F (1 - g) . (3.29)

Taking derivatives (9/0m?)"~! on both sides (both the definition of I and the result), we

obtain in general

D

/ dPq 1 _I'(n—d/2) <m_2>2_n (3.30)
2m)P (@2 +m2)»  (47)"T'(n) \ 4n ' '

We see that in D = 4, this formula has a pole at n = 1,2, as expected from the integral
form. In these cases, the divergent part is contained in the gamma function, namely I'(—1)
and I'(0).

Feynman parametrization with two propagators

We now move to a more complicated integral, which we will solve with Feynman parametriza-
tion, cited last lecture. Specifically, we consider the diagram for a one-loop correction to the

Qp = (3.28)
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propagator in ¢* theory, with momentum p on the propagator and ¢ and p + ¢ in the loop,

as in Fig.9c, i.e.
dP 1 1
/ b ___ . (3.31)
2m)P g +m? (¢+p)?+m
We now prove the Feynman parametrization in this case of two propagators. We do the trick
used in the first integral (tadpole) twice, obtaining

1 o0 o0

= d dae™ (1 8rta2da), 3.32

AL, /o al/o ase (3.32)

We then change variables in the integral as a3 = #(1 — ), as = ta, with Jacobian

l-—a « o
-t t)| 7
Lo / o / Tt tet0-ededs) _ / do ! (3.33)
2 0 0 [(1—a)A; + alg)?

We want to write the square bracket as a new propagator, so we redefine ¢* = ¢* — apt,
obtaining

(1—a)A; +aly = (1 —a)¢® +alqg+p)?+m? =3¢ +m?+a(l —a)p’ (3.34)

Finally, we obtain for the integral

B N dD~ 1 _T(2-D/2) 1@@ 2B
- /d / (a(l—a)p? +m2)]> ~ (4m)PP2 /Od (1 — a)p” + ](335,)

and again we obtained the divergence as just an overall factor coming from the simple pole
of the gamma function at D = 4, and the integral in now finite.

General one-loop integrals and Feynman parametrization.

The Feynman parametrization can in fact be generalized, to write instead of a product
of propagators, a single ”propagator” raised at the corresponding power, with integrals over
parameters « left to do. Then we can use the formula (3.30) to calculate the momentum
integral, and we are left with the integration over parameters.

Consider the general one-loop integral from Fig.10, obtained from a loop with n external
lines coming out of it, with momenta p1, ..., p,. The momenta on the internal lines can be
chosen to be g + p;, with p; = 23:1 p;, for instance, but in any case we can always write
them as ¢ + p;, with p; depending on the external momenta p;. The general one-loop scalar
integral is then

I(p1,....pn) = . 3.36
) = [ Gl oo (330
We first write the product of propagators in an exponential as before, as
1 o - ; ;
— = dae~ (G181t tandn), 3.37
ALA, /0 [Jdase (3:37)

=1
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Figure 10: General One-Loop Feynman diagram.

After a transformation &; = a;t, which needs to be supplemented with the constraint ) . o; =
1 in order to still have n independent integration variables, which also means that we must
have a; < 1, and whose Jacobian we can easily check is J = ¢"~! (the determinant has
n—1t’s on the diagonal and rest zeroes, except on the last line), the product of propagators
becomes

1 n oo
0 0
T ()
_ /0 [T e (1 - Za) SR e A (3.38)

Now we have replaced the product of different propagators with a single quadratic ex-
pression in momenta, raised to the n-th power, so we can use the formula (3.30) to calculate
the one-loop integral, which becomes

A MMaas (150 ) [ 44 L'(n)
fopn) = [ [0 (1 2 >/ L) TP AL TR

But there is still one step to do, namely to shift the momenta in order to get rid of the
term linear in momenta: Define ¢# = ¢* + Y, a;p’, after which the quadratic form in the
denominator becomes

n

Y lailg+p:)* +m? = ¢ +m® + Z @ip; — <Z az‘ﬁz‘) : (3.40)

i=1
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Since the Jacobian of the shift is 1, finally we obtain (using (3.30)) for the Feynman
parametrization of the general one-loop integral
o1 D/2—n
I(p1,...,pn) = ZW 342 / Hdai(s (1 - Z%) m? + Zaiﬁ? - (Z Oéiﬁi)
(3.41)
The «; are called Feynman parameters. We note that the dimensional regularization proce-
dure described above is general, and we see that the divergence always appears as the simple
pole of the gamma function at D = 4.

Alternative version of the Feynman parametrization.

In the literature, an alternative parametrization is also sometimes used, which can be
found directly by making a change of variables in (3.38), but we find it useful to start at the
beginning. In (3.37), we substitute the change of variables &1 = t(1 — ), a2 = t(ag — az),
as = t(ag — a3), ..., &, = tay,. From these definitions, we see that we must have oy € [0, 1],

as € [0,aq], a3 € [0,a9], ... The Jacobian of the transformation is found again to be
J =t""1 so that we get

1 1 (o731 (o) Qp—2 0
m = /O‘ d@1A dOéQ/O d@g...A danl/o dt

tn_l6_t((1_041)Al+(a2_al)A2+---+(an72_an71)Anfl"!‘anflAn) ) (342)

Finally, we have for the product of propagators

1 -2
Al.,_ / dozl/ dOéQ/ dOég / dOén 1

Al 1—0(1 +A2 Oél—CYQ + ..+ A, 1(Cl/n 2 — Qlpy— 1)+Anan 1] n(343)

Dimensionally continuing Lagrangeans.

So we saw that the loop integrals of the above type are OK to dimensionally continue,
but is it OK to dimensionally continue the Lagrangeans?

For scalars, it is OK, but we have to be careful. The Lagrangean is

2 )\n
L= ( 0u)® + ¢2 + 5o (3.44)

and since the action S = f dPz must be dlmensionless, the dimension of the scalar is
[¢] = (D —2)/2 and thus the dimension of the coupling is [A\,] = D — n(D — 2)/2. For
instance, for D = 4 and n = 4, we have [A\4] = 0, but for D = 4+ ¢, we have [\y] = —e. That
means that outside D = 4, we must redefine the coupling with a factor u¢, where p is some
scale that appears dynamically. This process of spontaneous appearance of an arbitrary
mass scale at the quantum level is called dynamical transmutation, and is related to the fact
that we have a renormalization group, as we will see later in the course.

For higher spins however, we must be more careful. The number of components of a field
depends on dimension, which is a subtle issue. We must then use dimensional continuation
of various gamma matrix formulae

gwjg;w =D
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MW" = (2= D)p (3.45)

etc. On the other hand, the gamma matrices still satisfy the Clifford algebra {v#, v} = 2¢g*".
But the dimension of the (spinor) representation of the Clifford algebra depends on dimension
in an unusual way, n = 2/°/2 which means it is 2 dimensional in D = 2, 3 and 4 dimensional
in D = 4,5. That means that we cannot continue dimensionally n to D = 4+ €. Instead, we
must still consider the gamma matrices as 4 x 4 even in D = 4 + ¢, and thus we still have

Tr[yuyw] = 49 (3.46)

This is not a problem, however there is another fact that is still a problem. The definition
of 75 is

75 = %ewpov“v”vpv” =~y = oy (3.47)
and that cannot be easily dimensionally continued. Since chiral fermions, i.e. fermions that
are eigenvalues of the chiral projectors Pr r = (1 £75)/2, appear in the Standard Model, we
would need to be able to continue dimensionally chiral fermions. But that is very difficult
to do.

Therefore we can say that there are no perfect regularization procedures, always there is
something that does not work easily, but for particular cases we might prefer one or another.

Next class we will see that the divergences that we have regularized in this lecture can be
absorbed in a redefinition of the parameters of the theory, leaving only a finite piece giving
quantum corrections.

Important concepts to remember

o We must regularize the infinities appearing in loop integrals, and the infinite sums.

e Cut-off regularization, imposing upper and lower limits on |p| in Euclidean space,
regulates integrals, but is not very used because it is related to breaking of Euclidean
("Lorentz”) invariance, as well as breaking of gauge invariance.

e Often the difference of infinite sums is a physical observable, and then the result is
regularization-dependent. In particular, we can have mode-number cut-off (giving the
sum operator as a common factor), or energy cut-off (giving a resulting energy integral
as a common factor). We must choose one that is more physical.

e The choice of regularization scheme for integrals is dictated by what symmetries we
want to preserve. If several respect the wanted symmetries, they are equally good.

e (Generalized) Pauli-Villars regularization removes the contribution of high energy
modes from the propagator, by subtracting the propagator a very massive particle
from it. A related version for it is obtained from a term in the action which is higher
derivative.
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By taking derivatives with respect to a parameter (e.g. m?), we obtain derivative
regularization, which also reduces the degree of divergence of integrals.

Dimensional regularization respects gauge invariance, and it corresponds to analytically
continuing the dimension, as D = 4 + ¢. It is based on the fact that we can continue
n! away from the integers to the Euler gamma function.

In dimensional regularization, the divergences are the simple poles of the gamma func-
tion at ['(—n), and appear as a multiplicative 1/e.

With Feynman parametrization, we can reduce a general one-loop scalar integral to an
integral over Feynman parameters only.

For scalars, dimensional regularization of the action is OK, if we remember that cou-
plings have extra mass dimensions away from D = 4. For higher spins, we must
regulate the number of components, including things like g*”g,, and gamma matrix
identities.

The dimension of gamma matrices away from D = 4 is still 4, so traces of gamma
matrices still give a factor of 4, and the 5 cannot be continued away from D = 4,
which means analytical continuation in dimension that involve chiral fermions are very

hard.

Further reading: See chapters 5.3 in [5] 4.3 in [4] and 9.3 in [2].

38



Exercises, Lecture 3

1) Calculate

/ (d4p ! ! (3.48)

271)4 p2 + m?2 p? + m3

in Pauli-Villars regularization.

2) Calculate

/ (qu ! ! (3.49)

2m)P (¢* +m3)? (¢ + p)? + mj

in dimensional regularization (it is divergent in D = 6).
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4 Lecture 4. One-loop renormalization for scalars and
counterterms in dimensional regularization.

In this lecture we will learn how to get rid of the infinities appearing in quantum field
theory loops, by a process called renormalization. Basically, we will absorb the infinities in
a redefinition of the parameters in the theory. We will do it in dimensional regularization,
the most commonly used, though of course it can be done in any regularization we want.

We will learn how to do this in the case of one-loop corrections in scalar theories, and
specifically we will consider ¢* theory in d = 4 and ¢* theory in d = 6. Of course, ¢ theory
is not well defined, since the potential is unbounded from below (it can have arbitrarily high
negative value). But we will take it as a simple example, since the standard theory, ¢* in
d = 4, has no "wave function renormalization” at one loop (we will see what that is later),
but ¢* in d = 6 is the simplest example of a theory that does have it.

Note that both theories are in the critical dimension (meaning that for a dimension higher
than the one considered, the theory would be non-renormalizable). We can check this, since
we saw that w(D) =d — (d —2)E/2 =) [M\] and [A\,] = d — (d — 2)n/2. That means that
for ¢* in d = 4 we have [\y] = 0 and w(D) = 4 — E, and for ¢ in d = 6 we have [A\3] =0
and w(D) =6 — 2E.

As we saw last lecture, in dimensional regularization we need to introduce a scale p and
redefine the coupling ) in dimension d in terms of the dimensionless coupling A in the critical
dimension by

(d—

220N = A, (4.1)

d—

A= U

The parameter p is a manifestation of dimensional transmutation, the spontaneous break-
ing of scale invariance at the quantum level, manifested through the appearance of the ar-
bitrary scale u. Note that in any regularization we will find such an arbitrary scale: in the
cut-off regularization it is the cut-off A itself, in Pauli-Villars again it is the mass parameter
A, in the PV-like higher derivative regularization again we have a parameter A, etc.

The statement is that the physics should be independent of this scale, and this will lead
to the renormalization group equations, which will be presented in the next lecture.

We now proceed to find the divergent diagrams at one-loop and calculate the divergent
parts. After that, we will learn how to get rid of them by a redefinition of parameters.

¢ in d = 4.

From the above formula w(D) = 4 — E, we see that the £ = 0, 1,2, 3,4 -point functions
are all superficially divergent. But we consider 1PI diagrams, so the E = 0 case (partition
function) is not physical, since it just gives the normalization which cancels out in calcu-
lations. Since we are considering 1PI diagrams, at one-loop in ¢* theory we can convince
ourselves that I\ =7® = 0. So we are left with I'® and I'® to calculate.

one—loop one—loop -
We define e =4 — D (D =4 — ¢), such that A\ = .
For the 1PI 2-point function, the one-loop contribution (in Fig.11) is given by just one
vertex with a loop on it, with result

A dPp 1
5F(2)(p) = _5/ 2m)P p2 +m?2”’ (4.2)
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where we used the fact that we have a symmetry factor S = 2. Using the formula (3.30)
from last lecture with n = 1, we obtain

STO) () = _é%r (1 - g) — —Q?Z;‘:)Qr (% - 1) (4;’;2)5 . (4.3)

Figure 11: One-Loop Feynman diagram for the 1PI 2-point function in ¢* theory.
P
1
p4
B Py
Figure 12: One-Loop Feynman diagram for the 1PI 4-point function in ¢* theory.

For the one-loop contribution to I'® in Fig.12, we define the 4 momenta py,ps, ps, Pa
going in, and the Mandelstam variables s = (p; + p2)?, t = (p1 + p1)? = (p2 + p3)? and
u = (p1 + p3)?, and we find 3 diagrams with 2 vertices and 2 external lines at each vertex.
One diagram has p; +ps = pp at one vertex (¢ diagram), the second has p; + py at one vertex
(s diagram) and the third has p; + ps at one vertex (u diagram), so that we have

ST W (s, t,u) = %Q[I(t) + 1(s) + I(u)]. (4.4)

Then

B dPq 1
0= | @D (& T m®)((q + 0)2 + ) (45)
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Using the formula (3.41) from last lecture, for n = 2 and ps = 0, we obtain

\2 r(2-2 1 D
)\—](t> = )\_(—DQ)/ dondond(1 — ay — ag)[m? + aapi — afpi] > 2
2 2 (4m)>2 0
e T(5) [ e
— _ [ dajm? 1—a)t] 2. 4.6
RTE s /0 alm?® + a(1 — a)] (4.6)

Summing over s, t,u, we obtain

A2 e\ [4mp?
4
5F( )(s,t,u) = 2(47T)2F (5) ( 2 )

Divergent parts.
Since we are interested in getting rid of the divergent parts, we now isolate the divergent
parts of ST (p) and 0T (s, ¢, u).
For the 2-point function, we first use the definition of the ¢ function, ¥ (2) = dI'/dz to
write I'(1 +¢) >~ 1 + e(1). Then we have also
[(e) I'(1+e¢) L+ey(l)

Mot = oo = =S - o (14 w()] =~ 1+ ev(2)]
(4.8)

o

/da Z 1—1—04 1—a)m2] g. (4.7)

z=s,t,u

where we have used ¢(n+ 1) = 1/n + 1(n) to write ¢(2) = 1+ ¢(1).
Then we have

Am? 2 4 p?
ST (p) ~ _2(4—’:;)2 (‘E . lp(z)) (1 + %ln ;‘; ) +0(e)
am?2 [1 9((2) 1 2
(47:)2 {E + % L 477:’”2 + O(e)] . (4.9)
For the 4-point function, we use
I(e) = mj ) o ~ o) (4.10)

to write the expansion

ST (s, b 1) ~ 2?2:) (2+w< )) (1+; 4”“)(3——/ da Y ln 1+a1—a)—2>)

z=s,t,u

Npe (3 31
~ ﬁ(sz#—— ———/ daZln 1+a1—a —i—@ )
(4.1

z=s,t,u

11)

Note that we can do the integral over a (even though here we are not interested in the
finite parts),

1 4m? 1
dm2 [+ T
/daln [1+a(1—a)i} =24y 14+ 2 . (4.12)
0 m2 z /1+4m2 -1

42



¢® in D = 6.

We now repeat the same procedure for ¢ in d = 6. Again we want to write A= LN,
which means that now we must take d = 6 — 2e. From the formula w(D) = 6 — 2F, we see
that the E = 0, 1,2, 3 -point functions are superficially divergent, but I'¥) is a normalization,
and actually vanishes at one-loop, and I' is trivial (it gives no term in the effective action,
just a constant shift of the scalar). Therefore we have only I'® and T'®),

q+p

Figure 13: One-Loop Feynman diagram for the 1PI 2-point function in ¢? theory.

For the 2-point function, there is only one one-loop diagram, in Fig.13, with two vertices
connected by two propagators, and each having an external line. The momenta on the two
internal propagators are named ¢ and ¢ + p (p being the external momentum), and the
symmetry factor is S = 2, giving

2 _ E d”q 1
5T =5 | o T (419)

We see that it is formally the same as the I(t) integral from the ¢* case, with p; replaced by
p, so we can use that result to write

—Ew 1am2 all — a 2122
=t /Od[ +a(l—a)p? 32 (4.14)

Substituting D = 6 — 2¢ now, we obtain

NmPuD(=14e) _, [ P
ST (p) = 2 (dm) m2 /0 da [14—04(1—04)@}

- e (8 (-]

For the 3-point function, there is also a single one-loop diagram, in Fig.14, with 3 vertices
connected pairwise by internal propagators. We denote the external lines by p1, p2 going in
and p3 coming out, and the internal lines by ¢, ¢ + p; and ¢ + p3. Then we have

) () — 53 [ 274 !
o (pi) A / 2m)P (> +m?)((g+p1)>+m?)((qg+ps3)> + m2)'

5T (p)

(4.16)
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Figure 14: One-Loop Feynman diagram for the 1PI 3-point function in ¢* theory.

We can use the result (3.41) from last lecture, for n = 3 and p; = p1,p3 = p3, p2 = 0, to
write
LL(3-2) 1t
(SF(B) (pz) = _>\3(—D2)/ dOéldOéQdCl/g(S(]_ — ;] — (g — Oég)
(4m)z Jo

[m? + a1pi + asp; — (aup1 + asps)?]

A3 drp\© 1 p? 3 arpr 4 asps \ B
B _(47r)3r(6) ( m? /0 daldag 1+Q1W + agﬁ - m '

D
D3

m
(4.17)
Divergent parts
We now isolate the divergent parts of 6T (p) and 6T (p;).
For the 2-point function, we obtain
A2m? 1 m? p?
I ~ ———(-=)(1 2)) (1 —el 14+
(p) 2(47T)3 € ( + 62/}( )) € n47T/,L2 _'_ 6m2
1 p? P
— da |1 l—a)—|In|1 l—a)— @)
e N o
A'm 1 P P m
= - - — — —1
2(4m)3 \ e ( * 6m? U 6m2> <¢( ) "y 2)
1 P P
— | da [1+a(1—a)ﬁ} In [1+0¢(1—a)—2}> +0O(e), (4.18)
0
where we have used
1 P P
For the 3-point function, we obtain
3, € 2 1
@ (p) ~ -~ 21+ ep1) (1-eln— 1—/dd
o (pq) (47)36( +ey(1)) € Il47w2 € i ardasg
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3 p: [oupi +asps\’
Inl+a—5+az— — (— + O(e)
m m m
)\SMe 1 m?2 1
_W (E —+ w(l) —1In 471_“2 — /(; d@ld@g
pi 3 a1p1 + Q3p3 ?
n(l+a-—=5+a—5—|—— + O(e). (4.20)
m m m

Counterterms

We are now finally in the position to show how to get rid of the infinities calculated above.
As we can check in the two examples above, in the case of renormalizable field theories, we
can hide the infinities in the redefinition of the parameters of the theory. Indeed, we see that
the number and type of divergences matches the type of terms in the Lagrangean. In the ¢*
theory in d = 4 we have infinities in I'® and I'®| which are of the type of the propagators
(quadratic in fields) and the interaction (¢ in fields), and in the ¢* theory in d = 6 we
have infinities in I'® and T'®, of the type of the propagators (quadratic in fields) and the
interaction (¢° in fields).

Therefore we want to consider redefining the parameters by infinite factors, considering
that also the original parameters were infinite, such that the physical, redefined parameters
are finite quantities.

In a nonrenormalizable theory, it would happen that we have an infinite number of
divergent terms, at each loop level appearing new ones. These can be cancelled only by
adding new terms to the original Lagrangean. In some sense, that means that for non-
renormalizable theories we would need to start with a Lagrangean with an infinite number
of terms, most of them (except for a finite number) having zero coefficients, and then hide
the infinities in the redefinition of all the coefficients (even the ones that are zero).

The procedure to get rid of infinities is then to add to the original Lagrangean new infinite
terms called counterterms, giving new infinite vertices, such that the resulting amplitudes
calculated with the total Lagrangean are finite.

One redefines the masses m;, couplings A\; and wave functions for the fields ¢;.

ot ind=4.

As we argued at the beginning of the lecture, for ¢* theory in d = 4 we have no wave
function renormalization, so only m and A will be redefined. The counterterm Lagrangean to
be added to the original one is such that the vertices coming from it cancel the divergences
of T'® and T™ we found. That means that we must take the counterterm Lagrangean

A 171 .., [ N3] Lot
_ 111 AN 4 B 4.21
Let |:167T26:| O {167#6} v (421)

Indeed, then we get two new vertices, one a 2-point vertex, denoted by a line with a cross
on it, as in Fig.15a, with value (the vertex is minus the coupling in Euclidean space)

Al
1672 €

(4.22)

45



and one a 4-point vertex, as in Fig.15b, denoted by a 4-point vertex with a circle on it (to
distinguish it from the classical vertex), with value
c A% 3

1672 ¢

— I (4.23)
Note that to identify L., above, we have considered the fact that a term 1/2[(9,¢)*4+m?*¢?] in
z-space leads to a term 1/2¢(p)[p* +m?|¢(—p) in p-space, i.e. a ”2-point vertex” —(p*+m?).
The divergent 1PI 2-point function was p-independent, depending only on m, hence there is
no redefinition of the kinetic piece (9,¢)%/2, which means no wave function renormalization
(redefinition).

Also note that the 1PI n-point functions include the classical vertices, so in the redefined
theory, £ + L., we take both the loops of £ and the classical vertices of L. .

e

a) b)

Figure 15: One-Loop Counterterm vertices in ¢* theory. a) 2-point vertex. b) 4-point vertex.

Then we check that we cancel the divergences coming from I' (()i)e_loop and I‘((i)e_loop with
these new vertices (the tree -”classical”- diagram from L. and the one-loop diagram from
the original Lagrangean are of the same order in A, and the infinite parts cancel). Note
that we have chosen L.; to cancel just the infinite part of the one-loop diagrams. This is
called minimal subtraction, and will be discussed next lecture in more detail, but note that
it is not necessary to use this, we can also consider more general subtractions, where the
counterterms also contain some finite parts.

¢® ind = 6.

In the ¢* theory in d = 6, there is a term with p? in I'®(p), as well as a term with m?,
so now we have the countertem Lagrangean

A2 111 9 22111 5 A3 1 6¢3
12(4m)3 E} 5(0u0) ~ [mg] gmé - {(4@3;] Hogr (4.24)

Note the sign difference with respect to ¢* in d = 4. Now the new vertices coming from this
Lagrangean are:
-a 2-point vertex denoted by a line with a cross on it, with value

X1 (p? )
“(E 4.2
2(477)3e<6+m>’ (4.25)

Ec.t. = - |:
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-a 3-point vertex denoted by a 3-point vertex with a circle on it, with value

(jﬂ E % (4.26)

+uc

Therefore also now the divergences cancel between the tree diagrams coming from L.,
and the divergent parts of the loop diagrams.

Renormalization

The general structure of £ and L. is as follows

1 ,u A
L = = §<8u¢)2 ¢ + = ¢
_ 1 2 2 42 ,U A
Loy, = C§(5u¢) +B-m°¢p"+ A—- ¢ . (4.27)
We now define the renormalized Lagrangean
»Cren =L + Ec.t. - Eren(d)a m, /\,lf) (428)

In it, ¢, m, A are finite quantities as ¢ — 0.
But now we can numerically identify this with a bare Lagrangean written in terms of bare
quantities ¢g, Mg, Ag, which are infinite,

ﬁren.(ﬁb, m, /\,ue) = 'Cbare(gbm my, )‘O) ( ,u¢) 0¢0 + ?¢g 9 (429)

which therefore looks like the classical Lagrangean as a function of ¢g, mg, Ag.

Sometimes one says that the renormalized Lagrangean is written in terms of bare (infinite)
quantities, but that is not very satisfactory. A better interpretation is that the classical,
bare Lagrangean, written in terms of infinite quantities, is reinterpreted as a renormalized
Lagrangean, written as a sum of a finite, physical Lagrangean, plus a counterterm part that
contains the infinities.

By comparison, we find that the relation between the bare and the renormalized quantities
is given by

o = VI+Cop=+/Z4s0

, _ m*(1+B)

Zy

N o= pN1+A)Z? (4.30)

where in the last line we wrote the coupling for a general puA¢"/n! case.
We see that the results we have found at one-loop can be written as

A
A = MC(A—FGIE)
m% = m? (1+b1()\>>
€



Cl(>\)

€

Of course, in the examples of ¢* in d = 6 and ¢* in d = 4, the a;()\),b1()), c1()\) are some
specific powers of A\, which we will determine shortly, but in the general case of a some of
An@" /n! interactions, we will obtain nontrivial functions of the couplings.

In general, at general loops, we will find all higher order poles in € as well (increasing
order in € for increasing loop number), so that the general expansion takes the form

o = U ()\—Fi@)

Zy = 1+ —1+C. (4.31)

(A
2 _ 2 k
o =t (143 0)
k=1
— (V)
Zy = 1 = . .
T 3 U <432>
k=1
Ezxzamples
We now compute the aq, by, ¢; coefficients in the two cases considered here.
ot in d = 4.

Since C' = 0, it follows that ¢;(A) = 0, i.e. no wave function renormalization. Then
Ao = A1+ A) gives

A3 3\2
Ao = A -=>aq(N)= . 4.33
0 * 1672 € a(Y) (4m)? (4.33)
Then also m3 = m?(1 + B) gives
Al A
2=mj (1 - bi(\) = . 4.34
" mo( * 167r2e) =0 (47)? (434)
¢% ind=6.
Now we have a wave function renormalization,
A2l A2
Zy=1 =1-—- A) =— 4.
s=1+0C PP AA U TS (4.35)
Then from
3/2 ] ] !
Zy Mo =p AL+ A)=p | A— mic) (4.36)
we obtain by expanding Z(;S/ >in A
7\
A)=—= : 4.37
al( ) 8 (47T)3 ( )
Similarly, from
miZs=m?(1— X1 (4.38)
0% 2(4m)3e )’ '



we obtain by expanding Z(;l in A

HA2

hlA) = T 12(47m)%

(4.39)

Note that here we have the first example of a calculation that is common in quantum field
theory, though it is not very well defined mathematically. Even though the result is divergent
as € — 0, since the divergent term is multiplied by A, which is considered small (perturbation
theory), we can expand in A as if the term is small. This treatment of divergences is bizarre,
and it is not clear why it works from a mathematical point of view (there is probably a better
underlying theory that we don’t know yet), but it always does, so we will continue to use it.
Moreover, note that at higher loops the pole order 1/¢* increases, so is even more divergent,
but since it is multiplied by a higher power of A\, we consider it as an even smaller term.
In fact, we treat quantum calculations order by order in A\, and at each order we make the
theory finite by renormalization, and calculate finite quantities without worrying that there
are worse infinities at higher orders, since we know those can be fixed as well.

Important concepts to remember

e The appearance of the arbitrary scale u signals the quantum breaking of scale invari-
ance, and the independence on it will lead to renormalization group equations. It is a
characteristic of all regularizations.

e ¢* theory in d = 4 has one-loop infinities in I'®(p) and I'¥ (s, t,u), and ¢* theory in
= 6 has one-loop infinities in ['®(p) and I'®(p;). Both theories are in the critical
dimension.

e These divergences are of the same type as the terms in the Lagrangean, so can be
absorbed in a redefinition of the parameters.

e To the orginal Lagrangean, we must add a counterterm Lagrangean, made up of the
divergent pieces. These gives new vertices, of a higher order in .

e When adding to the one-loop diagrams the tree level vertices of the counterterm La-
grangean of the same order in A, the infinities cancel.

o L+ L. defines the renormalized Lagrangean, written in terms of finite parameters
o, m, A

e When reinterpreted as the classical bare Lagrangean, it is written in terms of infinite
bare quantities.

e The relation between bare and renormalized quantities is given by an infinite series of
poles in €, multiplied by functions of A\. At one-loop, we only have a single pole.
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e Quantities divergent in ¢, if multiplied by A, are nevertheless considered small, and one
can expand in them.

Further reading: See chapters 5.4 and 5.5 in [5] and 10.2 in [3].
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Exercises, Lecture 4
1) Consider ¢* theory in D = 4. Write down the divergent diagrams and calculate the
divergences.

2) Write down the counterterms and renormalized Lagrangean for the above.
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5 Lecture 5. Renormalization conditions and the renor-
malization group.

Last lecture we saw that we need to remove infinities by renormalization, which means adding
(infinite) counter terms to the Lagrangean written in terms of ¢, m, . The total Lagrangean,
the sum of the classical one and counterterm one, when written in terms of ¢, m, \, called
the renormalized quantities (finite), is the renormalized Lagrangean. Numerically it equals
the bare Lagrangean, which formally looks the same as the classical one, but is written in
terms of the bare quantities ¢g, mg, \g, which are infinite.

The relations between the bare and renormalized quantities are written as

Ao = Ao\, p,€); mog =mo(m, N\ €); Z = Z(\e). (5.1)

These can be understood as follows. We can consider \g, mg, € as fixed quantities, defining
the theory. Then we obtain A = A(u), and through it, m = m(A(u)) = m(p) and Z =
Z(Mp)) = Z(u). Thus masses and couplings run with the scale p. An alternative viewpoint
is obtained if we fix A and p, obtaining Ay = A\g(€), mg = my(€) and Z = Z(e).

The first viewpoint, where physical quantities depend on scale, will lead to the renor-
malization group equations, which are equations for the scaling behaviour of the n-point
functions.

From the fact that renormalization is a redefinition of parameters, we obtain the following
scaling for the connected n-point functions:

G (pr, o pmim A, iy €) = Z," G0 (py, o pusmo, Mo ). (5.2)

Indeed, the connected n-point functions G™ are obtained from the renormalized Lagrangean
with sources, £'" — J - ¢, obtaining the partition function Z[J]; from it, the free energy W1[J],
and from it, the G™’s are obtained from derivation

W J]

) — _
¢ §J1..00,

(5.3)

But in order to have a well-defined action and partition function we must have J-¢ = Jy- ¢,
which means that we need to define the bare sources as (since ¢y = \/Zs0)

Jo=2,"?1. (5.4)

This, together with the fact explained above that £™"(¢) = L(¢o), means that the total
action is invariant under the rescaling. The path integral measure however, transforms by

cz =[] 2> (5.5)

zEeRd
Then CzZ[J] = Zy[Jo], and since Z = eV we get

WJ] = WolJo] +1nCy , (5.6)
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and so
G(n) — _ 5HW[J] — _Z—n/2 5H(W0[J0] +In CZ)
5<]15Jn ¢ (5J01..(5J0n

But we are actually more interested in 1PI n-point functions, relevant for the S-matrix.
They are generated by the effective action, which is the Legendre transform of the free energy,

=z,"*G. (5.7)

L] = W+J-¢?
To[g§] = WolJo] + Jo - - (5.8)

Here the classical field is the connected one-point function,

oW|J
o - 2
6 = _&gojd ! (5.9)
hence we have
=27, (5.10)
which leads to a relation for I' similar to the one for W,
To[¢g] = T[¢] — InCy. (5.11)
In turn, for the 1PI n-point functions,
) _ 5¢§(1;...1;5¢_53 , (5.12)
we also get a relation between the bare and renormalized quantities,
L™ (py, o Py, A\, i, €) = Zg/QG[()n)(pl, cees P 0, Ag, €)- (5.13)

We note therefore, both for the case of G™ and of I'™, the multiplicative nature of
renormalization, namely that the all physical quantities are renormalized by multiplying
them with the infinite factors.

Coming back to the issue we started this lecture with, the renormalized quantities A, m, ¢
depend on the scale p, which is understood really as being related to making measurements
at a chosen scale. We will obtain that masses and couplings "run” with the scale, i.e. we
have a scale dependence.

In order to do that, we need to fix A\g, mg, ¢9 when ¢ — 0. This is usually done in the
UV, i.e. the infinite bare quantities are related to the UV of the theory. There is an issue of
whether a theory can be defined in the IR, like we would need to in the case of QED or \¢*
theory; it is believed that it cannot be done.

Subtraction schemes

In the process of renormalizing, we have subtracted only the divergences, i.e. the coeffi-
cient of the 1/e terms (the pole). This is a choice, and it is called minimal subtraction scheme,
or M S scheme, but it is only a choice. We can also choose to subtract some finite parts also.
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For instance, the most popular scheme is a variation of M S called MS, which corresponds
to subtracting the infinity, but also factors of —y 4 In(47), where v is the Euler constant.
Indeed, we have seen that in all our example we always obtained v (n) + In(4wu?/m?), and
in the expression for i(n) it is useful to isolate —v, i.e. ¥(n) = —y + ..., so —y + In(4n)
appears naturally.

Normalization conditions

But we can also fix the parameters in a different way, that is however more physical. The
tree values for the effective action are given by the 1PI n-point functions

Fgfie(p) = p*+m?
() = A (5.14)

1) But we can imagine defining that at p = 0, the 1PI functions take their tree values, i.e.
that

I'D(p, =0 = X (5.15)

2) The choice of p = 0 is nothing special, so we can in fact define that more generically, at
any scale 1 the 1PI n-point functions take their tree values,

rOG2) = @4ms -Lre

4 E—
| (5.16)

The choice of p;p; = ?(d;; — 1/4) was chosen such as to have the Mandelstam variables
s =t = u = [i%, but that is not even necessary, we can generalize further and require the
4-point function to be equal to its tree value at some different s, ¢, u related to g in another
way.

Here 1) and 2) are different normalization conditions, and they are a different way to fix
what we renormalize, but they should be in principle related (equivalent) to the renormal-
ization (subtraction) schemes above. However, when we try to translate, we will see that,
e.g., the MS scheme corresponds to some nontrivial normalization conditions.

Also, by the equivalence of the subtraction schemes (where different schemes would differ
by the subtraction of different finite parts) to the normalization conditions, it follows that
two renormalized theories differing just by different normalization conditions will differ by
finite counter terms. Le., the difference in counter terms (subtracted terms) must be finite.

A final observation at this point is that it is only in the MS scheme that the coefficient
function ag(), bx(A) and ¢ () depend only on A, in general will also depend on m/p.

Renormalization group in MS scheme

We note that we can trade the arbitrary parameter p we have introduced when renor-
malizing (in dimensional regularization, it came from the fact that the coupling outside the
critical dimension has a mass dimension) for the arbitrary subtraction point f. lLe., the
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freedom in p corresponds to the freedom in defining masses and couplings at some arbitrary
scale.

Then the equation for the dependence on the physical scale (like 1) at which we define
parameters, of observables like the 1PI Green’s functions, will be the renormalization group
equation.

¢* in 4 dimensions

To find it, we start with the observation that in ¢* theory in d = 4, [\4] = 0 and so
w(D)=d—(d—2)E/2 -3 [\,] becomes w(D) =4 — E. Thus for an 1PI function with n
external lines, a finite diagram will give w(D) = 4 —n, with no necessity for renormalization,

leading to the scaling law
T (tpistm) = T8 (pi;m) (5.17)

where we have scaled both momenta and masses by the same factor ¢, to obtain the classical
scaling dimension.

But since there are divergent diagrams, we need to regularize, introducing the arbitrary
scale p (or the subtraction point ). Then, for the full renormalized 1PI Green’s functions,
which include the counterterms, to maintain the relation as it is, we need to scale also p, i.e.

™) (tpss tm, ti) = t7"T0) (pg;m, ). (5.18)

By taking td/dt onto this equation, we obtain that I'™ satisfies

d
taf(") (tps;tm, tp) = (4 — n)TW (tps; tm, tp). (5.19)

We can rewrite this by absorbing the ¢ multiplying m and p and trading it for derivatives
with respect to m and p, i.e.

0 0 0
9, 9 0 . _
t(?t + ma + 'uﬁ,u +n—4| T (tp;;m, u) = 0. (5.20)

We can now find another equation for I'™ as follows. Consider the fact that Ty is
independent of i,

d
M@Fg )(pi;mo, Ao, €) =0, (5.21)
and express it in terms of '™, as
d [, -n
,u@ Z, /2()\, T™ (pi; A, m, p, (—:)] = 0. (5.22)

Since as we discussed, we have the dependences
A=A, € Ao, mo); m=m(Ap),€);  Zy = Zy(Mp),€) (5.23)

when acting on '™ (p;, A(p), m(p), pt, €) with the g derivative we have explicit and implicit

dependence, leading to
d 0 d\ 0 dm 0

2,2 i - 5.24
'udu M(?u +'udu O\ +'ud,u om (5:24)
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We now define the beta function

d\
BA €)= p— : (5.25)
du mo,Ao,€
the anomalous field dimension
p dZg
Ya( A €) = —— , 5.26
(A €) 27, dy |, . (5.26)
and the anomalous mass dimension
wdm
V(A €) = —— 5.27
A= — dnl, (5.27)

To understand the names, note that if we have 3, v4, v, constants, then the above definitions

mean that ~
A X+ BInp; Zy~ CpPt = g ~ VCOpg; m o~ Cpom. (5.28)

The first means that g gives the slope of A\ with In u, v4 the power of i in ¢g, and ~,, the
power of y in m, justifying the names.
Substituting this in (5.22), we obtain

d __ 0 ) 0
Tu—z"? 4+ 7, [ p— + B— — )™ =
Mo + Zy ”8u+68)\+%"m(9m 0=
%) ) 0
< < g _ () (. _
{uaﬂﬂm gy T ImA)me nw(A)}F (pi, Aym, ) = 0. (5.29)

Eliminating ©d/0p between (5.20) and (5.29), we obtain

0 0 0
[_tﬁ + BN gy + (m(A) = Dmg— —ny(A) +4 - N} L(tps, A, m,p) =0, (5.30)

which is called the renormalization group equation (RGE), for the case of the ¢* theory in 4
dimensions (for other theories, we have only the 4 — n term changing to the classical scaling
dimension of the 1PI n-point function).
Note that this equation gives the behaviour under scaling of the 1PI n-point functions,
and is written only in terms of physical quantities, since we eliminated the y dependence.
Solution. Its formal solution can be written as follows. Define A(¢) and m(t) such that
they satisfy the equations

9 - B
tgk(t) = AAQ@)
tom®) = mH)(m(AD) = 1) (5.31)
with the boundary conditions
AMt=1) =X mt=1)=m. (5.32)



Then the solution of the above will be A = A(t,\) and m = m(t,m,\). In turn, then the
formal solution to the RGE is

L) (tpi, A\, mi; i) = £ " exp [—n/l %w(X(S))} L0 (i, A(t), m(1); p)- (5.33)

We will not give the proof, but one can check that this solution satisfies the equation.

It would seem that we have solved the RGE, but of course that is only in principle, not
in practice. Note that in order to be able to write an explicit solution, we would need the
exact formulas for B(\), ¥ (), va(A). We can of course plug in their values to some order in
perturbation theory, but we will not obtain exact solutions.

We can compare this to the naive scaling,

™ (tpi, A, ms ) = 7T (p;, N, m /). (5.34)
On the other hand, if ~,,(A(t)) and ~4(A(t)) are approximately constant as a function of
t, which can happen only if A\(¢) is approximately constant, which in turn requires the
beta function to be zero, then we can easily integrate A(t), m(t) to obtain A(f) ~ A and
m(t) = m/t'™m as well as to integrate the exponent in the solution to the RGE as

bds -
exp {—n/ —%l()\(s))} ~ e (5.35)
1S
such that finally the solution to the RGE is

™ (tp;, A, m, p) = ¢+ +)pm (pi, A, tl—%’ ) . (5.36)
We see then (by comparing with the naive scaling above) that indeed, the ~,, acts as an
anomalous mass dimension (quantum correction for the scaling dimension of m with ¢) and
74 as anomalous field dimension (quantum correction for the scaling dimension of the field,
external to the 1PI n-point function, with ¢).

In general A(t) is not constant (so A(x) is not constant), and we say that we have a
running coupling constant (a coupling constant that “runs” with the energy scale), whose
running is defined by the beta function, S(\) = pd\/dpi|mgre.e. A(t) is only approximately
constant near a so-called fized point of the renormalization group (RG) Ap, where S(Ap) = 0.

The running of the coupling with the energy scale means that the validity of perturbation
theory can depend on scale. For instance, for QCD we know that the theory is weakly coupled
in the UV, a phenomenon called asymptotic freedom, whereas it becomes strongly coupled
in the IR, a phenomenon called IR slavery. Therefore QCD is perturbative only in the UV.
On the other hand, for QED the situation is reversed: we have a weak coupling in the IR,
and the theory becomes strongly coupled in the UV. In fact, there is a Landau pole, namely
at some high but finite energy scale, the coupling becomes infinite in perturbation theory.
Therefore QED is perturbative only in the IR. For such theories (like QED, and ¢* theory
in d = 4 which behaves in a similar manner) it is not clear that we can consistently define
the theory.

27



If there is a well-defined perturbation theory somewhere, we have a A = 0 point, and
B(A = 0) = 0 (the validity of perturbation theory means that there is a Taylor expansion for
B, given by Feynman diagrams, starting at one-loop). Then A = 0 is a universal fixed point,
called the gaussian fixed point, since the action is free and the path integral is gaussian, at
that point.

Possible behaviours for §(\).

We now analyze the most common possibilities for the behaviour of 5(\). We saw that
A = 0 is the gaussian fixed point. Note that the solution to the equation t0/0tA(t) = B(A(t))
with boundary condition A(t = 1) = X is

A AN
x BV)

20 Y=oy

t = exp (5.37)

R /38\> [
e

1) V)

Figure 16: Possible behaviours of 5(\).

I) Consider first the case when 3()) starts out positive at A = 0 and keeps increasing, as
in Fig.161. If moreover it increases faster than A, in (5.37), the integral [ s convergent as
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A\ — 00, and we have a Landau pole, A — 0o, at some large but finite ¢,

o d)\/
to = exp —_— 5.38
0= ) B (5:3%)
i.e. at some large but finite momentum. As we mentioned, QED is of this type.
The gaussian fixed point A = 0 is an IR stable fixed point in this case, since for A — 0
and A - A — 0,

A—0 d)\/ A—0 d ! [ | | ( )] ( )
eXp/ :exp/ ————— ~ exp|+|alIn(0)] — 0. 5.39
o BV o BN

We can also verify that if we start with a perturbation A > 0, then ud\/du = S(A) > 0, so
decreasing p implies that A\ also decreases, towards A\ = 0, i.e. when going to low momenta
we are driven towards A = 0.

IT) Then we can consider the case that 5(\) starts out positive at A = 0, but turns around
and goes through zero, 5 = 0 at some A = Ap, as in Fig.16I1. That means that near it we
have

BA) = B'(Ar)(A = Ar) , (5.40)
and f'(Ar) < 0. In turn, that means that near Ap, the exponent in (5.37) gives
A= AR d()\/ _ )\F)
ex — +0o0. 5.41
O o

That means that t — oo as A — Ap, i.e. for infinite momenta (infinite t) we have A — Ap.
In other words, A\r is an UV stable fixed point. It is UV stable, since if we perturb A > Ap,
udX/dp = B(A) < 0, so as one increases p, A decreases towards Ap, while if we perturb
A < Ap, pd\/dp = B(N\) > 0, so as one increases p, A increases towards A\g. Therefore either
way, as we increase p we are driven towards Ap.

On the other hand, in this case the gaussian fixed point A = 0 is an IR stable fixed point,
exactly as in case I, for the same reason.

IIT) We can consider now the mirror image of case I, i.e. that S()\) starts out negative
and keeps decreasing, and moreover that it decreases faster than —\, as in Fig.16III. Then
in (5.37), the exponent behaves as

A—0 d)\/ A—0 d)\l
e [ gagEer [ g ertldnol e G

Therefore as t — 0o, A(t) — 0, i.e. the gaussian fixed point is an UV stable fixed point, and
we are driven towards it at high momenta. We can also verify this fact since 5'(0) < 0, and
then as in case II for Ar, when going at high momenta we are driven towards it, even when
we initially perturb away from it. This phenomenon, of A = 0 being UV stable is called, as
we said, asymptotic freedom, and it is the behaviour QCD experiences.
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On the other hand, since 3()\) decreases faster than ), for A — oo, we obtain a Landau
pole, i.e. a finite value of ¢, since the integral is convergent at infinity,

;\_>OO dA/
ty = eXp/A BN (5.43)

Therefore we obtain a Landau pole (breakdown of perturbation theory at a finite energy
scale) in the IR. That is OK, since for QCD we know that perturbation theory breaks down
in the IR.

IV) Finally, we can consider the case mirror image to case II, namely when the beta
function starts out negative at A = 0, but then turns around and becomes positive again at
some finite A = Ap, as in Fig.16IV. Then near Ar we can write

BN) = B'(Ar)(A = Ar) , (5.44)

where ' (Ar) > 0.
By the same argument as in case III, the gaussian fixed point A = 0 is UV stable. On
the other hand, the fixed point Ar is IR stable, since for A — Ap,

= eX ;\_»\F d()\/_)\F) ~ X al| 1n
= exp / o ~ el )] 0. (5.45)

We can also verify that, since f'(Ar) > 0, the same argument as for the gaussian fixed point
in case I says that if we perturb away from Ap, when going at small y we are driven back
towards Ap.

Perturbative beta function in dimensional regularization in MS scheme.

We now learn how to calculate the beta function in perturbation theory. We start with
the formula (valid for dimensional regularization in the MS scheme) relating Ay and A,

Ao = pf ()\ +) %”) ; (5.46)

Since (A, €) = pd/OpN|mg rge, We take d/dply, on both sides of the equation above, and
obtain (after dividing by u°)

0=6<A+Z@)+B(A,e)<1+2@>. (5.47)

Consider now the ansatz 5(\, €) = —eA+ (3, and plug it in the above equation. We can verify
that then the O(e) terms cancel in the equation, and the O(€°) terms give

ar(\) + B — My (\) =0, (5.48)

which gives then
B(A€) = —eX —ar(\) + Aaj(N). (5.49)
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Taking the ¢ — 0 limit, we obtain the beta function as

B0 = lim “g_i _ (Ai _ 1) a1 (A). (5.50)
This formula is exact to all orders in perturbation theory, and note that we only need to
know the coefficient of the single pole, not of any of the higher order poles. Of course, a;(\)
receives corrections at each order in perturbation theory, so we can only calculate it to the
order we know a; ().

Now we can substitute S(\,e) = —eX + B(\) in the remaining equations, and at order
O(e*) we obtain the equation

ar1(A) + B(A)ar(A) = Aag 1 (A) =0, (5.51)
which leads to the recursion relation between the coefficients of poles

(A% - 1) B (V) = B (V). (5.52)

That means that we can determine (in principle) all the ax(\) in terms of a;(\) only.
Ezxamples.
¢* theory in d = 4. We saw that one-loop, we obtained

3A2

A) = )
a () () + (5.53)
Then from (5.50), we get
32
\) = O(\h). 5.54
BN = foge + OO (554
In turn, solving for A(t), we obtain
- A
AMt) = ———. (5.55)
1- % In(t)
Thus it is IR free and there is a Landau pole, just like in QED.
¢® in d = 6. At one-loop, we had obtained
7 0\
A)=—= )
ai(A) STany T (5.56)
leading to the one-loop beta function
7 0\ "
B(N) = _1(47r)3 + O(\Y). (5.57)
This can then be solved for \2
N (t) = : (5.58)
1+ 2(4’f)3 In(t?)



This is asymptotically free, just like QCD.

Perturbative calculation of v,, and v, in dimensional regularization in the MS
scheme.

We can now repeat the same kind of calculation to find ~,,. Start with

m2 = m? (1 +> b’fp) . (5.59)

k>1

Taking pd/dpi|mg e o0 both sides and dividing by m?, we obtain

0= 2vm (1 +) @) +B(N e b;f—?) (5.60)

k>1 k>1

We then substitute (), €) = —eA+3(\). We can check then that we cannot have a nontrivial
Ym(A, €) (a Taylor expansion in €), S0 Y, (A, €) = Y, (A). Substituting this as well, we obtain
from the equation at order O(°),

A

YA€) = 7m(A) = S01(V) (5.61)

and substituting it back in the equation, from the order O(1/¢"), the recursion relation
Abr1(A) = BNBL(A) + Aby (A)bk (V). (5.62)

Therefore now from by () we can get both 7,,()), and all the higher order poles bg(\).
For ~,4, we do a similar calculation. Starting with

Zy=1+3 Ck(,?) : (5.63)

€
k>1

and taking pd/dpt|mg.x,.e o0 both sides, we obtain

29a(A, €) <1 + Z Cke(:\)

k>1

> ~ (—er+ B(V) Ci@). (5.64)

k>1

Again we can check that v4(\, €) cannot have a nontrivial Taylor expansion in €, i.e. y4(\, €) =
74(A). Then from the O(e°) order in the equation, we get

1) = =540 (5.65)

and substituting it back in the equation, from the O(e~*) order we get the recursion relations

A1 (A) = BN (A) + Adi (A)er(A). (5.66)

Important concepts to remember
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Because of the multiplicative nature of renormalization, the relation between the bare
and renormalized Green’s functions (connected and 1PI) is given by multiplication
with Z, factors, specifically G™ = Z;”/ 2GY and T = Z(Z/ i,

We can think of either fixing the bare quantities \g, mg, €, by defining the theory
usually in the UV, and then we have A(u) and implicitly m(p) and Z(u), meaning
these physical quantities "run” with the scale, or of fixing A\, m, ¢ and then Ay, m, ¢ are
functions of e.

Renormalization is defined by a subtraction scheme, defined by removing the divergent
parts by counter terms (minimal subtraction), perhaps together with some finite parts.
Or equivalently by a normalization condition, whereby we fix the 1PI n-point functions
to take their tree level values at some energy scale i (for n > 2, we need to specify
also the relation of the various momenta with the scale f).

Two renormalized theories which differ just by normalization conditions differ by finite
counter terms.

One can trade the arbitrary parameter x4 with the arbitrary subtraction point j.

The renormalization group equation is the equation for the variation of the renormal-
ized 1PI n-point function under scaling, written only in terms of physical quantities
(with the explicit dependence on p solved for).

The beta function gives the slope of scaling of A with In i, the anomalous mass dimen-
sion 7, the power of i in m, and the anomalous field dimension the power of p in ¢.
The anomalous dimensions give corresponding quantum corrections to the scaling of
fields and masses in the full 1PI n-point functions.

Ym and 4 are only approximately constant near a fixed point A of the beta function,
B(Ar) = 0. If the perturbation theory is well defined, A = 0 is an universal fixed point,
the gaussian fixed point.

QED and ¢* in d = 4 are perturbative in the IR and has a Landau pole in the UV,
QCD and ¢? in d = 6 are asymptotically free (perturbative in the UV) and have a pole
in the IR.

B(N), as well as ag(\), are given completely in terms of a;(A), the coefficient of the
single pole in the coupling divergences. 7,,(A), as well as bg(\), are given completely
in terms of by (\), and 4(\), as well as ¢x(\), are given completely in terms of ¢;(A).

Further reading: See chapters 5.6 and 5.7 in [5].
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Exercises, Lecture 5

1) Calculate the beta function for ¢? theory in d = 4 (use the results from the lecture 4’s
exercises).

2) Use a1(A), bi(A\) and ¢ () for ¢* in d = 4 and ¢* in d = 6 from class to calculate
explicitly ¥, (A), va(A), az, ba, co at one-loop. Then substitute in the RG equation for the
divergent n-point functions in these respective theories. Write the explicit RG equation and
its explicit solution at one-loop.
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6 Lecture 6. One-loop renormalizability in QED.

In this lecture we will show the renormalizability of QED at one-loop by doing explicitly the
renormalization.

We start by remembering the QED Feynman rules.

In Euclidean space, we had:

-Photon propagator between p and v,

1 k.k,
G206) = 5 (0w — (1 - )22 | 6.1)
-Fermion (electron) propagator between o and 3,
1 —ip+m),
S (p) = _ Etmoy (6.2)

R p? + m?
-Electron positron photon vertex, between «, 5 and g,
+ie(Y*)ap- (6.3)

In Minkowski space, we had:
-Photon propagator between p and v,

)y (1 _ Kby
G/,w (k) - kQ . i(—f (guu (1 OZ) ]{32 ) 9 (64)
-Fermion (electron) propagator between « and 3,

Sg]) (p> _ _i(_iﬁ + m)aﬁ - _(]b + im)aﬁ (6.5)

pP+m?—ie  p*4+m?+ie’

-Electron positron photon vertex, between «, 5 and g,

+e(7") ap- (6.6)
We also remember that we have the Ward-Takahashi identity for the vertex,
P'Thas(Pi g2, @1) = e(Sp' (42)ap — Sz (@1)ap)- (6.7)

and the similar one for the n-photon case,

REOTE L (B, k) = 0. (6.8)

H1efin

Here of course, we can contract with any of the n momenta of the vertex. These identities
are a consequence of gauge invariance.

In particular, for n = 2 we obtain the transversality condition for the polarization,
k*11,,, (k) = 0, which leads to the fact that

HHV<k) = (kQ(s,uz/ - k#kl/)H(kz) (69)
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But we now note that this means that we reduce the degree of the divergence by 2, since the
superficial degree of divergence w(D) was given by the scaling dimension of the Feynman
integral, but the result of the integral is constrained to have the above form, which reduces
its actual (effective) degree of divergence by 2 units of mass dimension, weg. (D) = w(D) — 2.

In general, for the n-photon vertex '™, we see that, because we have n conditions on
it, given by contraction with each external momentum, the superficial degree of divergence
will be reduced by n powers of the momenta, i.e. weg (D) = w(D) —n, and since for '™ we
have w(D) = 4 — n in 4 dimensions, we have weg(D) = 4 — 2n.

We now consider a more general analysis of the superficial degree of divergence. For
the case of scalar theories, we had w(D) = dL — 21, since there were L loop integrals in d
dimensions, and I propagators of 1/(p? +m?) for the scalars. We see that the same formula
is still valid for a purely bosonic theory, with all bosons having actions with 2 derivatives,
i.e. propagators with dimension —2, ~ 1/p?®. But when we have fermions, the fermion
propagators have dimension —1, here being 1/(ip + m), and therefore their contribution to
w(D) is —Iy, for a total of

w(D) =dL —21,, — Iy, (6.10)

where I, is the number of photon internal lines and Iy is the number of fermion internal
lines.

For the scalar case, we also had the formula ) nV, = 2I 4+ E, since at an n-vertex we
have the endpoint of n lines, but each internal line has 2 endpoints, whereas each external
line has only one. In the case of QED, we have only one vertex, on which end two fermions
and a photon, therefore n = 2 from the point of view of the fermions, and n = 1 from the
point of view of the photons, giving

2]ph + Eph =V; 2]f + Ef =2V. (611)

We also had the relation L = I — V 4+ 1, since the number of loops was given by the
number of integration variables, one for each internal line, minus the number of delta function
constraints, one for each vertex, except for the overall momentum conservation delta function.
Now this still applies, with [ = I, + ¢, so L = I, +1; —V + 1. Finally, eliminating L, I,
and Iy between the 4 relations we wrote, we obtain for the superficial degree of divergence

of QED in 4 dimensions
3

w(D)=4—E,, — §Ef. (6.12)
For I'™ we had called E,;, by n before.

Then we see that a priori we have the following divergent Green’s functions. We can have
only photons, in which case E,, = 1,2, 3,4 are superficially divergent, or only fermions, in
which case Ey = 1, 2 are superficially divegent, or both fermions and photons, with F; = 1,2
and E,, =1, or Iy = 1 and E,;, = 2. But first, we note that we cannot have an odd number
of fermions, since each fermion line must be uninterrupted (cannot just end in a vertex), so
the £y = 1 cases are out. Then for the pure photon case, at one-loop we have no nonzero
E,, =1 or E,, = 3 diagrams, whereas the E,, = 4 case has an effective degree of divegence
of we (D) = —4, so is actually convergent.
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We are therefore left with only 3 divergences, in E,, = 2 (photon polarization), in Ey = 2
(fermion self-energy), and in Ey = 2, E,, = 1 (vertex function). We will treat these cases
separately.

Dimensional regularization of gamma matrices.

Before that, we remember some gamma matrix identities which were derived in dimension
D, and are still valid in D = 4— e dimensions, since the index ; on v, has now D components
(but the v, matrix is still 4 x 4),

vy = D1
%Y = (2= D)y
'71//7/11%12’7” = 46#1#2 1+ (D - 4)7#17#2
Yo Ypr Vi VsV = —2Vus Vo Vs T (2 - D)(‘Smuz%m + Opiapis Y — 5#1#37#2)' (6.13)

On the other hand, we still have

Tr[y, ] = 46,
Tr[vu Yo ¥el = 4(00p0 — 0upbuo + 0puslup). (6.14)

Figure 17: One loop photon polarization diagram.

1) Photon polarization I, (p).

We consider the case of an off-shell momentum p (i.e., p* # 0) for the photon. The
diagram is a fermion loop with two external photon lines coming from it, as in Fig.17. The
fermion momenta are k£ and k + p, the photon momenta are p, and the external photon
indices are p and v. Then the value for the Feynman diagram is

) = (1) [ ok e () G oy D
_ / dPk_Te[y, (i + m)y (—i(K +p) +m)] 615
Er)P Rk p ) -

€/2

Here the (—1) is because of the fermion loop, and é = eu* is the coupling in D = 4 — ¢

dimensions.
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Using the Feynman trick for the 2 propagators A; = k? + m? and Ay = (k + p)? + m?
and shifting the momenta as k* = ¢g* — ap*,

1 ! 1
— 1
AlAQ /0 [q2 + m2 + Oé(l — O[)p2]2 ’ (6 6)

we get

eﬂ/cm/(wqmmu i — o)+ m) (il + (L= ) £ m)] o

(2 +m? + a(1 — a)p?)?

Rememebering that the trace of an odd number of gamma matrices is zero, the trace in the
numerator becomes

Ti[) = = Trlyu(d — ap)n(d + (1 — )p)] +m* Te[y,m). (6.18)

By Lorentz invariance, we know that

/ P aq" (%) =0, (6.19)

since there is no Lorentz covariant constant object with only one index. That means that
the integrals of the terms in the trace with a single ¢ are zero, so

Tof] = — Telyad] + a(l — @) Telyp ] + 4. (6.20)
Using (6.14), we see that
Tr(yufyod] = 429490 — 6 d?) (6.21)

and a similar relation with p.
The integrals appearing are

/ dPq 1 _ re-2) (6.22)
( , :

2m)P [¢* + a(l —a)p> + m?]*  (47)7 [a(1 — a)p? + m2|>=

where we have used the general result (3.30) for m* — m? + a(1 — «)p?, and the integral
with ¢,qs, which by Lorentz invariance should be rewritten as an integral of d,5¢*/D, giving

/ d"q dads _Gag [ dPg ¢
(2m)P [¢? + a(1l — a)p? + m?)? D (2m)P [¢? + a(1 — a)p? + m?)?
Oas d%q 1 Oap 2 2 d"q 1
- b 2B a1 —
D J (2m)P[¢* +a(l —a)p* +m?] D (al = a)p”+m’) / 2m)P [¢? + a(1 — a)p? + m?)?
_ sl (1-5) 1 s T (2-%) 1
D (4 )% [a(l —a)p? + mz]l_g D (47r)§ [a(1 — a)p? + m2]1_§

_ Oap r(2-2)
(D — 2)(47T)% [a(l _ a)pz +m2]1*§ )
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where we have used I'(1 — D/2) =I'(2 — D/2) /(1 — D/2). Also appearing is the integral of
q?, for which we just remove the factor of d,5/D from the above integral.
Putting all the factors together, we obtain

2o [ 20, r (2 _ %)
I, = 4de da | — D ]
(p> H /0 [ (D — 2)(471’)(2 [a(l)_ a)p2 + mZ]lff
re-2
20(1 — « uPv 5 2 _
+20a( )PP (4m) 2 [o(1 — g)pQ +m2]2- 2
+ Délw 5 I (2 - 5) _ a(l _ Oé)pQ(SW,X
(D - 2)(47‘(‘)? [a[()l — Oé)p2 + mg]l_? )
(o (2-5%) g, T (2-2) T
(471')5 [06(1 — Oé)p2 + m2]2*7 (471')7[05(1 — Oé)pZ + m2]275

We can simplify it by taking a common denominator [a(l—a)p2+m2]2_§, and then cancelling
terms that appear to finally obtain, replacing D = 4 — e,

T (5) 200~ ) [ o

Expanding in epsilon (using I'(¢/2) = 2/e — ~), we find

1 (0) = ~Gur*m) ey (2= [£ - 5 [ daati—aym (H0=222 m)(l ;(?(e) >

where we have used fol do a(l — a) = 1/6 and we have put the expansion of the factor
(4mp?)</? together with the expansion of the power law in [ da. Note that the result is
indeed written as (8,,p* — p,p,)IL(p?), as it should.

The counter term corresponds to the divergent part of I, (p), and since 0,,p* — p.p,
corresponds to —(6,,0* — 9,0,), the kinetic operator coming from 1/4(9,A, — 8,A,)?, the
counter term is

a(l —a)

HMV(p) = 1_ a)pg n m2]

(6.25)

[SIL)

ez 21
0L = — 55 0A — 0,A) = (2~ DDA, — 0,A,)° (6.27)

|

leading to the wave function renormalization factor

2

e
Zz3=1-— . 6.28
K 6m2e (6.28)
2. Fermion self-energy >(p).
It is the term appearing in the inverse propagator,
Spt=ip+m+S(p). (6.29)

The one-loop diagram for it is given by a fermion line between indices § and «, interrupted
by a photon propagator starting and ending on it, starting at index p and ending at index
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Figure 18: One loop fermion self-energy diagram.

v, with momentum k£, as in Fig.18. The fermion has external momentum p, and inside the
loop has momentum p — k. The result of the Feynman diagram is

1 O . o2y dPk [7#(_i(75_%)+im)7u]aﬁ
LB‘ : / ( |

S(p) — dPk T .
0= [ G {m"z@ “Ham e 2P R((p— k)2 + m?)
(6.30)
Note that the fermion propagator is gauge dependent, which means that it is not observable
(it is not physical). Here that is obscured, since we have used the Feynman gauge o = 1,
but the result differs in other gauges.
Again we use the Feynman trick for two propagators,

1 ! 1 1
K((p— k)2 +m?) /0 o (1= a)A; +alol? [ +am? +a(l —a)p??’

(6.31)

where we have shifted k* = ¢* + ap*.
Using also y,7* = D and v,p7* = (2 — D)p and the integral (6.22) (and again that
[ dPqq" f(¢*) = 0), we obtain

oM dPq [ = ) — D"+ My as
Y(plap = —€u /0 /<2W>D 2+ all — ) T am?]?

€T (£) /1 s l2= (1= a)(=ip) — (4~ Jmlas (6.32)

(4m)% 2 [a(1 — a)p? + am?]</?

Expanding in €, we obtain
St = i (2= [ (1= 5) - 4= 9m

_5/0 da[2(1 — a)(—ip) — 4m]In a(l — 247)522_1_ am

+O(e). (6.33)

€/2

Here again we have put the expansion of (4wu?)¥? in the In, so that we form the ratio

m? /(4w p?), as before.
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The divergent part of the fermion self-energy is finally

¢’ 2(Zip— am). (6.34)

2(p)as = (4m)? e

There is a term with ip = @J and a mass term, which means that we need to add a counterterm

to 1@ and one to mynp,

62

(47)?

2 - e? 8 -
—VPY — ngww- (6.35)

1 _

Defining the wave function renormalization of the fermions,

Yo ="7Zxb; Yo=2Zo0, (6.36)

from the identification of the first counterterm as (Z, — 1)y@y, we obtain

e? 2
Zy=1-— —. 6.37
2 (4m)2 € (6:37)
Then defining the renormalization of the fermion mass as
Zm
we obtain -
e
L =1— -. 6.39
(4m)2 € (6:39)

Figure 19: One loop fermions-photon vertex diagram.

3. Fermions-photon vertex I',.3.

71



We finally consider the one-loop correction to the fermion-fermion-photon vertex Fffi ﬁ(q; P1,P2)-

We consider the correction to the vertex given by a photon line connecting the two fermion
lines, as in Fig.19. The external photon has index p and (outgoing) momentum ¢, the ex-
ternal fermion lines have index  and (incoming) momentum p; and index « and (outgoing)
momentum po, the internal photon line runs between v/ on p; and v on p,, modifying the
fermion momenta to p; + k£ and py + £ on the internal lines.

The result of the Feynman diagram is

M (. _ [ 4%k S ] 1 1
Wwne) =[G o g e
3 36/2/ o (%[_i(]ﬁfrw+m]%[—l(ﬁl+¢+m)}%)

<

= — *%6.40
en T I 1 PSRy A e [ ey B Rl

We use the Feynman parametrization for the three propagators in the denominator, giving

1
k2[(p2 + K2 +m2][(py + k)2 + m?]

Ozl 1
= do /
/0 ! [(p1 + k)2 + m?|ag + [(p2 + k)2 + m2|ag + k2(1 — oy — ag))?’

1
- / da1/ darg 2 2 2 2 2\3
0 0 (@? +m?(oq + az) + a1py + agps — (aipr + azp2)?)
—ay 1
= / da1/ dog 3 (6.41)
0 0 (Q2+F(&1,a27p17p2;m))

where we have eliminated [ dazd(1 — a1 — az — a3) and also used it to set the maximum
value for as at 1 — ay, and we have defined the function F' to simplify notation.
Finally, the one-loop correction to the vertex is

1) 1—a dD
Doag(@ip1,p2) = —ie’e/? / day / do / 2P

{% —ig —i(1 — ag)po + 2a1;61 + mlyu[—ig —i(1 — a1)p1 +daops + my'} g
(¢*+ F)? '

(6.42)

We note that, because of Lorentz invariance, the terms linear in ¢ give zero by integration,
SO we are left with terms quadratic in ¢ in the numerator, generating a term that we will
call F 1 @) , and a term with no ¢ in the numerator, generating a term that we will call I" ”aﬂ)
Obv1ously 1% will be convergent (finite), since it is [ d*q/(¢°> + F)3. On the other hand,
F B is UV divergent, since it is d*qq®/(¢* + F)3. But it is also IR divergent, as we will see
later in the course.

We concentrate on ') since we are interested only in the divergence. It is given by

R T / doy / T / ;Z:)q h(j]jrd%ﬁ“ﬁ . (6.43)

e

paf T
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But from the relations (6.13), we find that

Vol VY = =247 — (D — D ryud = (2 — D) g (6.44)
But because [ d”qq*q° f(q?) = [ dPqq*Sas/Df(¢*), we can replace the above with
-D), . @-DF
5 = (6.45)

Then we obtain

rde _ tie M36/2( 7 aﬁ/ dal/ / d”q q
e 8 2m)P (¢* + F)?

(4m)

= e M3€/2( % aﬁ/ dOél/ [ 471-_)? )(F2) FQF (3 % )(FQ)

We see that the divergence comes from the first term in the square brackets, replacing
r (2 — %) =2/e+ ..., and so we can put D = 4 in the rest of the integral, obtaining

11—« 2
1 2 e
Ffm;dw = +ie* (7, aﬁ/ dozl/ doz2 = +ie(V)ap—5 (@n)e (6.47)
That means that the counter term is
M Y
LT = | =gz A (6.48)

and we can identify the coefficient in the square brackets as Z; — 1, the wavefunction renor-
malization of A, defining Ag = Z;/Z5A. Then we get
e? 1

e (6.49)

Zy=1-

But I think the correction should have been twice as large, however I could not get the
factor of 2.

We finally note that all the one-loop divergence were of the form of terms in the La-
grangeans, so could be removed by renormalization and counterterms. Hence QED is one-
loop renormalizable.

Important concepts to remember

e In QED, due to the Ward-Takahashi (generalized) identities, the effective degree of
divergence of the n-photon vertex, I'™ is reduced by n to weg(D) = 4 — 2n.

e The superficial degree of divergence in the presence of fermions is w(D) = dL—21y,s—1,
and for QED we obtain w(D) =4 — E,, — 3E;/2.
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e The divergent one-loop graphs in QED are in II,,,(p), X(p)as and I'ns.

e The one-loop divegences in QED can be removed by adding counterterms and renor-
malizing, since they have the same form as the terms in the Lagrangean.

Further reading: See chapters 6.4 in [5] and 10.3 in [3].
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Exercises, Lecture 6

1) Consider F((llﬁ) from class. Calculate the general {},s matrix element. Calculate also

the finite part of FS;) in the absence of IR divergences.

2) Calculate the one-loop anomalous dimensions 7,,, 74 for ¢, and write the explicity RG
equation and its explicit solution for the one-loop %) (p),s-
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7 Lecture 7. Physical applications of one-loop results
1. Vacuum polarization.

In this lecture, we will consider finally the first physical application of the quantum correc-
tions arising from one-loop results and renormalization. But first, let us understand in a
more systematic way the renormalization of QED.

Systematics of QED renormalization.

We have seen 3 renormalization factors,

Zm
Ay = vV Z3A; Py = v Zoyp;  mg = —m, (7-1)

and a vertex renormalization with Z;, of the ¢ Ay term.
The renormalized Lagrangean is then written as

»Cren. = %Fiy + ZQ,QE@w + Zm&w
oo (AL + Zi(—ied Au) (7:2)

where on the first line we have the renormalizations following from the 3 factors computed
last lecture. On the second line, we have a renormalization of the gauge fixing term, con-
sidering it has no independent renormalization factor, but which, through the wave function
renormalization of A, implies still a renormalization

Qg = ZgCJt s (73)
and a renormalization of the vertex function,
ZoN Z3

defined such that the overall factor is simply Z;.
But we first note that, at least at one-loop, we have

Zlone—loop — ZQOHQ—IOOP‘ (75)

€ ? (7.4)

€0

In fact, this is the result of the Ward-Takahashi identity,
P'Thas(D; @1, 42) = e(SE' 5(a2) — Sp'ys(ar)) (7.6)

since the left hand side is related to the ¢ Ay vertex factor Z;, and the right hand side to
the propagator term @y with factor Z, (in the propagator there could be a momentum-
independent contribution, related to Z,,, the coefficient of the mass term, but it cancels
between the two Sz'’s of different momentum). Now the above relation actually implies
only the result for the divergent parts, Zi 4in. = Z2.4iv., but since we are in the MS scheme,
this is the whole factor. Then the result is actually exact to all loops,

7, = Zs, (7.7)
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This then implies for the vertex function,

— 7.8
€0 ,—Z3 ( )
which to one-loop gives
2 2
—en? (14 € O , 7.9
€o e,u(+2472+()) (7.9)
In turn, this gives for the beta function
0 e3
e = = O(e”). 7.10
e = B(e) = 155 + O(E) (7.10)
This is solved by
2
Et) = —0 (7.11)
1— ﬁﬂ%ln t2

where ey = e(jp). That means that there is a Landau pole. Since e/4m ~ 1/137 at about

the eV scale (the scale of the H atom energy levels), we obtain a Landau pole at about
1272

e ~ eV,

Vacuum polarization.

Inside a nontrivial medium, the effective action is written in terms of the electric and
magnetic fields as

Lo 32
S (E, B) / dt / APz |eE? — : (7.12)
and the speed of light inside the medium is
! (7.13)
Cmedium = ——- .
NG
The Coulomb potential associated with a static pointlike charge e is
Coulomb e? 5

2 —_— 7.14
(I) 47T6|I’| H0- ( )

The dielectric function € is in general a function, and not a constant, and is usually defined
in momentum space, as the ratio of the electric induction D and the electric field F,

- D(w,Fk)
E(w, k)

(7.15)

Then really, the Coulomb potential in momentum space for a static source (w = 0) is
2

eACoulomb(p py . __© 5 7.16
Lo (k1) B0 n) " (7.16)
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Now consider the same situation in vacuum, but with nontrivial quantum corrections,
i.e. with nontrivial vacuum polarization. We can again formally consider it as a nontrivial
"medium” with €, u # 1, but unlike a real medium, now the velocity of light must be exactly
equal to 1, which means

e(w, k)p(w, k) = 1. (7.17)
The quantum effective action starts at quadratic order,
C 1 C C C
I'(AY) = §/PL2)A;AJ +O((A)?) | (7.18)

where the quadratic part is written as the inverse propagator, which equals the free inverse
propagator plus the vacuum polarization,

P2 =Gy =G + 1, (7.19)

so that more precisely, (writing the vacuum polarization in terms of I1(k?))

(2)1 gcl 1 d'k cl -1 cl
r [Au] = 5 (27)4Au(_k>Guy (k)AV (k)
_ kuky
G = (K6, — kuky)(1+ 1K) + - (7.20)

It would seem like there is some gauge depence in this effective action, due to the term
with the gauge parameter o, but really there isn’t, since if the classical current source is
conserved, i.e. 0".J,, in momentum space p"J,(p) = 0, then

or
5Af}

1
BT (k) = B = ~ Rk, AT (7.21)

which in turn means that the extra term in I'® vanishes, so that

r@[Ad) = % / (diu + (k*) A, (=k) (K0, — Kk, )AS (k). (7.22)

" o)

We now must Wick rotate it to Minkowski space in order to be able to extract physical
information, by

O = Guv
A“(—k)(ngW—kuk,,)A”(k) = Ei(—k)E;(k) — B;(=k)B;(k). (7.23)

Finally, the quantum corrected effective action in Minkowski space is

3
PO = 5 [ 52 [ s TN (E G BE - B D). (20
From it, we can extract € and p for the vacuum,

e(k?) = =1+ I(k). (7.25)

1(k?)
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Keeping only the quadratic part of I', and remembering that J, = 6I'/ (5Af}, we obtain
Ju = G A (7.26)
so that
_ S
CR(1+TI(RY))

and in inverting it, we have considered the fact

A~ G, (k) (7.27)

-1

where we have used the explicit form of G,

that J,k*k¥ = 0.
The Coulomb potential of a static pointlike source of

(7, 1) = ed®(%)0,0 = Ju(k) = 2med (ko)du0 (7.28)

for IT that depends on k? = e only, is

2

- e
e ANk, ko) ~ —-———270 (ko) , 7.29
b = e 20 (7.20)
leading to the effective coupling
2
= — (7.30)
1+ II(k?)

Note that we have naturally 2 (k?), but since |k| ~ 1/r, we can think of this as e2(r).
Then in the extreme IR, we have

62

e2a(r — o0) = 7T

(7.31)

This relation is interpreted physically as screening of the electric charge of the pointlike
source. Indeed, we see that the effectice charge is smaller than the free one. Therefore we can
interpret this in the same way as interpret the screening of charge in a polarizable medium.
The charge is effectively screened, since dipoles (charge pairs) orient themselves such as to
screen the outside charge (opposite charge closer to the source). The difference is of course
that in a material, it is only a local effect; globally, because of charge conservation, we have
the same charge. But here, the charge is intepreted as a continuous coupling, and it can be
made smaller (screened) by the interaction with the (polarizable) vacuum.

We also note that, since we are dealing with QED, which as we argued, is defined only
in the IR, it makes sense to define the physical (observed) value of the coupling in the
extreme IR, at r — co. Defining thus €S (r — 00) = €2, we have the (natural) normalization
condition for renormalization

I1(0) = 0. (7.32)
Remembering that the finite part of the vacuum polarization at one-loop was given by
2 1) ! Era(l — a) + m? — ie
() — - [0 / daa(l — a)l .
(k%) 52 [ e T i aa(l —a)ln T2 : (7.33)
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but switching now from the MS scheme to the I1(0) = 0 normalization condition, i.e. drop-
ping the nonzero terms at k = 0 in the above, we obtain

2l 2 2 _ .
o € kE*a(l —a) +m? —ie

(k%) = 92, dao(l —a)ln s . (7.34)

It is left as an exercise to prove that, if —k? < 4m?, the above integral for k% = —k? reduces
to

- e -, [Cdi® 1 2m? 4m?
IT(k? :——kQ/ — = <1—|——) 1— ——. 7.35
S 12027 Jym2 @ @2 + k2 ¢ 7 (7.35)

Since we are at small TI(k?) (it is of O(e?)), 1/(1 +1I) ~ 1 —1I, so

AL (Ko, k)~ %(1—11(152))%5(%) =
A3k kT e -, [ di® 1 2m? 4m?2
Ao(t, ) = — (1 k? — —(1+ )4 /1——A1
olt:7) 6/(%)3 k2 ( " 1o /4m ¢ q2+k2( e > 7 )36)
Using

B e—ik# 1 Bl e—ikT o
/ < - / ( < _° (7.37)

(27)3 2 4y 2m)3 g2 k2 dar

in the two terms above, and defining u? = ¢*/4m?, we get

2 [ee)
cl/= _ € € du —2mru 1
AO (I,t) iy (1 + @/1 Ee (1 + ﬁ) u? — 1) . (738)

We consider the extreme limits of this formula. At large distances, mr > 1, we get

a3~ (14 S (7.39)
T) ~ — — .. :
0 Amr 16 (wmr)3/2 ’

whereas at small distances, mr < 1, we get

2
A (t, ) ~ % (1 + 1;7r2 In (m—1r)2 + constant + ) (7.40)

In the large distance formula we just notice again the fact mentioned previously, that this
is consistent with screening, since we obtain ey > e. In the small distance formula however,
we also notice another thing, namely that the effective charge diverges in the extreme UV,
at mr — 0. Therefore, the screening with respect to the UV is infinite: we have an infinite
effective charge at r = 0, but it is screened down to a finite value in the IR. This is consistent
with the picture of renormalization we have advocated: have infinite quantities in the UV,
which can be renormalize down to finite ones in the IR.

Pair creation rate

In the previous, we have considered the case of —k? < 4m?, but now we can also consider
the opposite case, of —k? > 4m?. In this case, k° > 2m, so we have sufficient energy to create
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an electron-positron pair from the vacuum. The vacuum to vacuum transition amplitude in
the presence of an external source J is the partition function Z (= e=" in Euclidean space),
written in terms of the effective action (W =T + J - A9) in Minkowski space as

2(0]0Y, = Z[J] = AT AT (7.41)
If I has an imaginary part, we can have an absolute value different than one, |Z|? = e~2II,
which is interpreted as vacuum decay, i.e. the probability of the vacuum to go to itself is not
1 anymore, and the difference is due, as we explained, to pair creation,

R=1—;(0[0),* =1 — e ™ ~ 2Im[I'[AT] + O(e"). (7.42)

It remains of course to show that exactly when —k% > 4m?, i.e. when we can create
pairs, we do create them, i.e. I'® has an imaginary part. We will see this through explicit
calculation. In the formula (7.34) the log can give us an imaginary part. Indeed, if the
argument of the log is negative, we will have a term log(—1) = —im added. Since k? <
—4m? < 0, this will happen if a(1 — ) +m?/k? is positive, therefore we obtain
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ImII(k?) = 7 /01 daa(l — )b (a(l —a)+ 7:—;) , (7.43)

™

where 6 is the Heaviside function. Its roots are at

2 144 /1 + 42

m
a(l—a) = =75 = ap = ————. (7.44)

and the positivity condition of the Heaviside function for the inverted parabola is at a; <
a < ay. We see then that the condition for this to be nonzero is indeed the condition we
advocated, 1+ 4m?/k* > 0, i.e. —k* > 4m?. Then the integral is

a2 2 3 a2 1 4 2 2 2
[oio- (59 -4E G2 o
il

4 K2 \3  3k2
Finally we obtain for the imaginary part of the vacuum polarization

2 4 2 2 4 2
ImH(k2)=162—7T 1+k—”;(1—ﬂ>9(1+k—”;). (7.46)

aq

Here the condition of reality of ImII would have been enough to show —k? > 4m?, but we
have put it explicitly with the Heaviside function for completeness.
The imaginary part of the effective action is

@ 1 d% . . . .
Imr@)[A;] — 5/Wlmn(k?)(yE?(/go,/g)|2 — |B?(ko, k) [%) | (7.47)

and the pair creation rate is R = 2ImI"®,
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We observe that pair creation from the vacuum is a purely electric effect, since if k? <
—4m? < 0, it means we can choose a center of mass reference frame where k= 0, and then
the magnetic field B = —ik x /Y(k) = 0. Another way of seeing this is that the pair creation
rate is positive, so only the electric field contributes, with +|E |2, whereas the magnetic field,
with —|B|2, doesn’t.

Important concepts to remember

e The renormalization of the o parameter matches the one of the wave function of A,
ag = Zza, whereas from the Ward-Takahashi identity, Z; = Zs, exact to all loop
orders, which means that ey = e/+/Z3.

—, -

e The vacuum is considered like a medium with nontrivial €(kg, k) and p(ko, k), just that
because of relativistic invariance, signals propagate at ¢ = 1 = 1/,/ej, meaning that
en = 1.

e We obtain € = 1/p = 1+11(k?), and a screening of electric charge, e%; = €*/(1+11(k?)).

e We can choose a normalization condition such that IT1(0) = 0, identifying e (r — o)
with e?. Then at r — 0, we obtain a divergence in e.z, meaning we have an infinite
screening from the UV to the IR.

e An imaginary part of I1(k?) leads to vacuum decay through pair creation, happening
when —k? > 4m?, which is a purely electric effect (pair creation in an electric field).

Further reading: See chapter 6.5.1 in [5].
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Exercises, Lecture 7

1) Prove the result assumed in the lecture, that if —k? < 4m?,

e ! Ea(l — a) + m? —ie
(k?) = 92, dao(l —a)ln p—
e —, [ di? 1 2m? 4m?
= — k? — | 1+ — 1———. 7.48
1972 /4m2 @ P2t ( + 7 ) e ( )

2) Calculate the ete™ pair creation rate for B =0 and an electric field

|E(k)| = Ey = constant , (7.49)

as well as for an electric field

|E(k)| = 63 (k)0 (kg — 2M) (7.50)

where M > m.
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8 Lecture 8. Physical applications of one-loop results
2. Anomalous magnetic moment and Lamb shift.

In this lecture we continue with the physical applications of one-loop results, describing two
classic tests of radiative corrections in QED.

Anomalous magnetic moment.

The first one is related to the anomalous magnetic moment of the electron.

Classically, a particle of electric charge ¢, with orbital angular momentum E, has a
magnetic moment of

i--LL (8.1)

But quantum mechanically, for the electron of charge e, the spin S also has a contribution
to the magnetic moment,

e = e =
_’C ass — —S = <_> S > 8.2
Hel m g om (8.2)

where the Landé g-factor is classically (i.e., in nonrelativistic quantum mechanics)

Gspin,classical — 2. (83)

But in QED one obtains quantum corrections,
Q@

o+ ) — 2(1 4 0.001159652359...) , (8.4)
m

g:2<1+

where we have written the numerical expression appearing from including O(a?) corrections

and more, and the 12 digits written are all verified experimentally to be correct. This is one

of the most impressive tests of QED, and we will derive here the first order term (a/m).
Consider the relativistic Dirac equation,

(P +m)p=0= (=P +m)(P +m)p =0. 5
But since [D,,, D,] = —ieF., [Yu V) = 2% = —2i0,,,

12 1 . 174 6 LV
JD@ = DMDV7M7 - DuDui(h,ua'yu]_}_{Vua'yu}) = DQ_ZD[MDV]O-M = D2_§Ul Ful/' (86)

Then the equation for v is

(—D2 Fm? ga“”FW> b =0. (8.7)
Thus we have an extra term +e/20""F),,, and since Fj; = €, By, and io;; = i[o;,0;]/2 =
—€ijkO0k, ¢
50’“’FW = —¢i-B=—-2S-B. (8.8)
But this is a term AE? in E? (since —D? contains +97 = —E?), so the difference in energy
1s
AE?  AE? ez = ~ e = =
AFE ~ ~ =——S-B=—ji-B=—-9g—S-B. 8.9
2E  2m  m a Yom (8.9)
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The way to obtain ¢ — g+ Ag from the Lagrangean would be to add a term to the classical
Lagrangean, to obtain

L= 3D +m)+ LB )y, (5.10)

Indeed, such a term would add to the Dirac equation

A — — —
29 E wp = +Ag——S - By = Afi - Bip — AE, (8.11)
4 2m 2m
We will therefore search for such a term in the Lagrangean, generated by radiative (quan-
tum loop) corrections, i.e. as an one-loop effective action correction.

But we saw that
F#,aﬁ(plvp% ) F(O)ﬁ + F;(Lozg(pl D2; Q)a Fl(jo)éﬁ = F,(il(;lﬁ) + F,(il(i% ) (812>

and we saw that I'!® was proportional to v* (and was UV divergent), so we calculate the
term

(p2) TP (py) (8.13)
on-shell, i.e. when

pi=-m% ps=-m* 0=q¢"= (p1—p2)’ = p1-p2=—m"

(ipr +m)Y(p1) = 0;  (ip2 +m)h(p2) = 0. (8.14)

But we calculated

3 1 1—aq

FS;%(plapZ) = —ZW dOél dQQX

y (w[=i((1 — az)ps — arpr) + m(])%[—i((l —a1)pr — azpe) + M) 4

= . (8.15)

where

e O‘l)P? + ag(1 — 042)173 — 2aq000p1 - p2 + m2(a1 + ay)
= m’[—ai(1 — 1) — aa(l — a2) — 2000 + o1 + ]
= —m*(on + @) (8.16)

Then one finds (it is left as an exercise to prove it)

1—aq
&(p2>rglb)(plap2)w< / dOél / dO{QX

x9(p2) (0 + 00)” - 2(1 — a1 — m)) 4 8img o (a1 — as(ar + a))]

. Y(p(317)

But we are interested only in the o, term, leading to

a a — (0 +
7r2¢<p2 0wq P (p1) / dozl/ 1 2(a 2)

Ckl -+ 042)

&(pz)r(l) (p1, p2)¥(p1) ‘UW
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et -

= WWM)UWQVWPI)‘ (8.18)
The term in the effective action has the above multiplied by A,,, giving

2

e e\ -
a2 (%) Y(p2)o"a, Au(a)¥(p1) (8.19)
but we have F),, = 2q,A,), so
Ag e? e? a
R T e A (8.20)
Then,
a
=2 (1 — > , 21
g + o + (8.21)

like advertised.

Lamb shift

We now move on to the Lamb shift, which was the calculation that finally convinced
people of the reality of QFT radiative (loop) corrections. Indeed, this was the first example
of a calculation that could not be obtained in any other way, but only through QED loops.

The Lamb shift is the lifting of the degeneracy of the 25, , and 2P s, energy levels of the
H atom.

We will only show the steps leading to the calculation of the Lamb shift, since the loop
corrections themselves are difficult, and require the treatment of IR divergences, which will
be dealt with later.

Step 1.

We start with the nonrelativistic Schrodinger equation analysis of the H atom, the first
success of quantum mechanics. The equation

A
{_% + V(T)} v =By (8.22)
becomes ) - o, "
o
[_% (ﬁ R ) - ;} Una(r) = Engtna(r). (8.23)

Here o = €?/4r as usual, and the mass is the reduced mass of the nucleus-elctron system,

1 1 1 1
m  Mme My M,
Then the energy levels of the H atom are

2

Eny = —% : (8.25)
so are independent of [ = 0,1,...,n — 1, as well as of m, = —I[, ..., [, giving a degeneracy of
n—1
(20 +1) =n?, (8.26)



and the energy is given by the Rydberg constant

mon

Step 2.
Next, we move on to the analysis of the Dirac equation.
As we saw, —() —m)(P +m)y =0 gives
<—D2 +m?— ga“”FW> b = 0. (8.28)

We consider the Coulomb potential of a static charge,

Oﬂ:i

eAy = —% = cE = - (8.29)
Then, since .
o = Wé] l_; <% _‘;) , (8.30)
we obtain A
SU“Z’FW = 0" Fjy = :Fmo;f;i. (8.31)
With a stationary ansatz for the wave function in spherical coordinates,
(s, t) = ePpy(r,0,9) (8.32)
and using
D?* = (9, — ieAO(Sg)(@“ —ieA%E) = =07 + A — € Aj + 2ieAydy , (8.33)

and considering that dy = +iFE on the ansatz, giving 2Ea/r for the last term, we get the
equation

0? 20 L2 — o +iaoit;  2aFE
(L2l 20 (2 )| gy =0, 8.34
(et B ]y
Here L? = [(I+1) on the wavefunction, and with .J = L+ S = L+@/2, [H,J] = 0 = [L?, J],
we have also J? = j(j + 1), with J, =m and [ = j £ 1/2.
Then we can prove that L? — o? 4 iao,7; has eigenvalues A(\ + 1), where

o1
)\i = ji§—5j

o1 A
(Sj = j—|—§— j+§ — . (835)
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Then we note that the resulting equation is formally the same as the Schrodinger equation,
just with the replacements

2 2 —a*+ 10T
I(l+1) AA+1)
E

o — o—
E?%l 2
E - Tm (8.36)

_>
_>

and we also note that, because the resulting equation is an eigenvalue problem, the condition
of n — [ to be an integer is replaced by the condition of n — A =n — [+ J; to be an integer
(where n = /R/E), effectively replacing the integer n with n — d, in the solution to the
eigenvalue problem.

Finally, we obtain the energy quantization

B2, — m? 2F2. 1
g Sl , (8.37)
2m 2 m?(n—94;)?
which can be solved to give
2 4 3 ma’
o S ma T L o). (8.38)

_ + —
/ o2 2n n3(2j+1) 8 nt
1+ (n—0;)? ( )

We see that the first term is the rest mass, the second is the quantum mechanics result, and
the third and forth are new, with the third lifting the degeneracy over j, i.e. giving a fine
structure.

With the usual notation of energy levels nl;, the degeneracy split between the 2P;/, and
the 2P, levels is now

ma?

32

But the degneracy of over [ = j £ 1/2 at fixed j is not lifted, so at this point F(2S;/2) =
E(2P1/2)

We need to include other effects now:

-the nucleus has a finite size, it is not a point.

-the proton recoils, since it has a finite mass, so m ~ m, has to be corrected.

-the proton has a magnetic moment, and so it interacts with the electron spin, giving

E(2P35) — E(2Py ) ~ = 4.5 x 107°eV = 10.9GH . (8.39)

AE = —%0’;6)3 , (8.40)

where B is the magnetic field of the proton. This gives the hyperfine splitting,
AE;(S)=59x%x10"%V = 1.4GHz. (8.41)

All these 3 effects can be treated semiclassically, but do not account for the observations.
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When taken into account, there is still a Lamb shift of

This comes entirely from radiative corrections. The point is that the interaction vertex
of the photon with two fermions changes

ey A — (e, + Fl(}) + 10, Gy AX. (8.43)

The first term gives the classical interaction with the Coulomb potential ASOUlomb. The
relevant diagrams are in Fig.20.

1. The II,, term, the loop correction to the photon propagator connecting the vertex
with the Coulomb source, was partly computed before, and gives a contribution of —27M H z.

2. The F,(}) term contains the o,,¢"” piece partly computed for the anomalous magnetic
moment (though one needs to take care of the IR divergences), which gives a contribution
of +68M H z, and

3. The v, piece, whose finite part we have not computed completely. This is difficult,
since it contains IR divergences, that need to be dealt with. It gives the largest contribution,
of 1010MHz.

In total these 3 contributions sum up to 1051 MHz, but by considering higher orders in
a, one can go to 1057.864 + 0.014M H z, in perfect agreement with the experimental Lamb
shift.

A A A,

C
C

><—> P
> >—

Figure 20: Contributions to the potential energy: Coulomb part; II,, part; I',, part.

Important concepts to remember

e The corrections to the anomalous magnetic moment of the electron, specifically to
g — 2, arise from o F},,1) terms in the quantum effective action.

e The finite vertex correction F,(}b) gives such a contribution, of Ag = /7.
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e The Lamb shift is the lifting of the degeneracy of the energy levels 25 5 and 2P, /5 of
the H atom.

e In nonrelativistic quantum mechanics, the energy depends only on n, but not on j or
[, E=—ma?/2n?.

e In relativistic quantum mechanics, i.e. the Dirac equation, the degeneracy over j is
lifted at order o*.

e The degeneracy over [ is lifted only in through radiative corrections in QED.

e The Lamb shift is due to a photon propagator correction, II,,,, and a vertex correction
I',,, splitting into a o,,¢" piece and the v, piece, giving the leading contribution.

Further reading: See chapter 6.5.3 in [5].
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Exercises, Lecture 8

1) Fill in the omitted steps in the calculation of @E(pg)Fleb)w(pl).
2) Write down an integral expression using the Feynman rules for the 3 contributions to

the Lamb shift, do the gamma matrix algebra, and isolate the v, and o,,¢" pieces of the I,
diagram.
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9 Lecture 9. Two-loop example and multiloop gener-
alization

In this lecture, we will see how to renormalize a theory beyond one-loop, by first discussing
the systematics, and then giving the example of the 2-loop 4-point function in ¢* theory in
4 dimensions.

When renormalizing beyond the leading (one-loop) order, we have:

1) Divergent subdiagrams from the divergent one-loop (or, in general, (n — 1)-loop)
diagrams. They are cancelled by adding diagrams with an insertion of the corresponding
one-loop (or, in general, (n — 1)-loop) counterterm vertices.

2) Intrinsically divergent 2-loop (or, in general, n-loop) diagrams. They are cancelled
by adding new n-loop counterterm contributions, i.e. a 2-loop (or n-loop) correction to the
counterterm Lagrangean.

V()N UK

2aVaV¥aVava AVAVAVAVA

Figure 21: Two Loop independent subdiagram cancelled by a diagram with a one-loop
counterterm.

But the first type admits a further subdivision, into:

la) independent subdiagrams. For example, in QED we can have a fermion loop insertion
on a photon line in the diagram, cancelled by the same diagram with the fermion loop
substituted with the one-loop counterterm vertex. These divergences are polynomials in ¢
(though they can be logarithmic in the cut-off), which means that when Fourier transforming
to = space, these divergences will be local (the Fourier transform of a power is a power, but
the Fourier transform of a log, which is an infinite power series, is an infinite power series,
i.e. nonlocal).

1b) nested, or overlapping divergences. In this case, two divergent loops share a propa-
gator, and we will see that they correspond to nonlocal divergences (non-polynomials in ¢?).
For instance, in ¢* theory we can have the "setting Sun” diagram for the propagator, with
2 vertices connected by 3 propagators, and for the same vertices coming out the 2 external
lines, as in Fig.22. Or the diagram for the 4-point function, the same as for the setting Sun,
but with one more vertex with two external lines on one of the 3 propagators. In both these
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Figure 22: Two Loop Nested divergent diagrams in ¢* theory.

A0 OR f\f\f\/@’\f\f\/

- =

Figure 23: Two Loop Nested divergent diagrams in QED. The photon polarization diagram
can be viewed as coming from a vertex correction.

cases, the divergent one-loop subdiagram is one with 2 propagators between two vertices,
and two more external legs from each vertex. One of the propagators of the one-loop sub-
diagrams is common. In QED, we can have the fermion propagator 2-loop diagram with
a photon line starting off on the fermion line and returning to it, and another photon line
starting in between the endpoints of the first, and ending further on the fermion line, as in
Fig.23. Or we can have a two-loop diagram for the photon propagator, with a fermion loop
on the photon line, and another photon vertical line (with endpoints on both sides of the
external line vertex).

Consider this last QED diagram. Its divergence includes the one-loop divergence of
the photon-fermions vertex, which is of the type (—iev,)(alog A?), where the first bracket
isolates the classical vertex, and the second involves factors from the quantum correction.
Then, when inserted inside a fermion loop correction to the photon propagator (giving in total
the 2-loop diagram we are describing), the classical vertex is replaced with this quantum-
corrected vertex. Since the fermion loop correction is of the type a(g"¢* — ¢*¢”)I1(¢?), and
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[1(¢?) ~ log A? + log ¢*, we have in total,
~ a(g"q* — ¢"¢")(log A* 4+ log ¢*)alog A”. (9.1)
That means that there is a part,
allog ¢*alog A?] (9.2)

which is divergent in A but nonpolynomial in ¢2, since it comes from the divergent part of one
divergence, times the finite part of the other divergence, which is non-polynomial in ¢* (there
is no problem in having a non-polynomial for the finite, observable, part; the problem is for
the divergent part, since all the terms in the action are local, i.e. polynomial in ¢?, yet we
need to remove this divergence by renormalization). This divergence is therefore non-local
in x space, but it can be cancelled by adding loop diagrams with the 1-loop counterterm
vertices, namely two one-loop fermion corrections to the photon propagator, with either one
of the vertices replaced by the one-loop counterterm vertex, as in Fig.24.

ok o ol o

Figure 24: Two Loop level counterterm diagrams: one loop diagrams with the one-loop
counterterm vertex in it.

There is of course still a part o?(log A?)?, which however is local, so can be cancelled
by the addition of a new, 2-loop, contribution to the local counterterm Lagrangean (local
2-loop counterterm vertex).

This procedure generalizes in an obvious manner to all loops.

It is a nontrivial fact that in this way, we can cancel all the divergences in the theory with
a finite number of local counterterms (though each term with a coefficient being an infinite
series expansion in loops, i.e. in powers of the coupling), if the theory is renormalizable.
There is a theorem proving this fact, that any superficially divergent theory is rendered
finite by the above prescription for counterterms, called the BPHZ theory, after the authors
Bogoliubov and Parasiuk; Hepp; and Zimmermann.

2-loop in ¢* in 4 dimensions

We consider the 2-loop contributions to the 4-point function of ¢* theory in 4 dimensions,
and show that we can remove all the divergence by renormalization according to the above
prescription.

There are 16 diagrams corresponding to this order, 15 of which can be split into 3 groups,
according to the channel, s, t and u, as in Fig.25. In the s channel, the first diagram is a
”chain” made up of two one-loop ”rings”, and with two external lines from a vertex at each
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Figure 25: Two Loop diagrams in ¢* theory, organized according to the s,¢,u channel
diagrams, plus the 2-loop counterterm vertex diagram.

end. The second is the diagram already described, the setting Sun with an extra vertex with
2 external lines on one of the propagators, coming down. The third is the up-down mirror
of the first. Finally, we have the one-loop diagram (with two up and two down external
lines, each pair from a vertex) with one normal vertex and one vertex being the one-loop
counterterm vertex. Then there are the ¢ and w channel version of the same 5 diagrams,
which can be obtained by crossing (that exchanges s, t, u). The last diagram is of course
the 2-loop counterterm vertex, which contains s,t and u pieces.

Therefore to fully renormalize the 4-point vertex at 2-loops, we need only consider the 5
s channel diagrams, and the s piece of the 2-loop counterterm vertex, as in Fig.26, and the
rest will be trivially obtained by crossing.

One-loop. Let us first remember the one-loop renormalization. There is a unique s
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Figure 26: Two Loop independent diagrams in ¢* theory. The other can be related by
crossing. The 2-loop counterterm vertex diagram contains only the s piece.

channel diagram, with momentum p = p; + p2 coming in. The result for the diagram is

A2 N[ dPg 1 1 NT(2-2) 1 b
—1I 2:—/ :——2/ dofo(l — a)p* + m? 22
2 (") 2. @r)P@E+m?(g+p)P+m? 2 (4mz Jo o p |
(9.3)
We consider the normalization conditions
T p?) = [p* +m?) ™" TW(s,t,u) = —A (9.4)
at s = 4m?; t = u = 0, where s = —(p; +p2)?, etc. Then we immediately obtain the one-loop
counterterm vertex as <
A
v = —7[[2(4777,2) + 21,(0)] (9.5)
which splits into an s piece, B
)\2
Vi = =5 L(4m?) (9.6)
and an (¢ + u)-piece,
5\2
Vi = —?2]2(0)- (9.7)

Then, we can finally split the 6 independent s-channel diagrams into 3 groups, as in
Fig.27,
I) the diagram of a chain of 2 one-loop rings, plus the one loop diagrams with one of the

vertices replaced by the s part of the one-loop counterterm vertex, Vs(l).
IT) the setting Sun with extra vertex down diagram, plus the one-loop diagram with

normal vertex down, and t 4+ u part of the one-loop counterterm vertex, Vt(ji, up.
IIT) the same diagrams as at II, but with up and down interchanged (mirror symmetric).
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Figure 27: Two Loop independent diagrams in ¢* theory divided into 3 groups. The diagrams
with the one-loop counterterm vertices have been split into the s pieces and the t 4 u pieces.

Then the momentum-dependent part of the divergence cancels separately in I, IT and III.
We also see that we only need to calculate what happens in I and II, since III is obtained
from II.

I) we start with the ”chain” diagram of two one-loop rings, the first one in group I, which
can be split into two independent one-loop diagrams, each with momentum p coming into
it, so the result of the diagram is 3

3
B 9.9

Note that the only nontrivial part is the vertex counting, which is (—A)® (one vertex is
common to the two one-loop rings), the integral (as well as the symmetry factor of 1/2 for
each ring) comes from the one-loop diagrams.

Both diagrams with a VY insertion (up or down), i.e. the second and third diagrams in
group I, equal a AR factor, times a vertex (—\), times the one-loop integral Ir(p?), times
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the 1/2 for the symmetry factor, for a total of

—% 2(p?) (—%) I(4m?*) = A112(292)12(47712) (9.9)
The sum of the diagrams in I is therefore
A" — 2L Bm?)] =~ (L)~ L) - LEm?)?) . (0.0

and the first term is finite, because it is the same finite term appearing in the one-loop
renormalization,

L(p?) — L(4m?) = %@ (-%) /0 ' doln [m”f:ao(‘il__;)‘ii e (9.11)

Note that the divergence is constant, so cancelled between the two terms, and also the
(1) = —v term has cancelled. In the two-loop formula, we have the square of the above,

for a total of
N1 1 ! 2
— daln[...]| . 12
o | damt] (9.12)

Therefore in I, we have cancelled a product of two independent divergences, and we are
left with only a constant divergence,

+§[]2(4m2)]2 ~ [r (2 _ g)} . (%)2 , (9.13)

which is a double pole in €. This term is cancelled by adding a 2-loop counterterm, with
vertex

23
—Z[12(4m2)]2. (9.14)
Some observations are in order. The first one is that at higher loops we will see higher
order poles in €, as seen here. But in all cases, at least the highest order will be a momentum-
independent constant. The second observation related the functional form of the finite part.
Note that at p? — oo,
2
2 2 p
I (p”) — I (4m”) ~ log o (9.15)
whereas at two-loops, because of the above, we can ignore the finite contribution of I5(4m?)
with respect to I»(p?), and write that the 2-loop ”chain” of two rings gives
23 p? 2
It is then easy to see that this generalizes to an arbitrary n-loop, where the ”chain” diagram,
with n one-loop rings, as in Fig.28, will give a result

oc A" (log ﬁ)" (9.17)
) :

98



n—loops

Figure 28: n-loop "chain” diagram.

IT) We move on to the second set of diagrams, starting with the proper 2-loop diagram
in Fig.29. Consider momenta py, ps at the classical vertex (down), connected to two internal
lines of momenta k (loop momentum) and &+ p (where as above, p = p; +ps), and the other
external momenta being ps (for the vertex connected to the k propagator) and ps. Then we
can isolate on top a one-loop diagram with total incoming momentum k + p3, inserted inside
an up-down one-loop diagram with total momentum p = p; + py coming in. The symmetry
factor of the diagram is 2, giving for the amplitude

A3 dPk 1 1 ;
M= _?/ (27r)D k2 4+ m2 (k +p)2 +m2[2((k +p3) ) (918)

k+

SO

P,

k k+p

P, D,

Figure 29: Two Loop Setting Sun diagram.

Replacing the two propagators with a Feynman parametrization integral over 3, and
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writing the result of I, as a Feynman parametrization integral over «, we obtain

)\3 I ( 1 1
= _— = da dﬁ 5 5 .
2 (2m)¢ % 20k o+ Bp? 4P [a(1— a)(k + py)? + m?P
(9.19)
where the first denominator is SAy + (1 — 8)A;. But now, since the second denominator
has a non-integer power, we cannot use the usual Feynman parametrization, but rather we
must use the formula

1 ! l1—w)’ T
A>B# 0 WA+ (1 —w)B]*tP T ()T (5)
where the gamma factors together make the inverse of the beta function, [B(a, 8)] 7.
The proof of this formula goes as follows. Consider the change of variables
wA (1-w)B
= =1-
wA+(1—w)B wA+(1— w)B
ABdw
dz = . 9.21
7Y T AT (1 w)B]? (9:21)
Then
1 wa71<1 _ w)ﬁ—l 1 1 1
d = dzz*"'(1—2)"'=——B . 9.22
/0 w[wA+(1—w)B]a+5 AO‘BB/O 227 (1= 2) YOiE (v, B) (9.22)
q.e.d.

Then applying it for the case of our diagram (with o« =2 — D /2 and 8 = 2), we obtain

ek e ol o
dPk w2 (1

“(em)P (wla(l — a)(k + ps)? +m?] + (1 — )[k2+2k: p+ Bp? +m?])"

£9.23)

The factor raised to 4 — D/2 in the denominator is rewritten as

m® + k*[1 —w + wa(l — )] + 2k - [(1 — w)Bp + wa(l — a)ps] + pwa(l — o) + p*B(1 — w)

= m®+ k1 —w+wa(l —a)] + P?, (9.24)
where (1 = w)Bp + wa(1 - a)
— +wa(l — a)p;s
. w)pp 9.25
b L p— +wa(l—a) (9:25)
and 2
2 2 2 (1 —w)Bp +wa(l —a)ps
_ _ —w) — ) 2
P? = piwa(l —a) 4+ p°B(1 —w) < T~ w1 wall—a) (9.26)
For future reference, we note that
P2(w - 0) = pB — B%p* = B(1 — B)p*, (9.27)
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We now can do the integral over [ d”k = [ d”k" with the formula (3.30), to obtain

M = _grgjﬁ_)f)f‘(él—— / /dﬁ/ dwl—w+w:(1—a)] %

(- )[ _PQ%—WL }

xw'™

M\b

1—w+wa 1l -«

- /da/ dﬁ/ dwl_ w!F(1 - w) Z[P? +m? P (9.28)

w + wa(l — a)]

This diagram has of course a pole coming from I'(4 — D), but it has also a pole coming
from the integral in w, specifically near w = 0. Indeed, consider the integral

jgldu;uﬂ—ngUO =:jglduwwl‘gj(O)+—]ﬁ1duww1—§Lf@U)__f(oﬂ' (9.29)

Then in our case we can check that the second term gives a finite integral for D = 4, and
the only pole comes from the overall I'(4 — D). This term therefore is local (there is no
p dependence at all if we set D = 4), and its divergence can be absorbed by an O(\3)
counterterm, i.e. a two-loop, 1/¢€ term.

The first term, with f(0), gives a double pole, since

/ Lo w2 1(0) = £0) L2 | = o) —2- (9.30)
0 2-2| 4-D ‘
Substituting D = 4 — €, we obtain
e / ABLP(0) + ]
RN 1 B = B)p* +m?
N _<47r>42/0 w0 (E A R ) ’ 931

where in the last line we have grouped, as usual, the (47)~¢ and the p~%¢ terms in the
expansion with the log, to make the ratio of m?/(4ru?) manifest.
Therefore we have finally the nonlocal divergence

Al B(1 = B)p* +m?
e / df log I . (9.32)

This divergence is cancelled however by the one-loop diagram with one one-loop t + u
counterterm vertex Vt%, given by the product of the vertex Vt(ji and the (—\?/2L,(p?))

factor (removing one — ) vertex and replacing it with Vt%,

3

F 2O
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e i
(2 ) (2 ). o

2(m)* drp? ) \ € 472

We see now that the nonlocal divergence cancels, and we are only left with a local divergence
of order 1/€* (constant double pole). This will be removed by adding an O(\?) counterterm
(local two-loop counterterm).

As we mentioned, the III diagrams are obtained by symmetry, and then the ¢ and u
channels by crossing, so it means we have indeed shown the full renormalizability of the
4-point function at 2-loops in ¢* theory in 4 dimensions.

Important concepts to remember

Intrinsically divergent 2-loop diagrams are cancelled by adding new 2-loop (n-loop)
counterterms.

Divergences from 1-loop ((n — 1)-loop) divergent subdiagrams are cancelled by adding
diagrams with the 1-loop ((n — 1)-loop) counterterm vertices.

Independent subdiagrams lead to local divergences, i.e. polynomial in momenta g2,
whereas nested (overlapping) divergences lead to non-local divergences, i.e. non-
polynomial in momenta ¢?.

The BPHZ theorem says that any superficially renormalizable theory is rendered finite
by adding the diagrams with all the n-loop counterterms, which are a finite number of
local counterterms (with coefficients = a series in loop order, or \").

The finite part of the n-loop chain diagram with n one-loop rings in ¢* theory at
2 : n+1 n(, 2 2
p* — oo goes like ~ A" log"(p?/m?).

At higher loops in dimensional regularization, there are higher order poles (in €), but
at least the highest order pole is a momentum-independent constant.

Further reading: See chapter 10.5 in [3] and chapter 10.4 in [2].
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Exercises, Lecture 9
1) Write down all the 2-loop divergent diagrams for I'® for ¢* theory in D = 6, paralleling
¢ in D=4

2) Identify and calculate the nonlocal 2-loop divergence in the above.
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10 Lecture 10. The LSZ formula.

In this lecture we return to the LSZ formula, relating correlation functions,

QUT{¢(21)..¢(xn1m) } ) , (10.1)

with S-matrices, o L
out<ﬁ17 7ﬁn’klkm>zn — <ﬁl> ,ﬁn‘SU{lkm) (102)

We described it in QFTI, but now we return to a better understanding for it, using the
knowledge of loops and renormalization that we have gained in the meantime.

In particular, we had mentioned that there is a wave function renormalization factor Z
that appears there. We also saw that at one-loop, we defined the wave function renormal-
ization factor as the factor in the renormalized Lagrangean that multiplies the p? part of the
kinetic term, and that it comes from the calculation of the 2-point function. With a bit of
thought, we realize that a more formal way to define it would be as follows.

Consider the 2-point function in momentum space. It will have a pole at some renormal-

ized mass p* — —m?. So formally, we can say that near the pole p* — —m?,

—iZ

_— 10.3
P2 4+ m? — ie (10.3)

[z @Ir (oo} 10) ~
To obtain the LSZ formula, we consider the Fourier transform over only one momentum
of the correlation function,

/ dize= P (I T{o(2)d(21)b(22) ..} ) | (10.4)

and we split the integral over time as

/dx —/ dx® +/ daz® —1—/:de, (10.5)

and call the first term region I, the second region II and the third region III.

Since we are interested in the behaviour near a pole, we will ignore finite terms. But the
integral over region II is finite, since the integrand is analytic in p" and the integration is
over a finite interval. Therefore we can ignore this region.

Region I

Consider then first the integral over region I, and let z¥ be the largest time (i.e., the time
components of all the z;’s are < T, < 2° in region I. Then we can put ¢(z) to the left, and
outside the time ordering operator, and we insert on its right the identity, written in terms
of a complete set of states |A\7) of momentum ¢, as

1= Z/ 2W32E o (10.6)
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We obtain

+oo
/d3$/ dxoe—i-ipoxo—iﬁ-f

But the first matrix element can be worked out as follows, using that ¢(z) is a Heisenberg
operator, so

d3q 1
2m) 2E4(N)

(Qo(@) | Ag) Agl T{D(21)--.0(2a) }2). (10.7)

() Ag) = (e~ 6(0)e 7 Ag) = (QD(0)|Ag) €7, (10.8)

where in the last equality we have used that P - z|\;) = (¢ - 7)|p=p,]\g) and QP -z =0.
Now doing the integral over >z, [ d3ze™@P) = (27)36*(j — §), and then doing the integral
over [d3q/(2m)3, we replace everywhere ¢ with p'and E; with Ej. Introducing a regularizing
factor of e=*" in the usual manner, we obtain

> / T oL itad it
N YT 2Eﬁ(/\)

e~ (QB(0) M) Nl T{(21)---6(2) }[2).

"=Ez=Ep
(10.9)
The integral over ¢t becomes
+o0 120 (p¥ — Ep+ie iTy (p°— Ep+ie
/ i~ Eytie) _ _© (P"~Eptic) _ e + (P Eptic) (10.10)
Ty i(p® — Ej, + ie) T i(p° — Ep + ie€) ’
+
so our region I integral is now
S QI60) A AT (1)) ) (1011)
: ?(0)| A\5) (A5 T{d(21)...0(2n . 10.11
— —2E5(A)(p° — E5()) + ie) v

The denominator equals p* + m? — ie and, near p° — Ej, the exponential in the numerator
becomes 1. Specializing first to the case n = 1, when the 2-point function is supposed to be
of the general form (10.3), we indeed find near on-shell for the unique momentum p,

~ Z W@M( ) Az) (A6 (0)€2) ~ 2_—i_i€|<9|¢<0)|ﬁ>|2 , (10.12)

p? +m?
where we have implicitly assumed that there is a single one-momentum state |p), and now we

can identify (Q|¢(0)|p) with the factor v/Z (whose square is the wavefunction renormalization
factor Z). Substituting in the general correlation function, we find that near p® — Ej,

[ dee QT (@00 SR ~ VAT o)), (10.13)

We now repeat the procedure in region I1I, assuming that now z° is the smallest of all
the times, i.e. that all the zero components of zi, ..., z, are larger than 7_ > 2°, we can put
x to the right inside the time ordering operator, and insert the identity to its left, obtaining

+o0o
/de/ dmOe—&-ipO:vO—ip:v d q 1
T+

QIT{¢(21) ¢(2n) A7) (Agld(2)[€2). (10.14)

q
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And the matrix element is
(Ao (2)|92) = (Agle P26(0)e T2 |0) = (Ag]o(0)|2) 6_iq'x\qo:E§- (10.15)

The integral over 7 is therefore [d3ze™PtD = (271)35(F + §), so after doing the integral
over ¢, we substitute everywhere ¢ with —p, and £, with E,, and get

Z / ) dil?o—l e TPz’ oig’a’
)

e Al 0)QUT{d(21)..-6(z0) HA-5)-

q —E :EI_;
(10.16)
The integral over 2° gives
iz0 (p° —ie _(p° —ie
/T it (PO Eptie) _ e B = _@'—T v (10.17)
—o0 i(p° + Ep — ie) N (P° + Ep —ic)

so again we obtain the propagator, but now for p® — —E,, and so finally near p® — —E,,

— ZQIT{H(21)..dz)}] — P

P2 +m? — ie
(10.18)

/ d'ze” " (QIT{¢()P(21)...0(z0) } Q) ~

We can redefine p = —k, so that near k° = Ej, (on-shell),

/d4xeik'x<Q|T{¢($)¢(21)~-¢<Zn)}|Q> ~ W—%

—VZ{QIT{¢(21)--¢(za)} k). (10.19)

We see that in both regions, we obtain that on-shell, we relate to a correlation function
with n — n — 1, with a vacuum state replaced by a momentum state. If we have e=?7,
we relate to an outgoing state, and if we have e**, we relate to an incoming state. We
can iteratively repeat the procedure, and obtain finally that for all momenta on-shell, we
relate to a product of incoming and outgoing states. The detail is that, if we have more
than one momentum, the incoming states are actualy ”in states”, and the outgoing states
are actually "out states”. This is the result of the fact that we can independently consider
each momentum on-shell.

But it remains to prove that when adding wavepackets instead of single momenta, nothing
new happens. A wavepacket means that we replace

. L, 3k . oL S
/d%e”’omoeﬂp'z — / on)? /d4x61p0106_7’k'”¢(/€). (10.20)

Therefore the limit ¢(k) — (2m)363(k — ) takes us back to the original case. We can define
b= ("Fk).

With this replacement, we obtain

01 (P0 = Ep+ie) Ty

5 | G am— By g ORI NT (0ol (1021
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and near on-shell, p° — E7, so p* + m? ~ 0,

N/(d i (k) ~ - VZEIT{d(z1)...0(2,) } ). (10.22)

27)3 P2 +m? —ie

To see how this replacement works for pairs of particles, consider the scattering n — 2. Then
we obtain

> [ oo 1 S Tt [ e BT (ol 0 AR AT (61 )- 6 HY)
(10.23)

If the 2 outgoing particles are separated in the far future, we obtain

5 [ ooy T oot A0 g

d? d? 1
Z / gt | g 0 YU ) G el (1020

and then we can perform the same steps independently for each particle. The same analysis
can be done in the far past as well, and we can generalize to more than 2 particles. In the
limit in which the wavepackets tend to delta functions of momenta, we get the in and out
states.

All in all, we obtain the LSZ formula,

H / dizie ’pzszd‘*y I QIT (1) . D) (31)..-6 () }9)

PO By, ,k B, i —iNZ i .
(H 2+m2_26> (H k2+m2 : ) (1.l S|k k). (10.25)

Diagrammatic interpretation

The diagrammatic interpretation of the formula is as follows. In order to construct
diagrams for the S-matrix from diagrams for the correlation fucntions, i.e. from connected
diagrams, we need to perform the operation called amputation. We go on each external leg
from the outside in until we reach the last part where it is connected with the rest of the
diagram by a single leg, and cut there and excise that part, as in Fig.30. The reason is
that we must divide out the connected correlation function by the full propagators for the
external legs. Not quite the full propagators, of course, since we have a factor of v/Z instead
of a factor of Z, but that is simply since a propagator has 2 legs instead of one, and we need
to consider a factor of v/Z for each one. So for example for the 2-point function, we would
have a /Z for each leg, but only a single free propagator factor (common for both).

This amputation procedure relates diagrams in the perturbative expansion of the corre-
lation functions to diagrams in the perturbative expansion of the S-matrices.
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N /

amputated

Figure 30: The diagrammatic amputation procedure.

Figure 31: Diagrammatic expansion for the connected Green’s function.

Finally, we want to understand the full propagator better, and what it means to be near
the on-shell pole. We saw in QFTT that the connected 2-point function G7; is related to the
1PI 2-point function II;; by

G = (1+AI) A=A - ATIA + ... (10.26)

for which we can write a diagrammatic representation, as in Fig.31. But denoting II(p?) =
iM?(p*), and that the free propagator has bare mass mg, we have explicitly

—1 —1 5 1 —1i

Ge = - iM - , 10.27
pPmg pPmi o prAmi p? 4 mi+ MA(p?) 1027
and we see that near a physical pole, we have
iz
G ~ m + regular. (10.28)
Indeed, as an example, taking M?(p?) ~ M? + ap?, we would get
—i(1 -1
Ge = il+a) (10.29)

P>+ (mg+ M?*)/(1+a)
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but if there are higher order corrections in p? in M?(p?), we would get other finite terms near
the physical pole. We see that the addition of M?(p?) in general both shifts the position of
the physical pole, here from —m? to —m? = —(m3 + M?)/(1 + a), and creates a Z factor,
here (1 + a)~t.

Important concepts to remember

e The LSZ formula relates correlation functions to S-matrices as follows: near the on-shell
physical pole for all the external legs, removing the full propagators for the external
legs (with only v/Z instead of Z), we obtain the on-shell S-matrix.

e In and out states correspond to a different sign in the Fourier transform of the correlator
positions.

e The diagrammmatic intepretation of going from correlators (connected diagrams) to
S-matrices is of amputation, namely cut out all parts connecting external legs with the
interior through a single propagator.

e For IT = iM?(p?), M?(p?) is added to the inverse propagator, shifting the physical pole
and creating a 7Z factor.

Further reading: See chapter 7.2 in [3].
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Exercises, Lecture 10

1) Write down all the 3-loop divergent diagrams for the LSZ formula at 4-points in ¢?
theory, and the associated diagrammatic amputation procedure.

2) Write down the LSZ formula for QED, and apply the diagrammatic procedure for the
2-loop 6-point case.
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11 Lecture 11. Quantization of gauge theories I: path
integrals and Fadeev-Popov

We now start the analysis of nonabelian gauge theories. In Classical Field Theory we have

seen how to define them, but we will review it here.

Consider a gauge field
A, = AT, (11.1)

where T are the generators of a Lie algebra of a gauge group G, so A, is in the Lie algebra,
i.e. in the adjoint representation. A general group element is a set of Ny x Ng matrices for
the representation R ,

U=e”T (11.2)

where a® € R. The generators 7%, a = 1, ..., Ng obey the Lie algebra

[T, T = f*.T°, (11.3)
and are normalized by the relation

Tr[T°T") = Tro™. (11.4)

A note on conventions. My conventions (that I will use unless otherwise specified, or unless
left free) are of anti-hermitian generators, (7¢)" = —T9, with f®_ real and T = —1/2 in the
fundamental representation of SU(N). Another popular convention in the literature is with
hermitian generators, (T)" = T Tk = 1 in the adjoint of SU(N) and [T, T%] =i f® T¢.

In a representation R, the following quadratic form is a constant (proportional to the
identity over a given representation),

> (TH)? = Cr1, (11.5)

a

and is called the (quadratic) Casimir of the representation R of the group G. Then
TrNg = CgrNg. (11.6)
In the case of the adjoint representation, defined by

(T = "4 » (11.7)

we have

as well as Ngp = Ng.

For G = SU(N), we have of course Ng = N? — 1, and in the fundamental representation
(for quarks) we have N = N.

My normalization Tr = —1/2 in the fundamental leads also to Cr = (N? —1)/2N.
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The way to introduce gauge fields is by starting with some matter action invariant under
the global action of the group G,

Yi(x) = Uiji(x) , (11.9)

and making the invariance local, U;; — U;;(z). That requires the introduction of another
field, the gauge field A}, and of the minimal coupling of the matter to it, through the
covariant derivative replacing the ordinary derivative,

Ouvi(x) = (Dp)ii(x); - (D) = 0ui5 + 9(Tg)i5 A (). (11.10)
In particular, in the adjoint representation,
DI = 9,6" + gf* AS. (11.11)
For an infinitesimal gauge transformation with parameter
Ux) = T ~ 14 ga™(2)T* + ..., (11.12)
the gauge field transforms as
a a ab b
Al(z) — Al(z) + Do’ (z). (11.13)
For a finite gauge transformation, U = e9*“@7T* = ¢99(®) the gauge field transforms as
1
A,(z) — Ag(w) =U"A,(2)U(z) + -0,U(z)U (). (11.14)
g
The field strength is defined as
Fi, = 0,A, —0,A, + gf“bcAZAf,. (11.15)

One defines also the contraction with 7%,

A, =ATY Fu,=F T, (11.16)
such that the field strength is
F.,=0,A, —0,A,+glA. A, (11.17)
as well as the form notation
1
A=A dx"; F = §Fuyd:c“da:” , (11.18)

(note that in general f, = 1/p!f,, . dz"* A ... Adx*r.) leading to the field strength

F=dA+gAnA. (11.19)
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The field strength transforms covariantly, i.e.
Fy — F, = U Y 2)F,U(x). (11.20)

The gauge invariant action for the gauge field in Minkowski space is

1 a a v 1
Sy = /d4x {—ZFHVF :ﬂ] = +§/d4xTr[F3V]. (11.21)
Wick rotating to Euclidean space, x4, = it, so 0y = —id;, and the same for the gauge
field, which transforms as 0, under Lorentz transformations, A4 = —iAy, so
0 0 .
Eiuel — Z_ A A, = —jpMink 11.22
2 ax4 axl 4 t (2 ? ( )
and so the Euclidean Lagrangean is
1 1 1, = ~
Eucl. __ a a puy 21 a\2 a\2
L = +ZF/WF H = —3 Tr[F,,] = 5((E )°+ (B*)7). (11.23)

Correlation functions

We now write the quantum correlation functions for gauge invariant observables (observ-
ables in the gauge theory must be gauge invariant, by definition) in Euclidean space as path
integrals,

B [ DAeSAO,(A)...0,(A)
B [ DAe—5A '
As in the abelian case described in QFT I, we "fix the gauge” by the Fadeev-Popov

procedure, which amounts to dividing in the numerator and denominator by the volume
of the gauge group G,

(O1(A)...0,(A)) (11.24)

[T v-(6); V(G):/dU, (11.25)

zcRd

where [dU is called the Haar measure. It is defined to be invariant under left and right
multiplication by a fixed element of the gauge group,

U—UUy and U — Ul (11.26)

We are interested in covariant gauges like the Lorenz gauge, J, A5 = 0, generalized to
the form

Fz)=c"(z); a=1,..,N. (11.27)

We define the orbit of the gauge field A, (x) as the space of all possible gauge transfor-
mations of A, (x), i.e.

Or[A,(z)] = {A,|3U(x) € G, such that A,(z) = V@ A, (z)}. (11.28)
We also define the space of all possible gauge fields satisfying a gauge condition,

M(A) = {A, such that F*(A,) = ¢(z)}. (11.29)
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We assume the fact that there is a single intersection between the two, i.e. Or[A,(z)|NM =
{point}, or that ) )
A, such that F(A,) = (). (11.30)

Note that this assumption is only correct for infinitesimal gauge transformations, otherwise
for large gauge transformations, there are Gribov copies that are a large distance in gauge
transformation space from the identity. We will not address Gribov copies in this course.
The situation above is depicted in Fig.32.

Or[A]

after X(A)

M

Figure 32: The gauge fixed configuration is at the intersection of the orbit of A, the gauge
transformations of a gauge field configuration A, and the space M of all possible gauge
conditions.

Then define

Afi[A] E/I;IdUwgfs(fa(UA)—C“)- (11.31)

By our assumption, there is a unique U = U™ (z), depending on A,(z), such that by
transforming with it we go onto the gauge condition, i.e.

FoU™ 4) = (11.32)

Define the matrix o5
M (z,y; A) = aAZ(x)DZb(w;A)(S(D)(x —-y), (11.33)

where as before 5
D (x, A) = @5‘”’ + g f AL (). (11.34)

The matrix M is thought of as a matrix in both the space (ab) and in the space (zy). We
have the following

Lemma

1. Az [A] is gauge invariant.

2. Ar [A] = det MV A).

Proof of 1.
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Write the definition of A[A] for the gauge field transformed with some Uy,

“YA] = /HdUHé}"“ (P A)) — ).

(11.35)

By invariance of the Haar measure, dU, = d(UUy), so we write dU, = d(U,Uy) = dU,, so we

get
—1[Uo4) = /HdU Hé]—"“UA ) — ) = ATYA].

q.e.d.1
Proof of 2.
We use 1. to write

where by definition of U, F(A) = ¢*.
Then

For infinitesimal transformations,

Uz) = e @ ~ 1+ o"(2)T* = dU, = Hda )+0(a”),

a=1

which leads to
U A\a ~ Aa ab( A\ b 2
(TA)* = A"+ DP(A)a” + O(a”)

and in turn to

Substituting in A~![A], we obtain (using that F*(A,) = ¢*)

/Hd @ H5< o ch( A)ab(y)>

ATHA]

12

(11.36)

(11.37)

(11.38)

(11.39)

(11.40)

(11.41)

_ /Hda H5 (/ddzMab (y, 2 A)ab(z )) = (det M(/l)>_1. (11.42)

In the last equality, the determinant was considered both in (ab) and in (xy) space, and we

have used the generalization of the relation

(11.43)



g.e.d.2
Then we can take the determinant on the other side of the equation and write

1= / []dv. [det M(U(A)A)] [[o(F*(V4) = (). (11.44)

But the delta function enforces U = U anyway, so we can replace it in the integral and
write

/HdU det M(VA) [T o(F*(YA) = (). (11.45)

y,a

/ [] dev(w)e 3 aoeter@r (11.46)

which is of course a combination of n’s and «a’s, that is irrelevant in the correlators, since
would cancel in the numerator and denominator. Now substituting 1 in the form of (11.45)
on the rhs of the above, and doing the integral over dc®(z), which fixes ¢*(z) = F*(x), we
obtain

Now we can define

7 1(a)’7

"1 / HdU det M(VA)e 27", (11.47)
Inserting this ”1(«)” in the path mtegral we obtain

/ DAeSA = / DIA / HdU det M (U A)e Sz 7104
= / [14v. / DAdet M(YA)e 52771741 (11.48)

But because of the gauge invariance of the measure DA and the action S[A], we can replace
A by YA in the path integral, and finally rename it A again everywhere. Note that it is
exactly this step that can fail if there are gauge anomalies, but here we will assume that
there aren’t.

Then we finally obtain that the volume of the gauge group factorizes from the integral
as

/ DAe S = / [1dv. / DAdet M(A)e 5277141, (11.49)

The same thing happens for the path integral with the gauge invariant observables,

/ DAe MO, [A]...0,[A] = / [1dv. / DAdet M(A)e SO, [A]..0,[A.

(11.50)
That means that the volume of the gauge group cancels between the numerator and denom-
inator in the correlation functions, and we obtain

n n 4 e~ Sett[A]
<H O;(A)) = fDAl}‘;fgﬁl : (11.51)
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where the Sg is the sum of the classical action and a ”gauge fixing term” and an extra term,

SerlA] = STA] + - / 4P F2[A] — log det M{(A). (11.52)

The last term will turn into a ”ghost action” term, as we will now see.
Ghost action
In the case of the Lorenz gauge, F* = 0, A7, the matrix M becomes

Mz, y; A) = 0, D67 (z — y) = (26% + gf 8, A%(2))67(x — y) | (11.53)
understood as a matrix in both (ab) and (zy) space. Since we are interested in

det M(A)
logdet M(A) = log —————=
& (4) & det 07
we can drop the last term, which is just a constant (albeit infinite one), since it again cancels
in correlators between the numerator and the denominator.
Note that 972 = A(x,y) is the scalar (KG) propagator.
Therefore we consider

+log det 9 , (11.54)

det M(A) M(A)]
o det { | = det(1+ L), (11.55)
where
(14 L) (z,y) = 66" (x —y) + g / dP 2 Az — z)%f“%AZé%z — 7). (11.56)

On the other hand, that means that

Trlog(1+41L) (=t
det(1+L) = " =expIr Z "

n>1

exp {g / dPz e, [A(w — Zl)%AZ(Zl)(;D(Zl — x)]
1

2
—% /dDzldngf“bc |:A($ — Zl)iAC (Z1)5D(21 — ZQ):| fbadx

m
02}

0z
However, this gives an infinite number of vertices in the action (term —logdet(1 + L)), as
we easily see. This is not very good.
Instead, we can use a representation in the action in terms of fermions, or rather anti-
commuting variables, that will be called ghosts.
We remember that we have the formula

/ DODPe P M?  (det M) | (11.58)
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where as usual the proportionality constant is not relevant, and +1 is for anticommut-
ing /commuting variables, respectively.

Since we have det M1, we are interested in anticommuting variables, and moreover then
we have an arbitrary sign in front of the action that we can use, since

N
/ H dn;di; e = (£1)N det M. (11.59)
=1

We choose the plus sign in the above, i.e. e and as usual we choose the Lorenz
gauge F* = 0, A}, obtaining the gauge fixed YM action in Euclidean space

1 a 1 a —a a
Seff. = / dPx {Z(FW)Q + %(@Au)z . aﬂDubnb} . (11.60)
Note that I wrote here 7% and n®, but this is misleading, since as we know from the complex
integration of anticommuting objects, the integrations are really independent. That is why
one usually writes b for n* and ¢ for n*, i.e.

1 a 1 a a a
Soq = /d% {Z(FW)2 + 5(%%)2 —b 0uDubcb} : (11.61)
For a general gauge condition, we have
1 1 OF*

Set. = [ dPzx |~ (F%)* + =—(F*(A))* = " =—=D>c| . 11.62
o= [ G A - D (11.62)

Other gauge conditions, generalizing the Lorenz gauge, can be written as

a _ Jab oAb
FC=9 A, (11.63)
In particular, axial gauges (which are however not Lorentz covariant) correspond to

O = 1,6%. (11.64)

Here 7, is a constant 4-vector.

Important concepts to remember
e The YM field strength transforms covariantly, F,, — U~ (z)F,,U(z).
e The YM action in Euclidean space is +1 [ d°zF O

e The quantum correlators of gauge invariant operators are written as ratios of path
integrals with and without the operators, so we can use the Fadeev-Popov gauge fixing
procedure, by factorizing and cancelling the volume of the gauge group from the two
path integrals.

e The result of the gauge-fixing procedure for the gauge condition F*(z) = ¢*(z) is
Ser.[A] = S[A] + [dPzF*(A)/2c — log det M(A).

e The logdet M(A) can be written as a ghost action, [ d”z[—b*0F*(A)/OA;DP(A)).
Further reading: See chapter 7.1 in [5] and 16.2 in [3].
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Exercises, Lecture 11

1) Consider a solution to the self-duality equation for Yang-Mills theory in Euclidean
space,

1
Fy = 5w/ F (1163

Show that the on-shell action is bounded by a topological term (which cannot be changed
by a small transformation).

2) Consider a solution to the self-duality condition that asymptotes to flat space at
x4 = —00 and to a monopole configuration at x4y = +oo.

Wick rotate the configuration to Minkowski space, and consider the path integral centered
around this configuration. What is its interpretation? Putting some reasonable numbers for
the Standard Model, how relevant is this now?
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12 Lecture 12. Quantization of gauge theories 2. Prop-
agators and Feynman rules.

As we have seen last lecture, to calculate correlators we must fix a gauge, and then we use
instead of the classical action the gauge fixed action, with gauge fixing term and ghost term,

1 a 1 a a al
Se{f. = /dD.TI |:Z(F‘uy)2 + %(8#14“)2 —b (9“Dubcb] . (121)

In order to calculate the Feynman rules, we split the action into a quadratic part, giving
the propagators, and a cubic and quartic part, giving the interactions.

Propagators

The quadratic action is

1 a a 1 a a

SP[A,b, ] = /d% {5,4“ {5 b (—aza,w + 0,0, (1 - 5))} Ab b (—6 ba2)cb} . (122)
From it, we derive the gluon propagator, which is just §%° times the abelian (photon)

propagator, i.e.
" yab k. k,
AW (k) = e {5,” —(1—a) 22 } , (12.3)
and the the ghost propagator, which is (despite the anticommuting nature of the ghosts) just

the scalar KG propagator,

b 5ab
AY(k) = =h (12.4)
Interactions
The interaction action can be rewritten as
Swldbic) = gfe [ 0 [(0,A)ALAT + (0,87) 4%
2
g a (4 e
+ I fade / dPxAb AT AL AC. (12.5)

We can now define path integrals, in particular the free energy W is defined as usual by
e WITéte] — /DADbpceSeff[Avb:C]+fdDI(J‘A+§cC+b§b)' (12.6)

Then as usual, the effective action, the generator of 1PI n-point functions, is the Legendre
transform of the free energy,

DA B ) = WUl + [ Pl A4 g+ 4y) (12,7
By taking derivatives of this Legendre transform relation, we obtain also
ow ow ow
Al x) = ————: N z) = — c () =+
() dJ(x) (z) 0&.(x) (z) 0& ()
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or or or

W% Ee(z) = _(SCT(fE); & (z) = +5bd(x)'

Ju(r) =+ (12.8)
Vertices
We can derive the vertices from the interaction action. The 3-gluon vertex comes from
the rewriting

" . dPkdPpdPq 1, o/ \Eabe
gfabc dDz(a,uAy)Asz = 6 _Au(k)A?/(p)A/\(Q)Fu?/)\ (129>
(2m) 3!

Then we can derive the vertex, which should have the overall momentum conservation, so

ot (k,p, q) = 2m)P6P) (k + p + q) Vb5, (12.10)
The vertex should be symmetric in the external lines. We first rewrite the interaction term

as
(9fabe) / AP [~ A7 (0, A)) A6 = (g are) / dPu[ A} (0rA)) AS]6 (12.11)

where we have redefined the indices and used the fact that froe = —fare and feap = + fave-
Then we see that we need the terms —(ip,)d,» + (ipx)d,, among the permutations (the
derivative 0 is replaced by ip), multiplied by the usual Euclidean vertex, —g fu.. The other
terms are obtained by permuting p, k, ¢ and the external indices. In total, we have

Ve (k,p,q) = (—igfare) (@ — P)ubur + (0 = k)xb + (k — @)u61]- (12.12)

For the 4-gluon vertex, again taking out the delta function, the vertex V:lf’;gl, for gluons
(ua), (vd), (pc) and (od), is momentum-independent. There are 24 terms coming from the
4! terms in the permutations of the external lines. They will give 6 different terms and a
multiplicity of 4, cancelling the 1/4 in front of the quartic interaction action. One such term

is given by writing the quartic action as

2
O fanfud® [ ez AL AL (12.13)

uivttptto

where we have relabelled the indices and used that f¢,, feca = fapefoy- The vertex term from
it is then — g2 fape fag®0"?877, and the other 5 terms are found by permutations, giving in total

V,fyb;g = _§2 [fabefcde(éupéua - 5up5ua) + fcbefade(dupéua - 5;11/5;)0) + fdbefcae(épaépu - 5Vp5ua)]-

(12.14)

The gluon-2-ghost vertex comes from the cubic part of the interacition action. For a
ghost line from a to b, where b has momentum ¢, and with a gluon with (uc), we have

V(@) = =g fane(iqp)- (12.15)

If we also introduce fermions in a representation f with index 4, ¢, so with covariant
derivative
Dy ij = 0,05 + 9(T7)i A5 (12.16)
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NI\ U\ gluon propagator

_____ - — — ghost propagator

]
> fermion propagator

gluon 4—vertex
HAGe HGa
b

T2 S>>

gluon—ghost vertex gluon—fermion vertex

Figure 33: Feynman rules for nonabelian gauge theories (QCD).

acting on them, and ¢’ D¥~#4)7 kinetic term, it follows that the gluon-2-fermion vertex with
the fermion going from as to 85 and the gluon with pa, is

—3(T7) i (V) pa- (12.17)

Note that in all the above, as usual, § = gu/?, where e =4 — D.

Feynman rules

All in all, we have the Feynman rules (see Fig.33):

1. Gluon propagator, represented by a wiggly line from pa to vb, with momentum k, is
§ab k. kK,

AR = 5 O = (1= ) 25

(12.18)

2. Ghost propagator, represented by a dashed line with an arrow from a to b, with
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momentum £k, is

. 5ab
A (k) = =k (12.19)
3. Fermion propagator, from (icr) to (j3), with momentim k, is
SY (k) = by ) (12.20)
Fop T \if+m B

4. Gluon 3-vertex, represented by 3 wiggly lines intersecting at a point, with all momenta
in, (pa) with momentum p, (vb) with momentum q and (pc) with momentum r, is

V,u,al?;(p7 q, T) = _igfabc[(r - Q)uéup + (C] - p)péuu + (p - T)u(sup]~ (1221)

5. Gluon 4-vertex, represented by 4 wiggly lines intersecting at a point, with (ua), (vb),
(pc) and (od), is

V,fyb;g = _§2 [fabefcd€<5up51/o' - 5up5,u0') + fcbefade(dupdua - 5uu(5p0') =+ fdbefcae(apaéuu - 51/p5u0)]-
(12.22)
6. Gluon-2-ghost vertex, represented by a dashed line with an arrow from a to b (where

b has momentum ¢), with a wiggly line coming out of it, ending on (uc), is

Vi (q) = =3 fabeligp)- (12.23)

7. Gluon-2-fermion vertex, represented by a continuous line with an arrow from (ic) to
(7B), with a wiggly line coming out of it, ending on (uc), is

—3(T7)i( V) - (12.24)

8. The fermion loop has an extra (—1), but also the ghost loop, since the important
thing is the anticommuting nature of the variables, not the kinetic term (which is KG for
the ghost).

Observation. Note that we calculate Green’s functions from derivatives of W or I'; but
while the action is gauge invariant under the nonabelian gauge transformation, the source
term [dPxzJ - A is not, so the Green’s functions are not physical observables, since they
are not gauge invariant, as observables should be. But sums of Feynman diagrams could be
gauge invariant. For example, in the case of QED, we mentioned the fact that IR divergences
will mean that we need to sum loop diagrams with tree diagrams, of the same order in the
coupling, but with more external massless lines, with very small momentum. Only this
combination will be related to experimentally relevant quantities like the cross section, and
will be gauge invariant (and IR safe). Now we can say a similar thing about YM theory,
where Green’s functions will be in general gauge-dependent, even at a fixed order in the
coupling.

Example

As an example of calculation, we will consider the one-loop correction to the gluon prop-
agator with 2 3-gluon vertices, as in Fig.34. It will be also gauge dependent, but we will
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Figure 34: One loop gluon diagram with 3-vertices.

choose the Feynman gauge o« = 1. For other «, the result will change, and it will of course
also change if we use instead of the Lorenz gauge some other gauge, like for instance axial
gauge.

In the diagram, a photon with momentum p and indices (a«) comes, and out goes a
photon of momentum p and indices (a’a’). On the internal loop, one line has momentum
k and indices (¢y) on the (aa) side and (¢4') on the (a’a’) side, and the other line has
momentum k — p and indices (b3) on the (aw) side and (¥'5’) on the (a’a’) side. Then the
two vertices are V% (p, k — p,—k) and Voﬁlgfg,(—p,p — k,k), and using the Feynman rules

afy
above we have the expression for the amplitude

/

, dPk ce
Moo = / (2m)D ( igfabe) [(=2k 4+ p)adpy + (P + k) gday + (k — 2p)75aﬁ]ﬁ5w’ X

N 5bb’
X(—’lgfa/b/c/)[<2k' — p) I(SIBI / ( p ]{})B/ a ’Y’ + ( ]{} + 2p>7/(5a/6/]m565/
N dPk F, (k P)
_ =2 ,bc aa’
where
Foor(k,p) = —(2k = p)a(2k = p)aD + (2k = pla(p + K)o + (2k — p)a(k — 2p)or

+(p+ k)a(2k =)o — (p + k)?0aer — (K —2p)a(p+k‘)

+(k = 2p)a(2k — p)ar — (p + k) (k — 2p)a — (k — 2p)?6a

(—4D + 6)koko + (—D + 6)papar + (2D — 3) (kapar —i—pa o)

—(2K* 4 5p* — 2k - p)bar- (12.26)

We note that §2 = ¢%u¢ and fapefo™ = 0aaCo(G), where by definition 6,y is the Killing
metric on the group and Cy(G) is the second Casimir.
The first integral that we need is one that we already calculated,

d"k 1 _ F(Q_%) 2\ 22 laa —a D2
/(QW)Dk:Q(k—p)? - (477)%3 (P) /0 d [ (1 )]
= DLp(p), (12.27)
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where we have used the Euler beta function, B(a,b) = fol dz 22711 = 2)b71 = I'(a +

b)/I'(a)l'(b).

Then by Lorentz invariance we have

/ (;lw)kD k?(/fki e Pl (9) (12.28)

since the integral depends on p, (and not just on p?). By multiplying this relation by 2p*,
we obtain

vi [ d%% —(k—p)’+ K +p* [ d°k 1 Pk 1 ,
210 = [ G5t~ et <k—p>z”bﬁ(fi;>

where we have used that the first two integrals cancel against each other, by shifting the
momentum k£ = k — p. Actually, the integral is zero in dimensional regularization in any

case, since as we saw

dP 1 raa-2

/ 4 ( D2)(m2)%—1 : (12.30)
(2m)P ¢* +m (4m)z

whose m — 0 limit gives zero for D > 2. Then we obtain

~ 1
I(p) = 2,]32(1))' (12.31)
Next, we need the integral
dPk k,k,
12.32
| e 1232

which by Lorentz invariance (since the integral depends on p,,, and the only symmetric tensor
Lorentz structures available are thus p,p, and p®d,,) equals

1(p)pupy + I (p)P* 0y (12.33)

We need two relations to determine /% and I°. The first one is obtained by multiplying with
2p*, which gives

W' (I° + 1) =

/ APk ky[—(k—p)® + k> + p’]

(2m)P k*(k —p)?
Pk &, Pk k, 2Py
= - — )
| i | Grp g+ P e
__/d%@+/d%@+/dei+2&I()
- (2m)D k2 enPre ) @opje TP PV
= pQ%IQ,D(p), (12.34)

where in the first equality we have used (12.31) and in the last equality we have used that
(12.30) vanishes. We thus obtian

I p(p)
T

I*(p) + I'(p) = (12.35)
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The other relation is obtained by contracting with ¢, which gives

p*[I*+ DI’ = / Ok 1 0 (12.36)
@2m)P (k—=p3? '
SO
I*=-DI", (12.37)
so that finally
D 1
I“(p) = ———1. c Ip) = ———— 1 . 12.
(p) D 1) 2.0(p); 1I°(p) D 1) 2.0(P) (12.38)
Putting all the pieces of the amplitude together, we obtain
W@ = U Oy (@) Inp(p) | (4D + 6) D _ o o
oo’ - g M 2 aa’ 2,D p 4(D o l)pOépO/ 4(D o 1)p

—|—(—D —+ 6)papa/ + (2D — 3)papa’ — 5(10/(5]92 _ p2>]
D+ 4(D —1)(D + 3)

- 5aa’p2

6 16(D—1)—4D +6
= —g2,u (Saa/CQ(G) PaDo ( ) }

A(D—1) 4D —1)
re-2 D D
et 3 ) )52 (_ D 1) | (12.39)
(4m)= 2 2
From it, we can obtain the divergent part of the amplitude, using that I' (2 — %) =
r (g) ~ 2/e, and in the rest putting D = 4, including B(1,1) = 1, so that finally
2
/ g 2 (11 19
a = 5, C(G 3y ae—— S I 12.40
Moza Jdiv. 2( )(477)26 <3p P 6 ( )

Important concepts to remember

e The ghost propagator is the KG propagator (times d44 ), and the gluon propagator is
the photon propagator (times d,4/).

e We have a 3-gluon vertex, a 4-gluon vertex and a gluon-2-ghost vertex. If we add
fermions, we also have a gluon-2-fermions vertex.

A ghost loop gives a factor of (—1), same as a fermion loop.

Green’s functions in the nonabelian gauge theory are not gauge invariant, so the cannot
be directly related to observables. Sums of diagrams (for different Green’s functions,
even) might be gauge invariant, order by order in perturbation theory.

Further reading: See chapter 7.2,7.3 in [5] and chapter 16.1 in [3].
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Exercises, Lecture 12

1) Write the integral expressions for the diagrams (Fig.35)

Lo,

Figure 35: One loop QCD diagrams.
using the Feynman rules (without calculating them).

2) Calculate the divergent part of the diagram (Fig.36)

Figure 36: One loop QCD diagram with ghost loop and external gluons.
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13 Lecture 13. One-loop renormalizability of gauge
theories.

In this lecture we will study how to explicitly renormalize gauge theories at one-loop.

Pure gauge theory.

We will not derive them here, since they are too laborious (30 diagrams in total), but
one can derive the result for the divergent parts of all the one-loop diagrams of pure gauge
theory (Yang-Mills).

They fall into 5 classes, corresponding to 5 1PI n-point functions which are divergent.

S .

Figure 37: One loop diagrams contributing to the gauge propagator self-energy %, (p).

1. The gauge propagator self-energy ,,(p). There are 3 relevant diagrams (see Fig.37):
the gluon loop with 2 3-gluon vertices, whose divergent part we calculated last lecture (with
symmetry factor 1/2); the ghost loop that was left as an exercise (with - sign for the ghost
loop); the gluon loop with a single 4-gluon vertex. The divergent part of the sum of these
diagrams gives

2 a
Euu; divergent(p) = _W § + 5(1 - Oé)) E[p25uu - pMpV](s b' (131>

> L7

Figure 38: One loop diagram contributing to the ghost propagator self-energy P,;(p).

2. The ghost propagator self-energy P,;, with a single one-loop diagram in Fig.38, with
a gluon line starting and ending on the ghost line. Its divergent part is

2CH(@) (11 2
Pab; divergent(p) = _%75_2) (5 + Z(l - Oé)) E(pQ(Sab)' (132)
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Figure 39: One loop diagrams contributing to the 3-gluon vertex.

3. The gluon 3-point vertex. There are now 6 diagrams, as in Fig.39: one with a gluon
loop with 3 3-gluon vertices attached, out of which external gluons go; another 3 where
we contract one propagator from the first diagram to make a gluon 4-point vertex (with
symmetry factor 2 for each); 2 diagrams with a ghost loop with external gluons attached to
it, and a different orientation for the ghost line differentiating between the 2 diagrams. The
divergent part of the sum is

2 abc
5 + Z(l - a>:| EV,U,V)\(k7p7 Q) ) (133)

1672

where V2% (k, p, q) is the classical (tree level) vertex.
4. The gluon 4-point vertex. There are 18 diagrams. The pure gluon ones are in
Fig.40, and the ones with a ghost loop are in Fig.41. One is the gluon loop with 4 3-gluon
vertices, together with its 2 crossed diagrams. There are 3 diagrams obtained by contracting
2 propagators of the first diagram to obtain 2 4-gluon vertices (or one diagram and 2 crossed
ones). There are 6 diagrams where only one propagator has been contracted, to give one
4-gluon vertex and 2 3-gluon vertices; or 4 diagrams obtained by contraction of the first one,
and 2 diagrams obtained by crossing. And finally there are 6 diagrams with a ghost loop
with 4 external gluon vertices: two diagrams differing by the orientation of the ghost loop,
and 2 crossed diagrams for each of these.
The divergent part of the sum of these diagrams is
2
g CZ(G) [_1 + (1 _ a>:| %Vade (134)

3 pvpo

1672

where V24 is the classical (tree level) vertex.
5. The ghost-gluon vertex. The loop is made of either two sides of ghost (with a gluon

in the common vertex), and one gluon side; or two gluon sides (with the gluon coming out
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Sex e
KR

Figure 40: One loop gluon diagrams contributing to the 3-gluon vertex.

TR
5 e

of the common vertex) and a single ghost side, as in Fig.42. The sum of these two diagrams

has the divergent part

2
g CQ(G)a2 abe

where again V,/*(p) is the classical (tree level) vertex.

We see therefore that the 5 divergences all correspond to, and are proportional to, the 5
tree level objects (propagators and vertices), coming from the classical Lagrangean. There-
fore renormalizability at one-loop is guaranteed, since we can absorb the divergences in the
redefinition of the objects in the classical Lagrangean.

But in general, to guarantee renormalizability, one would need gauge invariance, since
that generates relations betwen the Green’s functions through the Ward identities. However,
the formalism we use is gauge fixed, so it would seem we have a problem. As it turns out, we
don’t, because there is a residual gauge symmetry left after fixing the gauge (we know that
fixing the gauge in general allows for the possibility of residual symmetries, meaning sym-
metry with a parameter that depends in a constrained way on spacetime). This symmetry
is BRST symmetry, that will be studied in the next lecture, and we will see in the lecture
after that, that it leads to relations among Green’s functions similar to the Ward identities,
which will allow us to prove renormalizability.

We also want to verify that the counting of the superficial degree of divergences says we
have identified all the divergent 1PI n-point functions. The superficial degree of divergence

in the pure gauge theory is
3
w(D)=4—-E,— g be s (13.6)

where we have introduced also external ghost lines. Note the factor of 3/2 in front of the
external ghost lines ., like in the case of fermions. The derivation is however slightly
different than for the fermions. The vertex is (9,b%)g fabcAch, so each b line at a vertex
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Figure 42: One loop diagrams for the ghost-gluon vertex.

comes with a factor of momentum, despite the ghost propagator being KG, ~ 1/p?. Since
each propagator ends in two vertices, but in one as b and in one as ¢, effectively we have an
extra factor of p in the propagator, giving a ~ 1/p propagator, like in the fermion case.

Then we can check that indeed the 5 1PI n-point functions are the divergent ones. The
gluon propagator has E, = 2, so w(D) = 4 — 2 = 2. The ghost propagator has E,. = 2, so
w(D) =4—3-2/2 =1. The 3-gluon vertex has E, = 3, so w(D) =4 — 3 = 1, the 4-gluon
vertex has E, =4, so w(D) =4 —4 =0, and the ghost-gluon vertex has £, = 1, Ej,. = 2, so
w(D)=4—-1-3-2/2=0. There are no other divergent 1PI n-point functions.

Counterterms in MS scheme.

We can now write down the counterterms in the minimal subtraction scheme, as just
minus the divergent terms.
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1. From the gluon propagator one-loop divergence, we obtain the counterterm

1
6L = (25— 1)1(8MA3 — 0,A%)?

205(G@) (5 1 2
Z(O-‘rl) - 1 gt — 4+ (1 = —. 13.7
3 T e \3talY)e (13.7)
Indeed, in p space, the gluon propagator term gives (Z3 — 1)%AZ(p25W — pupy)AL, so the
counterterm is indeed minus the divergence.
2. From the ghost propagator one-loop divergence, we obtain the counterterm
0Ly = (Zg—1)(=b20c?)
- 2C5(G) (11 2
SO+ _ o 9% S (1— z 13.8
3 LTl G IS I (13.8)

In p space, the gluon propagator term gives (Zs — 1)(b*p*c®), so indeed the counterterm is
minus the divergence.
3. From the 3-gluon vertex divergence, we obtain the counterterm

SLus = (Z1—1)gfape0, A% AL AC

vitutty
205(G) [2 3 2
g0+ _ o 902 20201~ z 13.9
L T ez 310 Y| ¢ (13.9)
Since the divergence was written as a coefficient times the classical vertex, the Zl(l) is just
minus the coeffient, as we can check.
4. From the 4-gluon vertex divergence, we obtain the counterterm
SLa = (Zy— 1) fufop A A AL A
At = ( 4 )Zfabcfde N T Y
205(@) 1 2
07 SR 1S iy | R [ 13.10
. T e |3 (13.10)
The same comment as above applies.
5. From the ghost-gluon vertex divergence, we obtain the counterterm
6LbAc = (ZI - 1)gfabc(auba)Azcc
- 205(G) a2
Zo R8s 13.11
! 1672 2 ¢ ( )
Again the same comment applies.
As usual, renormalization means
(C + 5£) (A, b, c, g, O[) = ,C[)(Ao, bo, Co, 9o, OZ()). (1312)
Since we have
1 a a 1 a a & g2 a & e
L+0L = Z-lzg(a#Ay —0,A%)? + %(au A2 + g fabeZ10, ALAD AC + T JaveS 4 21 AL AG AT A
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+Z3(0,b")0uc® + g fae Z1(0,b") Al (13.13)

we can obtain the renormalizations of fields and couplings.

Renormalization and consistency conditions

But we see that we have 4 objects to be renormalized (since b and ¢ must renormalize in
the same way), but 6 coefficients (for 6 terms), we will obtain also 2 consistency conditions.

From
Z3(8MA3 — d,AZ)Q = (@LASV — 8,,148#)2 , (13.14)
we get
Ay =/ Z3A. (13.15)
From 3
Z5(0,6)0,c” = (9,b8) Dt (13.16)
we get
b(), Co = Zgb, C. (1317)
From ) .
%(8“14“)2 = E(aNAUM)Q ) (13-18)
we get
Qo — ZgOé. (1319)
From
9fabe 210, ALAY AS = go fanc0, AG, AL AG, (13.20)
we get
Zy
Jo = 9—23/2- (13.21)

Now we have fixed all renormalizations, but we still have two terms to check. These will
give consistency conditions. The first is the gluon 4-vertex,

from which we obtain the consistency condition

Zy I

— = 13.23

Z. " 7 (13.23)
The second is the ghost-gluon vertex,

~ gZ1bAc = gobyAoco , (13.24)

from which we obtain the second consistency condition,

7 7

—-— = —. 13.25

7 7 (13.25)
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Together, these two relations form the Slavnov-Taylor identities.

At this point, it is not clear why they should be correct. Such relations normally appear
from gauge invariance, through Ward identities that relate various 1PI n-point functions
(thus their coefficients Z;), but now we work in a gauge fixed formalism. However, as we
said, there is a residual gauge symmetry called BRST symmetry, which will allow us to write
relations between the n-point functions.

We can at most check it explicitly at one-loop. We remember that Z; = 1 + Zi(l) can be

expanded in ZZ-(l)7 so the Slavnov-Taylor identities at one-loop are

AREED VAR A
70 = ZzW 4z _ 7 (13.26)

[—%Jr(l—a)] — +2E+2(1—a)}— §+%(1—0<)}
-4 = Bedu-a]+ [jrja-a] - [ a-a) s

Gauge theory with fermions
We can couple the gauge theory to fermions with Euclidean action

Sy = / A2 (7, Dy +m)t (13.28)
where the covariant derivative is
DY = 0,6" + g(T7)i;As. (13.29)
The superficial degree of divergence in the presence of fermions is now

wD)=4—-E, — gEf — gEbc. (13.30)
Therefore, besides the previous divergent 1PI n-point functions, we also have new ones that
are divergent:

-the fermion propagator ¥,s(p), with w(D) =4 —3-2/2 = 1.

-the fermion-gluon vertex, I'Y/;, with w(D) =4 —-1-3-2/2=0.

But before we analyze those, we will write down the new divergent contributions to the
1PI n-point functions alread considered in the pure gauge theory case, coming from a fermion
loop:

-the divergent contribution to the gluon propagator, i.e. to Z3, coming from the fermion
loop with two external gluons from it in Fig.43, giving

2 49
J_r

_J 7=z 13.31
1672 3¢ (13.31)
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Figure 43: One fermion loop diagram for the gluon propagator.

-the divergent contribution to the 3-gluon vertex, i.e. to Z;, coming from the two diagrams

in Fig.44, with a fermion loop (with different orientation for the arrow) and 3 gluons coming

out of it, giving the same ,

g 472
“Tem e

This is good, since from the second Slavnov-Taylor identity at one-loop in (13.26), we need

that (since Z, and Zs are not modified by the addition of fermions) (5Z1(1) = 5Z§1), which is

indeed true.

(13.32)

n

Figure 44: One fermion loop diagrams for the 3-gluon vertex.

-the divergent contribution to the 4-gluon vertex, i.e. to Z;, again coming from two
diagrams with a fermion loop (and different orientations for the arrow) and 4 gluons coming
out of it, giving the same result as above for Z;.

This is again good, since now from the first Slavnov-Taylor identity at one-loop in (13.26),
we need that (since we saw already that 5Z£1) = 5Z§1)) 5Z£1) = 5Z§1), which is verified.

Moving on to the new divergent 1PI n-point functions, these new divergences will be
cancelled by the counterterms

5£(A, b> C, @D) = (Zf2 - 1)77;'7;18#770 + (Zfl - 1)9'&’7;114/177& + (Zm - 1)77177;'(/1 (1333)
Explicit calculations give

L0+ _ 9°Cy 2

J— a—
f2 1672 €
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(0+1) _ 9°Cs l—a)\|2
24 = 1-2% oy o (1- 1522

ZO — 1 — .
1672 €

(13.34)

The correction to the fermion propagator, giving both the Zy, and the Z,, terms, comes
from a one loop diagram with a fermion line out of which a gluon comes out and back. The
correction to the fermion-gluon vertex is given by the two diagrams equivalent to the ones of
the ghost-gluon vertex, namely with a triangle loop two sides fermionic and one side gluon,

or two sides gluonic and one fermionic.

In the above C; and T} are the fermion representation case of Tr and Cg defined previ-
ously, namely T is the normalization of the trace, and C'y the Casimir in this representation.
For the QED case (abelian group), Cy = 1 and C5(G) = 0, and we can check that we

reproduce the results we obtained for QED.
Renormalization of the new terms is given as usual by

E(quﬁaga m) + 5‘6("4’ 77Z_J777/}7g77n) = £0(*’40a 77;077#079077’”0) )

which means that

Zfﬂ;%a;ﬂﬁ + Zf19@5%14u¢ + Zymmipyp = 1/_)0%(%% + QOZEOWAOM% + mototo.

From the first term we get the wave function renormalization
Yy = \/Z_fﬂ/); 1;0 = \/Z_fﬂ/_}o )
and from the last we get the mass renormalization
Zpamgy = MLy,.

The middle term gives a constraint, i.e. another Slavnov-Taylor identity,

7 T Z A
Zp g A = gotovuAoptbo = 2 _ 21

We can check explicitly that it is satisfied at one-loop, as in the pure gauge case.

That means that all in all, we have the Slavnov-Taylor identities

Zpp _ 2 _ % _Z

Zpn  Zs  Zs 71

Important concepts to remember

(13.35)

(13.36)

(13.37)

(13.38)

(13.39)

(13.40)

e Pure gauge theory is renormalizable at one-loop, the divergences coming from the
gauge propagator, ghost propagator, 3-gluon vertex, 4-gluon vertex and ghost-gluon
vertex, and being of the same structure as the terms in the classical Lagrangean.
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e The pure gauge theory obeys the Slavnov-Taylor identities, Z,/Z; = Z,/Zs = Z1/ Zs.

e The gauge theory with fermions has w(D) =4 — E;, — 3E./2 — 3E/2 and introduces
two more divergences, in the fermion propagator and fermion-gluon vertex, being again
one-loop renormalizable.

e With fermions we have one more Slavnov-Taylor identity, Zs/Z = Z1/Zs.

Further reading: See chapter 7.3,7.4,7.5 in [5] and chapter 16.5 in [3].
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Exercises, Lecture 13

1) Calculate explicitly all the Z factors for a SO(N) gauge theory with N; fundamental
fermions.

2) Calculate the divergent part of the one-loop graph with a fermion loop and two external
gluon lines in Fig.43, contributing to Zs.
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14 Lecture 14. Asymptotic freedom. BRST symme-
try.

Asymptotic freedom

Asymptotic freedom is a very important concept, one that has gained a Nobel prize
for David Gross, Frank Wilczek and David Politzer (in 2004). We have done most of the
calculations necessary for it last lecture, so now it remains to put everything together and
interpret it.

We saw last lecture that renormalization of the coupling is done by gy = g7 /Zg’/ 2,
However, we omitted the dimensional transmutation factor, so we actually have

Z
9o = 9> (14.1)
Z3

We also saw that, in the presence of fermions we have

2 2 3 4 2

70+ _ 4 9 2.2~ By o

1 1602 (2@ (31— ) =370 ¢
2

(0+1) g § 1 B _é 2

Then it follows that

T T e
{1 - 12; {%02(@ N %Tf} %} (14.3)

Taking ©0/0u on both sides of this equation, since dgo/0p = 0, we obtain

(LB
——

N

= gy

3

dgo . € < g 11 2 2
Hop == 9™ 1622 {6 (G 3Tf} e)
< 3¢% [11 2 2\ OJg 5
+1 (1 62 [ 5 Cy(G) 3Tf:| e) M(?u + O(g°). (14.4)

This is solved by

09 —59+ 1 [B0y(G) - 2Ty] + O(gP)

B, e) = pr—= 3
O 21 - 13;‘%21 [%02(@2— 3Ty 2+ O(gY)
_ € 49 11 < 5
= 29 6.2 |: 5 CQ(G) STf} + O(g ) (14.5)

Note that above we have used the usual expansion in ¢?, ignoring the fact that a higher
order term might actually be divergent in ¢, it is still considered negligible.
One also defines as usual the physical beta function as

B(g) = B, e = 0) = B1g” + Bsg° + Bsg” + ..., (14.6)
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which leads to

2 |11 2
Pr=—1c5 {502((;) —3 f} : (14.7)
Again, the term in ¢° from the above would actually be divergent in €, but is still considered
subleading, and ignored even in the ¢ — 0 limit. Of course, the point is that the calculation
is actually only to one-loop. Once we do the two-loop calculation for Z; and Z3 and includes
it in the above, one finds a finite [, as well.

We note here that 5, and (3 are actually gauge indepedent (universal), nonzero, and
independent of renormalization scheme, while the other coefficients are not necessarily uni-
versal.

The most important observation is that the nonabelian gauge fields are actually the only
ones with #; < 0! All other fields have 5; > 0 contributions. In particular, we see that for
fermions we have a positive 3, proportional to Ty. For scalars, we get similarly a positive
contribution.

For QED, we have C3(G) =0 and Ty =1, so f; = +1/127% > 0.

Integrating the beta function equation at one-loop,

dg
S == 14,

by first multiplying with 2g, we get the solution

92(,“) _ 92<N0)

= =, (14.9)
1—6w%mﬂn%

as we can explicitly check. This relates the coupling constant at some fixed scale py with
the coupling constant at the variable scale p.

e -

Figure 45: The coupling constant g*(u) is a decreasing function for QCD.
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In particular, it means that, for 3; < 0, the coupling constant g?(u) is a decreasing
function of u, as in Fig.45. This has two important consequences:

-IR slavery: ¢g*(u — 0) — oo, so at large distances (small energies, i.e. IR), we have very
strong coupling, leading to confinement.

-asymptotic freedom: ¢*(u — 00) — 0, so the theory is free in the UV.

For the gauge group SU(N), we have Co(SU(N)) = N and Ty = 1/2, but we will consider
Ny flavours (species) of fermions, leading to

1 11 2
Br.su(Ne Ny = 1672 (ch - §Nf> : (14.10)

In particular, for QCD N, = 3 (3 colours) and Ny = 6 (6 flavours, u,d,c,s,t,b), so

7
1672

so QCD is asymptotically free. It also exhibits IR slavery, leading to confinement of quarks
and gluons, since the coupling becomes infinite at large distances, and we cannot separate
the quarks and gluons from each other.

BRST symmetry.

To study the quantum properties of gauge theories, we will need a global symmetry called
BRST symmetry, which is a remnant of gauge invariance (i.e., a residual gauge invariance),
present once we fix the gauge.

It was found in a paper by Becchi, Rouet and Stora, and independently in a paper by
Tyutin, hence the name BRST. For the ghost action, as before, we use the notation common
in the BRST literature, with fields 6 and ¢*. The effective gauge fixed Lagrangean in
Euclidean space is

BI,QCD = — <0 , (1411)

Lan (A b,c) = +5(F5) + %(@Au)Q L 9D, (14.12)
Here 0%, ¢* are anticommuting variables, and b* is imaginary, while ¢* is real, for the reality
of the action. Since the dimension of the Lagrangean must be 4, we see that we need
[b%] + [¢*] = 2. But since a priori b* and ¢* are independent fields (remember that we
found them by writing the gaussian path integral [DbDce *M¢ = det M, where the two
integrations are really independent), their dimensions need not be related. In fact, we can
choose them of different dimension, as is done for instance in string theory. However, for
simplicity, here we will choose [0%] = [¢?] = 1.
Since the gauge invariance is

5gauge7/\AZ = (DM)\)G = @H)\a + gfabcAZ)\c , (1413)

the BRST invariance must be similar, just with the arbitrary \*(z) replaced by something.
That something is ¢*(x)A, so a given = dependence (the field ¢*) times an arbitrary constant,
implying a global symmetry.

We can define a ghost number by Ngu[c"] = +1 (since ¢* — n* and b* — 7%, this is
natural) and Ny, [b*] = —1. This is then a symmetry of L.ss, i.e. the Lagrangean has ghost
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number zero. Since Ngy[A] = 0, it follows that Ng,[A] = —1. Moreover, since [A] = 0 because
of 64, = D, ), it follows that also [A] = —1. And since \* is commuting, it follows that A
is anticommuting.
Since ¢*(x)A is a special case of A%, then it trivially follows that the classical Lagrangean
is BRST invariant,
05 Lotnss = 0, (14.14)

under the BRST transformation
(5BAZ = (D,c)"A. (14.15)

Moreover, we can extend the BRST transformation to gauge fields coupled to matter.
For instance, for scalars transforming under gauge transformations as

5gauge¢i = _g(Ta)i]’Qﬁj)‘a(x) ) (1416)

the BRST transformation is ‘ o
5B¢Z = —g(Ta)ZjWCaA s (1417)

and similarly for fermions, etc.

Now, to find the rest of the BRST transformation laws, we require that the rest of the
action be invariant. Since dp A}, has no terms with 0% in it, and L. has terms with only A4,
and a term —b,0"(D,c)*, we must have (D,c)* invariant, at least when multiplied by d,b
(if not, there would be a term in the variation —b,0"*d(D,c)* that could not be cancelled).

We have explicitly

55(Dyc)" = 0u(65¢") + 950Dy A + g, AL (35c°). (14.18)
We can combine the first and the third terms into D,, to find the equation
1
dp(D,c)* = D, (6pc”) + §Du(gf“bcchcC) =0, (14.19)

but only if we have the following identity satisfied (the terms with 0, are clearly the same
in the two expressions, and only the terms with A, need to be checked)

1
3 al b = Faef o ALPAE =0, (14.20)

where the first term comes from 1/2D,,(gf%,.c’Ac) (in the final form for the variation) and
the second term comes from ¢f%,.(D,c)’Act (in the initial form for the variation). The
above equality follows from the Jacobi identity (coming from the double commutator of the
generators of the Lie algebra)

faquqbc + fabqchp + facqfqpb =0 ) (1421)

by noticing that the last two terms are equal when multiplied by an antisymmetric factor
in (be) like ®c, and then by renaming the indices, using antisymmetry and multiplying by
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1/2 we get the needed equality. The solution to (14.19) is found by first putting A, =0, in
which case we can peel off the 0, in both terms in the equation, to find

1
opct = §gf“bccbccA , (14.22)

and then we can check that the A, terms also cancel identically.
Finally, now that we fixed the variation of ¢* such that (D,c)® is invariant, we have that
the variation of the ghost term is

5B£ghost = _(5Bba>au(DyC)a s (1423)
and it needs to cancel against the variation of the gauge fixing term (since the classical term

is invariant)

5B£gauge fix — (apAp)au(DuC)aA- (1424)

1
Q@
This is achieved if )
dpb® = ——(0"A,)A. (14.25)
o
In conclusion, the BRST transformation laws are

opA;, = (Duc)"A
opc® = %gfabccbccl\
a 1 a
opb" = —aﬁ“AﬂA. (14.26)

For more general gauge fixing terms, written as

1
£g.fi;r = +§7abFan , (1427)
where for the Lorenz gauge we have F'* = 0" A}, and v = dap/r, as we saw in lecture 11,

we can write the ghost action as

oOF®

—b,
aA;

DPe® = —b,(0pF*)/A. (14.28)

Here /A means we take away A from the right (remember that A is anticommuting, so taking
it away from the left or the right differs by a minus sign). Then the invariance of dgF*/A
fixes the same dgc® as before, and in turn that implies

6pby = =Y FPA | (14.29)
since

1
5B(+§7abeFa) — (08ba)0pF* /A = Y FP0p F* = (=Y F*A)0pF* /A = 0. (14.30)
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Nilpotency of ()5 and the auxiliary field formulation.
We can define a BRST charge Qp that acts by e?8%, e.g. dpAf = (QBAf)A, etc. Then
() can be made nilpotent, i.e.
Q% =0. (14.31)
Proof.
We saw that dpAf, = (D,c)A, and dp(D,c)* = 0, so 63 A% = 0.
We also saw that dc* = % gf%.c’cA, and on the other hand

05 ([ ) = 2f%e0¢" = gf " f ael’c’ct (14.32)
but this is zero by the Jacobi identity, since c’c?c? is totally antisymmetric in (bde), and
T e/ e = 0. (14.33)
It follows that
5 = 0. (14.34)

On the other hand, on 0%, it is not quite nilpotent, since
1 1
SRb" = ——8”(5BAZ)A1 = ——0"(D,c)" Aoy (14.35)
e o

However, note that 0*(D,c)® is the field equation for v%, so 630" = 0 on-shell, or Q% =0
on-shell.

This is a familiar situation for symmetries, in particular for supersymmetry. The algebra
of charges closes only on-shell, so in order to make it close off-shell we must go to a first
order formulation, through the introduction of auxiliary fields, with field equation related to
the term we want to cancel.

In our case, the problematic term arises from d5(—(0"A,,)/a), which is related to the vari-
ation of the gauge fixing term. We will fix it introducing an auxiliary field called Nakanishi-
Lautrup field d,.

Then we write the gauge fixing term in first order formulation, as

o a
£g.ﬁx = _E(da)2 - da(apAp)- (1436)

The equation of motion for the auxiliary field d, gives

1 a
dy = ——(0°43) (14.37)

which is what we have in the variation dg of b*. By replacing it in the gauge fixing term, we
get back to the second order formulation.
Therefore we write the new variations of b, and d, as

Spbe = dul\;  Opd, = 0. (14.38)

Now we see explicitly that
6%b, = 0 = 63d, = Q% = 0. (14.39)
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Let us verify that the above variations leave the quantum action invariant. We have
55(a(da)?/2) = 0, and

da0p(0°A,) + (05b,)0"(D,c)* =0, (14.40)
so indeed the action is invariant.
And now, as promised, Q% = 0 off-shell. Since dp acts by QpA, and Ny[A] = —1, it

follows that N,,[Qp] = +1. A more important observation is that the rules are now purely
kinematical,
a a a 1 a b
opA, = (Duc)"A; dpc” = §gf peC C
(SBba = daA; 5Bda =0. (1441)

Indeed, we see that they are completely independent of the gauge fixing term, in particular
are independent of «, so they apply to any quantum gauge theory.
The gauge fixing term can be rewritten as

1 1
— 57 dady — doF* = 7" dudiby /A — (05ba) [AF" (14.42)

and we already saw that the ghost term is
—ba0pF* /A (14.43)

so all in all the quantum action can be written as

ab
‘C’qu = Eclass — 53 (ba <Fa + %db)> /A (1444)

This form is valid more generally, and it trivializes the BRST invariance of the quantum
action, 0Ly, = 0, since it is now simply a result of the gauge invariance of the classical
action, plus the nilpotency of Qp, Q% = 0, which is as we saw true for the kinematical
(model-independent) transformations (14.41).

The quantity

ab
W= b, (F n %c&) : (14.45)

is called the gauge fizing fermion, and it can be made even more general. In terms of it, the
action is

‘Cqu = ‘Cclass + {Q37 ¢} (1446)

Important concepts to remember

e Only nonabelian gauge fields have a negative contribution to [3;, fermions and scalars
have a positive contribution, and abelian gauge fields zero.

o SU(N,) gauge theory with Ny < 11N, /2 flavors is asymptotically free and IR enslaved.
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In particular, QCD is asymptotically free and IR enslaved, reason for confinement at
large distances.

BRST symmetry is a global remnant of gauge invariance (residual gauge symmetry)
in a gauge fixed theory.

It has an anticommuting parameter of mass dimension —1 and ghost number —1, and

is defined by 0pAf, = (D,c)*A.

The BRST charge @, of ghost number +1, is nilpotent on-shell, Q% = 0, and if we
introduce the Nakanishi-Lautrup auxiliary field d,, it is nilpotent off-shell.

With d,, the transformation rules are purely kinematical, i.e. independent on the gauge
or model, and the Lagrangean is written as the classical piece, plus the variation of
a gauge fixing fermion, L., = Laass + {@p, ¥}, which trivializes its invariance, since

Qp = 0.

Further reading: See chapter 7.6 in [5] and chapter 16.6,16.7 in [3].
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Exercises, Lecture 14

1) Calculate explicitly the beta function for an SO(N,.) gauge theory with N; fundamental
flavours.

2) Anti-BRST invariance. Is obtained by interchanging b and ¢ in the transformations
rules, i.e.

1
5L = (DG gt = Sof*s b (14.47)
together with
0pc = —d"C+ gf % b 6pd® = —gf*, b"dC. (14.48)
Verify the nilpotency of d5 and independence of dp, 03, i.e.
5B(A1)5B(A2) = 55((1)53@2) =0= [63(‘/\)7 5}3(0] =0. (14'49)

[Note: A BRST-invariant and anti-BRST-invariant model is the Curci-Ferrari model,
which in Minkowski space is

£ = Lotmm o (0,402 20, (0D, D) + L2 (o, b4 & (a4 L Ly o, iy
= class_%( i N) +§ a( u_'_ o )C +?(f be C) +§( +a i u_ﬁgf be C) :

(14.50)
]
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15 Lecture 15. Lee-Zinn-Justin identities and the struc-
ture of divergences (formal renormalization of gauge
theories)

In this lecture we will put the BRST formalism to good use, and derive from it the general
structure of divergences, thus prooving the renormalizability of gauge theories at one-loop.
The proof can be extended to all loops.

We start from the observation that the quantum action is invariant under BRST transfor-
mations. The integration measure is invariant as well. This statement needs to be tempered
a bit. We will discuss anomalies later on in the course, but anomalies can arise from non-
invariance of the integration measure. The potential anomaly coming from the Jacobian of
gauge transformations is () p—exact, i.e.,

Anomaly = dgAS. (15.1)

That means that any actual anomaly can be removed by a local finite counterterm AS (the
coefficient would depend on the regulator). We will not prove it here, and instead we will
simply assume the invariance of the measure.

But the source terms are not invariant under BRST. The sources themselves are invariant,
meaning that the source terms transform as

5p(J - A+ Bac® + by -4 = (J- QA+ Ba - Quc® + (Qpba) - 7)A. (15.2)

Then we proceed like in the proof of Ward identities, to which these are related in spirit (they
both come from invariance under a -global- symmetry). We make a change of variables in
the path integral from the original ones to the BRST-transformed ones. The change leaves
the partition function invariant. Since S;; and the measure are also invariant, we obtain

0= [ DA [ Db [ Def [ de(7 - QuA+ 5.+ Qa4 Qaby 7)o S dl A,

(15.3)
One could continue like this, but Lee and Zinn-Justin introduced a useful trick, to in-
troduce new sources for QgA and ()gc, which are nonlinear in the fields. Note that Qgb is

linear in the fields, = —1/a(0"A,), so it does not need an extra source. These sources are
useful since we have things like
(05AL) [N = (gf s Aet) # 9f el AN (15.4)

but we would like to write equations involving products of VEVs arising from single BRST
transformations, as we shall see.
Therefore we add to the exponent

— Sextragource = / d'z[KL(QpA), — L“(Qpe)*] = / diz [Kg(Duc)“ — L“g fhectct| . (15.5)
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This term is still invariant, since the new sources are invariant, QpK;; = QpL® = 0, and the
rest is Qp(...), and Q% = 0. These K and L* are extended to objects called ”antifields” in
the formalism with the same name. Here K7} is anticommuting, whereas L* is commuting
(and by, ¢*, B, , are anticommuting).

Then (15.3) can be rewritten as usual, with derivatives acting on the partition function
Z=eW as

) ) 1 )
— dd a —_ - - . a _W[J76777K7L] 1 .
0 / 5‘7{‘]# K¢ bosra = 30 (M;;) 7]6 ’ (15.6)
l.e. as 5 5 . 5
_ d a o v R B
O_/dx{Ju 70 ~ i aau(wﬁ) V]W[J,B,%K,L]- (15.7)

This is the equivalent of a Ward identitiy, or a Dyson-Schwinger identity, since it is an
identity on n-point functions derived from the invariance of the path integral.

Like in the Ward or Dyson-Schwinger case, we can make a Legendre transform to the
1PI case,

F[AZ’C’,bZ’,c“’Cl,Kz,L“] = WI[JL, Ban®, Ky, L] + / ddx(ijAZ’d + B 4+ by"). (15.8)

From this Legendre transform we obtain

or or or
—_— Ja' —_— = CL; _— a
R R
oI w6 oW oW
= ; = ; = —A% 15.
OK: 0K oLe  dL* 6, H (15.9)
Substituting these relations in (15.7) we obtain
or or or oI o' 1
d ——(0,AY 15.1
/ x[5A26K3+5Ca,cl5La+5bgla(aﬂ ,LL) ( ) 0)

Another relation is obtained in a similar manner with the first, from the fact that the
measure is invariant under a shift in the b, field, b, — b, + 0b,. Changing integration
variables, using the invariance of the measure and the fact that

5(£eff + 'Csource + 'Cextra,source) = _5ba [aM(DMC)a + ’Ya] = _5ba [au(QBAu)a + /Ya] 3 (1511)

we get
0= /DAMDbaDc“/ddxéba(x)[(‘?“(QBAu)a + ,Ya]e—SEff[A,b,c]-l—fddm(J.A—}—,B.c-i—b.w (15‘12)

which is true for any db,(z), so we can write a local relation, and writing QpAj as §/0K};
and extracting it outside the path integral, we obtain

J
0= (aum + ’}/a) €_W[J’B’%K’L} ) (1513)
i
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giving finally
o

WIJ, 8,~, K, L] =~ (15.14)

Writing this relation in terms of the effective action I' as we did above for the first relation

(15.10), we obtain
or T

MoK Sb
From the relations (15.10) and (15.15) we will derive the Slavnov-Taylor identities.

But before, we can simplify them a bit by removing from the effective action the classical
gauge fixing term, by defining

-0 (15.15)

- 1
FlA b e, K, L] = TA b e K, L]~ o / 0 (0 A2, (15.16)
a
Indeed, note that [ Dfieldse™(5T2@* 4% = 7 — ¢ and T = W + (...), so T'© contains
1/2a(9"A2)2.
Then (15.15) is rewrittten in the same way with I instead of T, and (15.10) is rewritten,
using also (15.15) without the last term. Together, the relations are now

6T oT 6T or
d? =0 15.17
/ |54z 5Kz " Seael 5Le (15.17)
o oo
[ 15.1
"OKa  ob 0 (15.18)
These are called the Lee-Zinn-Justin identities.
® K /&\L
i
| K A W
/i\ F / \
I " . ANNNN
I ’r —>— = + / \\
I
. 7 by A n
: ' ) ‘

Figure 46: BRST divergences: a) For K{d,c*. b) For gf*, KiAlc. ¢) For gf*, L*cc".

Structure of divergences

We now use these relations to prove the renormalizability of gauge theories at one-loop
(and the proof can be extended by induction to all orders). We will also derive the Slavnov-
Taylor identities from the Lee-Zinn-Justin identities.
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The new source terms
K(QpA) = L(Qpe) = K0, + gf s Alc) + L5 [y (15.19)

induce 3 new divergences in the quantum effective action, as seen in Fig.46. The sources K
and L, are represented by crossed circles with K or L on them.

Then the one-loop divergent graph correcting the K0,c* term comes is a KﬁAZCC vertex
with the gluon line ending again on the gluon line. This graph is divergent, since it is the same
Feynman integral (with different multiplying factors) as the ghost propagator correction at
one-loop (replace the K vertex with just ghost line continuing on).

The one-loop divergent graph correcting the g fachZAZCC vertex comes from the vertex
itself, with a ghost line exchanged between the ghost and gluon lines, and interchanging
them (turning gluon into ghost and vive versa). The graph is divergent, since it is the
same Feynman integral (with different multiplying factors) as a ghost-ghost-gluon vertex
correction at one loop (replace the K vertex with a ghost line continuing on).

The one-loop divergent graph correcting the gf¢, .L%c’c® vertex comes from the vertex
itself, with a gluon line interchanged between the two ghost lines. It is divergent, since it
is the same Feynman integral as the one diagram replacing the L vertex with a gluon line
continuing on, which is just the same graph as above, rotated at 90 degrees.

Therefore at one-loop, we can isolate the divergent part that depends on K} and L* as
having these 3 possible divergent structures, obtaining

P AL b ¢ KL = Tan[A b ) — (25— 1) / Ko

~ d a pb ¢ d 9ra boe
—(Zy — 1)/d g fare K A, + (X — 1)/d xL, <—§f beC c) :
(15.20)

where we have written 3 renormalization factors, Zs, Z; and X. The first two, we have
anticipated a bit that they will be the same as the previously defined Zs and Z;, which we
will prove shortly. Otherwise, we could have called them Ys,Y; and show that they equal
Zs, Zy.

We can now use (15.17) and (15.18) to determine I'g;,, by expanding in loop order,

[ =TO4prl) 4 om), (15.21)
and using
N 1
o — /ddx ll_l(Fsl’)z —0,0"D,c" — KiQpA}, + LaQpc”| . (15.22)

Replacing this in (15.18) and concentrating on the divergent part (to one-loop), we obtain
oT oT . .
5 a“dKa —(Z3 — 1)0"0uc" — (Zy — 1)g f*,, 0" (ALce) (15.23)
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where in the second equality we have substituted the form of fdw, whose K, dependence
was fixed. We can now integrate this relation with respect to b, and obtain

Lain[A,b, ) = Daw[A] / A0 |(Zy = 1000 + (Z1 = Dbag f*4.0" (Ah)] . (15.24)

Thus we see that indeed Z3 and Z; are the objects we have defined before, the renormaliation
of the ghost propagator and ghost-ghost-gluon vertex, respectively.

We note that we have, in two short steps, fixed the dependence of the divergent piece on
all fields except A7.

To fix that as well, we look at the simple pole (single divergence) of (15.17). Indeed, there
we have also a double divergence, coming from the term where both I' factors are divergent,
but we want to focus instead on the terms where one I is divergent and one is finite, so we
have at one-loop,

Oz/ddx

Now we must insert in this equation the expressions for fdiv and T© and identify terms.
We will organize the calculation according to the types of terms in the expanded equation.

1. Terms linear in K.

We can check that the terms coming from the second and 3rd terms in (15.25) cancel,
leaving the contributions of the first and 4th terms, giving

0T gin 6T §T(0) gL div ST §T©) 57O 6Ty,
+ + + . (15.25)
JA2 0K ' §A JK® bcv 6L | den SLe

0= / d%e((Z) — 1)K g %] Dy’ — / dlz(X — 1) [(—DMKZ) (—g fabccbcc)} . (15.26)
which after a partial integration of D, and a rearranging of the terms gives
X=17. (15.27)

2. Terms linear in A and not containing K and L, and linear in c.
We write an expansion in A of Ty, [A],

Dai[A] = TQ) [A] + T3 [A] + TG [A]. (15.28)

Then of course, the contribution to these terms from I'g,[A] is entirely from f’gi [A], to
obtain linear terms in A after derivation. The variation of 1/4(F,)* with respect to A¢
gives —DHFF¢ - as we know (from the YM equation of motion). We obtain, from the first

ws
two terms in (15.25),

d 6f$1))[A] a o rna ~ a ~ a b c
0= [ d'zq === (Duc®) + (D*E} inal(Zs = 1)0pc” + (21 = 1)gf*peArcTloa ¢

' (15.29)
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But note that by partial integration of the (23—1) term we obtain 0¥ D" F), |iin.a = 0"0” (0, Ay —
0,A,) =0, and the (Z; — 1) term has too many A,’s. Therefore we obtain

ST [A]
dlp—4=20, " =0, (15.30)
/ 0 AL
which by partial integration gives
o)
Ou——a =0, (15.31)
0AY

)

' [A] is transverse, which uniquely selects the form of the kinetic term,

which means that Fg
i.e. we must have

B = (Za - 1) [ diey 0,7 - 0,4 (15.32)

3. Terms quadratic in A and not containing K and L.
We continue with the expansion in A of the same terms as above, giving

ST®) ST®@ -
0= / d'x {— O = g AL+ (D, AL — 0,A0) (2 — D)g f ALt
B H

O AL DAL = 0,45) (Zy = 1)y | (15.33)

which can be rewritten as

/ dx

Since this relation is valid for any ¢*, we can put the [] bracket to zero and integrate it, to
give

5T
SAG

+(Zy — Zy — Z5 — 1) g f (0, AL — 0,A0) AC | 9" = 0. (15.34)

. S 1
oAl = (Zs+ 21— 25— 1) / A" forc Ay AL (04, — D,A7). (15.35)

This is again of the type of the classical 3-gluon coupling, like in the explicit one-loop
renormalization. The coefficient was usually called Z; at one-loop, so

~ ~ A
zM =z + 70—z = Zg?1 +O(h?). (15.36)
3

4. Terms cubic in A and not containing K and L.

We will not do this explicitly, but the analysis is similar, and the result is

@

div

2
~ ~ 9 ra c e
[A] = (Zs + 221 = 225 = 1) f* e faae / d'z A A AT A (15.37)
Yet again this is of the type of the classical 4-gluon coupling, like in the explicit one-loop
renormalization. The coefficient was usually called Z; at one-loop, so
1 1 1 (1 Z3
720 =z 422" — 228 = 7,21 + o). (15.38)

Z3
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Then we see that (15.36) and (15.38) are the two Slavnov-Taylor identities at one-loop,
as promised.

In conclusion, from the Lee-Zinn-Justin identities (coming from BRST invariance), we
have completely fixed the form of the divergent part of the quantum effective action, and
derived the Slavnov-Taylor identities.

The extra source terms are

K(QpA) = K}(Zs0uc" + Zy1gf*, AL
L(Qpe) = L°X <gf”bccbcc>. (15.39)

Using the renormalizations defined at one-loop,
N Z
bo,co = \/ Zsb,c; Ao = /Z3A; go= QZT}Q ; (15.40)
3

we can write

K(@QsA) = K2 Z3(0uch + g0 f " Abct) = \ 25K (Qn Ao,
LQpe) = VZL (L f ki) = v/ ZsL(Qnco) (15.41)

therefore we deduce the renormalization of the sources

Kgﬂ - Zg i YA ZgLa (1542)
In conclusion, we have the renormalization at one-loop
F(lfloop) [Aa ba ) K> L7 g, 05] = Féliloop) [A07 bOa Co, K07 LO: 4o, CY()] ) (1543)

which shows that the gauge theory is one-loop renormalizable (without calculating explicitly
anything).

This proof can be extended at any n-loops through induction, though we will not do it
here.

One can also include fermions to the analysis. The proof of the Lee-Zinn-Justin identities
in the case with fermions is left as exercise below, as is the proof of the Slavnov-Taylor
identities.

Important concepts to remember

e The quantum effective action is BRST invariant, and the measure is invariant up to a
possible anomaly that can be removed by a local finite counterterm.

e We derive the Lee-Zinn-Justin identities as quadratic identities on T, by adding source
terms for the nonlinear terms in the BRST transformations, KJ;(Q BA) and —L*(Qpc)?,
besides the usual source terms 5,c*+b,7%, and finding the equations in a similar manner
to the Dyson-Schwinger identities or Ward identities.
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e The introduction of K and L generates 3 new divergent structures, but the Lee-Zinn-
Justin identities allow to completely fix the possible structure of divergences to be
exactly the one in the bare Lagrangean, thus proving renormalizability at one-loop.

e The proof can be generalized by induction to all loop orders, as well as to include
fermions, thus a general gauge theory is renormalizable.

e The renormalization of K and L is not independent (is written in terms of the other Z
factors), and the Slavnov-Taylor identities are also obtained from the Lee-Zinn-Justin
identities.

Further reading: See chapter 7.7.1 and 7.7.2 in [5] and chapter 16.4 in [3].
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Exercises, Lecture 15

1) Introduce fermions into the gauge theory,
Suths = —(T") "0y (15.44)
and add to the action the fermi terms
Semi = [ 20D+ m)ul~Hia Qo — (Qb)Hi (15.45)
and the fermion source terms
/ddx[c_iawia + ViaCia + Hia(@QBY)ia + (QBY)iaHial. (15.46)

Find the generalized Lee-Zinn-Justin identities, first for WIJ,B,v,K,L,(, ¢, H, H) and then
for I" and I'[A, b, ¢, ¥, ¢, K, L, H, H].

2) Check that we get the correct Slavnov-Taylor identities at one-loop.
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16 Lecture 16. BRST quantization

We obtained BRST symmetry as a symmetry of gauge theories, and we saw that we could
use it to get a proper understanding of the quantum theory, since it allowed a formal proof
of renormalizability.

But more generally, we can turn it into a quantization procedure for any theory with a
local invariance (like gauge invariance) that needs gauge fixing. BRST quantization builds
upon the Dirac formalism for quantization of constrained systems, and is extended to the
Batalin-Vilkovisky (BV, or field-antifield) formalism, that will not be treated here, but only
mentioned at the end of the lecture.

So we have: Dirac quantization extends to BRST quantization, that extends to the BV
formalism.

Review of the Dirac formalism

We will take a quick review of the salient points of the Dirac formalism, since we will
build upon it to develop BRST quantization.

One starts with a system obeying a set of primary constraints

Om(q,p) =0; m=1,..., M. (16.1)

If a quantity is equal to zero only by using the constraints, we say we have a weak equality,
and write ~ 0, and we mean that we do all derivations, and only at the end of the calculation
we put ¢,, = 0.

Then for some function of phase space, g(g,p), the time evolution will be given in weak
equality by the Poisson bracket with the total Hamiltonian Hr,

Hpr = H + upnon, , (16.2)
where H = Hj is the classical Hamiltonian (without the constraints) i.e.,
g = {g, HT}P.B.- (163)

Since the time evolution must preserve the constraints, we must have gz.Sm = 0, which implies
that we need to have the weak equality

{bm, HYpp. + un{dm, ¢ntrp ~ 0. (16.4)

These will in general generate secondary constraints (we repeat the procedure of finding new
constraints, then imposing that their time evolution is zero, until we don’t get any more new
constraints) ¢r, k = M +1,...., M + K. The set of all constraints will be denoted by

¢;~0, j=1,. M+K. (16.5)

We next define a first class function of phase space R(q,p) if its Poisson bracket with all
the constraints is weakly zero, i.e.

{R, Qﬁj}p.B. ~0 (: Tjj’¢j’)- (166)
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Of course, a particular case is of first class constraints ¢,, that must therefore satisfy a kind
of algebra, {¢q, Qb]} = faj’ Oy

A function of phase space is second class if there is at least one j for which { R, ¢;} is not
weakly zero.

Since the set of ¢, is the full set of constraints obtained from time evolution, it follows
by definition that for all of them we need to have weakly zero Poisson brackets with Hr,

{¢j7HT} ~ {¢J7H} +um{¢j7¢m} ~ 0. (167>

This is now thought of as a set of equations for the coefficients u,,, solved by a particular
solution U, of the inhomogeneous equation (the equation above), plus linear solutions of the
homogenous equation with arbitrary (numerical) coefficients, i.e.

Uy = Um + Uavam ) (168)
where
Vam{(bja (bm} ~ 0. (169>
Then we can rewrite the total Hamiltonian
HT =H + Um¢m + Ua‘/am¢m P (1610)
where
¢a = Uam¢m
H = H+U,on. (16.11)

Note that by definition, since Vom{dm, @j}ps. = 0, Vom@m = ¢, are first class constraints.
Also, since Uy, is a particular solution of the inhomogenous equation, we have {¢;, H'} pp. ~
0, so H' is also first class.

But ¢, are only independent first class primary constraints, and there is nothing special
about primary constraints. So we define the extended Hamiltonian by adding also the first
class secondary constraints, so as to have all the first class constraints in it,

HE = HT + ’Ual(ba/. (1612)

Dirac brackets

To quantize, we need to define brackets that replace the Poisson brackets, to deal with
the second class constraints.

Consider y, the independent second class constraints, and define the matrix ¢,y as the
inverse of the bracket of constraints

CSS’{XS/7 XS“} = 688”- (1613)

Then the Dirac bracket is defined as
(f,9lp.8. ={f.9}pB. —{f Xs}PpB.Css{Xs5> 9} PB.. (16.14)
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Then the time evolution using the Dirac brackets is the same as the one using the Poisson
brackets,

l9, Hr|p.p. = {9, Hr}pB. ~ g , (16.15)

but now the Dirac brackets of any function of phase space with the second class constraints
is strongly (identically) zero,

Lfsxsilps. = {f, Xsv yp.B. — {f, Xs Y p.B.Css {Xs, Xo Y P.B. = 0. (16.16)

That means that we can impose the second class constraints operatorially on states in order
to quantize,

X)) =0, (16.17)

and the Dirac brackets are quantized to the commutators, instead of the Poisson brackets.
BRST quantization
We saw in the Lagrangean formalism that the BRST quantum action is writen as

Equ == Eclass + QB\II y (1618)
where U is the gauge fixing fermion. More precisely, since ()5 is an operator, we really have
Equ - 'Cclass + {QB: ‘11} . (1619)

BRST quantization is a Hamiltonian formalism, since it is based on the Dirac formalism.
As such, we must use Minkowski signature. In Minkowski signature,

U= b, <F + %da> . (16.20)

In a Hamiltonian formalism, one has states |¢), for instance intial and final states |i) and
|f), and observables are transition amplitudes (f|7). As such, they should be independent
of the choice of gauge, thus independent on the change in gauge fixing function F'*. Then,
under a small change d F'*, such that 0¥ = 0,0 F'*, the variation of the transition amplitude,
written as a path integral,

(i) = [ Dhieldse™ (16.21)

is given by
S(Fli) = / Dficldse™¥i6S — i( f1{Qp, 0T} i) | (16.22)

and it must be zero. Assuming that () is hermitean, QE = (B, putting the two terms in
the anticommutator term above to zero gives (f|Qp = 0 and Qpli) = 0, so that Qp|f) =
@pli) = 0. That means that all physical states must be BRST-invariant,

QplY) =0. (16.23)

We say that physical states are (Qp—closed. On the other hand, physical states that differ
by QQg—exact terms, i.e. terms that are (g of something else, are equivalent

[0) = 1) + Qslx) ~ [¥). (16.24)
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Note that then
Qplv') = Qplv) + QIx) =0, (16.25)

so it is also physical. The equivalence means that matrix elements are identical. Consider
the matrix element with another physical state |¢), (Qg|¢) = 0)

W) = (W) + (XIQs ) = (¢1¥). (16.26)
These matrix elements must also be preserved under time evolution, which means that
(| Hprsr|) = (Y| Hprsrl®) + (x| HarsrQpl0) + (X|[Q5, Hprsr]l) | (16.27)

and this must be equal to ()|Hggrsr|Y)). The middle term is zero since Q) = 0, which
means that we need to have (since the states |x) and [¢) are arbitrary)

(@5, Hprst] = 0. (16.28)

In order to define the BRST Hamiltonian Hpgrgr, we must consider the Hamiltonian a
la Dirac, in the presence of constraints. But moreover, we need to define Qg and Hgrsr
together, such that Q% = 0 and [Qp, Hgrsr| = 0.

The quantization is done by defining a Hilbert space of states. From the above consid-
erations, physical states are states in the ()g—cohomology, since we need to have () g—exact
states, @p|¢) = 0, modulo Q) p—exact states, i.e. |¢) ~ 1) + Qp|x).

In general, the cohomology of an operator that squares to zero is the coset defined as
closed states, modulo exact states (equivalence classes under the equivalence by exact states),

Qp — closed

— Coh 1 = 16.29
QB ohomology Op — exact ’ ( )
or that the Hilbert space is
HC ose
HprsT = ,Hl . (16.30)
exact

The notion of cohomology should be familiar (except for the mathematical language),
since the cohomology of the exterior derivative d = dx#0,, is nothing but the familiar one of
physical states in electromagnetism. We have d? = 0, and pure gauge fields (in the absence
of matter) satisfy F' = dA = 0, i.e. are d-closed, and equivalent gauge field configurations
differ by d-exact terms, since gauge invariance is A ~ A + d\. Then the cohomology of d
over 1-forms is the cohomology of gauge fields, i.e. the physical states for fields of vanishing
field strength. The cohomology of d is naturally extended for p-forms instead of 1-forms,
giving the p-th cohomology of d.

Example of BRST quantization: Electromagnetism in Lorenz gauge.

At this intermediate stage, we give a simple example for the BRST quantization formalism
described so far, for abelian gauge fields, i.e. electromagnetism. The example is kind of
trivial, but will show explicitly how some of the abstract ideas described above work.

The BRST transformations for the abelian gauge fields (so f%,. = 0) in Minkowski
signature are

1
SpA, = 0,ch; Opb=—0"A,; Spc=0. (16.31)
«
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Consider now canonical quantization of the fields A,,b, ¢, without taking into account
the gauge invariance and constraints from gauge fixing

M) = [ b e + al (e ]

(27-[-)3/2 \/2_]70

ddp 1 ip-T —ip-x
C(I) = /Wﬁ [C(ﬁ')e +CT<]5>€ }

d3p 1 ip-x T —ip-x
The BRST transformation acts by (anti)commuting with @ g, so:
1.0pA, = i[@p, Au)A is compared with dgA, = J,cA. Substituting the forms of A, (x)
and c¢(z), we find
Q5. a,u(P)] = +puc®); (@5, al ()] = —puc' (P). (16.33)

2.0pb = i{Qp,b}A is compared with 0gb = 1/a0"A,. Substituting the forms of b(z) and
A, (z), we find

Q. b} = a5 {Qu, W (D)} = el (7). (1634
3.0c = —{Qp, c}A is compared with dgc = 0 to obtain
(Qp. D)} = (@5, @)} =0, (16.35)

We now construct the Hilbert space of physical states. They must satisfy Qg|¢) = 0.
Consider the state

W) = e'al, (D)) | (16.36)
where |¢)) is a physical state, i.e. Qglt) = 0. It satisfies
Qplv) = e'al (MQplY) — puc’ (P)) = —e puc (P)[)). (16.37)

Therefore Qpl1) = 0 < e*p, = 0, so the state with one extra photon on top of \15) needs to
be transverse.
On the other hand, consider the state

Qsb (D)) = —b' (P)Qsl) — ép“al(ﬁ)h% = —ép“az(ﬁﬂ@. (16.38)
It follows that

[W(ew + Bpu)) = [(en)) + Bptal (D)) = [¥(en)) — aBQpb (D)) (16.39)

so we have equivalent states, e, ~ e, + Bp,, as it should, for massless states p*p, = 0.
On the other hand, we also learn that

Qb (1) =~ pal (1) #0, (16.40)
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so there are no states with ghosts in it, i.e. with b7(p), among the physical states, since any
such bf(p) added to a physical state turns it unphysical (Qp on it is nonzero).
Finally, we see that

—ekql
A (P) = Qs (—”@> ) (16.41)

e-p

so it is equivalent with zero (the relation above is proven by commuting () on the right
hand side with af,(p) and using Qp[y) = 0).

So there are no b ghosts in physical states, and ¢ ghosts are equivalent with zero. Therefore
the physical Hilbert space is composed only of transverse photons, as it should.

General formalism.

We now turn to the general formalism for BRST quantization.

As we mentioned, we need to define a Qp and a Hpgrsr that satisfy [Qp, Hersr] = 0
and Q% = 0 and then we construct the Hilbert space as the states of the @ g-cohomology.
Until now Q% = 0 was assumed, but it is actually needed. Indeed, we want that the gauge
choice does not change the commutation relation [Qp, Hprsr| = 0, so any d Hprgr induced
by the gauge choice should preserve it, [@p,0Hprsr] = 0. But we saw that the gauge
choice in the action, and therefore in Hggrsy, comes from the gauge fixing fermion term,
SHprst = —{Qp,bs0F4}. Then we have

0=[Q5,{Q5,ba0F*}] = [Q,bA0F"] = Q% = 0. (16.42)

Note that there is the Fradkin-Vilkovitsky theorem, that the partition function

Zy = /D(...)eisw (16.43)

is W-independent.

So we need to construct () and Hpgrgr, which will be done by satisfying the above
conditions order by order in the number of fields, but we need to start somewhere, i.e. we
must define first order Qg and Hprgr in the fields. We turn to that next.

Quantum action

We start by writing the quantum action, as

Squ = /dt |:sz1 + ).‘Mﬂ_u + ﬁapa - HBRST + {T% QB}] . (1644)
Here A\* are Lagrange multipliers, and 7, their conjugate momenta, which are also in general

first class constraints, so the total set of first class constraints is written as G* = (¢q, ),
satisfying the algebra

[Gav Gb] = fachc' (1645)
We also define the ghost phase space by
n" = (¢, —p)a); Pa= (P(C)as —ba)- (16.46)
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Then defining Poisson brackets

{c*,p(c)a} = =65;  {ba,p(b)’} = =0 (16.47)

imply that together
{n",pp} = —6. (16.48)

Observation: in 2 dimensions, p(c) = b and p(b) = ¢, so the story is simpler.
Then in general, the first terms in the expansion of @) is

a 1 (& a C
Qp = 1"Ga = 51N foc"Pal=)". (16.49)
If f,.* are constants (note that the algebra of constraints is an algebra of functions, so in
general the structure ”constants” can be fields, not actual constants), then the above implies
2 = 0 from the Jacobi identities, which is left as an exercise to prove, and the Hamiltonian
in that order is

Hprsr = Ho+ ... (16.50)
In general however, we have
Qe =" U T Dy pa, (16.51)
and
HBRST = HO + n“Vabpb + ... (1652)
Here the algebra of first class constraints
{¢a> (bb} = faﬁv(b'ﬁ {HO> Qba} = Vf¢ﬁ (1653)
is generalized (extended) to
{Go, Gy} = [°Ge; {Hp, Go} = V)G, (16.54)

The Vab define the first correction to the classical Hamiltonian Hy, and the f,;,° define the
second term in () p, since as we saw above, we have

UD = Gar U™ = =S o™ () (16.55)

Finally, note that all the general BRST formalism described until now is classical, quan-
tum mechanics did not enter anywhere until now. Quantization is done by replacing the
Dirac brackets with the commutator, and finding the physical Hilbert space as the space of
states in the ()g-cohomology, like we saw in the example of electromagnetism.

Example: Pure Yang-Mills.

We now turn to a more nontrivial example to explain the general BRST formalism
(though not the quantization, i.e. finding the () p-cohomology, which is similar to the elec-
tromagnetism case), the case of (nonabelian) Yang-Mills theory.
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The action of pure Yang-Mills in Minkowski space can be written as

1 a R 1 a 1 Aa a
S = /d% {—Z(FW)Q] = /dtdsx [—Z(Fij)u 5 (A — DAY, (16.56)

since

B! = Fg = 0gA? — 0,A8 + gf*, AL AS = A2 — D; A, (16.57)

It follows that the momentum conjugate to Ay is

(¢ =)pf = A? — D;AS = F& = E°. (16.58)
We also define as usual ]
qu = §€iijjak- (1659)

We note that there is no momentum conjugate to Ay (there is no Ap in the action), so the
primary constraint of pure YM is
py = 0. (16.60)

We can calculate the classical Hamiltonian by partially integrating a D; acting on A{ in the
action (16.56) and then writing

S = / dtd*z[A%p? — Hp) = / dtd*z[AE® — Hy + AY(D;EY)] , (16.61)
to obtain | | | .
Ho= [ |Juer 4 02| = [ |G+ Sy (16.62)

where (E{)* should be understood as (p{)* in the Hamiltonian, and (B{')* = (F},)?/2. We
can also define the naive Hamiltonian Hj as above, with

H; = Hy — / d*r AGD;EY. (16.63)

We see that the time evolution of the primary constraint p} with the naive Hamiltonian,
py~{p, H} = —D;E} =0, (16.64)
implies that the secondary constraint of the pure Yang-Mills is
D;E* = 0. (16.65)

We can check there are no other secondary constraints, since the time variation of the above
vanishes,

{D;E*, H.} = 0. (16.66)

From (16.61) we see that A% appears as a Lagrange multiplier for the secondary constraint
D,;E¢, hence the definition for Hj, differing from H.
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The algebra of constraints is found easily. We have

{P§(x), po(y)} P = 0 (16.67)
On the other hand,
{pG(x), DiE} (y)}ps. = {pf(x), Ot (x) + 9.1 aA ()P ()} p.B. = 0, (16.68)
and
{D:E (), D;EX(y)yp. = {0%(x) + gf* Al (2)pl(x), 0,05 (y) + 9.f AS(y)P) () pb.
9f " DB (2)6%(z — y). (16.69)

Therefore the constraints form a closed algebra, i.e. all constraints are first class, and the
structure constants are indeed constant, and are 0,0, gf%,. Since all constraints are first
class, the Dirac brackets are just the Poisson brackets.

Therefore the constraints and the phase space coordinates are

G* = (D:E},pg); Mo = (", =p(b)"); Pa = (P(C)a, —ba)- (16.70)

Since the structure constants are actually constant, the BRST charge and Hamiltonian are
given by (16.49) and (16.50), giving

s = [ [c%DiEf) . igcbchcbapm}

2
Honsr = Ho= [ #3002+ 5507 (16.71)
The (first class) constraints are
¢1 =py; P2 = Dipj. (16.72)
The naive Hamiltonian is
Hy = Hy — / d>x ALO;p?. (16.73)

Since all constraints are first class, Hr = Hp. Note that the constraint pg = 0 does not
appear with Lagrange multiplier since it can be absorbed in the term pfA§.
Note that in the Dirac formalism, the classical action is written as

Sy = / dtlip’ — Ho+ A6 (16.74)

where )\, are Lagrange multipliers.
Now, in the BRST formalism, the quantum action (16.44) is written as

Squ = /d4aj {EfAf +p8A8 — p(€)ac® — p(b)aba _ % {(EZa)Z + (B’El)2} + {00t (16.75)
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Here the first two terms are ¢;p’, the next two are 1%p,, there are no )\“7@ terms, and we
have substituted Hgrsr = Hg.

Note that we have described the classical part of the BRST formalism, but as we said,
the quantization procedure replaces Dirac brackets (which now equal Poisson brackets) with
commutators, and the physical Hilbert space is the space of the ()g-cohomology. The pro-
cedure is more involved, but again we find only transverse gluons.

Batalin-Vilkovitsky formalism (field-antifield).

Finally, a few words about the generalization of the BRST formalism, the Batalin-
Vilkovitsky (BV) formalism, or field-antifield formalism.

When we have derived the Lee-Zinn-Justin identities and made a formal renormalization
of gauge theories, we have introduced sources K; and L for the nonlinear terms A and
Qpc, namely Seq = [ [Kﬁ(@ BA)Z — L*(Qpc)?]. These sources are called antifields for A,
and ¢®. In the BV formalism, one would introduce antifields also for b, and d,. As we
argued there, for YM it is actually not needed to introduce such antifields, but in more
general situations it is.

Then BV is a Lagrangean formalism (where BRST was a Hamiltonian formalism), and
a Lorentz-covariant one. In it moreover, there is a simplicity that stems from the fact that
the BRST charge QQgrsr equals the antifield-extended quantum action S. Then we have

SprsTd” = (¢, SA) (16.76)
and instead of Q% = 0 and [Qp, Hprsr] = 0 we have the master equation

(5,8) =0. (16.77)

Important concepts to remember

e BRST quantization is based on the Dirac formalism, and extends to the BV formalism.

e The extended Hamiltonian adds to a first class Hamiltonian all the first class con-
straints.

e Dirac brackets are introduced so as to make trivial the second class constraints, [f, xs] =

0 strongly for any f(q, p), so that we can impose x; on states when quantizing, x,|1) =
0.

e The physical Hilbert space of BRST quantization is the ) g-cohomology, i.e. ()g-closed
states, modulo ()g-exact states.

e We need to construct the operators Qg and Hggsr order by order in the fields, such
as to have Q% = 0 and [Qp, Hprst] = 0.

e For electromagnetism, the BRST quantization selects a Hilbert space without b or ¢
ghosts, and with only transverse photons, e“aL (p), with etp, = 0.
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o In general, Qp = 1°G, — 1/200" fue"pa(=)¢ + ... and Hprsr = Ho + nVpy + ...

e In YM theory, the primary constraint is pj = 0 and the secondary constraint is D, E =
0, and both are first class. The structure constants of the algebra of constraints are
constant, and are g fq;°.

Further reading: See chapter 15.7, 15.8 in vol. II of Weinberg’s " The Quantum Theory
of Fields”. I have used however mostly various lecture notes.
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Exercises, Lecture 16

1) The bosonic string in Dirac formalism.
Consider the action

1 L
Sy = / dodt {—§gﬂ"aux-ayx : (16.78)

where g" = /—gg"” has det g"” = —1. Then g% = \° and §°' = A\! are independent La-
grange multipliers, as we can check, and g''\° — (A\!1)?2 = —1. Find the primary constraints
and write Hy. From the consistency conditions {¢,,, Hr} = 0, where ¢,, are the primary
constraints, find the secondary constraints, and the ”physical constraints” = linear combina-
tions independent of \*. Calculate the algebra of constraints and that all are first class, and
that the ”classical Hamiltonian” Hj vanishes, as in general relativity.

2) Check that Q% = 0 and [Qp, Hgrsr] = 0 to first order, for the general form of BRST
quantization objects

1 a c
QB = naGa - _ncnbfbc pa(_)

2
Hgrst = Ho+n"Vip, + ... (16.79)
where the first class algebra
{Ga: O} = fas"dri {Ho ¢} =V 05, (16.80)
is extended to
{Gaa Gb} = fachc; {H07 Ga} - Vabi' (1681)
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17 Lecture 17. QCD: definition, deep inelastic scatter-
ing

In this lecture we start the study of QCD. We have already described gauge theories, and
their perturbation theory, so there is nothing new to be said there. Instead, what is of
interest is the relation to experiments, which involve nonperturbative low energy states. So
in this lecture we will learn how to combine the perturbative scattering methods studied
previously with non-perturbative descriptions for the low energy states.

QCD

QCD refers to the theory of quarks and gluons. The YM gauge group is SU(3). and
there are 6 flavors of quarks, divided into 3 families (generations). The quark model was
introduced by Gell-Mann and Zweig. The quarks are

Sk

and the elements on the top line have electric charge Q). = +2/3, whereas the elements on
the bottom line have @, = —1/3.

We know that there are 3 generations both from particle accelerator experiments (from
the decay of the Z° for instance) and from cosmology constraints. The 3 families of quarks
go together with 3 families of leptons to make the 3 generations of fermions,

() () G- 172

where now the electric charge on the top line is —1, and on the bottom line is zero.

Low energy states are gauge-invariant, since the theory is confining at low energies. That
means that there is a linear potential between free quarks (objects with color charge), V' ~ al,
that prevents one from breaking pairs apart. Only un-charged (gauge-invariant) objects are
exempt from this potential.

The QCD states are called hadrons in general, and divide into mesons and baryons.

-Mesons are ¢q pairs, for instance the lightest objects of QCD, the pions, 7% and 7°.

-Baryons are objects with 3 quarks, qqq, for instance the proton, p = (uud) and the
neutron, n = (ddu).

In terms of color indices, the mesons are 7q¢ = qiqjéf, where i,7 =1,2,3 (1,2,..., N) so
are constructed with the group invariant ¢] that relates the fundamental N representation
and the antifundamental N representation. The baryons are eijkqiqjqk objects, constructed
with the invariant of SU(3). in the fundamental representation €.

At low energies, there is also an approximate global symmetry of the Lagrangean called

isospin, which acts on (ud) by
u u
(o (2). -

so exchanges u and d, and correspondingly p with n.
Deep inelastic scattering
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Figure 47: Deep inelastic scattering in QCD.

We begin with the most common example of scattering involving hadrons, deep inelastic
scattering, see Fig.47. It is the scattering of an electron e~ off a proton p. We can ask, is it
not simpler to start with two protons, for instance? But the proton has size and structure,
that we want in fact to model, hence scattering two hadrons will make the problem harder.
Instead we use the pointlike electron to probe the structure of the proton, by breaking it.

Therefore the scattering that we study is e”p — e~ X, where we have used p as a hadron,
and after the collision we will have in general more than one hadron, a state that we called
X.

Parton model.

For the nonperturbative proton, Bjorken and Feynman proposed the parton model,
namely that the proton is made up of constituents called partons. We also assume that
the partons cannot exchange large transverse momentum, i.e. large ¢? through strong in-
teractions (gluon exchange). This is valid only to the leading order O(a;). Note that in
the quark model, the proton is classically made up of uud quarks, but the parton model
is more than that. It says that quantum mechanically, for the strong coupling state at low
energy, the proton can be thought of as a combination of various quarks and gluons (real
and virtual), with the total (overall) quantum numbers of the (uud) combination.

Then we consider an electron e~ with momentum k emitting a photon v with momentum
¢ and resulting in a momentum &’ for the electron. Then the photon ”extracts” a parton f
with momentum p from the proton with overall momentum P and interacts with it, turning
it into a parton with momentum p’ = p + ¢. Since we work at leading order in «,, we ignore
gluon emission and exchange, so the parton will actually be a quark.

We will work in the center of mass frame and at total energies /s much greater than
the proton mass, which means that the proton is ultra-relativistic, i.e. almost lightlike.
The parton constituents of the proton are assumed to have a finite fraction of the proton
momentum, so they will also be almost lightlike, and almost collinear with the proton because
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the large pr can come only from hard gluon exchange, which as we said is suppressed by «s,
so can be ignored at leading order.
Then the momentum of the parton constituent is written as

p=£(P, (17.4)

where ¢ is called the longitudinal (momentum) fraction of the constituent.
Then the cross section for the total process is written as

[6 p—e X /ZPf Oe— qy scatt. (6) ) (175)

where the probability of finding a quark f at momentum fraction ¢ is infinitesimal, and given
by
Pr(&) = d€ f(£) , (17.6)

where f;(£) is the partion distribution function for the parton f. Here the partons (con-
stituents of the proton) are (¢, q, g). The parton distribution functions cannot be computed
in perturbation theory, and have to be determined from experiments. Since £ is a momentum
fraction, it takes values in £ € [0, 1].

Then we have

ole=(B)p(P) = e~ (k) + / dgz £ (E)ole (R)qp(€P) = e () + ¢, (). (17.7)

To describe the scattering, one of the parameters we use is the quantity Q? = —¢>. The
Mandelstam variables for the basic scattering process e”q — e~ q are written with hats. In
particular,

t=—@Q* (17.8)

and the other independent invariant is
§=(p+k)?=2p-k=26P k=¢Es, (17.9)

where we have used the fact that we are in the ultrarelativistic regime for the electron, parton
and proton, so p? = k* = P? ~ 0. Here s is the Mandelstam invariant for the total process,
e"p — e~ X. Finally, since in general s + ¢+ u =), mZ, we have now

§+t+a=0. (17.10)

Then we also have (since also (p + ¢)? ~ 0 for the final parton being ultra-relativistic)

O (p+q)=2p-q+q=2P-q—Q*, (17.11)
which means that
Q2
=T = 17.12
T (17.12)



For the basic scattering process, e"q — e~ ¢, the formula has been derived in QFTI, so
we will not repeat it here. The formula for the spin-averaged amplitude squared was (eq.

(25.29) in QFTI)
4 22 | n2
= T (R (17.13)

spins

where Q)¢ is the electric charge of parton (quark) f.
Then, since a = €*/4r and 4? = (§ + t)?, we obtain for the relativistically invariant
differential cross section for the basic process

= 5 (17.14)

doleqr — e7qs] 7 2owpins M 210°Q% (82 4 (5 4+ 1)
dt 16782 52 '

Then for the total process, replacing ¢ by —Q? and § by &s, we have

a0 :/0 £fo fo [1 + (1 - ?—j) ] 0(¢s — Q). (17.15)

Note that we have introduced a Heaviside function #(&s — Q?) since we need to have § > [{].
Normally, that would be just a constraint on external momenta, which could be put there
explicitly with a 6 or not, but now there are momentum fractions integrated over, so it needs
to be put in explicitly.

We can also consider the second derivative of o, taking into account that & = z, with

respect to this x, obtaining
2
1+ (1 — Q—) ] (17.16)
xrs

2 2
ddeQ_ (fo Qf) gi‘

Note that now, being a differential formula with respect to x, there is no need to put explicitly
the Heaviside function, though one could.
Finally then, we obtain Bjorken scaling, the scaling relation that says that

2 Q!
— dUQ? e ) <Z fr(x Qf) 270 (17.17)

is independent of )2, and only depends on z.

Qualitatively, the scaling says that the structure of the proton looks the same to an
electromagnetic probe, no matter how hard the proton is struck (how large is Q?). It is
verified experimentally very well, but it is true only to first order in .

Another useful variable that can be defined is

y=-50 = (17.18)



It can also be rewritten in terms of the Mandelstam variables of the basic scattering, since
(kp) — (K'p') means that § = (p+ k)2 =2p-kand 4= (p— k)2 = —2p- k', so

_%p-(k—K) _s+a

= 17.19
2p -k § ( )
But since |u| < §, we have
% = (l-y) =>y<L (17.20)
From y = 2P - q¢/s and x = Q*/2P - ¢ if follows that
rys = Q? (17.21)
which also implies
2 o dQ®
d¢ dQ* = dx dQ* = d—da: dy = xs dx dy. (17.22)
Y
Finally then, we have for deep inelastic scattering (DIS)
d*cle”p — e X] 5\ 2ma’s )
e OORELAE e R (1723
This means that P
9 4
17.24
- dyQ (17.24)

factorizes into two factors, one depending only on = (the Bjorken scaling factor) and one
depending only on y, [1 + (1 — y)?], which gives the Callan-Gross relation for scattering of
an e~ off a massless fermion (indeed, we saw that this factor originated in the calculation of
the spin averaged |[M|? for the e~ to scatter off a massless fermion).

One more thing to note here is that the particular form of the final hadronic states X,
that come from the remnant of the original proton and the ”jet” that will form out of the final
quark gy, are not part of the calculation. Of course, we observe only hadronic final states,
but the efect of how these final states turn into the observed hadrons, ”hadronization”, does
not influence too much the cross section, and moreover, there are nonperturbative (lattice,
etc.) methods to calculate these effects, and treat them as a ”black box”.

Deep inelastic neutrino scattering

We have analyzed in DIS the effect of electromagnetic probes for the proton, but we
can also consider weak interaction probes, meaning consider a W exchange instead of the ~
exchange, hence the probe to be considered is a neutrino. For definiteness, we consider a v,,.

The weak interaction, the remnant of the broken electroweak interaction, which will not
be described here, is to exchange the massive W vector particles. It couples to the weak
doublets (i.e. quark pairs like (ud) and lepton pairs like (ev,) and (uv,)), and it turns one
element of the doublet into the other.

Hence the basic interaction we consider is as follows. A v, comes and emits a W™, thus
turning into a p~. The W™ can now interact with a d quark parton inside the proton and
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u
Figure 48: Deep inelastic v scattering.

turn it into a u. But remembering that the partons are not only the classical quarks, the
W+ can also interact with a @ and turn it into a d.

The weak interaction through W exchange can be considered at low energies E < myy
as a 4-fermi interaction. Fermi had introduced the 4-fermi interaction as an effective model
with a vertex Gp/v/2 coupling 4 fermions (2 ¢ lines), but it was later realized that this
effective vertex comes from the approximation of the real quantum process, the exchange of
the massive vector boson W. Indeed then, in the actual diagram in Fig.48, we would have
a massive vector propagator with momentum ¢ coupling to two fermion lines,

Iz 5“” Vo~ 9_2 H
g(..) q2+m%g(...) ~ mgv<"') (s (17.25)

where ¢ is the coupling of the W with the fermions, and the approximation is for ¢* < mj;,
since ¢*> = (k — k')? and |k|, |k’'| < myy. That means that we can consider an effective Fermi
coupling of

G—\/g = 85,;- (17.26)
Then, similarly with the DIS case before, we find
df§y<yp — e X)= #[l’fd(ﬂf) +a fala)(1 - y)?]. (17.27)
The proof is left as an exercise. We also find
dfgy(pp > ptX) = %[Ifu(f)(l —y)* +afa(@)]. (17.28)

Normalization of the parton distribution functions
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As we mentioned, classically, the proton is made up of (uud) quarks, but quantum me-
chanically, we expect a strongly coupled mix of states, so we will create many ¢q pairs, as
well as gluons, inside this proton. But the overall quantum numbers of the state still have to
be the numbers of the (uud) state, so it means in particular that we need to have 2 more u
quarks than @ quarks, and 1 more d quark than d quark. This translates into the conditions

/0 dxlfu(z) — fala)] = 2
/O delfula) — fa(x)] = 1. (17.29)

Of course, there can be also trace parts of other quarks, but are negligible. The next
important one is the s quark, so we need the same number of s and § quarks, so

/0 dELfu(x) — fu(@)] =0, (17.30)

etc.
A similar story holds for the other hadrons. For instance, for the neutron, we just
exchange u and d from the proton, so

F() = fale)y £7() = fule); £ (@) = falo) (17.31)
etc. As another example, for the antiproton, we just interchange the quarks with antiquarks,
SO

JP (@) = fal@), (@) = fula) ., (17.32)
ete.
Finally, the last normalization constraint comes from the fact that the total momentum
of the proton is P, so the total fraction of all the constituent partons is 1, i.e.

/0 dr 2l fu() + fale) + fule) + fa() + f(2)] = 1. (17.33)

Note that we could have introduced also fs(z), fs(z), etc., but as we said, these are negligible.

The parton distribution functions are determined experimentally, and must obey the
above normalization conditions. Among the many QCD experiments, one uses some to fix
the distribution functions, and then uses them to predict the other cross sections.

Hard scattering processes in hadron collisions.

Finally, a few words about hard scattering, for completeness. We can now treat the next
complicated case, the case of hadron-hadron scattering, as suggested at the beginning of the
lecture. The basic process in leading order will be some ¢rGy — Y process, for instance
occurring electromagnetically, through an intermediate virtual photon. A parton ¢; from
one proton will break off and interact with the parton gy from the second proton. All in all,
we have the total process

o(p(P1) +p(P) =Y + X) :/ dxl/ d$2fo(ffl)ff(%)g(q)‘@lpﬂ +qr(vaP2) = Y),
0 0 F

(17.34)
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where we have as usual that the remnants of the proton will hadronize to some state X.

Important concepts to remember

QCD is YM with the color group SU(3). and 6 flavours, organized in 3 families.

Physical low energy states are gauge invariant due to confinement. Mesons are 7'
and baryons are €7%¢,q;qj.

In the parton model, the proton is composed at the quantum level of partons, (g, q, g).

Deep inelastic scattering (DIS) is an electron scattering off a hadron, usually a proton,
breaking out a parton from it, and interacting with it.

The cross sections for the total process are integrals of the cross sections for the basic
process involving the parton, with the distributions functions for momentum fraction
¢ of the parton inside the proton, p = {P.

Bjorken scaling gives the independence of some quantity on 2, and only dependence
on xr = Q?/2P - q, saying that the structure of the proton looks the same to an
electromagnetic probe, no matter how hard the proton is struck (how high is Q?).

Deep inelastic neutrino scattering occurs through W+ exchange, which reduces to 4-
fermi interaction at low energies, and turns a d into an wu.

Parton distribution function must obey the normalization conditions, and are deter-
mined experimentally.

Hard scattering processes (collisions of two hadrons) involve two parton distribution
functions, one for each hadron.

Further reading: See chapter 17.1, 17.3 in [3].
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Exercises, Lecture 17

1) Fill in the details of the calculation of d?c/dx dy(vp — = X).

2) Consider the e"p — e~ X scattering, and assume that

fulz) = gfd(l’) = folz) = a(lxji) (17.35)
and -
fa(z) = fa(z) = Ba(m+6) (17.36)

where a and € are constants and € < 1, and all possible Q? are given by their standard values
(Qf(u) =2/3, etc.). From Bjorken scaling, calculate the cross section o(e p — e~ X).
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18 Lecture 18. Parton evolution and Altarelli-Parisi
equation.

Last lecture we saw that we can describe the deep inelastic scattering, the collision of an elec-
tron off a hadron, via parton distribution functions f;(z), that were found to be independent
of %, and give Bjorken scaling. But we mentioned that this was true only to leading order
in a,. In this lecture we will consider processes subleading in o, that will lead to violations
of Bjorken scaling, through * dependence of the parton distribution functions.

The dependence on Q?, and the subsequent evolution of f¢(x), will be due to processes
with emission of collinear quarks and gluons, also responsible for IR divergences. Therefore
the parton evolution will be linked with the regularization of IR divergences, that will be
the addressed after next lecture. Here however the approach will be a more practical one,
so we will not deal with the formal issue of IR divergences.

We will not start with QCD, but rather with the simpler case of QED, and then see that
we can import almost all the calculation to the QCD case with minimal effort.

>
p
k

Figure 49: Emission of a photon off an electron line.

QED process

The process that most interests us is the one of photon emission from a fermion (electron)
line, as in Fig.49. The initial electron has momentum p, the final one momentum % and the
emitted photon momentum ¢. We call the momentum (energy) fraction carried by the photon
z, i.e.

E’Y
. 18.1
Ee,in ( )

The initial electron is ultra-relativistic, i.e. almost massless, and we choose it to be in the 3
direction, so

z

p=(p,0,0p). (18.2)
The kinematics of 3-point scattering mean that one of the momenta of emitted particles has

to be off-shell in the presence of transverse momentum p , which is small (almost collinear
emission) p; < p. If the photon is massless, ¢*> = 0, to leading order in p, /p we have

o (op 5 Pl
Q= \FPPnap = o) (18.3)
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and then the final electron, which is also ultrarelativistic, must be however off-shell (virtual),
since momentum conservation implies

k ~ ((1—z)p, —ﬁL,(l—z)p—i—%) : (18.4)

Then we have )
;2 ~ % £0. (18.5)

One can also consider an on-shell final electron and a virtual photon, with

2
= Yan
ko~ ((1=2)p,—pL,(1—2)p— —LL
(( Z)p, pJ_7( Z)p 2(1—2)]))
0~ (piropr L (18.6)
e 200l—2)p) "’
which leads to k2 ~ 0 and )
2 P
~ . 18.

e (18.7)

We will not do the calculation here, but it is easy to calculate the amplitude, and find
|M|? averaged over initial polarizations and summed over final polarizations. One obtains

= 2 [12027)

pol.

¥X

Figure 50: Equivalent photon approximation.

Equivalent photon approximation.

Now we can turn to the calculation we are interested in. We want to study QED correc-
tions to the process of deep inelastic scattering (DIS) of an electron scattering of a hadron X
to give another electron and hadron(s) Y, through interaction with an intermediate (virtual)
photon v, as in Fig.50. We can divide the process into the emission of a photon from the
electron, e~ — e~ 7, followed by the scattering vX — Y. For the total amplitude we find

6] 5 v v
Mt = M“q—’; o (18.9)
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and doing the sum over the photon polarizations we find

1
3 2 M = 5 3T M s Mo (18.10)

pol pol

The formula for the cross section A+ B — > f is

1
_ T | Mot |2 18.11
o= | [Tamiser, (15.11)

where dIly is the phase space for the final state product f. In our case, B = X is the
(possibly nonrelativistic) hadron with velocity vx and energy Fx and A = e~, with E4 =p
and v4 = 1 in the opposite direction to X, so

B 1 / &3 / .
T (1+ux)2p2Ey J (27m)32k0 Y

Given that the energy of the photon is zp, we can form the cross section for yX — Y. Also
using that £° = (1 — 2)p, (¢*)? = p' /(1 — 2)? and >k = dk°d*p) = pdzmdp? , we find

"o /%[ Z' ] ‘i)2<1+UX>22zp2EX/dny'M”’HY'Q
_ / /dpL l” (1-2)7 ]U(WX%Y). (18.13)

z

1 1
52 |M|2] W|M7X—>Y|2~ (18.12)

pol

It remains to consider the region of integration of p? . p? cannot be smaller than m?, which
cuts off the potential IR divergence, and cannot be larger than the total energy squared, s,
so we have fnig dp? . Finally, we obtain

T m2

s [1+(1—z)2

1

oleX —eY) :/ dz2—log— ] o(yX —=Y). (18.14)
0

This is the Weizsacker- Williams equivalent photon approximation. We see that the formula

is of the same type as in the parton model case, with the cross section for scattering of ~

integrated with a probability to find a ~ inside the electron, or photon distribution function

s [14(1—2)?
= —1 - 18.1
() = getog 5 [ (1815
and the total cross section
1
ol X - Y) = / dzf (2)o(7X = V). (18.16)
0

Electron distribution
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eX

Figure 51: Electron distribution process.

We can now consider the case of photon emission, i.e. e~ X — ~Y scattering, proceeding
through an intermediate e, so the v is emitted from the e, and then we scatter e” X — Y.
In the same was as before, we now obtain

%Z|M‘cot|2 Z|M|2

pol pol

e x-vl? (18.17)

so the total cross section is
1 d3q 1 1
X Y) = Al | = 20— M, 2
dzdp? )
- [

- / /m ‘2% = { <1Z )2} ole”X 5 Y), (18.18)

where we have used that ¢° = zp, d®q = pdzmdp? and (k?)? = p? /22. Again we can interpret
q p, a'q i 1

this as in the parton model, through an electron distribution function fe(l)(x) at momentum
fraction x = 1 — z, with

Z—4 (1-2)a(e X =Y)
J_

D) = Lo 5 [LH2°
fel(w) = 5 log — { | (18.19)
and .
ole” X —7Y) :/ defM(z)o(e” X = Y). (18.20)
0

However, this is interpreted as a probability to find an electron with momentum fraction x
inside the electron, so we need to consider also the zeroth order process, where we already
have the original electron, i.e. we need to include

fOz) =6(1 —2). (18.21)

This is however still not enough, since creating an electron with momentum fraction x means
we need to subtract one from momentum fraction x = 1 (the initial electron), so we need to
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subtract a term proportional to (1 — x), giving the normalization of fe(l)(x) But for that,
we need to replace 1/(1 — x), which is divergent under the integral, with a well-behaved
distribution 1/(1 — z),, defined by

CH@) ) f) -1
/de(l )+_/0 d | (18.22)

—x l1—=z

Then the term we have in fe(l)(ac) means we must consider

1 1+.T2 11.2_1 1 3
das—:/ :—/ de(1+2) = —=, 18.23
/0 (I—x)y 0o 1—w 0 ( ) 2 ( )

and subtract this normalization, multiplied by 6(1 — x), to obtain finally

fle) =61~ ) + Solog 5 [1+x 3

Aot Sa(1 - g;)] . (18.24)

Figure 52: Multiple splittings from the electron line.

Multiple splittings

We now need to generalize the relations (18.15) and (18.24) for f,(z) and f.(x) to the
case of multiple splittings in Fig.52. Consider that we have 2 photons being emitted out of
the electron line, with po; < p1, so the contribution is of order

pu d 2
/ Pal (O‘) log? —. (18.25)
27r m2 pM pu 27 m

Note that the integral is of the type

1 b
/—logz logblog——/ —logas—log ——/ — log — :>/ —logz——lg —
a 2 a

(18.26)
We can generalize this to the case of multiple splittings, with p;; > po1 > ... > p,., which
gives in a similar way a contribution of

1 ra\" S
— (=) log™ = 18.27
n! (277) 8 m2 ( )
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That means we can consider the splittings as independent from each other, so we can
consider a continuous process of splittings. We define distribution functions f,(z, Q) and
fe(z,Q) for p; < Q. Then we consider increasing @) to ¢ + A, which means that now the
electrons can emit photons v with Q < p; < @ + AQ. The probability of a constituent e~
to emit vs with a momentum fraction z is then obtained by differentiating (18.15). We get

apP adpll+(1—z)
dz 27 p% z

(18.28)

But the constituent electron (parton) has a distribution function f.(z,p,), so all in all we
get

L@ +8Q) = £(5.Q +/1dw’/1dz [EAQZH(“”T (e, )b — =)

2 (QQ? z
Q)+ AQ/ dz {O‘#1 fe( ,pL> , (18.29)

where in the first line we considered the fact that the momentum fraction = of the photon
is the fraction z of the splitting times the original momentum fraction z’ of the constituent
electron, and in the second line we did the 2’ integral using 0(z — z2’) = 1/20(2’ —x/z). We
also used the fact that 1 > 2’ =2/2z,s0 1 > 2 > x.

We can then go to the continuum, and write the relation (for AQ infinitesimal),

d _ [tdz[al4(1—2)? T
mfﬂ%@) —/z = [;f] e (;Q) . (18.30)

We can use the same logic for f.(x) and, calculating the probability to have electrons of
momentum fraction x appear as a result of v emission, it should come from (18.24) (minus
the trivial delta function), times the electron distribution function itself, so

dlog Qfe( Q>—/z iz[ (&j—; 25(1—»2))]#(;@). (18.31)

Boundary conditions

We have obtained a set of differential equations. To find a solution from them, we must
give a boundary condition. The natural boundary condition is that there is only one electron,
and nothing else, so f. = 6(1 — x) and f, = 0. Since the distribution functions f, and f. in
(18.15) and (18.24) have log s/m?, it means that we should define this boundary condition
at Q? = m?, so

£, Qg = 6L —2); (@, Q)lgrm = 0. (18.32)

With this boundary conditions and the differential equations that we found, we obtain
fe(z,Q) and f,(z,Q), and then the cross section for multiple splittings (viewed as a contin-
uous process; note then that this does not include all possible terms, merely resums a set of
diagrams) is

ole X e +ny+Y) = /0 def,(z,Q)o(vX = Y)
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ogle X »ny+Y) = /1 drfe(z,Q)o(e” X = Y). (18.33)

et %

AVAVA
k X
WW?

Figure 53: Photon splitting into pairs before interaction.

Photon splitting into pairs

There is one more process that we need to consider, which is a crossed diagram for the
one for « emission from an electron line, namely ete™ pair creation from the photon. For
our DIS process, the relevant diagram is where the incoming electron emits a photon, but
the photon turns into a e*e™ pair, with et emitted, and e~ interacting with X as before, as
in Fig.53.

One can easily calculate the v — e*e™ process, since it is the crossed diagram to e~ —
e~ + 7, and find
L Z IM|P(y — e ef) = ﬂ[zz + (1 — 2)3 (18.34)
2 7 LR 2(1 = 2) ' '

Then in a completely similar way to the previous cases, we can consider the continuous
process where the virtual photon line emits a et and turns into an e~, (that emits a v and
gets out, and the  continues on towards X and emits a pair...), etc. We easily see that the
result will be a variation in the distribution function for e~, and will be proportional to the
new [2? 4+ (1 — 2)?] bracket above and the distribution function for the v, so

pol

d
dlog Q

Je(z,Q)

™

_ /: % SE+ -] 1 (50). (18.35)

pair cr.

But as a result, the f, will also be changed, since this subtracts a photon from momentum
fraction x = 1, so as before, we must normalize, amounting to subtracting fol dz(z? + (1 —
2)?) = 2/3 times §(1 — 2) in df,/dlog Q.

Evolution equations for QED.

Finally therefore, we obtain the evolution equations for QED, i.e. the equations giving
the variation of the parton distribution functions for the electron with the scale Q, found
by Gribov and Lipatov. Since we have a distribution function for the electron, we must also
have (due to the process of pair creation) a distribution function for the positron, which
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will be given by the same formula as for the electron. Indeed, the positron can turn into a
positron by emitting a v just like the electron, and a positron can be created from a v just
like an electron (the process is eTe™ pair creation). We must also add a term to create a =y
out of an e™, equal to the one creating a v out of an e~. We obtain

a [tdz

Toggh @@ = 2 [ S{Pe (50 + £ (0]« o (20}
Tt = & [ E{raorn (5.Q) + P (£Q))

dlog @ T X z
dloCngfe($’Q) = %/ %{P%e('z)fe <§’Q>+Pe<—v(z)fv (EQ)} , (18.36)

where the splitting functions P,_;(z) (considered as probabilities for turning parton j into
parton i and calculated above) are

Pe<—e(z) = (111_—5)+—|—;(5(1—2)

P (z) = #

Pay(s) = 24 (1-27

P(z) = —§5<1—z), (18.37)

and the boundary conditions for integration of the differential equations are

fe(xv Q)|Q2:m2 = 5(1 - l’); fé(xv Q)|Q2:m2 = 0; fv($7 Q)|Q2:m2 =0. (1838)

The parton distribution functions also obey the same kind of normalization conditions
as in the hadron (QCD) case, namely we need to have one more electron than positron, so

Adﬂﬁa@—ﬁu@ﬂzu (18.39)

and the total momentum fraction of all the partons (e, e, ~) is 1, so

/01 dr x[fo(z,Q) + fo(z,Q) + f(z,Q)] = 1. (18.40)

It is left as an exercise to check that these normalization conditions are respected by the
evolution in the Gribov-Lipatov equations.

Altarelli-Parisi equations.

We finally return to the case of QCD. Just like in the case of QED, the evolution was
due to the emission of collinear (p, /p < 1) photons and electrons, in the case of QCD, the
evolution of the parton distribution functions is due to the emission of collinear gluons and
quarks.
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It will give a violation of Bjorken scaling, since now the DIS process will give

d? 2ma?

dx Zy(ep —eX)= (; fi(, QW?) or Lt v’ (18.41)

and now the scaling is only approximate, since fy(z, () now depends on @) as well, not only

(a) (b) (c

Figure 54: Diagrams relevant for the Altarelli-Parisi equation.

)

As in the case of QED, in QCD we have the two basic diagrams, for a gluon to be emitted
from a quark line (a), and the crossed one, for a quark antiquark pair to be emitted from a
gluon (b), as in Fig.54a and b. However, in the (nonabelian) QCD case, we also have the
third diagram, for a gluon to split into two gluons (c), as in Fig.54c.

The calculations resulting from the diagrams (a) and (b) can be imported from QED to
QCD with minimal modifications. The only difference is that we sum over final polarizations
and average over initial polarizations, so now we must also sum over final colors, and average
over initial colors.

The sum over initial and final colors can be easily seen to give a factor of Tr[t¢?]. In
diagram (a), the initial state is a quark, with 3 colors, so the averaging also gives a factor of
1/3, for a total ' )

1 aa 1 a

3 Tr[t*t?] = 32(5a =3 (18.42)
since in SU(3) there are 8 gluons (N? — 1 = 8 generators). In diagram (b), the initial state
is a gluon, with 8 states, to the averaging also gives a factor of 1/8, for a total

1 P I |

3 Tr[t*t?] = 556“ =3 (18.43)

Diagram (c) needs to be done, since it doesn’t appear in QED, but we will not do it here,
and we will just quote the final result, for the gluon to gluon splitting function.

The resulting evolution equations, the Altarelli-Parisi evolution equations, are the same
as the Gribov-Lipatov evolution equations, just replacing the electron e with quark f, e with

186



f and ~ with g, and o with a,(Q?) (which now also runs with the scale Q?), so

dlodefg(:v,Q) - as(;y) /ml % {Pgeq(z)zf: [ff (g,@ + f7 GQH + P, y(2)/, (;@}
g = =0 [ ron (2.0) + Resis (5.0))
ledeff(a:,Q) _ as(f )/x %{pqeq(z)ff (§Q> P (2)f, <§Q)} (18.44)

The only changes are in the splitting functions. The quark to quark and quark to gluon
splitting functions come from diagram (a), so get an extra factor of 4/3, the gluon to quark
splitting function comes from diagram (b), so get an extra factor of 1/2, and the gluon to
gluon splitting function is new, as it comes from diagram (c). We then obtain

Pdd) = 3o+ 300-2)
41+ (1—z)?
() = ST
vg(2) = % [22 +(1- 2)2]
P, ,(z) = 6 {1 ; y i _22)+ +2z(1—2)+ (% - ]1\f_§> o(1 — z)} . (18.45)

Important concepts to remember

At next to leading order in «y, Bjorken scaling is violated, by Q? dependence of the
parton distribution functions, now f(z, Q).

One can describe the situation first in QED, where the DIS, with a photon emitted
from an electron, interacts with X, is understood in the Weizsacker-Williams equiva-
lent photon approximation, as being due to a photon distribution function inside the
electron, so (e X — e7Y) = fol dzf(2)o(yX = Y).

Similarly, the interaction of an electron with X via real v emission is described as due
to an electron distribution function inside the electron.

Then the (continuous) evolution of f,, through multiple emissions of v from an e~ or
et line, is due to the splitting function P,_,.(z), as well as to a v — ~ transition via
P, ., the evolution of f,, through multiple emissions of v from an e~ line, or pair
creation ete™ from an + line is due to the splitting functions P.. . and P,.. ., leading
to the Gribov-Lipatov equations.

The Altarelli-Parisi equations in QCD are obtained by importing the QED calculation
(Gribov-Lipatov) to QCD, changing e~ with ¢, et with g, and v with g, with some
extra color factors for the splitting functions, and with an extra diagram for a gluon
to split into two gluons giving a new splitting function P, ,(2).
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Further reading: See chapter 17.5 in [3].
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Exercises, Lecture 18

1) Verify that the Gribov-Lipatov evolution equations for QED imply that the normal-

ization conditions for the eTe™ v distribution functions,

/01 dz[fe(r,Q) — feo(x,Q) =1
/01 dr z[fe(z, Q) + fe(r,Q) + f1 (2, Q)] =1
are still satisfied at all ), for the given boundary conditions at () = m.
2) Consider

N
~a(r+e)

Ju(z, Qo) = fg(I,Qo)

at Q = Qp and )
2\ as(Q5)
as(@ ) - 1 + lOg g_;)

Find the first correction to f,(z, Q) from the Altarelli-Parisi equations.
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19 Lecture 19. The Wilson loop and the Makeenko-
Migdal loop equation. Order parameters; t Hooft
loop.

In the previous 2 lectures we have learned how to deal with the fact that QCD at low energy
is strongly coupled, so nonperturbative, by introducing parton distribution functions, and
using perturbation theory on top of that. In this lecture however, we will learn how to probe
truly nonperturbative physics. The most widely used tool for nonperturbative studies is the
Wilson loop. Tt satisfies the Makeenko-Migdal loop equation, and defines an order parameter
for a phase transition in QQCD. These are the subjects of this lecture.

The Wilson loop is defined by external quarks, i.e. infinitely heavy (m — oco) sources for
the gauge field, in a pure glue theory (YM). These are quarks that are not dynamical (i.e.
are not in the path integral, or equivalently have decoupled because of the infinite mass).

We define the path ordered exponential on a path P from x to y, namely the Wilson line

Y ; b_gh
O(y, z;P) = Pexp {/ Au(g)dg} = lim HezA#(éjnfﬁnﬂ)_ (19.1)
T n— oo "

Note that A,(r) = Aj(x)T, at different points do not commute in between them, so the
exponential needs to be defined with an ordering along the path, i.e. as a limit n — oo of a
product of terms ordered along the path by an index n.

Abelian case

Consider first an abelian gauge fields A,,, transforming by

0A, = 0.X. (19.2)
Then the objects in the definition of ®(y, x; P) transforms as

eiAudé“ N eiAud§“+iauXd§“ _ eiAudgueix(a:erx)fix(x). (193>

It follows that the Wilson line transforms as

Oy, x;P) = H et AndEr H (eiAudﬁ“eix(erdr)—ix(x)) — ix(y) (H eiAudE“) e~ ix(@)
= XWP(y, 2y P)e X, (19.4)

Then, when acting on a charged complex scalar field ¢(z), transforming under the gauge
transformation as

o(r) — eiX(x)gb(x) , (19.5)

the Wilson line gives
Dy, z; P)p(x) — eXWd(y, 2; P)e XD eXD g (1) = XV (@ (y, 7;P)¢(z)) | (19.6)

i.e., it defines parallel transport along the path P from x to y. Parallel transport means that
the properties of the object are preserved, just translated to a different point.
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For a closed curve, P = C for y = z, we have
O(z,2;C) = eXDd(z,2;C)e X = &(z,2;C) , (19.7)

so the object is gauge invariant, i.e. it is a potential observable.
Nonabelian case
For a nonabelian gauge field, transforming as (for coupling g = 1)

Au(z) = Q) A, () Y (z) —i(8,Q)Q7 (19.8)
with infinitesimal transformation for Q(x) = eX(®)
=D,x, (19.9)
the basic objects whose products define the Wilson line transform as

e~ 1A e — 1+ QA dEM)QT + dgr (9,007
= [elx(r)(l + iAudf‘“) + dﬁ“@ue”((x)} e~ x(@)
~ eix(x+dx)<1 + Z‘Audfu)e*ix(w) ~ eiX(erdf’?)eiAudf“e*iX(x) + O(dng) , (1910)

where in the last line we have ignored quadratic terms in dx. We thus obtain that the Wilson
line transforms as
Oy, 7;P) = XWP(y, 23 P)e X, (19.11)

which is formally the same as in the abelian case, just that there the order of terms did
not matter, we wrote it this way to suggest the form in the nonabelian case, but in the
nonabelian case the order matters.

In particular, for closed curves y = x, P = C, we cannot cancel the exponentials, and the
Wilson line is gauge covariant, not invariant,

o(x,2;C) = XD (z, 2;C)e™™X@) £ B(z,2;C). (19.12)

But we can easily construct a gauge invariant object, the Wilson loop, by taking the trace
(normalized with a 1/N since there are N terms inside the trace for SU(N)),

wic] = %Tr@(x,x;C). (19.13)

Note that this object is gauge invariant, and independent of the point x (there is nothing
special about z in the transformation law for W).

In the abelian case, the Wilson loop can be written in a manifesly gauge invariant way
through the use of the Stokes theorem, as

De = e emos Ande" = ¢l Js FiuwdS (19.14)

In the nonabelian case, there are corrections to an explicitly invariant form. Consider a small
square of sides a, in the (uv) plane, so

By = €9 4 O(a). (19.15)
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Then the Wilson loop,

4

W = %Tr[(bgw} ~1— ;—N Te[F,, Fl] + O(a®) | (19.16)
where there is no sum over pv. The nontrivial object above is explictly gauge invariant (up
to a® terms), and moreover, by summing over pur we obtain the kinetic term in the action.
This is an example of why the Wilson loop contains all nonperturbative information from
the gauge theory: the action, that defines the theory (in the case of the pure gauge theory,
we only have the kinetic term), appears in the expansion of the Wilson loop.

>

/N WV |T
q

—<
R

Figure 55: Wilson loop contour for the quark-antiquark potential.

The quantity that is the most studied from the Wilson loop is the quark-antiquark poten-
tial, measured for infinitely massive quarks (external quarks, fixed). Therefore we consider a
contour C as in Fig.55, in the shape of a very long rectangle, made up from two long parallel
lines in the time direction, of length 7', one for a quark and one for an antiquark, situated
at a distance R from each other, and connected by segments of length R.

Then it can be proved rigorously that the vacuum expectation value (VEV) of W|[C] has
the property that at large T"— oo,

(W[C])o ox e TVaalB), (19.17)

A simple (but not too rigorous) way to understand this is: add to the theory the infinitely
heavy quarks, therefore appearing only as sources. The potential for the quark is eAg(z(q)),
and correspondingly for the antiquark —eAg(x(q)). Together, we obtain the source term
to be added to the action, [ d*zj*(z)A,(z) = [dtleAo(x(q)) — eAo(x(q))], where j°(z) =
ed®) (z — 2(q)) is the quark current. This is indeed the object in the exponent of the Wilson
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loop, as it is ~ e fc A,d&". From the interpretation as a potential however, for a constant
quark-antiquark potential, we add to e a term e'""e7, so the VEV of the Wilson loop does
indeed go like e”"Vaa(®) or after a Wick rotation to Euclidean space, as e~ 1 Vaa.

Area law and perimeter law

For a confining gauge theory, the potential behaves at large distances as

Va(R) ~ oR (19.18)

where o is called the QCD string tension. A linear potential means a constant force, so we
cannot pull apart the quark from the antiquark, so they are confined. Confinement however
also refers to the confinement of the electric flux lines inside a flux tube between ¢ and g of
almost constant cross section, instead of spreading out all over space. The flux line density
is proportional to the energy density, since H ~ %[Eaz + Eg], and since the cross section is
constant, it means there is a total energy proportional to the length.

On the other hand, for a conformal gauge theory, like QED, which doesn’t have a mass

scale, and is in fact conformal, the potential can only be of Coulomb type,
a
VialB) ~ 5 (19.19)
since in that case the Wilson loop VEV scales as
aT

(W[C)) contormat < €~ T VaiB) ~ e~ R | (19.20)

as it should be in a conformal theory, since the only scale invariant characterizing C is T'/R.
In a confining theory, we obtain

(W[C])confining o € 711 = emohrea, (19.21)
This is called the area law. But moreover, since for C' = C7 U Cy,
WI[C = Cy UGy = WI[CH]W[Cy] (19.22)

as we can easily check, and moreover in the large N limit for an SU(NN) gauge group
(W[CW[Cy]) = (W[CL]){(W][Cy]), we can extend the area law to any smooth curve C.
We can approximate its area as the sum of infinitely thin rectangular contours in the T
direction as in Fig.56, thus with 7/R > 1, for each of which we have the area law, and
obtain the area law for the total curve.

Therefore we have in fact that

(W[C])g ox e~oArealc] (19.23)

for any contour C in a confining theory.

In a Higgs phase of a gauge theory, the quarks are screened, like in a superconductor.
That is, the interaction is short range (in a superconductor, the photon becomes effectively
massive through the interaction with the medium, and the range is a ~ 1/m), so at large
distances (R > a), the potential is constant,

V,g(R) ~ const. = p (19.24)
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Figure 56: Wilson loop contour divided into inifnitely thin Wilson rectangles, whose orien-
tations cancel on the neighbouring (adjacent) long lines.

Therefore the Wilson loop VEV becomes
(W[C]) iggs o< € M1 o~ e~ 21T (19.25)

where L|[C] is the perimeter of the contour C. We then obtain the perimeter law. Again,
by the same argument as for the area law, we can extend the perimeter law for any smooth
closed contour C.

The Makeenko-Migdal loop equation.

For SU(N) gauge theories at large N, the VEVs of gauge invariant operators factorize
(proven by Migdal)

(01.-0,) = (OO + O (%) | (19.26)

That means that gauge invariant operators behave like c-numbers, not as operators, so there
must be a semiclassical saddle point of the path integral that allows us to write the VEV as
simply the solution at the saddle point, weighted by e~ at the saddle point.

We can then infer that exists a so-called ” master field’, a colorless composite field ®[A],
with Jacobian for the gauge field

‘ OB[A]

— —N2J[®]
oAz | = e : (19.27)

In the presence of such a field, we can transform the path integral over A, into a path integral
over ®, and obtain

7 = / DACe 1) daFi)” — / pcp‘ ;q) e NSIe] — / Dde N, (19.28)
dAg

The saddle point of this is then

0S  oJ 05 0J

_— = — = — Fa:—
5 =50 oA~ velw) =G

(19.29)
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which is called the master field equation. We note that with respect to the classical field
equation, we have a nonzero term on the right-hand side, coming from the variation of the
Jacobian from Aj to .

A natural guess for the master field (which is gauge invariant), that turns out to be
correct, is the Wilson loop. But moreover, one can show that we can reformulate SU(N)
YM at any N (and thus QCD) in terms of W[C]. Any observable is given by a sum over
paths of Wilson loops.

e.g. 1. For instance, the products of two colorless vector quark currents is written as

(@) (@) = D JuC)(WC]) (19.30)

Coxy,x2

where the sum is over paths that pass through x; and x5, as in Fig.57.

Figure 57: Paths going through z; and =, that are summed over.

e.g. 2. The connected correlator of 3 scalar quark currents,

(@) (22) 00 (23) o, = >, J(C)WIC]) (19.31)

Cox1,x2,x3

where again the sum is over paths that pass through zy, x5, x3.
If the quarks were scalars, we would have

J(C) = 6_%27—_%2 I dtzﬁ(t) — e—mL[C} 7 (1932)

where the thing in the exponent is Lagrangean of the quark (particle), proportional to the
length of the contour.
However, for the spinor quarks, things are a bit more complicated, and we get

se) = [ruwpen |- [ OO - 0]+ )
aie) = | DKu<t>P{vﬂ<tl>vy<t2>exp [— / T(z'mn:w(t)—w<t>]+m2>] }(19-33)

where t; and ¢y are times of x, x».

Path and area derivatives

To write down the loop equations, we need to define some geometric objects called the
path and area derivatives.
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N

() (b)

Figure 58: Diagrams for the definition of the area derivative: (a) Cs,,,. (b) Cy.

The area derivative of a function of a closed contour C is defined as follows. Consider the
contour C with a point x singled out, C,, as in Fig.58b, and the same with an extra loop in
the plane (uv) and of area 0o, at point z, Css,,, as in Fig.58b. Then the area derivative is

dF(C) 1
= F(Csp,,) — F(Cyp)| - 19.34
o = oy PG~ F(C) (19.34)
Here 60, = dx,, A dx,. For the path derivative, consider the contour Cs,, where at point z,
the contour is shifted along dx, for a length dx,, in the p direction, and then comes back
(with zero area), as in Fig.59a, so

9, F(C.) = i [F(Css,) — F(Ca)] - (19.35)

Note that the standard variational derivative can be written as a combination of the path
and area derivatives as

J
62,(0)

j 0 . Tig(o — oy
= xl,(a)m + 2; 928(c — 7). (19.36)

S

X

() (b)

Figure 59: Diagrams for the definition of the path derivative: (a) Cs,,. (b) Cs.

Makeenko-Migdal loop equation.
The loop equation is then written as

05 W) =X § 0P — VDV . (1937

"0, () C
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for N — oo, and where A\ = ¢?N is the 't Hooft coupling. Moreover, here C = C,, U C,, is
closed, whereas C,, goes from z to y (very close by points) in a long route on one side, and
C.y goes from y to z in a long route on another side, as in Fig.60. Note that this is a single
equation for the Wilson loop VEV. This equation is the analogue of the Dyson-Schwinger
equation.

yx Xy

Figure 60: Diagram for the Makeenko-Migdal equation: C;, and Cy,.

At finite N, we can write a version of the above, but where now the equation does not
close, i.e. it is not an equation for a single object. It is

s 0 _ (D) (y
g W) = Fans®a -y {<W[cyx]mcw]>

Hoom

1
— m(W[CD . (19.38)
Therefore we see that there is an extra term with 1/N?  but more importantly, the right
hand side at finite N does not factorize, and we get the VEV of a product of Wilson loops.
Then we must write down an equation for the product of two Wilson loops, that will depend
on the VEV of the product of 3 Wilson loops, etc., obtaining an infinite chain of coupled
differential equations.

Order parameters.

The Wilson loop is an order parameter in the sense of Landau’s theory of second order
phase transitions, namely an object that has a nonzero VEV in an ordered phase, and a zero
VEV in a disordered phase, since in a confining (disordered) phase,

(W[C]) ~ e 4 5 0, (19.39)
whereas in a Higgs (ordered) phase, we have
(WC]) ~ g pFerimeter - (), (19.40)

Of course, there is a slight abuse of notation, since in the limit of large contour, really both
VEVs go to zero, but the confining one goes much faster. In fact, we can of course multiply
everything with et#rerimeter to5 make it more precise, but it is still not perfectly defined.
We can define however another type of observable, a disorder parameter, i.e. one that
has nonzero VEV in the disordered phase and zero in the ordered phase. It is an operator
dual to the Wilson loop (in the sense that its properties are opposite to the Wilson loop),
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called the 't Hooft operator T[C]. Unlike the Wilson loop, it can only be defined in the case
where all the scalars are invariant under the center Zy of SU(N) (the center of a group is
the subgroup that commutes with all the other elements).

The 't Hooft loop is defined rather abstractly as follows. Consider a gauge transformation
Q¢ that is singular along the curve C. If another curve ¢’ winds through C' with a linking
number n (e.g. two links of a chain have linking number 1), and C’ is parametrized by
6 € [0,27], then

27min

Q¥ (2r) = Ql(0)e ~". (19.41)
Then the 't Hooft loop operator T'[C’] is defined by the relation

2min

WCIT[C'] = TICW[C)eR". (19.42)

As one can guess from the statement that the 't Hooft loop is dual to the Wilson loop,
in a Higgs (ordered) phase we have

(T[C]) ~ e~ Area 5 (19.43)
i.e., the area law, whereas in a confining (disordered) phase, we have
(T[C) ~ e rPerimeter o (), (19.44)
Note however, that 't Hooft showed that there are also mixzed phases, where
(W[C]) ~ e=4rea,  (T[C]) ~ e~ Aree, (19.45)

Polyakouv loop

An important sub-case of Wilson loop, that has its own name, is called the Polyakov loop.
It is a Wilson loop in the case of a QFT at finite temperature, i.e. described in Euclidean
space by periodic time, with periodicity 5 = 1/Temperature. The Polyakov loop is a loop
where the rectangular contour wraps once along the periodic time direction.

In this case we obtain a better understanding of why W[C] is an order parameter. Indeed,
in this case, the length in time 7" = [ is fixed and finite. That means that now, for infinite
contour C, in the Higgs (ordered) phase,

(WIC]) ~ e " = constant # 0 , (19.46)
and in the confining (disordered) phase,

(W[C]) ~ e DE 0. (19.47)

Important concepts to remember

e Wilson loops characterize the behaviour of external quarks (infinitely massive probe
quarks, not dynamical) in gauge theories.
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e In an abelian theory, ® = expli § A,dx"] is gauge invariant and defines parallel trans-
port of charged scalar fields, and in a nonabelian gauge theory, W[C] = 1/N Tr[Pexp {i § A, dz"}]
is gauge invariant and defines parallel transport of charged scalar fields.

e The Wilson loop contains all information about observables of the gauge theory. Its
first nontrivial term in the expansion on a square (plaquette) is the kinetic term of the
gauge action.

e The VEV of the Wilson loop on a rectangular contour infinitely long in the time
direction defines the quark-antiquark potential by (W[C]) oc e=TVer(B) as T — 0.

e For a confining theory (a confining phase), the potential is linear V z(R) = o R, so we
obtain the area law, whereas for a Higgs phase, the potential is constant, so we obtain
the perimeter law. For a conformal theory like QED, we obtain a Coulomb potential

Via(R) = a/R.

e VEVs of gauge invariant observables factorize in the large N limit of SU(N) YM, so
there is a gauge invariant, composite master field . In fact the Wilson loop has its
properties, and we can define (even at finite N) gauge theory observables in terms of
sums over paths with the desired operator insertions.

e The Wilson loop at N — oo satisfies the Makeenko-Migdal loop equation (the equation
closes on VEVs of W[C]), and at finite N we obtain an infinite set of coupled equations
for VEV of products of Wilson loops.

e The Wilson loop is an order parameter, and its dual, the 't Hooft loop, is a disorder
parameter.

e The Polyakov loop is a Wilson loop at finite temperature, where the infinite lines in
the time directions now wrap once the periodic time.

Further reading: See chapter 15.3 in [3].

199



Exercises, Lecture 19

1) Consider a circular Wilson loop of radius R in Euclidean space. If the theory is
confining, how will the Wilson loop VEV scale with R? How about if it is conformal (like
QED)?

2) Check that the confining result for the circle satisfies the Makeenko-Migdal loop equa-
tion.
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20 Lecture 20. IR divergences in QED.

In this lecture we start the study of IR divergences, focusing on the example of QED.
Collinear divergences
We already saw in lecture 2 that when we have massless particles in the theory, we
have IR divergences in the loop diagrams. For instance, in the one-loop diagram with two
n 4+ 2-point vertices, two propagators and 2n external lines in Fig.4, with Feynman diagram

2 D 1 1
A_/ 474 , (20.1)
2 ) 2m)P ¢+ m?(q— P)2+m?

where P = )", p; is the total external momentum at each of the two vertices, if m* = 0 AND
P? = 0, the integral becomes
2 dPq 1 1

— 20.2
2 ) 2m)Pq2q?—2q-P’ (20.2)

so is divergent in D = 4, in the angular integration region where ¢ - P =0, since then

2
~ A—/dQ/dq% ~ [ (20.3)
2 q* —2qPq- P q

Note that this divergence appears only for massless external states, since if P2 # 0, we do
not have an IR divergence. In turn, if n > 1, that means that the external particles must
be collinear, p;  pj, such as to have P> = 0. Note also that the divergence is due to a
virtual ”photon” (massless particle) of momentum ¢ being collinear with the (set of) external
particle(s) P = >, p;, since ¢ - P = 0 < ¢ is parallel with P (P? = 0). This type of IR
divergence is then called a collinear IR divergence. It will be cancelled by an IR divergence
in the amplitude to emit a (real) ”photon” (massless particle) collinear with an external
line from each it is emitted. In conclusion, a collinear IR divergence is due to a virtual
or real "photon” being collinear with a massless external line. For the existence of such a
divergence, we need to have a massless external state coupling to a massless internal loop,
i.e. to have self-interactions of massless states, since we needed P? = 0, but also ¢> = 0
and (¢ — P)? = 0. This will happen in QCD, where gluons are self-interacting, but does not
happen in QED.

In dimensional regularization, using the result (3.35) at m = 0 (from lecture 3), we can
calculate the diagram as

2T (2 _ Q) 1 b 9 [/ P? -3 2 P2
I = _—QPD4/ do [a(l — )]zt o A22 (—) x A2 {— —lo —:| , (204
2 (4m)% , et =l e \ W R R

where as usual D = 4 —¢, we have introduced a dimensional transmutation parameter y, and
finally we have expanded in € to obtain a term logarithmically divergent in y — 0 (thought
of as an IR cut-off).

Soft divergences
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Figure 61: Soft Divergence diagram piece.

Consider a part of a larger one-loop diagram with two consecutive external states, and
take them to have mass m. They are taken to be continued into the loop, so two outward
extending propagators, with momenta k; + ¢ and ky — ¢ will have the same mass m. In
between these two lines, there is a massless propagator with momentum ¢. We have here in
mind the application to QED, or rather the simpler version of massive scalar QED (charged
complex scalar) where the massive line would be a scalar, and the massless one a photon,
but we can also consider the massless case m = 0, and then we have in mind a theory of
massless scalars. This part of the diagram, in Fig.61, will give a contribution

ar 1 1 1 dP 1 1 1 90.5

| erararresa—mrem = ereraasean @9
which we see is independent of the mass m of the external states, appears at general ky, ko
(not necessarily collinear), and moreover the divergence is present independently of the
orientation of the "photon”, i.e. of whether ¢-k; = 0 and ¢ - ks = 0 or not (which equality
is true for m? = 0, so that k¥ = k3 = 0, AND ¢ < k; and ¢ < ky). The only source of this
divergence is the fact that the ”photon” ¢ is "soft” (small energy), i.e. ¢*> ~ 0 and moreover
|7]? small.

This divergence, for soft virtual massless particles (in a loop), and a corresponding one
for soft emitted (real) massless particles, is called a soft divergence and is present in any
theory with massless particles interacting with something, so is present both in QED and in
QCD.

In nonabelian gauge theories (YM) then, we have both soft and collinear IR divergences,
and correspondingly in dimensional regularization at one-loop we have a factor of 1/e for
each: we saw that there was an 1/e for collinear divergences, and there is another one for
soft ones. In total, in a planar one-loop diagram for each pair of consecutive momenta, k;
and k41, with ;41 = (ki + ki1)?, we have a divergent factor of

1 —S5i,i4+1 ‘ 1 Sii+1 62 2 T Sii+l
~ () = et T G 20:0)

We see that the term divergent as p — 0 is ~ log®(—s;11/4%) in the nonabelian case. In the
QED case (abelian), when we have only soft divergences, at one-loop we have in dimensional
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regularization a term ~ 1/e(—s;;11/p%)¢ ~ 1/€ + log(s;iv1/1?), so the term divergent as
pw — 0 is log(—s;11/p%). A useful IR regularization that will be used in the following is
to introduce a photon mass p,,. When translating dimensional regularization results into
photon mass regularization, we just drop the 1/e terms and keep only the terms divergent
for p — 0, replacing g with ppn. Therefore in the QED case, we expect an IR divergence of
order log(q®/pi2y,), and we will see that this is what we obtain.

For completeness, note that at L loops, we have in nonabelian gauge theory a leading
divergent term of O(1/€L).

(a)

Figure 62: Soft Divergent vertex diagram. (a) Zeroth order diagram. (b) One-loop diagram.

QED vertex IR divergence

Consider the full quantum mechanical QED vertex Fgﬁ, with a fermion with momentum
p1 going in, a fermion with momentum py coming out, and a photon with momentum ¢ =
p2 — p1 coming in, as in Fig.62a. Then, in general, by Lorentz invariance we should have

[ = Ay" + B(py +p) + C(ps — pY). (20.7)
The vertex should satisfy the Ward-Takahashi identity,

@I = (p2 — p1) I = A(py — p1), 7" + Clpa — p1)* =0, (20.8)

where we have used p3 — p? = 0 on-shell. Since the vertex also appears in between u(p,) and
u(p1), and (p2 — p1),u(p2)y*u(pr) = 0 on-shell (by the Dirac equation for u(p;) and u(p2)),
inside physical amplitudes we can ignore A, and the Ward-Takahashi identity just says that
C=0.

On the other hand, we have the Gordon identity, sometimes written as two equations,

u(p2)u(pr) — iti(p2)o™ pr,u(pr)

u(p2)yu(pr) = py
hU(p2)u(pr) + it(p2)o™ pau(pr) (20.9)

m(p2) v u(pr)

|
S

and sometimes as the average of the two equations above, giving

Py + Py L 9"
2m 2m

u(p2)y"u(pr) = u(ps) u(py). (20.10)
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It means that we can swap the term with B (with (p; + po)#) for a contribution to the term
with A (with v#) and another with o#”q,, i.e. we can always write (in between u(p,) and

u(p1))

v

wotq, 9
F 20.11
2m 2(q ) ) ( )

where we have defined the two structure functions Fi(¢?) and Fy(¢?).

We have treated the one-loop correction to I'*, T*() in lecture 6 and lecture 8, but there
we ignored the IR divergences. We will redo the calculation (some relevant steps) here,
in Minkowski space, with a slightly different parametrization for the loop momentum, and
considering the IR divergences.

The one-loop diagram has a photon with mometum p; — k being emitted from the p;
fermion line, turning it into a fermion with momentum k£, and being reabsorbed into the
other fermion line, initially with momentum £ + ¢, to turn in into py, as in Fig.62b. Then
the diagram gives

T*(py,p1) = V" Fi(q*) +

W nmit) = [ S e

XV“mHmp)u(m)

_ L9 2/ d*k a(p2)[Fv*(F + p1) — m2y* + 2im(2k + q)*]u(py)
(2m) [(k — p1)? +i€][(k + q)% + m? — i€]|[k? + m? — ie]
(20.12)

Doing the Feynman parametrization for the 3 propagators in the denominator, Ay, Ay, Ag,
with oy for k2 +m?, ay for (k + ¢)* + m? and ag for (k — p1)?, we get

1
(B2 + F — )3

1
INVVY.NO

Y

1
/ dOéldOéng./g(S(Ckl + oo + a3 — 1) (2013)
0

where k = k + asq — asp:. Using the formulas

/ d*k K+
— =0
@) (B2 + F — ey

/ d'k R / 'k Lgmk? (2014)
(2m)* (k2 + F — ie)? (2m)* (k2 + F —ie)3 '

after some algebra, we obtain

k[t 2
ti(py) TPV :2'2/ /ddch —1)—
u(p2)I" (p1, p2)u(pr) ] Gy f, dndeadas (a1 +ag + a3 >(k2+F—z’e)3X

<(po) {w (—%k (1= o)1~ an)® + (1 — das + a2ym?

io""q,

e (amaa(1 - )| ulp) (20.15)
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where
F = aja0¢® + (1 — az)*m?”. (20.16)

One would need to UV regulate this integral, but we will ignore it here, and instead
adopt a bit later on a subtraction procedure (renormalization condition). Note that the part
with &2 in the numerator, that was called 1% in lecture 6, is UV divergent, but is not of
interest for us. The part without k2 in the numerator, called T in lecture 8, is UV finite,
and will contain the relevant IR divergences, so we are interested in it.

Performing a Wick rotation on the formula (3.30) from lecture 3, and putting D = 4 (for
the case the integral is UV finite), giving*

/ @M (2 + Ay (@dm)2(n—1)(n—2) An2’ (20.18)

we obtain for the IR divergent piece

1
H(pQ)F“(lb)u(pl) = % / dondasdazo(ag + as + az — 1) X
0
~ 1—o1)(1—a9)g® + (1 —4as + a2)m?
XU(pz) |:’Yu( 1)( 2)(] - ( 3 3)
iochq, 2m?az(1 — az)
- - (20.19)

The integral of the coefficient of v* in the square brackets is Fl(lb) (¢?) and the integral of the
coefficient of % is Fy(¢q?). Fy will not contain IR divergences, but Fl(lb) will. To see that,
we calculate F{' (g2 = 0). We have

! 1 —4as +a?
daydasdasd(ag + ag + ag — 1) ———o—3
/0 1dasdasd(ag 2 3 ) F(¢® = 0)

1 l1—as _2 1_ o
_ /da3/ do, —2F 1 —as)(3 ~ a)
0 0
! -2

m2(1 — ag)?
= / da3m + ﬁmte. (2020)

We see that we have an IR divergence, coming from the a3 ~ 1 region of integration in
the last Feynman parameter. We need to regulate this IR divergence. One option would
be to use dimensional regularization, and we will sketch it afterwards, but here instead we
introduce a small photon mass .

Then the photon propagator will give [(k — p1)® + p2y, — €] =" instead of [(k — p1)* —
ie] 7!, and since the inverse photon propagator As appears multiplied by as in the Feynman
parametrization, the effect of the regularization is to add a term ag,uf)h to F.

*For use later on, note that the case relevant for us, of n = 3, gives, for dimensional regularization in
Minkowski space,

/de 1 i T(B3-DJ2) 1
(

2m)D (i2 + AP (4mPR2 T(3) A*% (20.17)
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We need one more ingredient. For the UV regularization of the whole diagram, a simple
renormalization condition is
I*(¢* = 0) = 7. (20.21)
That subtracts the UV divergence in ['(®, contributing to F(9)(¢2), but it also affects the
UV-finite piece Fﬁb), specifically Fl(lb)(q2), by subtracting Fl(lb)(q2 = 0). We finally obtain

1
a
Ffl)(qz)’ugh—m =~ Fflb)<q2)‘u§h—>o =5 / daydasdaszd(ay + ag + az — 1)
0

" [m2(1 —daz +ad) — (1 —a)(1 — ag) m2(1 — 4az + a3?)

GParag +m2(1 — az)? + p2, o3 m2(1 — az)? + p2, o3
(20.22)

The IR divergence, as we saw above, comes from the a3 ~ 1 (= a3 ~ ay ~ 0) region of inte-
gration in the Feynman parameters, and (since the integration in the Feynman parameters
is only between 0 and 1) it appears from the denominators. Therefore we can put az = 1
and a; = ap = 0 in the numerators, as well as in the regulator, so a;;,uih — ,ugh.

Therefore we have

1- ag —om? — ¢
F(l) 2 ~ / d /
1 (g )‘“ihﬁo s m2(1 — a3)? + ¢?aa(l — g — ag) + M123h

(20.23)

m?(1 —a3) + 2y

With the substitution s = (1 — a3)§ and w = 1 — a3, with Jacobian w, we obtain

—2m? — ¢? —2m?
F(l) 2 ~ d / _
(@)l 0 3 [m? + 61 = Olw? + gy, mPw? + g,
—2m? — ¢? m? + ¢?6(1 - §) m®
— - log + 2log — ;(20.24)
27T 0 24 m? + ¢?§(1 - §) 112, 112,

Before we continue, we now redo this calculation in dimensional regularization. The first
observation is that, with D = 4 — 2¢, ¢ > 0 gives UV regularization, but ¢ < 0 gives IR
regularization. A typical (limit) divergence both in the UV and in the IR is a log-divergence,

Pk [ dk
LS /0 5 (20.25)

and we see that the UV divergence is regulated only by 4 — D = 2¢ > 0,

© Ak k[
pit2e T o

whereas the IR divergence is regulated only by 4 — D = 2¢yy = —2¢;5 <0,

dk ktan
\/0 k-l*QE[R ~ €
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< 0. (20.27)
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So we consider D = 4+2¢ in (20.17) and IR regularize like this instead of introducing fipp.
Then the denominator in F is now F'~¢ instead of F. But again the divergent integration
region for the Feynman parameters is ag ~ 1 = a; >~ as ~ 0, so we can repeat the same
steps up until we do the w? integration, to obtain in dimensional regularization

2m? — ¢? —2m?

F(@)|eso = —/26 1d£ / { m2 +;22§(1 _Zé%)];jjz)pe - [mej]lee]
= 2/ at K%) [1+q;§(1__q g}lmz]l_g +2 <%) } (20.28)

where we have introduced a dimensional transmutation scale j, and the overall p*¢ should
be reabsorbed, as usual, in the redefinition of the coupling. Note that we obtain the corre-
spodence with the photon mass regularization already suggested, since

1 /m?\° 9 97e 1 m? + ¢*¢(1 = §)
(%) ne - gm = gL
1 /m2\° 1 m?
e ~ — +log—. 20.2
6(M2> e—l—og’uZ (20.29)
We now go back to the photon mass regularization and define
m?+ ¢*/2
20.30
funle) = [ ae AL (2030)

and, since generically log(m®+¢*¢(1-¢))/ 2, does not vary much, and in any case for i, — 0
it doesn’t matter too much what exactly we have in the log, we can write log(g* or mz)/,ugh
and take it out of the integral in F1(¢?), and adding the tree level part F\”(¢?) = 1, we

finally have

q? or m?

Fi(d)=1— %fm( 2) Jog +0O(a?). (20.31)

/“Lph
Note that in the ¢> — oo limit most of the integral in f;z comes from the two endpoints,
E~0and £ ~ 1 so

1 1 q2 N q2
fir(q / dé———— 2£+ 5/ d§q2(1—f)—i—m2 ~ log . (20.32)

In this limit we can write Fl(l) (¢%) as

1 2 2 2
(1) Lol 1 q _ m7 L mT
e = oo = 27r2/o * L(l— O+ mle 2, {5(1 I QQ] loguﬁh] |
(20.33)

and after splitting log[(¢*/p2;,)(£(1 =€) +m?/¢?)] in two logs, the second log term (with the
overall minus removed),

m2 a q2 q2
1 1— My D2« % 20.34
27r2/ 3 EGETr og{f( €)+q2] o og’ <o oguph, (20.34)
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so can be neglected, and we obtain

2 2 2

a a
Fi(qg* — 00) ~ 1—%10g%10g anLO(aQ) = 1—%f13(q2 — 00) log ;JJT—I—O(QQ). (20.35)
ph ph

The double log that we obtained is called a Sudakov double log. Note though that only one
of the logs is IR divergent (as uf)h — 0), the other one is a physical log.
In dimensional regularization, we can rewrite (20.28) as

1), 2 Ngu%l 1 q_Q)E _1_2m2/q2 (@)E:|
@l 5005 [ () gamgrmmra= 2 (GF) | @0

which makes it more obvious that we can always write it, after dropping the 1/e term, as

2

a
FO(g?)]es0 =~ —%fm(qz) log 57 ; (20.37)
ph

where the log(¢®/i3,,) appears from the expansion of the (1/€)(¢*/1*). Then the approxima-
tion of having frz(¢?) as in (20.30) corresponds to ignoring the € power of [£(1 —&) +m?/q?],
since the corresponding integral is finite, so that gives an O(e) correction; even though by
multiplication with the overall 1/e means we get a finite contribution also.

k P M,
k
Muo /
p1 (a) p1 (b)

Figure 63: Photon emission diagrams cancelling the 1-loop divergences.

Cancellation of IR divergence by photon emission.

So we obtained an IR divergence of amplitudes that cannot be removed by renormal-
ization. This would seem to be bad, but as we already explained, this is just a statement
that the amplitude (or rather, the cross section obtained from it) for just this process is not
something physical in a theory like QED with massless particles.

That is so since we can emit the massless particles (photons) from external lines, and if
the photons have sufficiently small energies, they cannot be independently detected by any
physical detector, that will always have a minimal energy cut-off. Note that in QED, we only
have soft divergences, so we only need to be concerned about soft emitted photons (with
energies < E,,;,). But in a theory like QCD, which also has collinear divergences, we also
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need to be concerned about emitting photons that are not soft (large energies), but instead
are collinear with the particles from which they are emitted, so they cannot be distinguished
from the emitted particles by a detector which has a resolution of some minimal angle 6,,;,.

Therefore we need to consider the process of emission of a soft photon off the electron
lines, leading to two diagrams. Consider the tree level diagram with amplitude My, in our
case the tree vertex for two fermions, one with momentum p; (in) and one with momentum
pe (out) and a photon with momentum ¢ = ps — p;. Then the first correction diagram is for
a photon with momentum & to be emitted from the (initial momentum) p; line, turning it
into p; — k, as in Fig.63a, and the second diagram is for the photon with momentum k to be
emitted from the (final momentum) p line, turning the line into py + k& when it starts from
M., as in Fig.63b.

We also assume that the photon is soft, i.e. |/Z] & |Pa — pil, in which case the subdiagram
M, for the two diagrams is the same, and the same with the tree diagram, i.e.

Mo(p2,p1 — k) = Mo(p2 + k,p1) =~ Mo(p2,p1) = M. (20.38)

Then the amplitude for emission of a photon from one of the external lines is

o —(h—F+im) . u v (g (P2 + K+ im)
iM = et(ps) | Mo (o — )2+ m? ~y e“(k) + eu(k:) (s + B 1 22

Because of p; and p, being on-shell, the two denominators are —2p; - k and +2ps - k, respec-
tively. Since the photon is soft, we can neglect ¥ in the numerator (small compared to p;
and m). Also using the identities

(P1+im)y" e, (R)u(pr) = 2pY e, (K)u(pr) +7"€, (k) (=pr +im)u(pr) = 2pYe, (K)u(p) , (20.40)

where in the first equality we have used {*,~"} = 2¢g"” and in the second we have used the
Dirac equation written for the spinor u(p;), and the similarly proven one

u(p2)v"€, (k) (P2 + im) = u(p2)2py€, (k) | (20.41)

we finally write the amplitude as

M| u(pr).  (20.39)

(20.42)

. } p2-€'(k)  pr-e(k)
iM = —u(p2) Mo(p2, p1)u(p1 6[ - .
(1) Mo(pa.pr)u(pn) ¢ | P - L
Integrating over the momentum of the photon and summing over its polarizations, we obtain
the differential cross section for emission of a photon as a function of the cross section without

photon emission,

2

k1 2|p2 eNE)  pr-eM(k)

d — =d — —_— — 20.4
o(pr — p2+7) o(p1 — p2) / (27)3 2k =, po -k p1-k (20.43)
The differential probability for a photon of momentum £ is then
dgl{' 62 ﬁg ﬁl 2
d — k) = E — ey - | —— — 20.44
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The total probability, integrating |k| between the regulator j,, (photon mass) and a max-
imum of |g| (since the condition for soft photon was for |k| < |¢|, where ¢ = P> — p1),
is

lal 2
P’ / Cr=Llog L1 (20.45)
Q Mph k 27T luph
For the differential cross section summed over k, we then find
o ¢
do(pr = pz + k) = do(pr = pa)5—log —5-T1. (20.46)
s [

We will not describe here the calculation of Z (it can be found for instance in [3]), but

one finds ,
q

2 ~
Z(q* — o0) ~ 2log sy

(20.47)

If follows then that the differential cross section for p; — po, taking into account the
1-loop IR divergence, is written in terms of the tree level process as (from |F} 1(0+1)(q2)\2)

do do a, ¢ q° )
d_Q(pl — pz) = (d_Q)O (p1 — pz) [1 — ; log w lOg u_f)h + O(CY ) . (2048)

On the other hand, we express the differential cross section for p; — p; + 7 in terms of the
same tree level process (without 7, described by M) as

do do a, ¢ q? )
m(m — pat+) = (m)o (p1 — p2) —I—; log poe log #_;2)}1 +O(a”) | . (20.49)

That means that their sum is independent of ,uf)h, i.e. it is IR finite! Note that this is an
abstract result, because we cannot really measure the total cross section with emission of a
v of arbitrary energy.

More physically, we can consider a detector that has an energy resolution of E,,;,, i.e.
it cannot detect photons of smaller energy. Then the process with emission of a photon
of smaller energy is considered as part of the process without emission. We need then to
integrate fi’:” dk/k =1/2In E7,;, /12, We also can prove (will not be done here) that

I(¢*) = 2fir(q®), V. (20.50)

We thus obtain

do do a E?.
—(p1 = p2+ 7k < Enin)) = <—> (p1 — p2) +—fIR(q2) log =2 + O(a?)| (20.51)
ds? st/ n /ﬁ%h
and as before
do do Q q* or m?
—5 (01 = p2) = (—) (p1 = p2) |1 — = fir(¢®) log —5— + O(c?) | , (20.52)
dQ e/, T ,ugh




for a total of
d_a
dS?

do do

d_Q<p1 — p2) + d_Q(pl — P2+ V(< Enin))

= <:ll_?2>0 (p1 — p2) {1 - %f[R(CZQ)lOgET

min

measured

Summation of IR divergences and Sudakov factor

We now resum one-loop diagrams on the side of virtual photons (loop corrections to
the vertex), of the type of exchanging photons between the two fermion lines, but planarly
("parallel”, they do not cross), and correspondingly on the photon emission side we consider
the process of emission of n photons, one after another, from the external lines. In a way
similar to the calculation sketched in lecture 18 for the Alrarelli-Parisi evolution equation in
lecture 18, we obtain that this process resums, giving a factor

]
—log = log ——1| . (20.54)
™ m :uph

But moreover, there is a symmetry factor of 1/n! in front of this, because emitted photons
are indistinguishable, which means that when we sum these contributions, the one-loop IR
divergence exponentiates!

The exponentiation of IR divergences is rigorously proved in a theorem by Bloch and
Nordsieck (1937).

soft AVaVaVAN NW

PhOtQQA A~
AVaVaVAN hard

Figure 64: Factorization of the amplitude into a "hard” part and a ”soft” part that governs
the emission of soft photons.

Up to now, we have considered the QED vertex at one-loop, but an important property
of IR divergences is factorization, which means that in some physical process, the ”soft” and
"hard” contributions factorize, as in Fig.64. We can split the process into a "hard” part
(with large momenta), for scattering of 2 fermions with some other stuff, which we called
M, previously (note that we had assumed that M, was the tree vertex, but we can easily
check that it did not matter what M, was, as long as it was a hard process); and a ”soft”
part (with small momenta) for scattering of two fermions to two fermions, possibly with soft
photon emission.
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Then the contribution to the soft part of soft virtual photons, i.e. of photons exchanged
between the two fermion lines, gives a factor

o 21" 1 xn
[—;fm,(q?)log —52 ] == (20.55)
2| n! !

On the other hand, the contribution to the soft part of the soft real (emitted) photons, i.e.
photons emitted from the two fermion lines, gives a factor of

2

1l |« Epnin]" a Bz "
- [—Ilog ] = [;fIR(qz)IOgT] nl (20.56)

n! |7 Hph /’Lph
That means that in the measured differential cross section, we have

() = (@) e (23 (£2)

n
2

o o 2 a B2,
= (m>0 (p1 — p2) exp [_;fIR(QQMOg ;IT] exp [;fm(cf)log l;gm]

ph ph
do a q?
— (d_ﬂ)o (p1 — p2) exp {—;fm(cf) log E,%%J . (20.57)

The exponential factor is called a Sudakov form factor.

Once again, note that this exponential factor is only the resummation of one-loop dia-
grams, it is not genuinely two-loop, meaning that when expanding it in «, only the leading
term is exact. In general, at each loop order we will have another power of « contribution
in the exponential, i.e.

expla(...) + () + () + ] (20.58)

Important concepts to remember

e Collinear IR divergences are due to massless particles (”photons”) collinear with mass-
less external states. For virtual particles, we have IR divergences in loops, for real
particles, we have IR divergences for particle emission. It appears due to the self-
interaction of massless states, so is present in QCD, but not in QED.

e Soft IR divergences are due to massless particles ("photons”) being soft (very small
momenta). For virtual particles, we have IR divergences in loops, for real particles,
we have IR divergences for particle emission. It appears independently of the external
states, and is present in both QCD and QED.

e In dimensional regularization, IR divergences appear due to factors of 1/e(P?/u?)¢ in
QED (just soft divergences) or 1/¢?(P?/u*)¢ in QCD (soft and collinear divergences),
where P? is some relevant invariant: in the case of nonabelian YM in the planar limit,
it is —s;;01 = — (ki + kiy1)? for consecutive external massless lines.

212



e The IR divergences can be regulated by including a mass u for the massless particles,
or by dimensional regularization, with D = 4 — 2¢, but with ey = —ep < 0.

e In QED, the divergence in the form factor is F; = 1 —a/(27) f1r(q*) log(¢? or m?)/m?,
or at large ¢* as Fi(¢*) = 1 — a/(27)log(q*/m?)log(q*/pzy,, which is the Sudakov
double logarithm.

e The IR divergences cancel order by order in a between processes with virtual pho-
tons (loop corrections) and processes with real photons (emission of soft or collinear
photons).

e We can resum the one-loop corrections, and correspondingly the multiple emissions of
photons from the external lines, and obtain that the one-loop divergences exponentiate,
obtaining the Sudakov form factor.

Further reading: See chapter 12.1,12.2,12.3 in [2] and chapter 6.4, 6.5 in [3].
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Exercises, Lecture 20

1) Consider scalar QED, i.e. a photon 7 coupled to a massive (charged) complex scalar ¢.
Calculate frr(q?) at one-loop (O(g?) correction) for the vertex V(ps, p1) = Fi(¢*) in Fig.65.

Figure 65: IR divergent diagram.

2) Calculate (using the same formulas from class, and ignoring the same calculations)
the Sudakov form factor at one-loop (O(g?)).
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21 Lecture 21. IR safety and renormalization in QCD;
general IR-factorized form of amplitudes.

In this lecture, we will analyze IR divergences in QCD. To start however, we will give some
more results about QED that easily generalize to QCD.

As we saw last lecture, to IR-regularize we can use dimensional regularization, but in
D =4—2¢, ¢ >0 for UV divergences, whereas € < 0 for IR divergences. We also saw how to
map between photon mass regularization and dimensional regularization. We only showed
how to map the divergent terms, but the exact map actually contains some finite piece as

well,
2 2\ € 2\ € 2
4 r(1 4 1 4
1n@Hr(e)( W) R +6)(W) =g+l (21.1)
m € m

m2
This relation can be derived by computing FZ,@ in both mass and dimensional regulariza-
tion, and comparing the results.
Generalizing a bit the result from last lecture, we saw that the same integral having both

UV and IR divergences (at different endpoints), needs a different dimensional regularization
for each, so we write

r(p/2) (d?¢ 1 1
wD/24 /(q2)n - D/2—n D'J2—-n" (21.2)

D =4—2¢, D' =4 —2¢ for n = 2, and only at the end of the calculation do we set D = D’.

In particular, FZB has still UV divergences, that is dimensionally regularized with D,
whereas the IR divergence is either regularized with mass, or dimensional regularization
with D’. One finds

o} 1 drp? 0?2 4+1 v+ =8
F'u|maLssreg. = 47T |:’7“ <__7+1 2 + " hlv—ll 2 +F( )
(L= pa)u v =1, v ]
2m v v
a (4rp?\°© 1 10°+1. v+1
FM'dim.reg. = E( )F(1+6) |:’YM <E+E » 1nU—1+F(U))
-1 1]
Gl O U VALY (21.3)
2m v v

where v = /1 +4m?/¢? and F(v) is a given function of v, of some complicated form, and
finite. .

We see that by expanding in € <4;’§2> ['(1 + €) as a coefficient of the In(v +1)/(v — 1)
term, and keeping the e-finite part, we have a match between the dimensional regularization
and the mass regularization results only if we have (21.1).

The above was for QED, but in QCD the same calculation holds, chaging external elec-
trons for external quarks, and photons for gluons, and then we also exchange o for a,Cp,
where o, = g2/ (47).
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In QED, we saw that IR divergences exponentiate and factorize. We make this a bit
more formal now, to compare with QCD.
At one-loop, the IR divergent part of the vertex can be expressed in the form

ﬂ(m)FgR)U@D = euﬁﬂ(pz)WU(pl)OzF(e, 612/7”2) ) (21.4)

and from the calculation of the previous lecture, one can show (we will not do it here) that
we can put the resulting I' in the form

1 dPk —i 2pf 2p3
Ple a/m?) — _ L (one 2/ 1 _ 2
e/ m?) = =5 () | P e Ikt k2 e 2pp ki k2 ic

The approximation that we made last lecture, of considering for the leading IR divergence
that k? can be neglected with respect to 2p; - k in the denominators is called the eikonal
approximation, or the leading divergence approximation, so

: 1 Pk —i 2P s ]°
Felk _ _ = € 2/ 1 o 2 .
o) = =3 ()" | Gopr—ic {2;;1 k—ic  2py-k—ic

Note that I'®* does not depend anymore on ¢%/m?, as we can check.

We saw last lecture that IR divergences exponentiate and factorize into a hard part,
containing the large momenta, and a soft part, containing the IR divergences in exponential
form. Formally then

r. (21.5)

(21.6)

Fu(pl’]b) = eareikaLH) ’ (217)

where FLH) is the hard part. Since however as things stand FELH) still has UV divergences,
one can also write the above as

Fu(plap2) _ 6aF(E’M2/m2)FLﬁnite) 7 (218)
where ¢?> = —M? and '
FLﬁnite) — Fl(LH)eaFe‘k(e)faF(e,M2/m2). (219>

IR safety in QCD

In QCD, the coupling constant depends on scale and is strong at low energy, a, — oo.
This means that it is very hard to define physical quantities, since besides the IR divergences
we also have to deal with infinite coupling. Quantities that are free of IR divergences are
called IR safe. As we already saw, cross sections, that are certainly observable, are supposed
to be IR safe. One way to express this is that as m? < ¢* (here m is the quark mass), we

have \
2 2 2 2
q m _(4q m
(i) o () o ()] o

where b > 0, and then o is completely finite. Since in asymptotically free theories the
renormalized mass satisfies mg(pu — o0o) — 0, the zero mass limit makes sense and moreover,
the high energy (¢ — o0) or zero mass (m — 0) limits are equivalent.
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Figure 66: Diagram for the Born Cross section via unitarity cut.

Moreover, we can use cross sections to define the running of the coupling constant. We
will explain this, with the example of a simple process, very relevant experimentally.

Born cross section for ete™ — (¢7) — hadrons.

Consider the tree diagram for eTe~ — ¢g through an intermediate photon. The quarks
have charge Qre. For the cross section, where we have the quantity |M|? = MM*, we
can draw diagrams with M and M flipped (time reversed) for M*, forming for instance a
one-loop diagram from a tree one, with the quarks in the loop being on-shell, as in Fig.66. It
is related to the optical theorem, where cutting loop diagrams gives diagrams for the cross
section, but here we can just think of it as a useful trick.

We will not reproduce the calculation, but one finds that

do B
dcosf

2
yiyes 2 2
N » Ef Q3(1 + cos™0) , (21.11)

which integrates to (cos 6 varies between -1 and +1)

Ao’
Cop = N? Z Q3. (21.12)
!

Experimentally, one defines the ratio of the process with hadrons in the final state to the
one with leptons in the final state, namely ee™ — putpu™,

R oiot(€Te™ — hadrons) _ NZQ? | (21.13)
Trot(eTe = ptu~) -

where in the last equality we have considered our tree level process. This quantity is measured

experimentally very well, and is one of the most stringent tests of QCD: it depends on the

fact of being 3 colours, and on the total number of quarks and their charges. It agrees

perfectly, leaving no room for extra quarks.

We are however interested in corrections to this result from QCD processes, i.e. correc-
tions of order aay,, where oy, = ¢*/(47). These would be one-loop diagrams with a QCD
loop, or two-loop cut diagrams for o. There are 8 such diagrams, and the calculation is long,
so we will only parametrize the result and show the final answer. Details can be found in

[2].
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For the total cross section for ete™ — hadrons, we need to consider cut diagrams with
ete” — v —hadrons— v — eTe™, and the sum is over possible intermediate hadrons. This
can be parametrized in the following way

e
Orot () = [2( :) } (kMY + KRy — ky - kog™ ) Ho (¢2) (21.14)
where
H,(q°) = 62#262 014,.(0)[n)(n]4,(0)]0)(2m)*6*(pn — q)- (21.15)

Here the sum over n is over hadronic states, the states in the cut loop, and j, is the electro-
magnetic current. Moreover, H,,(q) must be transverse, which means that

H,, (%) = (.00 — ¢ 9,0)H(q?). (21.16)

After a long calculation, where we split the contributions to H,,, similarly to the QED
case, into contributions of real and virtual gluons (i.e. real gluons are emitted gluons, thus

gluons in the hadronic state |n), and virtual gluons are not), one finds

AmpP\* [ 1—e 1 3 7w 19
—gHS = AN (F)QR S+ —5+—+0
gt = NG EC 5 ) T sag) @tz T 1 1O
. Amp\* [ 1—¢ 1 3 n?
. ,uunrtual — _9N(C 2 s 2 _ — — — 144+ 0 .
9w Q= ) |te-2)|eTa 274700

(21.17)

We see that, while individually they are both IR divergent, in their sum the divergences
cancel and, except for the overall factor, the brackets cancel except for a finite contribution
19/4 — 4 = 3/4. Finrally we obtain for the total cross section, with the leading contribution
due to ¢¢ production (and soft gluons above),

Nira? ag 3
oot (q°) = 32 Z Q7 {1 + ?ZCQ(F) + O(a?a?)|. (21.18)
!

We can now determine o, from o, which will give us the dependence g (p?). At the
first order treated above however, there is no dependence on the renormalization scheme and
on /i, as we can see.

At 2-loop order however, we will get insider the square bracket a contribution (a,/m)? Ao (q?/1?),
which is scheme dependent and p dependent. Since however the total cross section cannot
depend on p (which is a fictitious parameter, appearing from dimensional transmutation),
it means that we can infer as(p) from As(g*/p?) (the total u dependence should cancel). A
more formal way to express this is that we have a renormalization group equation (RGE)
for oy saying that the total ;i dependence is zero, or

{ 9 | B >a}am<q W2, an(i)) = 0, (21.19)
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where as usual (g) = pdg/Ou. Since p is an arbitrary scale, we are in principle free to
choose whatever we want. A useful choice is actually u? = ¢?, which makes the running
coupling depend on the physical momentum scale in the process, a, = a,(q?).

An a priori independent definition of «y is from the beta function, which we will denote
@s(p?). From the definition of the beta function above, we have

82— - (2) B (2)'% an

where one defines the numerical coefficients of the beta function as
g g\ 2
=g|— — e 21.21
B9) 9[4Wﬁ1+<4ﬂ) Bt } (21.21)
We can integrate the equation from pg to u, and introducing a parameter A (or sometimes

Agep), the QCD scale parameter, we find @,(u?) as a function of In(x/A) only.
With the nontrivial choice

e 2 B (B N, B B
A““°exp{ﬁ1 <6zs(uo) 5" {asw (”wm(uo))]*m " )} (21.22)

we find the somewhat simple form

as(w?) -2 élnlnj{—z Lo 1 (21.23)
w Amem oWy o)) '

The proof is left as one of the exercises.

Factorization and exponentiation of IR divergences in gauge theories.

In QCD and nonabelian gauge theories in general we still have factorization and expo-
nentiation of IR divergences, but the result is considerably more complicated. Here we will
just give a flavor for it here.

To start, we must describe the color structure of amplitudes in terms of a color basis
Ci)- Indeed, we can convince ourselves that for all amplitudes, there are only a few color
structures possible, and their coefficients are color-independent amplitudes, sometimes called
color-ordered.

For instance, for amplitudes with external gluons, the external gluons are characterized
only by an adjoint index a (in the case of QCD, saying which one of the 8 possible gluons it
belongs to), and the propagators and vertices have only delta functions for the fundamental
indices 1, j, ..., which means that these indices are summed over, obtaining either traces of
matrices 7% with a an external gluon index, or §! = N factors. It follows that the possible
color structures are all possible traces of T matrices.

For example, in the case of the 4-point scattering of gluons in a theory like QCD, where
Tr[T?] = 0, for instance for any SU(N), we can have either single traces,

C[l] = Tr[TT®2T*T]
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Cop = Tr[TOT“T®T%] (21.24)

(by cyclicity of the trace we can always put a; on the first position, and then there are 6
permutations of as, as, as), or double traces,

Cmp = Tx[TT%| Te[T*T"]
Cg = Tr [T T[T T
Coy = Te[TT] Tx[T*T]. (21.25)

Then the 4-point amplitude for gluons can be expanded in the above basis,
A(1234) ZAMCM : (21.26)

and this can be written as a vector with 9 components
|A) = , (21.27)

or rather, since we have a reflection symmetry relation
Ap(12..n) = (=1)"A,(n...21) , (21.28)

we can use only Aigss, A1zao, Arazz and Aio;34, Az, Arg0s.
In general, for the 4-point function for scattering of 2 — 2 partons (quarks and gluons)
we have a similar story, with some color basis {C}, and we expand in it as

AT =3"aflcy). (21.29)

L

and put the Ay, coefficients in a vector |A).
In this case, we can write the factorization of the amplitude as

5 Q° sij Q@ sij @7
Al 2 a(p? 6)> ( ca(p?), e>S<—3,—a )‘H( I a(p?),e) ),
A (2.0 @ ali).e) s (2. Lty i)
(21.30)
where s;; = (k; + k;)? are the possible kinematic invariants (the amplitude must depend on

them), a(pu?) is the effective coupling,

2\ —v\€
a(p’) = W(Zhre . (21.31)
Here J is called the jet function and is an IR-divergent scalar factor, S is called the soft
function and is an IR divergent matrix in color space, and |H) is called the hard function,

and it contains only short-distance behaviour, i.e. it is IR finite (as € — 0).
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The difference between the soft function and the jet function is that J contains all collinear
dynamics, and as a result it contains (at one-loop) all the 1/€? poles (we said that one 1/e
comes from soft divergences, and one 1/e from collinear divergences), whereas S is completely
determined by the anomalous dimension matriz ', which will be defined better later in the
course, but essentially is a generalization of the anomalous dimension for scalar theories.

Note that we have introduced an arbitrary quantity @, called the factorization scale.
As we see, amplitudes are independent of (), but its factorization into jet, soft and hard
functions depends on Q).

The soft function is defined from the anomalous dimension matrix I' with components
I'z; (such that the amplitude is written as A, = JSprHy) as the renormalization group

equation
d

dln@Q

Note here that this has some similarity with the evolution equations. This is not a co-
incidence, and we will see in more detail next lecture that there is a connection between
factorization and evolution. The solution of the above RGE (with some more input that will
not be explained here) is written in the form

S(%,%,a(/ﬂ), ) Pexp{ 2/0 dﬂ el <22”2,_ (Z,a(u?)’e))} , (21.33)

where I is the anomalous dimension matrix, expanded in the coupling as

1‘(;; ) Z 2)ip () (%) , (21.34)

SL[ = _FLJSJ[. (2132)

and at leading order (one-loop), the coupling a is given by

The IR divergent structure of gauge theories is given by:

1) v(a), the cusp anomalous dimension, or Wilson line anomalous dimension, or soft
anomalous dimension. As the name suggests, this characterizes soft divergences, and also
divergences arising from ”cusps” (angles) in the Wilson line.

2) Go(a), the collinear anomalous dimension, which characterizes the collinear diver-
gences.

These functions are expanded in the coupling as

() = Zal ®
Go(a) = Zalgo”. (21.36)
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In QCD, there is also the anomalous dimension matrix I', which is independent of the
two above functions.

However, in a gauge theory called NV = 4 SYM, where many things can be computed
exactly (we will not explain what N' = 4 SYM is, we use it just for purposes of illustration),
there is no nontrivial I' matrix, and in that case we can write down the jet function just in
terms of y(a) and Gy(a), as

2 1 2\ le 0 ogW
(G- ()]
1

Important concepts to remember

e The QED vertex is written as the exponent of the eikonal approximation vertex times
a hard vertex.

e Cross sections in QCD are IR safe.

e We can define the running a,(y?) from the cross section, e.g. for ete™ into hadrons,
by imposing that there is no dependence of u for gy.

e One can choose p? = ¢, and thus find a,(¢?), but it is not necessary.
e QCD amplitudes can be decomposed into a color basis.

e QCD amplitudes factorizes into a scalar jet function, a matrix soft function, and a
vector hard function.

e The split (but not the amplitude) depends on an arbitrary factorization scale.
e The soft function is determined by the anomalous dimension matrix alone.

e The jet function contains all collinear dynamics, thus all double poles in €, and is
characterized by the cusp anomalous dimension and the collinear anomalous dimension,
together with the anomalous dimension matrix.

Further reading: See chapter 12.3 and 12.4 in [2] and book by Taizo Muta, ” Foundation
of Quantum Chromodynamics”, chapter 6.1 to 6.3.
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Exercises, Lecture 21

1) Prove that

as(p?) -2 Bo lnln/’{—i 1
= _ 2 yOo|—o . 21.38
r Bn(/A) B ik e (2) (21.38)
from 5 a Y Y
OKS as 1 Oés 2
G _ (S, (D) 12, 21.
'ua/zﬂ <7T) 2+<7r> 8’ (21.39)

for the choice of

e {2 (T (o Ba)] )
A uoexp{ﬁl (Oés(uo) 4511n Lks(,uo) (1+451 = +4ﬁlln 1 , (21.40)

2) Consider the decomposition of a 4-point gauge theory amplitude in coefficients c;j
related to box diagrams,

A(1234) = 1931 A1234 + C1342A1342 + C1a23A1423 (21.41)

where S
Clo3q = fealbfbagc]ccagdfda48 (2142)

is the color structure of the box diagram in Fig.67, where
fobe = Te([T°, T T°). (21.43)

Express cia34, C1342, C1423 in terms of Cpy, i =1,...,9.

Figure 67: Box diagram.
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22 Lecture 22. Factorization and the Kinoshita-Lee-

Nauenberg theorem.

In this lecture, we will first give a rather general theorem about the cancellation of IR
divergences in any physical transition probability, which happens when summing over initial
and final states, and then we will say some words about the relation between factorization
and evolution.

The KLN theorem

The theorem about finiteness of transition probabilities, when summing over initial and
final states is due to Kinoshita (1962) and independently by TD Lee and Nauenberg (1964).
It is somewhat more general than the specific case we are interested in, and it applies to a
general quantum mechanical system.

The formalism we will use is of quantum mechanics in the interaction picture. There,
the time evolution of states is

ioh0(1)) = gHu(D)]W (1) | (22.1)

and Hy; is the interaction part of the Hamiltonian, in the interaction picture, i.e. H =
Hy+ Hy, and

~

H[i = €iH0tI:I[756_iHot. (222)
The time evolution of states is with the evolution operator U,
(1)) = U, )|v(@)) (22.3)

where

U(t,t') = Texp

t/
—i / dt”th-(t”)] . (22.4)
t
The S-matrix is given by the matrix elements of
S = U(+00, —00) = U(0, +00) U(0, —o0). (22.5)

Then the transition probability between state |a) and state |b) is written as

(0] Sa)|* = Z(Riﬁj)*% , (22.6)
where
Ry, = (ilU(0,%00)|a)* (j|U(0, £o0)|a)
= (§|U(0, £o0)|a)(a|UT(0, +00)i) , (22.7)
so that

[{BlS]a)[* = (j1U(0, —00)|a)(alUT(0, —00)[d) (iU (0, +00) [p)(b|UT(0, +00)[5).  (22.8)
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We now calculate in perturbation theory (keeping only the first order in g)

+oo
(il5) — ig / dt" (il ot B, gem ol )
0

+oo
_ 5@] - Zg/ dt” iW(E;—E; )t//HI,ij
0

gH; i
Ei — Ej + Z'G‘

(i]U (0, £00)[7)

= 0y — (22.9)

Here we have used that |i) are eigenstates of Hy with energy F; at leading order, i.e. Hyli) =
E;|i), we defined
Hpi; = (i|Hislj) , (22.10)

and we have introduced a regulator in the exponential to make the term at +oo decay to
zero, et i(E;—Ej+ie)(foo) =0.

Therefore now to order g we obtain also

R:t _5 5 o gH;(m o gHja
e E,L'—Ea:[:?;ﬁ e Ej—Ea:l:iE

atj

Sia + O(g%). (22.11)

We now see the origin of the divergences we want to get rid of, corresponding to IR
divergences. If there is a degeneracy between states |a) (external) and |i) or |j) (internal),
i.e. £, = E;, corresponding to a degeneracy between real or virtual states, like e~ and e~ 4+~
with v having close to zero energy, then we obtain a divergence in Ram

The divergence will be eliminated by summing over initial and final states.

Let D(E) be the set of all states with energy E. Then, we want to show that

> ) [vlS]a) (22.12)

a€D(E) be D(E)

is free of (IR) divergences. From the decomposition above in terms of R*, the statement is
completely equivalent to the statement that

= ) RW (22.13)

a€D(E

has no (IR) divergences.
Proof. To show it, we explicitly calculate Rf;(E) case by case. We obtain

+ o .o
Rij(E) = 0, for i,j¢ D(E)

LI R jeD(E),i¢ D(E)= E;—E #0
Ei—E:FZf’
gHIji . .
= ——>2_ D(E DFE)=FE,—FE+#0
E; — E+ie’ or i€ D(E),j¢ D(E) j #

As we see from the above, it is finite in all these cases. ¢.e.d.
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Next we want to generalize the proof to all orders. We will proceed by induction, since
we already proved it at first order.
We first diagonalize the total Hamiltonian H by using U(0, +00):

U'HU = H, (22.15)
is diagonal (but is different from Hy, the free Hamiltonian). Then
(U, Hy] = UHy — HyU = (H — Hy)U = (gH; + AU , (22.16)
where we have used that H = Hy + gH; and defined
A= Hy,— Hy, (22.17)

which is a diagonal operator.
We expand in perturbation theory

A=) g"Ay; U=> g'Us; R=) g"Ra. (22.18)

Then we calculate

REE) = Y Ri(E Z Tt Z)<z’|Ur<07ioo>|a>*<j|Us<07ioo>|a>

aeD(E) a€D(E

ZQ”R?E” (22.19)

so that we get

R (E)=) Z iU, (0, £00)|a)* (j|Upn—r (0, £00)]a). (22.20)

r a€D(E

Then we have reduced the KLN theorem to the induction step for Rff”
following

Lemma.

If Rflj(E) is free from IR divergences for n < N, then Riij is free from IR divergences
forn < N +1.

Proof.

We prove it case by case.

i)i¢ D(E).

Consider (22.16) in between (i| and |a),

(E), i.e. to the

(i|[U, Holla) = (il(9H; + A)Ula) , (22.21)

and consider now the energies of the total diagonalized Hamiltonian Hyli) = E;]i). Then
applying Hy on the left hand side in the above on the states, and on the right hand side
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introducing a complete set ), |k) (k| in between U and (¢H;+A), and defining (i|Ali) = A
we obtain

(Ea — Ei)Uia = gH[’ikUka + AiUia- (22.22)

Since a € D(FE), buti ¢ D(FE), E;—E, # 0, so we can divide by it and write, after expanding
in powers of g both sides of the equation

Uria = & i ZHI,ikUr—l,lm+ZAs,z‘Ur—s,ia (22.23)
Then we obtain k S
Riy(B) = > Z tiaUn-ra
" acD(B
- E—lE Z EDZ (ZHM 1ka+ZA;Uf > n—nja
B E—lE ZHMkRn 15 +ZAZZRZEW (22.24)

Here, after the definition in the first line, we have substituted the expansion for Uy;, and
then re-formed Ri(E) coeficients, so that in the final form we have wa written in terms of
Rf; z](E) with m <n —1, as well as d5,; and H ;.

But we assume that Hj;x are finite (the matrix elements of the interaction Hamiltonian
cannot be infinite because of unitarity), and that A, is also finite (or at least is at each order in
g,i.e. A,; is finite), since those are the differences between the free and interacting energies,

and they must be finite (or rather, since we have chosen finite E,, E;, and A; = E; — EZ.(O),

the corresponding free values for the energies, E( ) , must be positive, so A; must be finite).
Then indeed it follows that if all R .. (F) for m < n are finite, so is R, 4(E). ged.

™m,ij
ii) j ¢ D(F). This case is the same with case i), because

(Ruij(B)" = Ry ;i(E). (22.25)

n,ij n,ji

iii) ¢, 7 € D(F). In this case, we cannot use the same equations. Instead, from unitarity,

UUT=1=> Uy, Ul =0,n#0, (22.26)

and by sandwiching it between (j| and |i), and inserting in the middle a complete set

S+ > | la)al (22.27)

a€D(E)  a¢D(E)

Z Z ryia ” TJG+Z Z ria n rjazo, (2228)

r acD(E r a¢D(E)

we get
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and since on the left we form RfZ](E), we get

R;iL:ZJ = Z Z r,ia n rja o (2229)

r=0 a¢ D(E

so it is IR finite, since all the matrix elements of an unitary operator (the evolution operator)
are finite.

g.e.d. Lemma, thus ¢.e.d. KLN theorem.

Thus we have proved generally that IR divergences disappear in physical quantities,
transition probabilities summed over all states of a given energy, which justifies the use of
QFT despite the presence of IR divergences.

Factorization and evolution

We now give some more general remarks about factorization and evolution.

The general statement of factorization is that the calculable, short-distance physics fac-
torizes from incalculable, long distance one.

The general statement of evolution in momentum transfer () is that physical quantities
that characterize the long-distance (IR) behaviour have an evolution in momentum transfer
due to emission of soft gluons, thus related to the IR divergences.

Factorization theorem

Factorization takes the form of a theorem, but needs to be defined for a specific case. We
will consider the case of hadronic structure functions F."” (z,Q%), Q* = —¢*, where q is the
momentum transferred, defined as follows. The hadronic tensor

' 1 . 7 i .
W,L(LZV) (pv Q) - g <h(p7 U): Zn|J;(L )T(O>|n7 OUt> <TL, OUt|J1£ )(0)|h(pa 0)7 ZTL) (271')4(54(]7” —q— p)
= &2 [ et ) inl (@) O)h(p. ). in) (22.30)

is written in terms of the electromagnetic currents, interacting with the hadronic states, and
is relevant for example for DIS (with the leptonic part of the amplitude taken out). It is
written as given tensor structures times structure functions,

W,uu(pa Q) = - <g;w Q;;QV) W1<I Q ) { Qu%} |:p1/ - QV%} W2(£7Q2>
e q;:; Wiz, Q?) (22.31)
and
Fi(z,Q%) = Wi(z,Q%); Fy(z,Q% =p-qWa(z, Q?). (22.32)

Then the factorization theorem for the structure functions (so really for the amplitudes)
is

Q) - % [ e (2L ) oo coanti®)
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(e, Q) Z/%@G,,<ﬂmmmmm» (22.33)

Here ¢;/, are the distribution functions of partons 4 in the hadron h and contain all long-
distance dependence (including all € IR depencence), and C; are IR safe functions indepen-
dent of the external hadrons h called coefficient functions, and contain all the short-distance
(Q?) behaviour. p is like a renormalization scale, more precisely a factorization scale, such
that the split depends on it, but not Fj(z, Q?).

We can define also valence distributions as the difference between the quark and antiquark
distributions,

S (NN T R (NN (TO BT (N (T (22.34)

which obey an evolution equation (similar to the Altarelli-Parisi equation for the full quark
and gluon distributions, but for evolution in p),

d (val) df val

et = [ € (Laid) dieat).  @25)
where Py are related to the quark- quark splitting functions P,

Of course, factorization and evolution and more general Concepts than in this particular
case, but it was shown in order to see the general principles involved.

dlog

Important concepts to remember

e The KLN theorem states that the transition probabilities summed over all the initial
and final states of given energy is free of (IR) divergences.

e Factorization means in general that calculable short distance physics factorizes from
incalculable long-distance one.

e Evolution means in general that physical quantities evolve in momentum transfer due
to the emission of soft particles, related to IR divergences.

e The factorization theorem says that structure functions (scalar functions parametrizing
amplitudes) factorize in distribution functions characterizing long distance physics, and
IR safe coefficient functions that contain all short distance (Q?) behaviour, and are
independent of the hadron.

e The factorization depends on an arbitrary renormalization (or rather, factorization)
scale p.

e Valence distributions obey evolution equation in .

Further reading: See chapter 14.3 and 14.1 in [2] for factorization and evolution, and
book by Taizo Muta, ”Foundations of Quantum Chromodynamics”, chapter 6.3.3 for the
KLN theorem.
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Exercises, Lecture 22

1) Consider the 1/N expansion of the IR-divergent amplitudes at L-loop, |A®)(¢)),
1

AD() = IOEIAY) + A0
AD() = IPIAY) + IO IAV(E) +]AD(0)
AD() = IO (OIA) + T (AD () + T4 (e)) + A5 (ef22.30)

where IX)(¢) are divergent and |A*)(¢)) are finite.
For 4-points in N' =4 SYM, we have

1MW) = ZZT T; (_S )

1 1; = Tla%]at Jz (ki + k)% T = (T") ey = i fesan,
190 = —L 0] = Nese() 10 26) + 49 [_% iiT T (N_2>2 LA
2 2 4e 2 riews B —5ij
cle) = 1+1—;e + O(e%)
H® = —A[Ty-Ty, T, - Ts]log < ) log ( ) log (u) (22.37)

Note that T/ is a matrix that acts on, e.g., (b1bebsby), to change b; to ¢;. Prove

|A(2)(6)> = % (1)( )|A(1)(€)> _ %(CQ + €C3>C(€)](1)(26)|A(0)>
1 c(e ) 1 ) ,
TN e #1AD) + 2N]( (AN (e)) +]ABD). (22.38)

2) In the basis |Ap), i = 1,...,6 (single trace) and i = 7,8,9 (double trace), expand

1 N € €
10(e) = — ( 7(:‘ ]\f 5) . (22.39)

Find the O(1) matrices (6 X 6), (6 X 3),7.(3 X 6),0.(3 x 3) in terms of
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23 Lecture 23. Perturbatives anomalies: chiral and
gauge.

In this lecture we start the analysis of perturbative anomalies in global and local symmetries.
Chiral invariance
For a linear symmetry

¢'(z) = ¢'(z) + a*(T")" ;¢ (x) , (23.1)
such that the Lagrangean changes only by a boundary term
L— L+a""]], (23.2)

the Noether current is

Julz) = 50 (Ta)iquj — Ji(x), (23.3)
and is conserved, i.e.
o*j, = 0. (23.4)
The action for a massless fermion in Euclidean space,
L=yy"Dyb, (23.5)

where 1) = iy* (= 1), is invariant under the chiral symmetry

V(x) — e~ (14 iays)y

Bla) = G (1 +iars). (23.6)
That means that a mass term breaks the symmetry, since
manp — mape* 19 = majnp. (23.7)
Then we have the conserved chiral current
gy =Uys; 0 = 0. (23.8)

In QFT, we expect the conservation to occur for VEVs, i.e. the Ward identity
(0" (x)) = 0. (23.9)

We review the derivation: For a general global invariance ¢ — ¢', renaming the field in the
partition function from ¢ to ¢/,

/ D'e 51 = / Depe 19 (23.10)

IF the Jacobian for the transformation is one, i.e. the measure is invariant, D¢ = D¢’, then
0= / Do [e—SW - e—S[ﬂ _ / Do S[ple5. (23.11)
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But if under the global symmetry 65 = 0, under a local version of the global symmetry, the
variation of the action is

55 =% / (@ e ()jo@) = — 3 / 2t (2) (012 (x)) (23.12)
and substituting this in the above, we get
0= /d%e“(x) /D¢6_S[¢]a“j5(x). (23.13)
Since €*(x) is arbitrary, we can take out the integral and write
0= / Doe 510" o (z) — (0"j5(x)) = 0. (23.14)
We can also repeat the same process for the partition function with insertions of ¢(x),
and obtain various Ward identities.

In conclusion, we obtained that the quantum non-conservation of the current, i.e. an
anomaly, (0"j;;) # 0 appears when there is a nontrivial Jacobian for the measure.

M < NN A <
Vv N g
AVAVAVA > AVAUA VAN A b)
A (©) A A

Figure 68: Anomalous diagrams. The crossed vertex connects to an outside current diver-
gence, 0"j, (), and the other ones to external gauge fields. Chiral fields run in the loop. (a)
Anomalous bubble diagram in 2 dimensions. (b) Anomalous triangle diagram in 4 dimen-
sions. (c) Anomalous box diagram in 6 dimensions.

Chiral anomaly

A fact that will be explained a bit better further on is that anomalies are one-loop exact,
i.e. there are no perturbative or non-perturbative corrections to it, and they arise in even
dimensions d = 2n from one-loop diagrams with n+ 1 = d/2 4+ 1 vertices, one of them being
the symmetry current, or more precisely 9" j;;, and the other n being gauge currents coupling
to external gauge fields A%,
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That means that in d = 2, the anomalous diagram is a bubble with two vertices, in d = 4
it is a triangle, in d = 6 it is a box, in d = 8 a pentagon and in d = 10 a hexagon, see Fig.68.

d=2 Euclidean dimensions

We will calculate everything explicitly only in d = 2 Fuclidean dimensions, since it is
easier, and there is nothing new appearing in higher dimensions other than longer calcula-
tions.

The Lagrangean is

- 1
L =+Yy,D, 0+ ZF’E” + ghosts  +gauge fix , (23.15)

but we are interested only in the fermion part, since the gauge fields are external.
Then

S(] = /d%%‘”g;@i/}
St = —ie / d?x) M. (23.16)

The anomaly is

@55y = | DD jetie #eiave—s
! | DyYDipe—5o
~ @5+ ie [ EAT @RI+ O (@317)

but the first term is zero, since

(0" g (@))o = 0u{(2)y" 159 (2)) oc Tr[y"y5] =0, (23.18)

which means that we have

(0"jp(x)) = iedu / d*y AT (y) (s (2)Par (Y))o (W )arp (Ve (Y)W ()0 (775) s
- 8 exr
= deg /dZyA,/ Hy) Tr[Sh(x — )7, Se(y — 2)vu7s)- (23.19)
The diagrammatic interpretation for this result is as a bubble diagram, with z* and 0,. at
one vertex, and y” at the other, with the external gauge field there, i.e., exactly the diagram
we said would contribute.
When going to p space, the diagram has now p, at both ends (—p, at the other, with
the ”all in” convention), and k and k + p on the two lines of the loop, as in Fig.68a, i.e.
. exr ko ex
(Puip) = epuAy™ (—p) / 2ne Te[Sp(k) 7 Sp(k + p)vuys] = epu AL (=) T (p).  (23.20)

We now regularize using dimensional regularization, introducing the parameter p, and using
that for the massless fermion S% = —i/p = —ip/p?, we get

e / A’k Tr[(Vaka) v (k + P)sV5707s)
) @n) k2 (k + p)?

T (p)
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= —,uzfd Tr[y, Y5 Ya Yo V8] - (23.21)

Then the integral is
;- / d ko(k+p)s / / dk ko(k+ p)s
N 27Tdk2k+p (k2 4+ 20k - p + ap?)?
_ / / ddk' 1 - Oé)p)ﬁ
N k’2+p a(l—a)]
/

N / d“/ - buf;’??-@] _O‘“_“)p“pﬁ[kaw?i(l—a)]?}(23'22)

where we first wrote k;, = k, + ap, and then used Lorentz invariance to put to zero the
integral with a single &/, in the numerator.
Using the results from lecture 6 for the integrals, we get

. /1 o [ Sap ['2-d/2) ol —a)paps  I'(2-4d/2) ]
o 7 (B DT el T el e
_ - _pozpﬁ _ alall — a d/27' )
(47T)d/2(p2)1—d/2 [ 2_4d Oap n? I'(2 d/Q)} /0 dafa(l )] 1(23 23)

We note then that the « integral is 1 in d = 2, and in the square bracket, the first term is
divergent, and the second is finite, and proportional to p,ps. But I is multiplied by a trace,
and in d = 2 we have

Tr[vuV5YaY8lPaps = 0, (23.24)

so we can drop the last term, and we dimensionally regularize the trace, to obtain o< 1/(2—d)
from the integral and o (d — 2) from the trace.
Indeed, using that 47 Ya = =7 (Ya)? + 2000V = (2 — d)7,,, we have

0% Ty v5 Y vs) = (2 = d) Telyys] = =202 = d)eg (23.25)
where we have used (since "7v5” = 73 = —iv172)
VYo = 1675 + Opw- (23.26)
Then
1
T, (p) =+ (2 = )it 75— d&fﬂ;%@l)l_d - /0 dafa(l—a)30 . (23.27)
so that when d = 2 we obtain _
T (p) — %e,w. (23.28)
Finally then, '
(uibp)) = S e AT (<p) | (23.29)
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or going back to position space

e (OuAF —0,AS) e -

w5\ T — 7 prext
(0" 4u) = 5w 5 5 (23.30)
where 1
Fert = §eHVF;§t. (23.31)
Going back to Minkowski signature,
(0"50) = %F“ (23.32)

d=4.
In 4 Euclidean dimensions, we have a triangle anomaly, and the calculation is similar,
though longer. A similar expression is obtained in the end,

. 9
. e rext ex
(0" 5p(@) = — ez Fu Fa' (23.33)
where .
Fit = o P77 (23.34)

When going to Minkowski space,

62 rrext puvext 62 uvpo rrext rrext
1672 F/U/ FHY = W€ F,LW Fpo‘ . (2335)

(0" jp()) =

Properties of anomaly

There is a theorem, called the Adler-Bardeen theorem, that the anomaly is one-loop
only (and only comes from the given polygonal graphs). It can be proven rigorously, and in
the path integral we will see it in the next lecture, but here we give just some plausibility
arguments. Note that sometimes the anomaly is called the Adler-Bell-Jackiw anomaly.

We note that in d = 2, the anomaly was the result of the trace of 4 gammas and a s,
being proportional to (d — 2)e,,, times a log divergent diagram with two massless fermion
propagators, [ d*k(1/k)(1/k) < 1/(d —2). We can see that at higher loops we will not have
this near cancellation anymore. Also at higher points we will not have it anyrmore.

In d = 4, we also have a trace with 6 gammas and a 75, being proportional to (d—4)é€,.p0,
and a log divergent diagram with 3 massless fermion propagators, [ d*k(ka/k?)(kj/k*) (k! /k?) o
Pa [ d*k/E* o< 1/(d —4) (since there are no Lorentz structures with 3 indices, this is the only
possibility). Again at higher loops or points, we don’t have this cancellation anymore.

Note that we have only considered massless fermions, massive fermions, with mass term
allowed by the symmetry, do not contribute to the anomaly.

The anomaly cannot be removed by a local counterterm, so it is genuine.

What we can do in 4 dimension is write the anomalous contribution as a boundary term,

F, F" = 40,(e""° A,0,A,) (23.36)
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which allows us to subtract it from the current, defining
o2
j# = jz A QEMVpUAVapAU (2337)

which is conserved, and the conserved charge

Qs = / d*zjj. (23.38)

But the new current is not gauge invariant, since under a gauge transformation 04, = d,c,

the current changes by
o2

O =1 0P AT . (23.39)
Yet the charge,
Qs = Q5 — Scs|Ail (23.40)
where Scg is called the Chern-Simons term or Chern-Simons action,
o2
Sos[Ai] = ye / d*xet A0, Ay, (23.41)

is invariant, since the variation of the current is a total derivative.

Chiral anomaly in nonabelian gauge theories.

We can embed the chiral symmetry in a nonabelian theory of massless fermions. The
Euclidean action

S = / d*zpy" D, (23.42)

where D, = J, + gA},T*, still has an abelian chiral symmetry. Not surprisingly, it is just a

trace, i.e.

9

"jo = o3 Te[F*™E,,) (23.43)
and it is usually called also chiral anomaly, or singlet anomaly.
Note that )
Tt[F*™F,,) = 0, [46WP0 Tr (A,,apAU + gAyApAU)} : (23.44)
so that the redefined current is
s 9 2
S =7 Tr | A,0,A, + gAVApAJ . (23.45)
The redefined chiral charge is
~ e
Qs = Qs — Scs[Ai] = Qs — BBt Ty {A 0; A + 3A A Ak} . (23.46)

But now, unlike the abelian case, under a gauge transformation

1
Ay = UAU + gc“)iUU_l , (23.47)
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the Chern-Simons term transforms by (27 times ) an integer m,

Scs[Ai] — Scs[Ad] + 4%2 / dBre* Te[o,UU'o;,UU o, UU ], (23.48)
the extra term being a topological quantity characterizing the 3 dimensional gauge transfor-
mation called a winding number m.

Therefore now the Chern-Simons term is not invariant anymore under ”large gauge trans-
formations” which are gauge transformations of nontrivial winding number, therefore not
connected smoothly with the identity. That means that now Qs is not gauge invariant
anymore, so the global symmetry is explicitly broken by the anomaly.

The term appearing in the anomaly gives an important topological quantity characteriz-
ing the 4 dimensional gauge configuration,

2
n = ﬁ / d*z Tr[F,, F™] (23.49)
is called the Pontryagin index or instanton number.

Gauge anomalies

Up to now we have discussed anomalies in global symmetries, which are good anomalies,
that have physical implications, and can be measured.

But there is another type of anomalies, in gauge symmetries, that are bad anomalies,
and signal the breakdown (inconsistency) of the quantum theory, so must be cancelled to
have a good theory.

If we have chiral fermions, ¥g , = (1£75)/2¢ coupled to gauge fields, we have a potential
anomaly in gauge invariance. For instance, for a v, with Euclidean action

-1
5= /d‘*w%gpw , (23.50)
we have a Noether current for the gauge symmetry
a -1+ o
Jo =~ (23.51)

that is covariantly conserved, (D*j,)* = 0.

In this case, similarly to the global case, at the quantum level there is a potential anomaly
that can come from a Jacobian for the transformation of the measure, or otherwise from a
triangle graph, with (D*j,)* in one vertex, and A,, A, in the other, similar to the case in
Fig.68b.

One obtains the triangle anomaly

(D"joy = 0, { P Ty [T“ (A,,GPAJ + %A,,APAJ)} } . (23.52)

2472

We see that now we have a T inside the trace, and the anomaly is proportional to

dape = Te[T*(T°T¢ + TT")). (23.53)

237



However, as we said, this anomaly must cancel, so we must add up represenations of fields
such that the total anomaly is zero for a good theory. This is what happens for example in
the Standard Model, as we will see in lecture 25.

We also notice that the coefficients of the quadratic and cubic terms inside the trace are
different from the singlet anomaly case. We will explain this next lecture.

Finally, why do we need to cancel the anomaly? Since now gauge symmetry kills degrees
of freedom (in 4 dimensions, a vector boson has 3 degrees of freedom, but using gauge
invariance we reduce them to two), so if gauge symmetry would be broken at the quantum

level,

it would mean that there are a different number of degrees of freedom at the classical

and quantum levels, which is nonsensical.

Important concepts to remember

Anomalies mean non-conservation of a symmetry current at the quantum level, due to
the non-invariance of the path integral measure.

Anomalies are one-loop exact and arise in even dimensions d = 2n from polygon graphs
with one 0"j, and n gauge currents coupled to external gauge fields.

In 2 Minkowski dimensions, the anomaly is e/(47)e" Fo!, and in 4 dimensions it is
e?/(167%)e"P7F,, Fyp.

The anomaly is the derivative of the Chern-Simons current.

The Chern-Simons action changes by a winding number under large gauge transfor-
mations.

The anomaly is given by the topological invariant Pontryagin index or instanton num-

ber.

Gauge anomalies are bad, and must be cancelled for the consistency of the theory.

Further reading: See chapter 8.1, 8.2, 8.4 in [5], chapter 19.1, 19.2, 19.4 in [3], 22.3
and 22.4 in Weinberg vol.II.

238



Exercises, Lecture 23

1) Write down (up to a coefficient, which would be calculated from the one-loop diagram)
the abelian chiral anomaly (0* ]3(35)} in d = 6 dimensions, and the corresponding jg and Qs,
justifying your work based on one-loop diagrams and symmetry arguments.

2) Consider 2 dimensional conformal invariance, symmetry of flat space field theory under

the complex holomorphic transformation 2’ = f(z), 2’ = f(2). Is an anomaly for it allowed,
or not, and why?
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24 Lecture 24. Anomalies in path integrals- the Fu-
jikawa method; consistent vs. covariant anomalies
and descent equations.

In this lecture we will consider anomalies from path integrals following Fujikawa, and we
will explain the various nonabelian anomalies and how they are related through the descent
equations.

Chiral basis vs. V-A basis

But first, some equivalent way to express anomalies. In d = 4, one can consider together
the anomalies by defining an axial vector current

= 559 (24.1)

For S = 1, we have the chiral current, or singlet current, and for S = T“ we have the
nonabelian current.
The anomaly comes from triangle graphs with one O = D* ji’s and two A’s, so

<D“j2’s> ox €770, Tr[S(#A,0,A, + #A,A,A,)]. (24.2)

The coefficients will be fixed in the second part of the lecture, from the descent equations.
Sometimes one considers, instead of the chiral basis v, g for the spinors, Dirac (nonchiral)
fermions, coupled to vector and azial vector gauge fields,

£ = iy (B, + VOTu(V) + AT, (A >75W+i<Fa (V)2 +5<FG (A2 (243)

It can be rewritten in terms of the chiral basis as

_ S . 1 1
L= 17Dy’ + i gy Dy pt)* + F(Fﬁf)a)Q + @(Féf)“f ; (24.4)
L R
where
and AL + AR AL — AR
_|_ —
= %; A, = % (24.6)

In the V,A basis for instance, we can write the chiral (singlet) anomaly (S = 1) as an AVV
piece (diagram) and a AAA piece (diagram), with

) ) 1 ) . .
etre F;T(V)F;g"(vwr3F;g"(A)F;;"(A) el Tr[T T (24.7)

where €’ is the abelian charge of fermion j.
Anomaly in the path integral - Fujikawa method.
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As we already mentioned, the anomaly in the path integral appears because of the non-
invariance of the path integral measure. We want therefore to expand the 1, ¢ fields in
eigenfunctions of ¢]) and see how it transforms under the chiral invariance.

We write therefore

¢(I) - Zan¢n(x)
d(x) = D eh(@)by (24.8)

where
19 Dubn(2) = Mtnla) (24.9)

and the eigenfunctions are orthonormal, i.e.

/ 6! (2)bm(T) = o (24.10)
Then the path integral measure is written as

DYDY = [ [ dbn [ [ daun- (24.11)

Under a local chiral transformation on a, and b,,, we get

r) = Y an(r) = ¢ (x) = (2 Za ¢, (x) (24.12)
so, by multiplication with ¢, (z) and integration, we get
a, = Z/dm* I (1) = 3 Comt
o, = Zb / dzgl (z)el @B, (x Zb Crun- (24.13)

Then the path integral measure transforms as

Hdb’ Hda (det ©) 2Hdb Hdam, (24.14)

meaning that the Jacobian is given by (considering an infinitesimal chiral transformation)
C = 1+a+0(?
b = / At (2)156m (x) (24.15)

so that

(det )~ = ¢~ TrlogC@ — o~ Tra+0(a?) /dacozz¢T 5o (x) + O(a?).  (24.16)
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This result is formally divergent, so it needs to be regularized, with a regulator that
maintains gauge invariance.

One possibility is to use zeta function regularization (see QFT 1), by turning the integral
into

> Aiscbl(w)%cbn(w) : (24.17)

and then taking s — 0. This is done by analogy with Riemann’s zeta function,
1
= —. 24.18
(=3 (24.18)

But here we will instead follow the regularization used by Fujikawa, which is

> ol (@)yse MM g, () (24.19)

and then take M — oo. Note that the above sum is understood (since i) ¢, = A\, ¢,,) as

S k@)1 u(2) = S (nlzhyse i (o)

n

2 ddk ) 2
- [’x>%eﬁ2<x|] :Tr“/ (2w)d€”‘”756326““‘$, (24.20)

where in the last form we have expressed the trace in the momentum basis, and the remaining
trace is over the spinor indices.

Lemma.
o 22 ik _ k2 P+2iktD,
e Mremz ™t = | e MZe a? I(x), (24.21)
where
@2 = D2 - ieUMVFMV ) (2422)

and o, = i/4[v,,7.] (note that we are in Minkowski spacetime).
Proof. First we note that

p?*=D,D,~"" = D,D,(§" +~+") = D*—io,,(D,D,—D,D,) = D*—iec,,F,,. (24.23)
Then, when acting on a function f(z), we have
e—ik-xp 2€ik-:pf(x) — w Qf(x) 4 (e—ik-:pD 2e+z’k-m) f(l’) ’ (2424>

where (e~**]p2et* ) = (—k? + 2ik*D,,) (the second term is from one D, acting on f(z)
and one on e¢*? and the terms with I are part of the D2 f(z) piece). That means that

) p2 2 p242kHD
e—lk‘xemezkw — (eA’iIQQMQH) ﬂ(.T) ’ (2425)



q.e.d.lemma.
Then we can write our regulated sum as

Ak e P2+ 2ik"D, | (P?+ eik"D,)?* L
T IMQ = M2 = -
E O () 7527 () /(27r)de o (75 {H VR T VE +O<M6)D'

(24.26)
But the first term, though potentially divergent, is actually zero, since Tr[ys] = 0. The same
applies to the term with Tr[vys(2ik*D,,)]/M?.
d=2.
We now specialize to two dimensions. Then the remaining term with /0?2 is the only
nonzero one, since [ d*k/M?(2r)2e~*/M* = 7/(27)?> = 1/4r (double Gaussian integral) is
the only finite term (the further ones are suppressed by powers of M as M — o0). But also

. i €y
7#71/ = Z75€,uu + 6,uu = TI'[’}/5O'W,] - Z Tr[7u7u75] — V< H= -+ TI‘[ ]1] - (:U’ & V) = _epw )

4
(24.27)
so finally
dPk/M? _2 e (1 ,,
Zqﬁ* 7561\12 bn() = / (27{)2 e i (iee Fly) = o (fﬁ FW> . (24.28)
Then the anomaly, coming from the transformation of the path integral measure, is
DyYDy) — DYyDip(det C)~? ~ DyYDe (1 — E) /dxa(x)p(x). (24.29)
™
d=4.
In d = 4, because
d*k/M* _ 2 w2
T M = — 24.
| e = (2430

the only nonzero term is the one with 1/M*. Indeed, now also Tr[y50,,] o Tr[€ummy?] =0
as well, so the only nonzero term is from

d*k/M* 21 Ak /M 2 —e?
/;e fﬂQTr[%uDQ)Z] :/ / e Tr[5000p0 ] Fyuv Fpo- (24.31)

(2m) (2m)* 2
But since . .
Tr[V500 0] = -2 Tr (V5 YV po) = — 1 Cmro Tr(1] = —i€upo (24.32)
where we have used
VYoo = 1€uvpoYs = (Oupdve — Oucdup) (24.33)

(which can be proven by first putting p = 1,v = 2,p = 3,0 = 4 and identifying the two
sides, then pu = p, etc.), we have

7 52 7 52

€ € ~
ZqﬁT 75eMz¢ (v) = g5 5" FuFpo = 1o Fu P, (24.34)
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and the anomaly is

DYDY — DYDY (1——822 dm(a:)FWFW) , (24.35)
T
SO
) = 2 g, P 24
(0"ju) = g 5 Ew ™. (24.36)

Consistent vs. covariant anomaly

The nonabelian anomaly can be found up to an overall coefficient from consistency con-
ditions found by Wess and Zumino.

The conditions come from the fact that the anomaly must be the gauge variation of the
effective action I'(A). We define the gauge variation of the gauge field for a left-handed
fermion anomaly,

Ap A = (D, (A)AL)" = 0,A7 +[A,, AL, (24.37)
i

and we introduce the operator of gauge variation which varies the action with respect to A,
and then the multiplies by the gauge variation of A,

0

6AL = XL(AL) = (@LAL + [AWALDCL@. (2438)
1

If the anomaly G, is the gauge variation of the effective action I'(A), it follows that
oa, T(A) = X (AT (A) = / d*zASG,. (24.39)
But then the group algebra,
(Xo (ML), Xp(AP)] = Xo (A7) AL (24.40)
implies that when acting on the effective action we get

/ dTAP5, 1. Ga(A) — 1 45 2 = / d'z[AV APeq, | (24.41)
L

which is the Wess-Zumino consistency condition.
The unique solution to this equation (up to a normalization constant) is

Gu(A) =Tr {T“d (A NdA + %A NAN A)} . (24.42)

Substituting in the consistency condition, and partially integrating d onto A(L2) on the left
hand side, we obtain the condition

1 1
/Tr [dA(LQ)éA(Ll) (A/\dA+ §A/\A/\A)]—(l —2) = /Tr [6[A<Ll>’A(Lg)] <A/\dA+ §A/\A/\A>} ,
(24.43)
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which is left as an exercise to verify.
Then the anomaly
orA)
§Ae 2472

Ga = Du(A) P Ty {Taau (AyapAg + %A,,A,,Agﬂ (24.44)

satisfies the consistency conditions, so is a consistent anomaly, but is not covariant under
gauge transformations. This anomaly has physical meaning. However, theoretically, it is
better to work with covariant expressions. We can add a local counterterm to the effective
action or to the current J; and find a covariant anomaly, which is important theoretically.
Then
Go= D, J"+ D, X" =G, + D, X" =D,J" (24.45)

However, the covariant anomaly is not consistent (i.e., it does not satisfy the Wess-Zumino
consistency conditions).

Descent equations

Both the consistent and the covariant anomaly appear in the so-called (Stora-Zumino)
descent equations, that start with the Chern form in 2n + 2 dimensions, F"*D. Here as
usual F =dA+ANA= %Fw,dx“ A dz”.

For instance, we start with the Chern form in 6 dimension, wg = Tr[F' A F' A F]
et T [F o F i Fusps]- Then dwsy, 0 = 0, since

d(Tr ™) = (n+ 1) Te[(dF)F"] = (n + 1) Te[(DF)F"] =0, (24.46)

where inside the trace we can replace dF' with DF', but DF = 0 by the Bianchi identity.
That means that at least locally, though in fact globally, as we can explicitly check by
exterior differentiation, wy, 1o = dwa,y1, Where wsy, 1 is called the Chern-Simons form in
2n + 1 dimensions.

For instance wg = dws, and we find

ws = Tr dA/\dAAA+gdA/\A/\AAAJr%AA5 : (24.47)

Under a general variation §A, the Chern form varies as
dwonie = (n+ 1) Tr[(DOA)F"] = (n+ 1) Tr[D(SAF™)] = (n+ 1)d Tr[6AF™] | (24.48)

where we have used the Bianchi identity DF' = 0 to take out D, and when D is outside the
trace it becomes d (since there are no more indices for him to act on). Finally we find

5dw2n+1 == d5w2n+1 > (2449)

which means that
dwoni1 = (n+ 1) Tr[6AF"] +d(...). (24.50)

As a consequence, the field equation of the Chern-Simons action [ wo,iq is F\" = 0, so is
covariant.
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But under a gauge variation,

 gannge / Wonin = (n+1) / Te[DAF™] = (n + 1) / d(Te[AF ) =0, (24.51)

where again we have taken out D using the Bianchi identity, and outside the trace, D
becomes d. That means that
6gaugew2n+1 =dY. (2452)

In fact, in our example, we find explicitly

i 1[0 (4t Sana )] < frena (anaa S an )|

(24.53)

So, in general, wa, 42 is the singlet anomaly in d = 2n 4 2 dimensions. dgaugews gives the

consistent nonabelian anomaly, and the field equation of ws gives the covariant nonabelian
anomaly. In general,

Witz = dwopyi
a
dgangeWon+1 = dA*G,(cons.)

5 N
Tr (T“d—A/wgnH) = Gy(cov.). (24.54)

These are the descent equations.
d=2. As the simplest example, we consider 2 dimensions. The consistent anomaly is

G = 0, A% | (24.55)

and the extra current piece is
Xl=ce"A, ., (24.56)
leading to
G = D,J" + D, X" = c0,A,e" + ce"” D, A, = c(9,A, — DA, + [A,, A" = cF, ™.
(24.57)
d=4. The more relevant example is of 4 dimensions. Here the consistent anomaly is

G,=cTr {T“d (A/\dA—l— %A/\A/\A)] , (24.58)
and the extra current is
X, =cTr {Ta (dA/\A"‘A/\dA"‘%A/\A/\A)] , (24.59)
leading to B
Go =G, + DX, = cTr[T,3F N F]. (24.60)

Important concepts to remember
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e We can write the anomaly in the chiral basis or the V-A basis.

e In the path integral, the anomaly arises because of the non-invariance of the measure.
The Fujikawa method regularizes the sum over eigenfunctions of i) with e? MR

e In the Fujikawa method, it is obvious that the anomaly is one-loop exact.

e The nonabelian anomaly must satisfy the Wess-Zumino consistency condition, leading
to the consistent anomaly, but is not covariant. It has physical significance.

e By adding a local counterterm to the effective action, or to the current, we can construct
a covariant anomaly, that is however not consistent. It is theoretically useful.

e The various anomalies appear in the descent equation that starts from the Chern form
in 2n+2 dimensions. The Chern form is the singlet anomaly, ws, 12 = dws, 1 and the
gauge variation of the Chern-Simons form ws,,; gives the consistent anomaly. The
field equation of the CS form is the covariant anomaly.

Further reading: See chapter 8.3 in [5], chapter 19.2 in [3], 22.2 in Weinberg vol.II.
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Exercises, Lecture 24

1) Regularize 3>, éf (2)757,¢n () with e?*/M* in d = 4 and calculate it.
2) Calculate the d = 6 anomaly in the Fujikawa method.

3) Prove the relation stated in class,

d=2
G = c0,Ae"”
ch = ceA,,
G = c"F,=G+D,X"=D,J"+ D, X" (24.61)
d=/4

G, = cTr [T“d(A/\dAnL%A/\A/\A)]

X, = cTr{Ta(dA/\AjLA/\dA—i-;A/\A/\A)l
Gy = Gu+DX,=cTe[T*3F ANF], (24.62)

and find the expressions in d = 6.
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25 Lecture 25. Physical applications of anomalies: ’t
Hooft’s UV-IR anomaly matching conditions; anomaly
cancellation.

In this lecture we present physical applications of anomalies, as well as theoretical applica-
tions, for restricting the set of consistent models.

70 — vy decay

The most famous physical application of anomalies is to the decay of the neutral pion,
into two photons.

The pions 7%, with a = 1,2, 3, are related to the divergence of the axial vector current

Mg, ie.
a

gt~ i(x)%vmtﬁ(w) 7 (25.1)

where the 0% are Pauli matrices for a flavor SU(2) group. More precisely, in quark models,
where the pions are gq objects (one quark and one antiquark), we have

5 . _ o
]Z’ () = 2im, <Q”Y57’Y;AI) : (25.2)
But as we explained, we cannot really think of hadrons as having a fixed number of partons,
but as having distribution functions for partons inside the handrons, due to the strong QCD
interactions (”hadronization”). The claim is that under hadronization, the above relation is

replaced by
8“]'2%(“1. = fwmiﬁa ; (25.3)

where f is the pion decay constant, that can be independently measured from experiment.
The above relation is called the PCAC relation, standing for ”Partially Conserved Axial
vector Current” relation.

%

quarks

"

Figure 69: Anomaly for I decaying into 2 photons via a quark loop.

The relation is OK for 7%, corresponding to the Pauli matrices o, but is not quite
correct for m°, corresponding to the Pauli matrix o3, since there is a decay of the pion into
two photons. More precisely, we hace a decay of 0* jﬁ’?’ into two photons through a triangle
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anomaly diagram, as in Fig.69: first the current divergence 95> turns (mostly) into a 7°,

after which the 7° dacays through a one-loop chiral fermion triangle diagram into two ~’s.
Then, more precisely, we have

aﬂ 5(A = f7rm :t(x)

2
o3 — £ m2rd(x) + e— ‘
i wht 1672

2
el S (25.4)

where the extra term is the anomalous contribution. The relation is correct to all orders in
a, but only to first order in «.

The coefficient ¢ can be calculated as follows. If it was an electron in the loop, we would
have ¢ = 1, since we have already calculated the U(1) chiral anomaly. But for quarks in the
loop, we have ¢ = N../6, since

Rl =y 4)s v=(4) (25.5)

ol

Note that the Q? is the charge squared of the quarks, appearing because of the quarks
coupling to each of the external photons with the charge Q.

We now consider the m, — 0 limit, which is consistent, since the pion is the lightest
state in QCD by approximately an order of magnitude.

We consider the matrix element of jlj"?’ in between a photon state and the vacuum, i.e.
the decay amplitude from vacuum to two photons, through the anomaly. The matrix is
dominated by the intermediate state of a pion, i.e.

(€', p" € P52 (0)]0) = Y (el phi €, pP 0, ) (0, 15 (0)]0) (25.7)

—

q

and so

where €', € are the polarizations of the two photons, and p', p? are their two momenta.
On the other hand, the matrix element of the pion operator between the vacuum and the
pion state is

(m", q17"(0)[0) =

, 25.8
= (25.9)
which is just the relativistic wave function normalization. But by the PCAC relation (25.4),
considering that the anomaly part has no matrix element between the pion and the vacuum,
we can replace 7°(0) with q“]A?’/(f7r 2) between the states, and given that qu = m?2, we
obtain
0 = -A310\ _ (Juf 7
(7, q17,°10) = —=—=. (25.9)
2wy
Now we consider the PCAC relation (25.4) in between the 2-photon state (e!, p'; €2, p?| and
the vacuum |0).
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On the right hand side we obtain

Ne € o N, € oo
(61,291;62,?2\?@(6“ P Fuw ko) [0) = % 162 (8P e exp,p?) (25.10)

where F,|e,p) = 2¢,pyle, p), and an extra factor of 2 comes because each F' can act on
both (ep) pair. Therefore now the (25.4) relation in between the states becomes (note that
e?/27? = 2a/7)

, alNe\ oo
(€' p's e, p*05,1°10) = (;g) €7 e, ELD,Py- (25.11)

Finally then, using the relation (25.7) with the normalization (25.8), the above relation
gives the amplitude for a pion to go to two photons,

a N, 1
™ 3 fr

since the ) -1/4/2w, gives the propagator 1/¢*, which cancels the ¢, coming from (7%, g|o%j;|0).
Then, using the relation between the decay probability I' and the amplitude given in
QFTI (eq. 19.49),

0 _1/d3p11/d3p211 0 2 agdr 12
M 29 = 5o [ i [ Gongg (DM = 20 ) @n)'eta - )

pols.

prpo 1 2 1. 2

A% = 29) = (e, p'; €, %70, §) = P . €,D,D;y 5 (25.12)

(25.13)
After some calculation that will not be reproduced here, we find
1 (aN, 1\
N’ —2y)= — [ —=°— )2 25.14
2 = g (25 ) m) (25.14)

This is tested experimentally to a high degree of accuracy, and one verifies that N, = 3.

Nonconservation of baryon number in electroweak theory

The second important physical application of anomalies is to the non-conservation of
baryon number. The gauge group of the Standard Model is SU(3). x SU(2) x U(1)y, where
the electroweak gauge group is SU(2) x U(1)y-.

We first describe the fermion field content of the Standard Model. We have the lepton
and quark left-handed SU(2) doublets

L= (6”;) Q= (gg) , (25.15)

1—
er, = 2756— , (25.16)
and its right part is the full matrix
1
R— 275 - (25.17)
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since the neutrino does not have a right-handed part in the (minimal form of the) Standard
Model. A singlet right-handed neutrino is the simplest extension of the Standard Model.
We have a similar relation for the quarks, and we have 3 generations of fermions, which
will be implicit in the notation.
Therefore in Euclidean space, the lepton part of the action in interaction with the elec-
troweak gauge group (ignoring the color gauge group) is

iy .
Sleptons = /d4x {R%(au —ig'B,)R + I_/yu (GM — %BM + %AZUQ> L} , (25.18)

whereas the quark part of the action is

Squarks = /d4ZL’
(25.19)

Note that here B, is the U(1)y gauge field, so the Y7, and Yy are hypercharges for the L and
R fields, and Af are the SU(2) gauge fields.

We note that the above action has as conserved quantities the baryon number B and the
lepton number L (we can consider also the independent lepton numbers, for each generation,
L., L,, L;, but these are approximate symmetries). A quark has B = 1/3 such that a
baryon, made up of 3 quarks, has baryon number 1 (B(B) = 1). On the other hand, all
leptons have lepton number I = 1. Then B and L are classical symmetries of the above
Standard Model action.

However, we have chiral fermions, so in fact B and L are anomalous: we have an abelian
(singlet) anomaly in a nonabelian theory, with

~ ig 9 0 a ~ ig
Qrv, <3“ +=Y.B, + EA“O ) QL+ Z QR Vu (au + TYR(i)Bu) QR(i)] .

2
i=1,2

Nen 2
aujB_ g g

T Tr[F*™F,,). (25.20)

Integrating over space and over time between ¢; and 2, and using [ d*zd"j, = [ dz[jP];? =
B(ty) — B(t1), we obtain for the difference in baryon number at times t; vs. to,

Neeng? [ -
B(ty) — B(t;) = =2~ / dt/d% Te[F*™ E,). (25.21)
1672 J,,
But there is a nontrivial field configuration called an instanton, obeying
Ful/ = FMV (2522)

in Euclidean space, which means that for them, the topological number

9> 4 > 9> 1 4 2
called instanton number is proportional to the on-shell instanton action (in Euclidean space),

SO
47
?

1
SE — / d%z Te[F2,) = —n (25.24)
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and the difference in baryon number is an integer,
B(ty) — B(t1) = Ngenn. (25.25)

Therefore the difference in baryon number is defined by the instanton number, and the
transition probability is given by the (classical) saddle point of the path integral with the

. e . _<c(E)
given boundary condition, i.e. e,

(B(t2)|B(t1)) ~ e 5", (25.26)
However, in the vacuum corresponding to our Universe, e ek e
the lifetime of the Universe.

However, in the high temperature medium of the Big Bang, when the coupling is large,
the probability becomes of order 1 so, by symmetry, transitions in baryon number will
equalize it, resulting in B = 0, or an equal number of baryons and antibaryons. However, we
observe in our Universe a net baryon number, which means that in the initial stages of the
Big Bang there was already a baryon asymmetry. The question is, how is it possible, given
the mechanism of wiping out an initial baryon asymmetry that we just saw? This is a very
important question in theoretical physics, for which there are various models, but none is
perfect. Sakharov in the 1980’s already had enumerated the necessary conditions to create
a baryon asymmetry, but as of yet, there is no perfect model.

The U(1) problem

The last of the three important physical applications of anomalies is called the U(1)
problem. We will not explain all the details of its resolution, among other things because it
uses information that will be given later on in the course, but rather we will sketch it.

We will see in the last lecture of the course that there is an effective symmetry SU(2) ., x
SU(2)g, due to the near-masslessness of the up and down quarks (the v and d quarks are
nearly massless, for them we can use a light quark effective theory, and the ¢, b and t are
very heavy, for which we can use a heavy quark approximation; the s quark is intermediate).
This symmetry is spontaneously broken to a diagonal SU(2). We will also see later on in
the course that whenever we break spontaneously a symmetry, there is a so-called Goldstone
boson appearing, a massless scalar associated with the broken symmetry directions. In QCD,
the SU(2) x SU(2)r symmetry is approximate, so we have approximate Goldstone bosons,
the 3 pions 7 (with masses much smaller than the masses of the other states in QCD),
corresponding to the 3 broken generators (for a broken SU(2)).

But the actual symmetry of the QCD Lagrangean is U(Ny) x U(Ny) (N is the number
of massless flavours, here 2), acting on the quarks as

—4m30 i5 negligible for

o= Y
Y — Ty, (25.27)

So between the actual U(2) x U(2) and the observed SU(2); x SU(2)g, the difference is an
U(1) x U(1). One of the U(1)’s, acting as (the U(1) is the trace of the U(Ny), where we
replace T by 1)

Y — e (25.28)
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is just the hadron number, which is conserved. But then we still have the other,
Y — Y (25.29)

which is an abelian chiral symmetry. Before the anomaly was understood, it was thought
that there could only be two possibilities: the symmetry is there, but we don’t see such
a symmetry in the real world; or the symmetry is spontaneously broken, but then by the
Goldstone theorem we should see a Goldstone boson corresponding to this broken symmetry.
However, there is no fourth pion, so that is also not true. That was then the "U(1) problem”,
and its resolution is of course, that the symmetry is anomalous, so is broken (though not
spontaneously).

’t Hooft’s UV-IR anomaly matching conditions

We now turn to theoretical applications of anomalies, namely applications for model
building. The first such application is due to 't Hooft, and is a very useful consistency
condition, which simply put states that the anomaly is independent of the energy scale, so
it should give the same result, for instance in the UV and in the IR.

It is useful, since we have the effective field theory approach started by Wilson, that will
be studied later on in the course, which states that for a given energy range, we can use a
theory in terms of some fields, without worrying if the fields are truly fundamental, as long
as we include in the Lagrangean all the possible higher dimensional operators (even though
they will in general not be renormalizable operators). This point of view allows us, say, to
use the Standard Model, without worrying that there is at least a Planck scale (and maybe
other scales, like susy scale, GUT scale, etc.) at which what we think of as the fundamental
degrees of freedom will change.

But in that case, the anomaly matching conditions act as an important check of the fact
that we are using the right degrees of freedom at a certain scale, given knowledge about the
degrees of freedom at some other scale.

As an example, consider the anomaly of a global U(1) current, and in the IR consider
that we can use the nearly massless fermionic degrees of freedom that may be composite
(only massless chiral fermions contribute to the anomaly, as we saw). For instance, in QCD
we could consider the n and the p (which are composites of 3 quarks) as these degrees of
freedom for energies higher than the m,, m,, but not too high so that we need to consider
perturbative QCD. On the other hand, in the UV we can use the fundamental degrees of
freedom (in the case of QCD, use the quarks) to calculate the anomaly. The two calculations
should match.

Proof. To prove the anomaly matching condition, couple the global U(1) current to a
gauge field, i.e., gauge the symmetry. Then add free chiral fermions that only couple to
the gauge field, in such a way as to cancel the anomaly. Indeed, now that we have a local
symmetry, we need to cancel this local (gauge) anomaly for consistency of the quantum
theory, as we said.

But local anomaly cancellation, i.e. consistency of the quantum theory, should persist
both in the UV and in the IR. Now turn off the gauge coupling, g — 0, going back to the
global case. Subtract the anomaly of the free chiral fermions, which is independent of the
scale, since now the fermions are truly free (don’t couple to anything), so they don’t know
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what an energy scale means. The result is that the global anomaly of the original system is
independent of scale. ¢.e.d.

Note that the anomaly is purely one-loop, so it can be easily calculated at an energy
scale using the perturbative degrees of freedom available at that energy scale.

Anomaly cancellation.

The second important theoretical application is the cancellation of gauge anomalies,
which is an important consistency condition for any model we might write (without it, the
quantum theory is inconsistent).

Here we study how it can happen that we have anomaly cancellation.

In d = 4, the anomaly is proportional to d*¢, which is proportional to Tr[T%{T®, T¢}],
and in turn is related to C3(G), the third Casimir of the gauge group. That means that
if the Lie algebra of the group has no C3(G), there is no d*¢, and thus no anomaly. Such
groups are called safe groups.

Nearly all of the classical groups are safe. In particular, the B, series, i.e. SO(2n+1), the
C,, series, i.e. Sp(2n), the D,, series, i.e. SO(2n), except SO(6), as well as the exceptional
groups Gs, Fy, Eg, Er, Eg, are all safe. The only unsafe classical groups are the Ay series,
i.e. SU(N), for N > 3, and SO(6) ~ SU(4). Note that SU(2) ~ SO(3) is safe, as is
SO(4) ~ SO(3) x SO(3).

Even if a group is unsafe, in some representation R we might still have d%¢ = 0, in which
case we say the representation is safe.

Otherwise, if we have an unsafe representation of an unsafe group, to cancel the anomaly
we need to combine several species of fermions such as to cancel the anomaly.

The Standard Model.

The most relevant example that we will study is the Standard Model, with gauge group
SU(3)e x SU(2) x U(1)y.

A potential anomaly appears for the unsafe group SU(3)., with unsafe representations.
However, the SU(3) anomaly in the Standard Model is cancelled in a trivial way, since both
left and right fermions couple in the same way with the SU(3). gauge field, so the total
anomaly vanishes.

Then, SU(2) is a safe group, so there is no anomaly with an SU(2) gauge field at each of
the three corners of the triangle. However, the absence of d®*¢ says nothing about combining
the SU(2) gauge field with another in the triangle diagrams, more precisely about the SU(2)
contributing to the 0*j, anomaly of some other gauge field. But the SU(3). couples in the
same way for left and right, so that doesn’t contribute to these mixed anomalies either.

Thus we need to check only the U(1)y (hypercharge), for the pure U(1) anomaly, and
the mixed anomaly with SU(2). The potentially anomalous diagrams are then with a U(1)
gauge fields in 0"j,, and two SU(2) gauge fields in the others (the SU(2) contribution to
the U(1) anomaly), and the one with 3 U(1) gauge fields (the U(1) contribution to the U(1)
anomaly).

Together, we can write these conditions as

> Tr [T“ (A/\dA+ %AAAAA)] = 0. (25.30)

fermion representations

255



The T is the generator coupling to the 9" j;, so for the U (1) we have T* = 1.

Then the U(1) — SU(2) — SU(2) anomaly has T = 1, but of course we need to multiply
it by the charge Y7, and the AAdA+1/AAN AN A is proportional to o®c°. Then the condition
becomes

> YViTrfeo s Y V=0, (25.31)
doublets, L doublets
giving the condition
> v=0 (25.32)

doublets,L,

Note that here we count doublets only (since the SU(2) couples only to doublets, which
doublets are only left-handed), but we also need to count color where needed.

For the U(1)? anomaly, again we have T® = 1, but must be multiplied by Y, and A A dA
is proportional to 1, but again multiplied with Y7, for each gauge field, for a total condition

of
oo ) ()P=o. (25.33)

left—handed right—handed

Note that here we must count each element of a doublet, and also count color.

To verify these conditions, we consider the hypercharge assignments of the Standard
Model.

For quarks, we have

Ve =1/3; Yr(1)=4/3; Yr(2)=-2/3 (25.34)

since the left quarks are doublets, but for the right quarks, we have two independent elements
(not a doublet), 1 and 2.
For the leptons, we have

YL = —1; YR<1) = 0; YR(Q) =-2 s (2535)

and the same applies, the left leptons are doublets, but the right ones are two independent
elements, 1 and 2.
We now verify the two conditions. For the U(1) — SU(2) — SU(2) anomaly, we get

1 N,

and it only cancels for N. = 3, as it should.
For the U(1)? anomaly, we get

[Nc X 2 X (%)3 +2 % (—1)3] - [Nc X (%)3 + N, x (—%)3 + (—2)3] =0, (25.37)

giving
N
§(2—43+23)—2+8:—2(Nc—3):0, (25.38)
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which again only cancels for N, = 3, as it should.

Important concepts to remember

The PCAC relations relate the divergence of the axial vector SU(2) current with the
pions, modulo the anomaly in the 0 component of the current.

The neutral pion 7° decays into 2 photons because of the anomaly, via a diagram where
o+ jg’?’ turns into a pion and then into 2 photons via a quark triangle.

Baryon number is changed by instantons, because of the anomaly in the baryon current,
and with a probability (B(ty)|B(t;)) ~ e~ Sust,

In the current Universe, baryon number change is irrelevant, due to the smallness of the
coupling e~*™/@weak giving a small probability. But in the initial Big Bang it is relevant,
and it would wipe out any initial baryon asymmetry, hence the baryon asymmetry
problem.

The potential extra U(1) does not have a Goldstone boson, since it is a chiral symmetry
broken by anomalies.

The anomaly in the UV (computed with the UV degrees of freedom) should match the
anomaly in the IR (computed with the IR degrees of freedom).

The gauge anomaly should cancel in a consistent model. There are safe groups, safe
representations, and otherwise we need to combine species of fermions.

The unsafe groups are U(1), SU(N), N > 3 and SO(6) ~ SU(4).

Further reading: See chapter 8.5 in [5], chapter 19.3 in [3], 22.1, 22.5, 22.6 in Weinberg
vol.IL.
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Exercises, Lecture 25

1) Check that the SU(5) GUT model, with fermionic field content (ignoring the Higgs

sector):
-one (anti)fundamental representation 5 and one antisymmetric representation 5 x 4/2 =

10, both left-handed, is free of gauge anomalies, given that

Trs(T{T", T¢}) = d** = Tryo(T*{T°T*}). (25.39)

2) Calculate the U(1) chiral anomaly of the SU(5) GUT by using the UV-IR 't Hooft
matching conditions.
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26 Lecture 26. The operator product expansion, renor-
malization of composite operators and anomalous
dimension matrices

In this lecture we will learn about renormalizing composite operators, a tool for describing
that called the operator product expansion, and anomalous dimension matrices for composite
operators.

Composite operators are important objects in gauge theories, since observables are gauge
invariant, so need to be composite.

But introducing a composite operator at a point z, O(z), requires additional renor-
malization beyond the one in the Lagrangean, since putting several fields at a single point
introduces new divergences.

Important examples of composite operators are the energy-momentum tensor 7,
densates ¥, etc.

We introduce the composite operators in the theory by adding a source term for them,
Jo - O in the generating functional, i.e.

con-

ZolJo| = / Dlgle 5t/ Jo0) | (26.1)
in the same way as we did for fundamental fields in
Z[J] = / Dpe=5F] 9@, (26.2)

The resulting Green’s functions for O can be thought of as Green’s functions for sets of fields
at 1, ..., x, when we identify these points (they all converge, and are equal to z), e.g. for

O = ¢1...0n(2),
(O(x)) ~ (D1(21) - On(Tn)) 21 =02=.. ==z = G(n)mmn(l‘h Y | Po—— (26.3)

Of course, because of the divergences we mentioned, this is not so well defined; we will use
the method of the operator product expansion to make better sense of this.

One can reverse the above process and consider a method of regularization for the ad-
ditional divergences appearing in composite operators called ”point splitting”, that means
pulling the consituents apart, by having each field in O at a different point.

For composite operators, there is also operator mizing, if there are Feynman diagrams
that mix the operators. For this to happen, the operators have to have the same charges
under the symmetries respected by the Lagrangean, since then the interaction Lagrangean
Lin, appearing in the Feynman diagrams, also respects the symmetries.

Therefore in general we have the renormalization of the type

Oul{ds}, 9.1 = Y Z" O {2,857 Zyg™, ] (26.4)
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meaning that besides the renormalization of the fields and couplings, there is an independent
renormalization of the operators, that mixes them.
In particular, in a Yang-Mills theory,

732

a ren 1/2 ra,ren Zl ren
OjAs. g,..] =Y zFop | 2,2 Anren, g | (26.5)
k 3

The matrix of renormalization factors Z,™ can be determined by Feynman diagrams
with insertions of O,,, O,,. We will see shortly a concrete example of such a calculation.

This renormalization is also multiplicative, like the renormalization of fundamental fields.
Moreover, it closes under renormalization (there are no outside operators).

In general, Z,™ is nontrivial, but in the particular case of conserved currents it is 1, i.e.
conserved currents do not renormalize, Z; = 1.

For instance, in QED, the Ward-Takahashi identity says that

0o (O[T [Y0a ()03 () Ju (2)1]0) = —i65(x—z)<0\T[wa(y)¢ﬁ(w)]|0>+i€5(y—z)<0!T[¢a($)¢ﬁ((%£!g§-
The renormalization of the field is Zryr = 1, and of the current is Z;jr = jo, but as we
can see there is no j, so no Z; on the rhs, whereas there is on the lhs. By matching Z factors,
we see that we must have Z; = 1.

Anomalous dimension matrix

So we see that the renormalization of operators is written as

O;(x) =Y Z;* O™ (x). (26.7)
k

We can therefore define for O also a notion of anomalous dimension, just that now it is
an anomalous dimension matriz,

0
I.=(2"1"AN=Z 26.8
where Z and Z~! are matrices, and A9/OA = 9/91In A.

Consider the eigenvectors O,, of the matrix I'; with eigenvalue Ag + ,,, where A is the
classical (naive) dimension, and 7, is the anomalous dimension of the operator O,,.

Then we must have for scalar operators (no Lorentz structure)

. const.
- |$ _ y|2(Ao+vn)'

(O ()0 (y)) = ((Z - On(2)(Z - O)nly)) (26.9)
This is so because by translational invariance the 2-point function must depend on |z — y|
only, and then the dimension defines its power law. Strictly speaking, this result is only valid
in a scale invariant theory, without any mass scale, since otherwise we can use the mass scale
to construct dimensionless quantities together with |z — y|.

A nontrivial example of a composite operator in QCD is the quark mass term

AL, =m(qq)nm , (26.10)
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with renormalization prescription at the mass scale M.
Then for instance the Green’s functions of gq with the quarks,

G(”’k)(xl, e T3 YLy oy Yni 215 e 28) = (Q(@1)--q(20) @ (Y1) --G(Yn) Gq(21) .- Gq(21)) ,  (26.11)

obeys a renormalization group equation (RGE) that is the natural extension of the one for
the Green’s functions for fundamental fields, namely

0 %,
_— _ _ (n,k) ] . . _
Mo+ 689 + 207 + kg | GUF (L}, {wi}, {2}, 9, M) = 0, (26.12)

We can then define a mass depending on the energy scale, m(Q), in the usual way by

d _ N
Wm = %jq(g)m )

26.13
dlog ( )

and the boundary (initial) conditions m(M) = m. A perturbative calculation in QCD (that
will not be reproduced here) finds

: log g—;) +O(gh). (26.14)

g
(4

m(Q):m<1+8

Anomalous dimension calculation

We can give a simple example of an anomalous dimension calculation. Consider A¢*/4!
theory, and the operator O(z) = ¢*(x). The 2-point function (O(z)O(0)) is calculated as
follows.

@ @ ® @
X
0 0
@ © © ©
(a) b)

Figure 70: Diagrams for the anomalous dimension of an operator in ¢ theory. (a) Tree level.
(b) One loop level.

Tree level: O(1)

At the tree level, we write a Feynman diagram where we represent the operator at 0 as
a line with 2 points at its ends (for the two ¢ fields), and the same for the operators at x,
for two parallel lines, as in Fig.70a. Then the free propagators connect the ¢ in the upper
operator with the one in the lower operator. Since in 4d the scalar propagator is

1 1
- 26.15
42 |z)? ( )
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we obtain
2 1

(O(x)0(0))"* = R (26.16)

for the 2 free propagators and two possible contractions.

One-loop level: O(N)

The Feynman diagram has a vertex at z connecting with the two fields in the upper
operator and the two fields in the lower operator, as in Fig.70b, for a result

ﬁ / d4zm = MO(2)0(0))"J (2) , (26.17)

because of the two propagators from z to z and two from z to 0. From the above definition,
we have

J(x) = Lk /d4y ! (26.18)
(4m2)? Yo —ylt '

This is UV divergent, and needs to be regularized by introducing an UV cut-off A, after
which the integral becomes

T (@) ~ —— log(|z]A). (26.19)

472
The proof of this statement is left as an exercise.
All in all, we can write

(O(2)0(0)) = (O(2)O(0))™* 1—I—ﬁlog(|x|/&)+... . (26.20)

On the other hand, in general we can expand (since A = Ag+ O(A), so A —Ag = O(N))

(O(z)0(0)) = ’;‘/;A _ |$|C;AO e 2(A=R0) log(|z[A) ~, !x\% (1 —2(A — Ag) log(|z|A))
= (O(2)O(0))° (1 — 2(A — Ag) log(|z|A) + ...) (26.21)

Here we have normalized the operators such that the 2-point function has C' = 2/(47?)? in
order to reproduce the free 2-point function above.

By comparing this general result with our particular Feynman diagram calculation, we
obtain first Ay = 2, and second

A A
A-N=———-=>A=2——. 26.22
0 82 82 ( )
In the same \¢?/4! theory, we can give an example of operator mixing, between the
operators ¢*(z) and ¢*(z). The Feynman diagram has one free propagator coming down
from ¢*(z) to ¢*(0), and one line ends in a 4-vertex, whose 3 other legs end up on the
remaining fields in ¢*(0), as in Fig.71. The result for the diagram is (combinatorial factor
24!
2.4\ -
20\ 4
0) = ——1 26.23
(6 (@)6(0) = e (@) (2623
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Figure 71: Operator mixing diagram in ¢* theory.

where

I(z) = ol / gL (26.24)
(4m?)3 |2 — 2>

and a calculation that will not be reproduced here gives for the integral —2m%|A|?/|z|?, so

we obtain 2]2A?
~ x
I(x) = 293

The operator product expansion (OPE)

In general, when 2 composite operators O;(x) and O5(0) go to a point, we can create
disturbances (perturbations) in the vicinity of the operators, with divergent coefficients.
So the result is described in terms of local operators, times divergent coefficient functions.
Under this procedure, there is a complete (closed) set of operators {Oy}, consistent with
the symmetries. The singularity at * — 0 translates into a singularity in the coefficient
functions. Therefore we have

(26.25)

O1(2)05(0) = > C12™(2)0,(0). (26.26)

By translational invariance, the rhs can only depend on the difference in the positions of the
two operators, so being a bit more general we can write

Oi(2)0;(y) = Y Cij*(x — y)Ok(y). (26.27)

This is the operator product ezpansion (OPE). The coefficient functions Cy;"(z — y) are
c-number functions that are singular in the argument going to zero.

Not that the OPE is an operator relation, which means that it must hold on any matrix
element (| |fB). Dimensional analysis suggests that in a theory with no mass scales (scale

invariant),
1
A2‘+Aj 7Ak :

Oz — y) — ‘ (26.28)

r—y
That means that, as an approximation, we can only consider the operator Oy of lowest
dimension Ay, which will have the coefficient C;;* of the highest singularity in |z — y|, when
considering this as an expansion in |z —y|. That makes the OPE very useful for calculations.
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The OPE is valid in all Green’s functions, so for instance

Gij(w3y; 21, oy 2m) = (Oi(2)O0(y)d(21) .. 0(2m)) = Y Ci* (2 = y)(Ow(y)d(21) -6 (2m)).
' (26.29)

That means that we can reduce the Green’s functions to lower ones, and the dependence on
the absorbed point, x, is now in the coefficient functions only.

In turn, that means that knowing all the OPEs solves the theory in terms of O;(z)’s,
since we can reduce succesively the number of operators in the Green’s function,

(Oi(#)0;(y) Ou(2)...0p(w)) = ZCU-’“ = )(Ok(y) Ou(2)...Op(w))
— ZC” Y)Cu™ (y — 2){(Opm(2)...0,(w)) = ...

(Oq(2)O,(y)) = Far (26.31)

so that in particular

Cdyp
[t —w|?Aa

(Or(w)) = 0r1 = Cgp" (t = w){Or(w)) = Cgp (t — w)(1) = (26.32)

so we solve completely the Green’s function.

QCD example

The example of OPE we are intersted in is in QCD. In particular, the currents J*(z)J" (y)
must have an OPE that has a maximal contribution from the quark current gy*q. On
the other hand, one can prove that we must expand them in the operators in irreducible
representations (irreps) of the Lorentz group. That leads to the basis of gauge invariant
operators for the OPE (note that we use D* instead of 0" for gauge invariance)

O;n)l.tln.#n — qf,y{/ll_D#QDHn}qf — traces. (2633)

Here f stands as usual for flavor (the type of quark). These operators start with gy*q for
n = 1, have dimension n + 2 (since there are n — 1 D*’s; each with dimension 1, and two
quark fields, each with dimension 3/2), and spin (i.e. Lorentz irrep) n, since there are n
vector indices symmetrized and with the traces subtracted.

Then in momentum space, the OPE of the currents is written as

iq-x qul)”'(unn_z) (R)pvpt...in—2
/d4xeq Ju ZQf Z (Q2)n—1 Of BV

n>2
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2gM1)...(2g"

2\n
In x space, it becomes
R ) i v I N o e
T[J*(x ZC ‘ : 0y 2(0) 4 ¢* ZCHWOf 0)+ ...,
n>2 n>2
. (26.35)
where C,, and C,, are fixed numerical coefficients.
For p = v and summed over, we get a simpler expression,
T[J"(x Zh §”)“1 0) (26.36)

where h,, = h,(z, u?, as(u?)) is a dimensionless function.

Note then that we have 2 types of OPE expansions.

-the standard one, a short distance expansion, in |z|, in which we can keep only the
operator O™ of lowest dimension.

-but we can also have a lightcone expansion, obtained by considering that the expansion
is in |z|* around |x|? = 0 viewed as a lightcone (with z* finite), in which case the relevant

(n)p1-..pin
Of

dimension for the expansion is not the dimension of , but rather the dimension of

the full object in the numerator, i.e. the dimension of z# ...zt QM1 equal to
dim[O™] — n = dim[O™)] — spin[O] = twist[O™)]. (26.37)

Here the twist T'= A — S. Then, in this expansion, we keep only the leading twist operators.
But now that there is operator mixing, (9( i ixing with

Oé")“l“'“" = plmvpez  pin-ipind  traces. (26.38)

Indeed, these operators have also dimension n + 2, since there are n —2 D’s, and 2 F"’s, each
with dimension 2. They also have spin n, since there are n vector indices symmetrized and
with the traces subtracted.

That means that in the OPEs, the O,’s also appear, same as the Of’s. The mixing of
the two operators is done through diagrams where the two quarks in the O emit quark and
antiquark propagators, that join, by emitting two gluons from the quark line, that end on
the two gluons in the O, operators, as in Fig.72.

Important concepts to remember

e Composite operators needs additional renormalization, besides the one in the La-
grangean, because of extra divergences when fields come at the same point.

e Since there is also operator mixing between operators of like charges, we have in general
a renormalization matrix, O,[{¢i}, g..] = >, Z."" O** { Z;¢5"}, Zyg, ...
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Figure 72: Operator mixing diagram in QCD.

e We also have an anomalous dimension matrix, I';; = (Z - d/0log AZ);;.
e Conserved currents do not renormalize.

e When two composite operators go to the same point, we have an expansion in terms of
other operators, with divergent c-number coefficient functions, O;(z)O;(y) = >, Cijk (x—
y)Ok(y), called the operator product expansion, or OPE.

e Knowing the full OPE is equivalent to solving the theory in terms of the O;’s, since it
allos us to calculate the Green’s functions.

e We neeed to consider operators with both dimension and spin, and then we can have
either a short distance expansion (usual OPE), staring with operators of minimal
dimension, or a lightcone expansion, for x> — 0, but with z* finite, starting with
operators of leading twist T'= A — §.

Further reading: See chapter 18.1,18.3 and 18.5 in [3], chapter 11.2 and 14.5 in [3] and
chapter 20 in Weinberg vol.Il.
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Exercises, Lecture 26

1) Prove that

Ty = L2 / 4y L log(|z|A) + finit (26.39)
xTr) = (47T2)2 y4|x—y|4 47]'2 ogl|T c. .

2) Consider a set of operators O;, complete under the OPE, and consider their OPEs.
Calculate the 4-point functions of the theory.

3) Consider N' = 4 SYM, with field content: gauge fields A7, spinors ¢7,, scalars X7;,
where a is an index in the adjoint of SU(N), I,J = 1,...,4 are fundamental indices of a
global SU(4). What are the set of leading twist, gauge invariant, composite (n > 2 fields)

operators?
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27 Lecture 27. The Wilsonian effective action, effec-
tive field theory and applications.

In this lecture, we will describe a new view on the process of renormalization, one that will
be continued in the next lecture. Through the Wilsonian effective action, we will define
effective field theory, and see how to apply it.

In the real world, we can always test physics only below a maximal energy scale A. The
question is then, can we hide our ignorance about the high energy in a consistent framework?
The answer turns out to be yes, by defining the Wilsonian effective action, and through it,
effective field theory.

The Wilsonian effective action.

The Wilsonian effective action is obtained in the simplest way, namely by integrating out
the degrees of freedom with momenta |k| > A, in order to hide our ignorance about it.

¢* theory in Buclidean space

We will describe the formalism on the simplest nontrivial theory, ¢* in Euclidean 4
dimensions. The (classical) action is

1 m? A
_ 4, |+ 2 2 4
SE—/d x {2@(;5) + 50+ 54 (27.1)
and the partition function is
Z[J] — /'D¢65+fd4z“](z)¢($). (272)

But since we want to integrate over momenta |k| > A, we must go to momentum space,
where

Sy = %/ (;17(];4g5(—k)(k2+m2)g5(k)+%/ é:)z...%&wg...&wem%%m+...+/<:4).
(27.3)

We introduce an UV cut-off A. Since we want to say that we cannot access energies
higher than A by experiments, we impose that sources are zero for these momenta, J = 0
for |k| > A. Then

Z1J] = /D¢k<A€_Se”(¢;A)+I e, (27.4)

where

o Sers (@A) _ / Débppgsae 9. (27.5)

Here Scsy is called the Wilsonian effective action. The Wilsonian effective Lagrangean
will be then (after doing the integral)

1 m? A
Lepr = 5(8;@)2 + 7¢2 + 5(154 + Z Z INTONT (27.6)

A>6 1
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Here Oa; are all higher dimension operators (dimension higher than 4, but since the classical
Lagrangean has only even powers of ¢, so should the quantum action, so the next dimension
is 6), organized by their dimension A and for given dimension by an index 7.

However, in the above action, ¢ has now only momenta smaller than A, i.e.

Mdtk -
b(x) = / e o). (27.7)
But in reality, we have the renormalized Lagrangean,
1 T, Zo\
Loon = 526(0u0)° + Tphqs? + %(b“. (27.8)

Here M\, is defined as the 1PI vertex a p* = 0.
Then we have for the Wilsonian effective Lagrangean really

2
Legr = %Z (A)(00)* + = N ey ASP ¢+ ) caiOas (27.9)

2 A>6 ¢

Here all coefficients are finite functions of A, since the correlation functions of renormalized
fields, calculated by §/6J(z) from it, are finite.

Calculation of ca ;.

We now proceed to calculate explicitly ca; for the operators O, 1 = ¢*" at one-loop.

1

Figure 73: One loop diagram for the effective potential in the Wilson approach.

The unique one-loop diagram with 2n external lines is composed of a loop with n vertices
on it, out of each having 2 external legs. Then in the external lines we have momenta |k| < A,
but on the internal lines we integrate over |k| > A.

The symmetry factor for the diagram is

S=2"2xn, (27.10)

since there is a symmetry factor of 2 for the interchange of the 2 lines at each vertex, giving
a total factor of 2", plus a rotation symmetry which means that we need to define where
the vertex 1 is, giving a factor of n, plus a reflection symmetry giving another factor of 2.
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There is also a (2n)! factor for the ways to asign the momenta py, ..., p, to the external lines
(permuting them).

The Feynman diagram is then identified with the effective vertex coming out as a Feyn-
man rule out of ¢y, 104y, 1 in the Lagrangean, i.e. —cg,1(2n)!, so we have

(2n)! /00 d*k 1
—Con1(2n)! = )" O\, 27.11
C2 71( n) 2n2n( ph> A (27T)4 (k2 +m;h)n + ( ph ) ( )

Then for 2n > 6, the integral is convergent, and is

/°° 'k R /00 Bdk 1 1 21.12)
W CoREEmE)n T (20t ), k™ 872 (2n— 4)A4 '

where in the equality we have used the fact that m? < A%, so we get for the coefficients at
one-loop

L (=Awm/2)"

Cona () = - 32w2n(n — 2)A2n4

+ 0. (27.13)

2n=4
For 2n = 4, i.e. for A(A), we formally have the same integral, just that we need to add
the tree result to the one-loop one, and also now we wrote A(A) instead of ¢4 14!. Since now

(2n)1/(272n) = 41/(224) = 3/2, we get

- 3, [P d% 1 ,
_)\(A) = —Z)\/\ph + 2(_)\ph) /A (27‘(‘)4 (1{32 n mih)Q + O()\ph) (27.14)

This result is UV divergent. However, we note that in the usual renormalization, the renor-
malized vertex at zero momenta, which by definition is A, is given by

3 , [ dk 1 ,
_)\ph = _‘/21(07 07 Oa O) = _Z)\)\ph + 5(_)\ph) /(; (271')4 <k2 + m]g)h)Q + O()\ph) (2715)

Note that the integration here is over all momenta, from 0 to oo.
Then the difference of the two is finite,

dop M) = Sea)? /0 éﬂ’; C +1m2h>2 +O03,). (27.16)

2

The integral is

Ad'k 1 MR N (R — m,)dR?
/0 2m)* (k2 +m2,)2 16w /0 (k2 4+m2,)? 1672 /mzh e

1 A +m2 m2, 1 A1
= — <1n b Do) <ln— - 5)27.17)

thus it gives for the coupling

AA) = A\ + 3y |:hl A 1} + O\ (27.18)

1672 Pt Mpn 2
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2n=2

For 2n = 2, the Feynman diagram is a line with a loop on it, so the integral is independent
of the external momentum p. Since the p-dependent part of the Feynman diagram gives the
wave function renormalization, in our case we have no wave function renormalization at
one-loop, i.e.

Z(A) =1+ 0(X\2,). (27.19)
But there is a p-independent part, which gives the mass renormalization, so we obtain (again
adding the tree contribution, and since now (2n)!/(2"2n) = 2!/(2-2) =1/2)
* d*k 1
(2m)* k% + mf)h

1

—m?*(A) = —mef?h + —(—)\ph)/
2 A

+O(X2)). (27.20)

This is quadratically divergent. As before, the full renormalization gives

1 > dk 1
2 522 2
ph = =y §<_)\ph) /o (2m)* k2 +m2, +O0) (27.21)
but the difference is now finite,
1 R |
—m? 2(A) = =(— 20). 27.22
ph +m ( ) 2( )‘ph>/0 (277')4 k2 + mih + O<)\ph) ( 7 )

The integral gives

A g4 A24m2, (1.2 2 7.2 2 2
d*k 1 1 (k2 —m2,)dk 1 A% +m?2,
/0 ( / _P (AQ—mghln—p> ,

2m) K2+ m2, 167 e, 2 1677 m?
(27.23)
so the mass squared is
2(A) =m? oz A + O (27.24)
m =m, — —s —mZ, In — ) .
P 3272 P m2, ph

As a final observation, note that the nonrenormalizable operators Oa ; have coeflicients

of the order .

CA ™ m s (2725)

which is highly suppressed for large A (energies much smaller than it), so it will not change
too much the physics.

Effective field theory.

We consider now a new set-up, closer to the physical case. In the physical case, the theory
can have a true cut-off, for instance at least the Planck scaler mpianqc can act as such, if not
the susy scale, GUT scale, KK scale, etc. On top of it, we can consider also our arbitrary
(variable) scale A below it. At this cut-off scale, the degrees of freedom of the theory change,
and we have a new theory.
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We also assume that when measured in units of the cut-off, the parameters of the theory
at the cut-off scale are small,

)\(Ao) < 1, m2(A0) <K A(Q), CAJ'(A[)) < Aé_A. (2726)

So we treat the effective action as a fundamental starting point, rather than assuming a
better definition of the theory in the UV.

Since the coefficients of the higher dimension operators are small, let us assume for the
moment that they actually vanish, i.e.

cai(Mo) =0, (27.27)

and see if that is consistent.

We now integrate over the region between the true cut-off and an arbitrary lower cut-off
A, ie. over A < |k] < Ap.

Then we have at the lower scale

e Sess Al — /D¢A<k|<Ao€_Se”(¢;AO)- (27.28)

Using the formulas already derived for m?(A), A\(A), ca,.1(A), we can calculate the values
at A in terms of values at Ay, and obtain, for A not too much less that Ag, i.e. for A = bA,,
bs 1,

m?(A) = m2(Ay) + %)\(AO)/A ’ (571;4 - 722(/\0) + ...
3., Ro g4k 1
_1\n Ao 74
Con1(N) = —%)\"(Ao)/A (;lﬂl; 2+ n”i?(Ao))" + ... (27.29)

Then, if A is not too much less than Ay as before, and if also m?(Ag) < A?, we obtain
approximately (using the integrals calculated before)

A(Ao)

2(A0) = m3(A
mA(8) = m(h) + 5

(A2 — A?) + ...

Am):Am@—mﬂvM@m%+m
(A2 1
() = i ( — AS“) e (27.30)

We note therefore that Ay is not very important for cs, 1, its effect being very small,
which is why it was consistent to consider ¢, 1(Ag) = 0, whereas it is very important for m?,
so arranging for m?(A) < A? is a fine-tuning problem that is not natural.

We also note that we can now define the beta function as usual and calculate it at
one-loop from the above A(A) as

d 3
= = A
dln A 16#2)\ (),

BA) (27.31)
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as it should be.

In conclusion, the picture of effective field theory is as follows. We define the theory with
a cut-off, and correspondingly with higher dimension operators. Then, we consider lowering
the cut-off by integrating out the intermediate degrees of freedom. When we do that, the
coefficients in the (Wilsonian) effective action change. This leads to a view of renormalization
as a change in cut-off scale that will be developped better in the next lecture, as Kadanoff
blocking, and we will see that it leads to a connection with condensed matter theory.

Nonrenormalizable theories

This picture also leads to a way to deal with nonrenormalizable theories. We can just
regard them as (Wilsonian) effective actions. We impose a cut-off Ay, in which case the
coefficients of the higher dimension operators are

s
F’?% , (27.32)
with ¢; < 1. We can then use this effective action below the energy scale Ay as shown above,
and for energies F/ < A the coefficients of the higher dimension operators are really small,
making the theory look almost like a renormalizable one, up to powers of E/Aq.

Removing the cut-off.

An important question that arises then is, can we remove completely the cut-off Ay?

If we know an exact beta function, we can integrate

d\
T B(N) (27.33)
to A(ho)
o) d\ Ao
—— =1In—. 27.34
/)\(mph) B(N) Mph ( )

Then, as Ay — oo, the right hand side goes to infinity, so the left hand side should too. In
that case, it means we can remove Ay.

But it could happen that it does not go to infinity, but instead it goes to a constant
before that. Indeed, in the case that S(\) is positive and increases at infinity faster than A,
we can see that [d\/B()) is finite at infinity, so there must be a maximum A, A,,, given

by
A )\
I Dmaz _ / A (27.35)
Mo Iy B

For instance, using the one-loop beta function 8; = 3A\?/(167?), which indeed goes faster
than A, we find

1672

Aoz = mppe®en. (27.36)

This is the Landau pole that we alreaday explained several times.
On the other hand, if 5(A) > 0, but it goes at infinity slower than A\, we can remove Ay,
and we have an UV fixed point A,.
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Indeed, then for A = \,, A — oo, and

:* % oo, (27.37)

Important concepts to remember

e In the Wilsonian effective action approach, we hide our ignorance about high energy
by integrating over momenta with |k| > A.

e In the Wilsonian effective action, we integrate over |k| > A and obtain all the higher
dimension operators, with coefficients that go like 1/A%2~* and we use it in quantum
processes with energies smaller than A.

e The effective field theory approach is to consider the theory as fundamentally defined
with a cut-off and a Wilsonian effective action, and then lower the cut-off by integrating
over intermediate degrees of freedom, A < |k| < Ay.

e In this way, nonrenormalizable theories are thought of as effective field theories, and
at energies B < Ay, the effect of the nonrenormalizable operators is very small.

e For 5(\) > 0, if we can remove completely the UV cut-off, we have an UV fixed point,
if not, we have a Landau pole.

Further reading: See chapter 29 in Srednicki and chapter 12.1 in [3].
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Exercises, Lecture 27

1) Consider ¢ theory in d = 6, with
1 A m?2
L==(0.0)7+ 59" + ¢ 27.38
Calculate the coefficients ¢, 1(A) of the O, ;1 = ¢™ higher dimension operators in Wilson’s
approach, at one-loop.

2) In the same theory, in the effective field theory approach, calculate A(A) from A(Ao)
at one-loop (A < |k| < Ap).
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28 Lecture 28. Kadanoff blocking and the renormal-
ization group; connection with condensed matter

In this lecture we will study a way to understand the renormalization group related to the
Wilsonian way from last lecture, by integrating degrees of freedom, just that the way we will
do it is via a discretization, that has a natural relation to condensed matter physics, and in
particular to spin systems.

Field theories as classical spin systems.

Consider a discretization of the scalar Lagrangean

1
£(6) = 50,0 + V(8)(+7 - 9) (28.1)
and its path integral, on a (hiper)cubic lattice of size a, via

v = xn; B(x) = n = d(x,); Do — [ don

0,6 = (B — ) (28.2)

where n 4 p is the nearest neighbour on the lattice (in direction p) to site n.
Then the discretized action is

5 — Z Z (ntp = 00)* + V(n) + Judn | - (28.3)

For the particular case of V(¢) = A\¢?/4!, we can rescale as follows to absorb the dependence
on a and put the coupling outside the action:

A — g—2ad 4
¢ = ga:7l¢
J = gattlJ. (28.4)

Then the path integral becomes

=N [ Tt asye (28.5)

where the action is

14
S, 1) =% E S (@ — )+ m2“ &2 + ﬁ, +J 4, (28.6)

n Iz

This has now the form of a classical spin system. Indeed, for instance a ferromagnet has

the Hamiltonian
H(s,h) == UnmSn-Sm+hY _ sm. (28.7)

n,m
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where the first term is a spin-spin interaction and the second is the interaction of the spins
with an external field h. The partition function is

Z[h,p] = /Hdsn p(s,)e PHER) (28.8)

where 8 = 1/(kgT) and p(s,) is a weight describing the spin. It should depend on s? because
of relativistic invariance, and it is naturally exponential, so an effective description for this
measure is given phenomenologically by

p(sp) oc e~ (satAsn), (28.9)

The exact form would be given by the microscopic properties of spin.
For a system with only nearest-neighbour interaction, the ) in the Hamiltonian turns

into >, >, and
— Z UnmSn = Sm — K Z(Z(S”W — 5,)% — 2ds?). (28.10)
n,m n m

The partition function then becomes

Z(K, i, \, h) = / [ dsne P smm (28.11)
where the effective Hamiltonian is
H(s; K, p, A h) =) [K(ﬁ) D (snen—a)> + 1(B)sn + AB)sh + hsn| . (28.12)
n B

This is written in a more general form, but from the above considerations we would have
K(8) = K, u(8) = K/ - 2dK and A(8) = \/8.

As we see, u(f) is governed by two opposing terms, so can be either positive or negative.
When it is zero u = p(f5.) = 0, we are at a phase transition.

Indeed, for p(f) > 0 and no external field h, we have no magnetization, since

(5) = 1 S lsu) =0, (25.13)

n

whereas at () < 0 and no external field h, the classical minimum of the Hamiltonian is at

Sn = v/ —p/(2\), so the magnetization is
_ 1 _ |z
(s) = V;<sn> =1/ 35 (28.14)

Moreover, near 8 = f3., assuming smoothness of the mass term, we have

1(B) = co(B = Be) (28.15)
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which then gives
(s) ~ VB~ Be (28.16)

for 8 > f. (nonanalytic behaviour).
In general, the magnetization (s) = (s)(h, 8), and is defined by

(s) = %Z(s,) = %Z/Hdspe_ﬂHsn. (28.17)

Then the magnetic susceptibility x is

X = % = %Z / Hdspe_ﬁHﬁsn Z Sm s (28.18)
and it can be rewritten as
1
= 5 Do = D)o = (3 (28.19)

so it is given in terms of a 2-point function. The 2-point function at large distances behaves
as
_ |zn —zm]|
((sn = (8))(5m = (8))) ~ e <P (28.20)
for £(h, B) < |y — |, where € is called the correlation length, whereas at small distances
(but still much larger than the lattice size) it goes as

(50 = () (5m = (8))) ~ | — @247, (28.21)

for a < |z, — zp| < &(h, 5). Here n is called anomalous dimension.

We know that the susceptibility blows up at a phase transition, and we see that this is
due to the 2-point function diverging.

The scaling hypothesis for phase transitions is that all singular behaviour near the phase
transition is due to the divergence of &. That is, £ — oo at the phase transition point
implies all the divergences in physical (measurable) quantities. Since & — oo, and this
is the only relevant scale for the phase transition, it means that there are no objects with
dimension at the phase transition, and thus the theory is scale invariant (fixed under a scaling
transformation), and thus all diverging quantities diverge as power laws, not as exponentials
(which would require a scale).

In the quadratic approximation around the minimum of the spin Hamiltonian, we can
calculate (though it is also clear by dimensional analysis, since 4 is the only parameter with
dimension, specifically of dimension 2) that

E(h,B) v —, (28.22)

so indeed & diverges at the critical point.
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One can define critical exponents, for instance for the susceptibility and the correlation
length,

X(B) ~ |B—=B
§B) ~ |80 (28.23)

These critical exponents can only take few values, i.e. there is a certain universality for
them, since a large class is independent of microscopics.

Kadanoff blocking

From now on, since we have formulated the discretized field theory like a spin system,
we will talk about both on the same footing, and consider the Hamiltonian

H = Z Z (Gnin — 6n) + i + Adn | - (28.24)

We define Kadanoff blocking as follows. We divide the lattice into blocks of size s, where
s € N; and average over the blocks

Gp=5" > ¢n, (28.25)

n€Bs(n')

after which we rescale to the original size, by

zy = 2. (28.26)
s
If we measure ¢ in lattice units, it has decreased by s
& = é (28.27)
s
Since the 2-point correlation function decays as a power law for 1 < n < &,
! 28.2
(Do) ~ oy (28.28)
it means that we need to rescale ¢, = s*¢, where
d—2
a= % (28.29)

This is a sort of wave function renormalization in the quantum field theory sense.
The new Hamiltonian H'(¢/,) is found by averaging over the blocks, i.e.

BH’W/]/HCM e—ﬁH¢]H5 o= Y 6] (28.30)

ne€Bs(n')
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After blocking, we define the rescaled Hamiltonian by

H,(¢s(x5)) = H'(¢' (")), (28.31)

But this procedure of blocking will generate new terms in the Hamiltonian, for instance

(Dnrp — G002, (Pnip — 200 + Gnyp)” (28.32)

and others. This is intuitively clear from the Wilsonian picture of effective field theory from
last lecture, which amounted also to blocking, though in momentum space (integrating from
a physical momentum cut-off to a lower, variable, cut-off). Indeed, there we saw that the
quantum averaging over a shell in momentum space naturally leads to all possible terms in
the effective action (all terms allowed by symmetries), with coefficients given by the quantum
averaging. It is left as an exercise to show in a bit more concrete way this statement in our
case.

Then, instead of starting with a specific Hamiltonian in the UV, at the physical cut-off
scale given by a, and integrating over the blocks to get new terms in the Hamiltonian, we can,
like in the Wilsonian effective field theory approach from last lecture, start instead already
from an effective field theory of general type, parametrizing our ignorance about the UV.

That is, start with the Hamiltonian

H(¢) =) KaSa(0) (28.33)

where S, (¢) are all possible terms in the Hamiltonian, and K, are couplings. Then blocking
amounts to just a transformation on the space of coefficients { K, }, from the original (few)
ones to the final (more) ones.

That is in fact identified with the renormalization group (RG) transformation, since that
was also a scaling transformation, just that in momentum space. Formally, the transforma-
tion Tra(s) acts as

Tra(s) : {Ka}t = {(Tra(5)K)a}- (28.34)

Then a fixed point of the renormalization group is one that doesn’t change the couplings,
ie.

(Tro(s)K ), = K (28.35)
for any a. We thus understand the renormalization group as the coarse graining procedure,
i.e. blocking.

We define the critical surface as the set of all points attracted towards the fixed point by
the RG transformation, i.e. the basin of attraction of the fixed point under RG,

(Tha(s)K)a = K (28.36)

for n — oo.
A fixed point of the RG group is then identified with the critical point, i.e. the phase
transition point, in critical phenomena, since as we saw that is a scale invariant point. Then
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¢ — oo there, which means that £ — oo on the critical surface (since as we go towards the
critical point we decrease &).

Then it means that the couplings of various materials K,(5) belonging to the same
critical surface (¢ — oo at 8 — f.) are different, yet they lead to the same long distance
physics, defined by the critical point (since the blocking means going to larger distances,
and so the fixed point is the IR behaviour of the theory). This is the universality that we
mentioned before.

Expansion near a critical point.

Expanding the couplings near the critical point K7,

K,=K,+0K,, (28.37)
the RG transformation is

(Tre($)K)a = K5+ Taat0Kor + ... (28.38)

«

Then considering a basis v,, of eigenfunctions of T, with eigenvalue \,,

Z Taa’vaa’ = Aavaa 5 (2839)

we can expand the coupling variations in it as

0Ko = hoVaa. (28.40)

The Hamiltonian is then written in this basis as (remember that H = Y K,S,)

H=H+Y huo", (28.41)

where H* =) K}S, and
V" =) gaSa. (28.42)

Then the RG transformation acts on the eigenfunctions as v, — AUsw, thus v* — A 0%, so
after n steps
H— H +Y (A)"hav". (28.43)

Therefore we can distinguish between:

e )\, < 1, which multiplies an irrelevant operator v®, since the term is suppressed after a
few steps of the RG transformation. Note that then the RG transformation along the
irrelevant operator takes us towards the fixed point (H — H*).

e )\, > 1, which multiplies a relevant operator v*, as the RG transformation amplifies
the effect of the operator. The RG transformation along the relevant operator takes
us away from the fixed point.
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e )\ = 1 multiplies a marginal operator. It means we need to consider higher orders in
the perturbation (beyong the linear analysis) to see whether it is actually relevant or
irrelevant. If it remains marginal to all orders, we say it is exactly marginal, and the
RG transformation has no effect on it.

We see then that the critical surface is spanned by irrelevant operators, i.e. irrelevant
deformations of the Hamiltonian.

On the other hand, the relevant deformations of the Hamiltonian take us away from the
fixed point: after a few steps, the RG trajectory is dominated by them, more precisely be
the relevant deformation with the largest A, (the largest relevant deformation), that we will
call \,,, as we can see from Fig.74.

critical line

<l |
A\ 1§ trajectory
< < > i } largest relevant op
fixed e direction

point

N

Figure 74: RG trajectory near fixed point.

Critical exponents (near the fixed point).
We then isolate this largest deformation with \;, writing

(Tra($)K)a = K + Aoy hay (B)Vara + Z Aaila; (B)Vasa + O(hQ)- (28.44)

1>2

We also assume that h,, (f) is smooth, and thus can be expanded near the phase transition
as

ha, (B) = (B — Be)hg, + O((8 = B.)°). (28.45)

Then, after a few steps in the RG transformation, we have
(Tha($)K)a = K + Ag hay (B)vaa- (28.46)
Since A,, > 1, we can define a v > 0 by the equality
Ao, = 57, (28.47)

where s is the blocking size, as before.
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We can moreover define a sequence 3, — (. of §’s by the relation

oy (B) Al = ha, (B)s™" =1, (28.48)
which implies
1
s~ . (28.49)
|(/6n - /@C)h21|l/
It follows that
(Tha(s) K)o — K2 + Va0 (28.50)
as n — 00, so we stay fixed away from the fixed point.
On the other hand, the 2-point correlation function goes like
1
(Pnbo) ~ e (28.51)
which means that under blocking it transforms as
G(lz], {Ka}) = s7*G(|2]/s: {(Tra(5)K)a}) = ... = s7"*G (|| /5™ {(TEG(S)K)a}() )
28.52

but since we stay fixed away from the fixed point as n — oo, there is no nontrivial dependence

on the couplings under scaling. Therefore at n — oo and for large x, we have

G = G(lz]/s")

but on the other hand in general we have

||

Gr~e €.
By comparing the two, we see that we need to have

§(Bn) o s,

1.e.
1

£(B) o BB

That also means that we have

G(lz] {Ka(B)}) = ... = €2G(|2]/&(B) { K5 + Vara}) »

where 2o = d — 2 + 7, so by Fourier transforming to momentum space we get

G(p,{Ka}) = €7"G(E(p)b, { KL + vaya})-

(28.53)

(28.54)

(28.55)

(28.56)

(28.57)

(28.58)

The momentum space formulation is understood as the Wilsonian effective action formulation

from last lecture.

Important concepts to remember
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A discretized scalar field theory can be written as a spin system.

The two-point function at large distances decays exponentially with a correlation length
and at intermediate distances it decays as a power law with an anomalous dimension.

The scaling hypothesis states that all divergent behaviour in physical quantities near
a critical point (phase transition) are due to the diverging correlation length.

The magnetic susceptibility and the correlation length have (semi-)universal critical
exponents.

Kadanoff blocking is averaging over blocks of size s in each direction. It leads to new
terms in the Hamiltonian.

Kadanoff blocking can be thought of as a RG transformation on the couplings K, of a
Hamiltonian with an infinite set of terms.

The fixed point of the RG corresponds to the critical point of a system (at the phase
transition), and the critical surface is the basin of attraction of the fixed point: various
materials with various K, all have the same long distance physics.

Irrelevant operators take us towards the fixed point, and they are suppressed after a
few steps, while relevant operators take us away from the fixed point, and after a few
steps the largest irrelevant operator (of largest eigenvalue) dominates.

Further reading: See chapter 9.2 and 9.3 in [5].
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Exercises, Lecture 28

1) Consider the discrete model with Hamiltonian

i T
aa; +a;a; 2\
Z 2 +(27?)2 ,

Jj=1 J

(65 — djs1)’- (28.59)

J
=1

Write down the continuum version for it, find H and then the relativistic Lagrangean, and
calculate the length L of the continuum system.

2) Show that by Kadanoff blocking on

H =3 |3 S Gnn— 60" + %+ A6 (28.60)
n L op

we generate terms like

(¢n+u - ¢n)2 7217 (¢n+u - 2¢n + ¢”—M)2 (2861)

and others.
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29 Lecture 29. Lattice field theory

In this lecture we will see that we can define a discretization of the field theory in a consistent
way, such that we recover the continuum theory in a certain limit.

It is important to put field theories on the lattice, since then we can calculate non-
perturbative quantities from computer simulations (Monte Carlo calculations for the path
integral).

We will first consider the continuum limit, related to the Kadanoff blocking from last
lecture.

Continuum limit

An important result is that the critical point is independent of the particular RG proce-
dure considered (the representation of the RG group; before, Kadanoff blocking).

We had described everything in terms of lattice units, but in order to define physical
quantities we need to multiply by the lattice spacing a,

P
Sph = &05  Tpyp = 115 Ppn = EZ : (29.1)

where &, x;, p; are in lattice units.

We need to keep §,, fixed, but we now change the lattice spacing a by a — a/s under
the RG action, thus taking a — 0 in the limit instead of 5 — 5. (8, — Bas1,..-). A physical
mass will be my,, = 1/&,,, and will be fixed as a — 0.

To define continuum correlation functions, we need to make a wave function renormal-
ization according to

Gcont(pph7 mph) - a_nG(pl; {Ka(a>}>|a—>0 ) (292)

Actasst and the extra

where 7 is the anomalous dimension, and it appears since G ~ 1/|x
dependence must be compensated.

Gaussian fized point

Under the RG transformation © — z/s, since the engineering (classical) dimension of a
scalar field is (d — 2)/2, we have

d—2
bs(3/5) = 57 0(x). (20.3)
Then, for a coupling
K, / d2¢"(z) | (29.4)
the coupling K, transforms approximately as
K, — s "K,, (29.5)
where
d—2
d, =[K,] =— 5" +d (29.6)

is the engineering (classical) dimension of K.
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That in turn means that the eigenvalue of the RG operator Trq(s) is
Ay = 5% (29.7)
We deduce then that near the Gaussian fixed point ¢ = 0,

e relevant operators, with A\, > 1, have d, = [K,] < 0, so make the theory super-
renormalizable.

e marginal operators, with A, = 1, have d,, = [K,,] = 0, so make the theory renormaliz-
able.

e irrelevant operators, with A\, < 1, have d, = [K,] > 0, so make the theory non-
renormalizable.

In particular, A [ ¢* has [A] = 0, so is marginal, which means that we need to go to higher
orders to see whether it is relevant, irrelevant, or exactly marginal.

Then relevant (super-renormalizable) operators are found to be UV asymptotically free,
and irrelevant(non-renormalizable) operators are IR asymptotically free. For the latter, at
the gaussian fixed point, when we take the bare coupling to zero in the IR, the renormalized
coupling goes to zero even faster, so it seems impossible to define a nontrivial theory (with
nonzero physical coupling on large scales). A\¢* and QED are of this type, which has generated
a debate on whether these theories make sense non-perturbatively (we can define the theory
order by order, but what it means non-perturbatively it is not clear). One possibility is that
there are other fixed points, where one could define the theory.

For UV asymptotically free theories on the other hand, there is no problem, since we can
keep fixed the renormalized coupling at the fixed point (in the IR), and obtain a nontrivial
interacting theory.

Beta function

The general RG procedure allows us to define the beta function in an alternative way.
By rescaling the correlation length by s,

£(9"?) = s¢(g%) , (29.8)

the couplings are changed in general, so
g% = 9> = Ag*. (29.9)

But we want the long distance physics to be unmodified by this rescaling procedure, so we
need to rescale also a,

a(g”®) = ~alg’) , (29.10)

which defines a(g?) or reversely g(a).

Then, after n — oo blocking steps, we should be on the same RG trajectory, since that
defines the long distance physics, so the different blockings create various dotted lines that
converge to the RG line, see Fig.75.
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other couplings

Figure 75: Kadanoff blocking near the RG trajectory.

This procedure allows us to define an alternative way to define the beta function, by

d

Blg) = —a—-g(a). (29.11)

Note that this definition is not identical to the usual one, however one can prove that the
first two coefficients in the expansion of $(g) are the same, and of course the fixed points
are the same (since the asymptotic RG trajectory is the same).

Lattice gauge theory

We finally come to the issue of interest, namely how to put a gauge theory on the lattice.
This is of interest, since QCD is a nonperturbative gauge theory in the IR, so it is hard to
calculate anything at low energies, other than on the lattice.

Consider a gauge group G, so because of the local gauge invariance with G, we can say
that we have a total group

Grota = | ] Go- (29.12)
x€R4

We saw that we can define an observable called the Wilson loop,
Uc = Tr Pexp [z ]{ Audx“} , (29.13)
c

where A, = A§T, and the contour C' is parametrized by ¢ € [0,1] as C(t) : t — x,(t). It is
the trace of a Wilson line Ug for a closed contour C', where Ug satisfies composition, i.e.

Uo=Uc,Up,_,...Uq, (29.14)
and where .
_ 7 idzt A, ()
Uc(t) = lim kHOe wAu(@r) (29.15)

and xp € dx,. We also saw that the Wilson line Ug transforms covariantly, but with different
endpoints on the left and right, i.e.

Uc(t) = V(x(t)Uc(t)V(x(0)) , (29.16)
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for
A, = V(2)Au(z)V(2) ™t —id,V(z)V . (29.17)

In the abelian case, we saw that can use Stokes’s theorem to write
eifc Aﬂdm/“‘ _ e%F}“’daW’ , (2918)

where da,,, is the (infinitesimal) surface bounded by the (infinitesimal) contour C'.
In the nonabelian case, we have corrections in the exponent,

i

Pei §C Apdxt — €2FMydaHy+O(da2). (2919)
By taking the trace and then the real part, and expanding the exponential, we obtain

| , 1
Re Tr Pefo Ande" — Ty [ — 3 Tr(Fdag,)? + O(da?,). (29.20)

[

We are finally ready to define the gauge theory on the lattice. On a lattice, we have sites
i and links (ij) connecting them, on which naturally one can define an orientation. Then
it is natural to associate an element of G to each oriented link, U;; € G, which then has
the properties of a Wilson line. Indeed, reversing the orientation and composing the two
elements we should get back to the identity, so we should have

Uy = U (29.21)
Moreover, the gauge transformation of U;; is the same as for the Wilson line, namely
Uy — UY) = VU, v (29.22)
v % R A ¥ A .

Then it is also natural to define along a connected path C' on the links the analog of a long
Wilson line by composition,

UC - U(ininfﬂU(in,ﬂn,g)~--U(i3i2)U(i2i1) 5 (2923)

and then again Ux = Tr Uc for a closed path is gauge invariant.
Note that now the total gauge group is

Gtotal - H Gz (2924)

i€aZd

We associate the link variable U;; with the elementary Wilson line (for the link), which
now can be written as an object on the link as

U ¢ Peil donAua)+0(@?) (29.25)
where the path z,(¢) has to be between z,(i) and z,(j), so
wut) = tou() + (1= )2, (29.26)
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and the point at which we define the object on the link is the midpoint,

2, = M (29.27)
The smallest nontrivial closed loop is called a "plaquette”, and is a square with nearest
neighbour vertices, p = (ijkl), with area a®. Then from (29.20), we have for the plaquette p

loop
1
Trl —ReTrU, = 5a* Tr Fijy), ) + O(a’) , (29.28)

where the plaquette square is in the directions u(p) and v(p).

Then we can define from the above the Yang-Mills action for the plaquette (Tr F, 31, /4),
and then sum over plaquettes, to obtain the Wilson action for the gauge theory on the
lattice,

SwlU] = Ba ; (1 - N%Re Tr Up) : (29.29)

(note that we have absorbed a factor of Ng = Tr/ in the definition of the coupling f¢)
which goes over in the continuum limit to

1 1
— | d%:= Tr F? 29.30
@) T e (29.30)
up to terms of order a? that vanish, provided we identify
4 2Ng
Baa*™t = 2 (29.31)
0

Here g is the bare coupling constant in YM, and we have used [ d%z Zuu = qa¢ Zp.

Note that the Wilson action is by no means unique, there are various actions that give
rise to the same continuum limit, but the Wilson action is the simplest, so it is the one used
by (almost) everyone.

Now that we have defined the lattice action, to formulate the gauge theory on the lattice
we only lack a definition of the path integral measure.

The measure for integration is the unique measure dU for integration over the group that
is invariant under both left and right group multiplication, i.e. U — UUy and U — UyU,
called the Haar measure. It also has the property that if U is close to the identity, i.e.
U = exp(iaA), then

Ng
dU = [[dA¢ (1 + O(a)). (29.32)
i=1

Therefore the partition function on the lattice is

Z[Be] = [ dve s (29.33)

le(ig) links

Continuum limait
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The naive continuum limit of the lattice YM action would be g — oo (or equivalently
go — 0), since ¢ is the coupling of the lattice action, and by taking it to infinity we have a
small fluctuation around Tr U, = 1.

But rather we need to do it as at the beginning of the lecture, by taking a — 0 while
fixing some physical length £. Then we have a RGE-like equation,

d¢ 0 0
G = (50— Blan) - ) ) =0 (29.34)
Here as before 5
= —a—go. 29.35
Blgo) = —az 90 (29.35)
The solution of the RGE-like equation above is
% dg
f(aag ) = aexp YR (2936)
’ o Bl9)

like we can easily check. This means that a divergent correlation length (and thus a fixed
point) corresponds to 8 = 0, as it should.
In a perturbative expansion,

B(g9) = =Bog® = Pig” + O(g") , (29.37)
and for G = SU(N), we have

11 N 34 N2
= . S 29.
bo=3162 M= 3162 (29.38)
leading to the solution for £ of
1
= a- (Bogd)?/* ex ( ) 29.39
€= a- (3ogd) ™ exp ( 55 (29.39)

Then for fixed & as @ — 0, this defines as go — 0 = g — 00, a(go), i.e. a(Bg).

For a physical mass m(fs) that implies a continuum limit mass scale (for something
like a glueball), m(Ba)E(Bg) is finite as S — oo if @ = 1 (in lattice units) (since then the
expression for £(a, go) reduces to £(Bg)).

Adding matter.

Up to now we have seen how to describe pure YM. But for physical applications, we want
to also have matter in the theory. For instance, for QCD we would need to have quarks.
But unfortunately, it is difficult to put chiral fermions on the lattice while keeping the chiral
symmetry. There is no perfect way to deal with chiral fermions.

So instead we will show how to put scalars on the lattice, having in mind the application
to the electroweak theory, so the scalars representing the Higgs. Then the scalars ¢(x) are
in the fundamental representation of the gauge group.

For a scalar ¢(x) defined at sites i, we have now the variables ¢;. The gauge invariance
of the scalars is

o(z) = V(x)p(x) , (29.40)
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so to obtain a gauge invariant observable we must form the composite object from two scalars
and a Wilson line A
¢T(y)P elfC:a:ﬁ\y A“dxﬂgb(l'). (2941)

This object is easily discretized to the lattice object
AU (29.42)

Next, we want to write an action, so we need to write a discrete version of the derivative,
easily seen to be

Oup(x) = djip — &;- (29.43)
But we actually need the covariant derivative D, ¢, and since U = € ~ 1 4 ia A, we have

Dyd(x) = Gjp = Uy ibs- (29.44)

Then the kinetic term of the scalar is

|D#¢‘2 = Z(¢j+u ]+,u,j¢] = 2Z¢ —2 Z ¢iUij9; , (29.45)

Jsb (47) links

where (ij) are links (between nearest neighbours).
In the gauge-Higgs action we need to add a mass term and a ¢* term with independent
coefficients besides the Wilson action for the gauge fields, for a total action

S[6, Ul = —r Y ReglUy;o; +NZ¢T¢1 +>\Z (¢le1)* + Ba ZReTrU (29.46)
(i5)

Important concepts to remember

e To take the continuum limit, we take a — 0, while keeping physical scales like &,;, = §a
fixed.

e At the gaussian fixed point, relevant interactions are super-renormalizable, marginal
are renormalizable and irrelevant are non-renormalizable.

e Irrelevant operators at the gaussian fixed point could lead to a trivial theory (free on
physical scales): QED and ¢* are in this class.

e We can vary (g ) by £(¢"%) = s£(g?), leading to a(g?) for an invariant long distance
physics, for a(¢’?) = a(g?)/s, leading to a new definition of the beta function, as

—a dg(a)/da.

e In lattice gauge theory, the variables are the links U;; € G, acting as infinitesimal
Wilson lines. The Wilson action for lattice gauge theory is written in terms of them.
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e The measure on the discrete path integral is the Haar measure dU, invariant under left
and right multiplications, U — UU, and U — UyU.

e In the continuum limit, we keep physical lengths fixed, obtaining RGE-like equations
from a d§/da = 0.

e Fundamental scalars ¢ can be added, with covariant derivative D,¢ — ¢4, —Uji, ;95

Further reading: See chapter 9.5 in [5].
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Exercises, Lecture 29

1) Calculate the number of sites, links and plaquettes for a symmetric hypercubic lattice
with periodic boundary conditions.

2) Derive the lattice version of the Yang-Mills equations (equations of motion of Yang-
Mills, or nonabelian Maxwell’s equations).
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30 Lecture 30. The Higgs mechanism

The subject of this lecture is spontaneous symmetry breaking, which is the situation when
a theory is invariant under some local (gauge) symmetry, but the vacuum breaks it, i.e. the
vacuum is not invariant under the symmetry. In this case, gauge fields become massive by the
Higgs mechanism, and they "eat” a scalar degree of freedom along the symmetry direction
in order to become massive. This works out, because a massive vector in 4 dimensions has 3
degrees of freedom, while a gauge field (massless vector) has 2, the difference being supplied
by the eaten scalar.

Abelian case

We start with the simplest version of the mechanism, in the abelian case, that will be
called ” Abelian-Higgs”, even though there this case is mostly relevant for superconductivity,
and not for particle physics.

The Lagrangean for a complex scalar coupled to a gauge field is

1
L= —5F2 ~ Dl = V(i) (30.1)

where D, = 0, —ieA,. The gauge invariance is

o(x) — 6ia(w)¢($)1
A(x) — A“(x)—i—ga#oz(x). (30.2)

We choose the most general analytic, gauge invariant, renormalizable potential with a sym-
metry breaking term,

A
V= i+ 5(6"0) (30.3)

or rather, by adding a constant (that is irrelevant as long as the model is not coupled to
gravity)

v (ep oY 30.4
-3 (-5 (30.4)

Indeed, a renormalizable potential must have powers less or equal to 4, and a gauge invariant
and analytic potential implies only 2nd and 4th powers. We must have p? = —m? > 0 for
symmetry breaking to occur. Then there is a VEV for ¢ and the U(1) is spontaneously

broken, giving a vacuum
2
(9) = o =/ ”7 (30.5)

The various vacua are ¢ = ¢pe’?, with the arbitrary phase 6, parametrizing the vacuum.
Without loss of generality, we can set the particular vacuum we are in to be real as above,
by a gauge transformation. The potential is called the ”Mexican hat potential” due to its
shape. Spontaneous symmetry breaking means that, starting at ¢ = 0, a small fluctuation
will lead us to a random direction, choosing some particular vacuum among the continuum
of vacua, and thus breaking the invariance.
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Expanding around this vacuum, we obtain

o1(x) +iga(x)

¢(x) = ¢o + NG , (30.6)
and the potential is X
V(6) = S22 + O(6)) (30.7)

That means that ¢ has mass m = v/2u and ¢, is massless and is the so-called ” Goldstone

boson”. It is a theorem that will be proved next lecture that for every symmetry that is

spontaneously broken there is an associated massless scalar called a Goldstone boson.
Expanding the scalar kinetic term, we get

€22
A

The third term in this expansion gives a mass term for the vector, with

Dol = %(au¢1)2 + %@@)2 + A AP — \2ey A0 Po ... (30.8)

m? = 2e*¢3 (30.9)

while the last term gives a mixing between the vector A, and the Goldstone boson ¢,. We
can of course redefine the fields such as to get rid of this term, and in the process get rid of
¢2, and we will do so shortly, but before let’s keep it and see that the resulting theory after
the expansion still is OK quantum mechanically.

ANNN—E——
k
(a)
’\J\/v@\f\/\ﬂ = AN/
®) N VaVaVs oVaV¥aVWs

Figure 76: (a) Mixing term between the scalar and a gauge field. (b) The sum of the two
diagrams with mixing gives the 1PI 2-point function, which is correctly transverse.

Consider the mixing term between the scalar of momentum k and a gauge field with
index p. The Feynman rule for it is

iv2edo(—ikt) = m k", (30.10)

Considering now the modification to the photon propagator, it comes from the vector mass
term, and the diagram with a mixing to scalar, scalar propagation, followed by scalar mixing
again. The sum of these two Feynman diagrams gives then

. i o ko k.
_zmiguu + (mAk“)ﬁ(—mAk )= —Zmi (gw — %) , (30.11)
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which is transverse, as it should be.

Unitary gauge

The unitary, or physical gauge, is the gauge where we choose a local gauge transformation
a(z) such as to get rid of the scalar degree of freedom in the U(1) direction, i.e. we put
¢2 = 0, ¢ real. Then the Lagrangean becomes

1
L= —ZFj,, —(0,0)? — 2P A AF — V(). (30.12)

The Higgs mechanism means a mass for the gauge boson by ”eating” the Goldstone
boson. We can see this mechanism explicitly in the parametrization for the scalar

¢ = [ole”. (30.13)
Then the covariant derivative of the scalar is
D¢ = €?(0,|¢] +10,0|¢| —ieA,|d|). (30.14)
By choosing the vacuum (|¢|) = ¢o = p?/), 6y = 0 and expanding around it as

2
o] =5+ el (30.15)

TR

the 6 degree of freedom is removed by the redefinition
1
Ay — A=A+ gaﬁ : (30.16)

which leaves the field strength invariant, F},, = F,,. Then after the redefinition, the scalar
kinetic term is

[Duol* = (0ul0])* + A, A" |g]* | (30.17)
and the Lagrangean is
R 2 2412 112
1 SloN?2 22
~ -1 - (Ou 2|(/5|) _ ‘fAﬂ A2 (30.18)

We see that we have removed the angle § degree of freedom in ¢ = |¢|e?, which is the
Goldstone boson (massless degree of freedom, since V' = V (|¢])).

An important historical note is that the "Higgs mechanism” was discovered jointly by
Higgs, Kibble, Guralnik, Hagen, Englert and Brout. In fact however, they explored the
model, and generalized to nonabelian gauge theory, but before them the abelian model had
been used in condensed matter to describe supeconductivity, specifically the Meissner ef-
fect, understood as the phenomenon of the photon becoming massive due to spontaneous
symmetry breaking, and thus penetrating only a distance of O(1/mppeton) inside the super-
conductor.
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Gauge symmetry
What happened to the gauge symmetry that was present in the theory before the Higgs-
ing? Before the Higgsing, the invariance was

§A, = O |
5¢ — |¢|619+zea_|¢|619:>50:€a7 (3019)

and expanding around the vacuum does nothing to the symmetry, but the redefinition does.
After the redefinition, we have

, 1
SA, = § (Au - E&,ﬁ) =0
slg| = o. (30.20)

So the gauge invariance is simply lost (nothing happens under it), but only after the redefi-
nition.

Note that, while it is also common to call ¢ "the Higgs”, actually the real scalar |¢| (or
#1) has mass m = /2y, and deseves the name ”the Higgs”, since it is the massive boson
associated with the Higgs particle.

Note that in the scalar kinetic term expansion we have a term

V20100 A, A" = V2 P AL A + .| (30.21)
which leads to a vertex for 2 gluons to join and emit a Higgs, of form
V262400, (30.22)

Nonabelian case
We consider now a nonabelian gauge group G, such that the gauge transformation is

Gi = (7)o = (e71) 5 (30.23)

where we have written the transformation with Hermitian and anti-Hermitian generators.
The covariant derivative is

Du¢i = (5H — ZgAZta)Z]¢] = (8N + gAZTa)Z]¢] (3024)
Therefore the kinetic term for the scalar is
1 2 1 2 a QW a 92 a Abu(a b
é(Dugbi) = 5(@@) +gAM0 gbiTijgbj + EAMA (T9)(T°P);. (30.25)
Consider the VEV
(9i) = (¢0):- (30.26)
Then from the kinetic term for the scalars we obtain the mass terms
1 a
AL pass = —§m§bAuAb" : (30.27)
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where
may, = g3 (T G0)i(T"do)i , (30.28)

and the diagonal elements are
ma, = g°(T"¢0)* > 0. (30.29)

Thus the vectors have mass squared positive or zero. Unlike the abelian case, when we
had only nonzero masses, in the general nonabelian case we can have masses that are zero,
corresponding to the existence of unbroken gauge fields.

Let us consider the general case, of a gauge symmetry with gauge group G, broken
spontaneously by the vacuum to a subgroup H that leaves the vacuum invariant. (Note that
in the abelian case, the vacuum was just a point, so there was no unbroken gauge group).
Then the generators in the coset G/H take us from one vacuum to another (equivalent one).
These generators give the Goldstone bosons then, which were the whole U(1) in the abelian
case.

The unbroken, massless generators, correspond to

m4 =0= (T") =0, (30.30)
and these conditions define the subgroup H. We can redefine again the vectors as
A = AL = 0,0(T )i (30.31)

which means that the broken vectors (with nonzero T%¢,) eat the Goldstone bosons and
become massive.
Again the existence of the mixing vertex

9AL0ubi (T Bo)i (30.32)

implies the transversality of the theory, so the consistency of the theory at the quantum level,
since the sum of the mass term diagram and the mixing, Goldstone scalar propagation, and
mixing again Feynman diagram gives

. a _Z v . k kl/
—im2y g + Y gk*(T 0)j 7z (—gk (T*¢o);) = —imy, <9w/ - %) ’ (30.33)

J

which is a transverse vacuum polarization.
SU(2) case
The simplest nonabelian case is the SU(2) case, also relevant since it is rather close to
the electroweak theory, where we have SU(2) x U(1). Consider a scalar ¢; that is a doublet
of SU(2), and
D¢ = (0, —igALT")9 (30.34)

where 7, = 0,/2 and o, are the Pauli matrices.
The potential is

2\ 2
V =\ <¢T¢ _ %) ) (30.35)
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Choose the vacuum (as before, we can rotate it to this form by a gauge transformation)

(¢) = % (S) : (30.36)

Then the scalar kinetic term is

1
Do) = 592 (0 v)ror° (0) Al A (30.37)

v

Since we have symmetry in (ab), we can replace 7°7° with {7%, 7%} /2 = §%/4, and obtain
finally

2,2
g v a a
A‘Cmass = TAMA H 5 (3038)
i.e., a vector mass
ma = %. (30.39)
Standard Model Higgs: electroweak SU(2) x U(1)
In the case of the electroweak theory, the covariant derivative is
g/
D, = (% — igAlT" — Z'EBM> ¢, (30.40)
and the last (U(1)) term is —ig'Y,B, = —ig'B,/2.
Then we have
1 (gA3+¢B, g(Al —iA?)
AST + ’—“:—( YL g e 30.41
9% 975 2 g(Ab—i—zAi) —gAi—l—g’BM ( )
The potential
A v2\?
V(g) =7 (¢T¢ - 7) (30.42)

has a real vacuum .
(9) = —= (O) (30.43)

that can be set by a gauge transformation from any other vacuum.
Then the mass term is

L _ v (0 1) gA> + ¢ B, g(A), —iA2) 270
mass 8 g(Ab + zAi) —gAi +¢'B, 1
2
v
= =g [T+ ¢ (AD) + (—g A + ¢'BL)’] (30.44)
Defining the fields
—— A, £iA

8 V2
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1

o _ _ - 3
Z, = e (94, — 9'By)
1 3
A# = W(Q/A# + gB#) y (3045)
the mass terms become
v? v?
ALpass = ——g"WiW ™ —(¢° + ¢*) = Z) 2. (30.46)
4 8
Therefore we see that: Wj have mass
my = % , (30.47)
the Zg has mass
mz =P+ g (30.48)

2
and the photon A, is massless, and corresponds to the unbroken electromagnetism.
Note that the photon is unbroken, since the corresponding field has no mass term in the
Lagrangean, and T%¢p, = 0 for it.
We now introduce the weak mizing angle or Weinberg angle Oy, defined by

g : g
cosby = ———, sinfy = ———. (30.49)
/3 + g2 /g% + g7
We see that in terms of it, the Z and A are just a rotation of A% and B, i.e.
Z° cosby —sinfy\ (A3
n) — 1
(A“) <sin 0w  cos by B,) "’ (30.50)

which is why we defined Zg and A, like this, in order to have an orthogonal rotation.
Using the further definitions

¢ = T'+il*=0"
g9
6 N —
/92 +g/2
Q = T°+Y, (30.51)
the covariant derivative is
D, = 0,—igAT, —ig'Y B,
= 8 _ Zi(W+T+ + W—T—) _ i 7 (92T3 o g/2y) . Zggl A (T3 +Y)
s \/§ 15 I3 92_|_g/2” 2+ g~ H ’
(30.52)
and since
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and e = gsin Oy, we get

Dy= 0 —i=(WITH + W, T™) = i—2— 7,(T? — sin® 0 Q) — ieA,.Q.

V2

We also obtain the relation between parameters

cos Oy "

mw = my cos Oy .

In unitary gauge, we write

)= 75 (o 110

and then H(z) is the Higgs boson, i.e. the field associated with the Higgs particle.

Expanding the potential in terms of it, we obtain

Av? Av A
="—"H’+"—H+—H*,
Vie) = 4 Ay 4 16 16
so in particular
, | W
o9
Then, the electroweak bosonic Lagrangean
1, . 1
EZ_Z(‘F;W) 4 ,Lw__lDﬂ¢|2 ( ) )

where B, = 0,B, — 0,B,,, becomes (the proof is left as an exercise)
1 1 - . . .
L = —-F,, —-7Z, — D"W™D,W} + D¥W~D,W;

gl T gl
2 : 28
Fie(FM 4 cot by 2 )W, — 6/81%

M3 MY?
— (MEVWWWM‘ + TZZ“ZM> (1 + 7)

1 m2 m>2 m>2
= H 2 HH2 . HH3 HH4
2 (0, H) 2 2v Sv?

where 7, = 0,2, — 0,7, and

D“ = 8” — ie(Au + cot GWZu)

Important concepts to remember

(30.54)

(30.55)

(30.56)

(30.57)

(30.58)

(30.59)

(WHWWHW, — WHWEW W)

(30.60)

(30.61)

e In spontaneous symmetry breaking, a local gauge group is (partially) broken (”spon-

taneously”) by the choice of a vacuum.
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e The vectors corresponding to the broken symmetry become massive by eating the
massless scalars (”Goldstone bosons”) corresponding to the directions of the broken
symmetry in scalar field space.

e The Goldstone bosons make the vacuum polarization of the spontaneously broken
theory transverse.

e The gauge symmetry is lost after the redefinition of the vector that eats the scalar.

e In the nonabelian case, the gauge group G is broken to H, leaving G/H broken gener-
ators that give the Goldstone bosons, and H unbroken generators of zero mass, with
Ta¢0 =0.

e In the electroweak theory, the SU(2) x U(1)y is broken to U(1)y,, and the Z and A
are an orthogonal rotation of A® and B.

Further reading: See chapter 20.1in [3] and chapter 85,86,87 in Srednicki.
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Exercises, Lecture 30

1) Consider the abelian-Higgs Lagrangean. Expand it up to 4th order in the perturbations
around the Higgs vacuum.

2) Prove that the Standard Model (electroweak) bosonic term around the Higgs vacuum
takes the form

1, 1, e .
L= —1FL—3%u— D"W=D W} + D"WD,W,}
2 a2 6
Fie(F™ + cot Oy ZM )W W, — w(W*#W;W*”Wg — WHWEW W)

2
M2 M\?
— (Mﬁ,W*“WM + 7ZZ“Zu> (1 + 7)
1 m2 m2 m2
—~(9,H)? — —Hpg?_ —_Hp3_  _Hp 30.62
2< wi) 2 20 Sv2 ’ ( )

where 7, = 0,2, — 0,7, and

D, =0, —ie(A, + cot Ow Z,). (30.63)
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31 Lecture 31. Renormalization of spontaneously bro-
ken gauge theories 1: the Goldstone theorem and
R¢ gauges

In this lecture we will start to describe the quantization of spontaneously broken gauge
theories, describing first the Goldstone theorem (at the quantum level), and then describing
a gauge that is most useful for quantization of spontaneously broken gauge theories, the R,
gauge.

The Goldstone theorem

We already mentioned the Goldstone theorem. It states that massless states called Gold-
stone bosons appear whenever we break spontaneously a continuous symmetry.

Proof.

Consider a general Lagrangean composed of a kinetic part depending on d,¢ and a
potential, i.e.

L= K(0¢) — V(o). (31.1)

Consider the minimum of the potential, at
0

=V =0, (31.2)

00" | go(a)=0g
and expand the potential around it,

V(6) = Vido) + 26— 606 — o0 (V) + (31.3)
¢) = 0) 5 0 0 D670 N e .
where o
_ 2
(—8¢“8<bb V) . =my,, (31.4)

is a mass matrix. Consider then the continuous symmetry
¢t = " + aA%(). (31.5)

In the particular case of constant ¢, the invariance of the Lagrangean implies the invariance
of the potential, i.e.

V(¢*) = V(¢" + aA*(9)) (31.6)

i.e. that 5
A%(¢ V| =o. 31.7
OF 8 (317)

Taking a derivative 9/0¢" on the above, we get

08"\ (OV a & . o _
0= (8@517 )¢0 (a¢a)¢0 +A (Cbo) (WV)¢O = A (¢0) (WV)% =0, (31.8)
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since ¢q is a minimum of V', so the first term is zero.
Then there are two possibilities:
1. A%(¢g) = 0, which means that the symmetry leaves the vacuum ¢ unchanged, which
is not the situation we are interested in.
2. If there is spontaneous breaking of the symmetry, then A%(¢g) # 0, which means that
A N ==V = A =0, 31.9
800 (¥ )= (o) (519

i.e. there is a zero eigenvalue for the mass in the direction of the symmetry, which is the
Goldstone boson.

g.e.d.

But we actually have proven the theorem only at the classical level. It is more interesting
to prove that quantum corrections also don’t spoil this property.

In order to consider quantum corrections, we need to consider instead of the classical
action, the quantum effective action I'. But for constant fields ¢, the effective action turns
into the effective potential, or rather the effective potential times the volume of spacetime,

Ll¢a] = =(VT)Ver[¢al. (31.10)

But if there are no quantum anomalies, the effective potential respects the same symmetries
as V', so we can repeat the same argument for the effective potential.
Then we obtain in general

— 0. (31.11)

p2;£m2

(52
t

If we consider the particular case of p = 0, corresponding to constant classical field, I' turns
to Vog, and we get
82
a¢aa¢b%ﬁ =0, (31.12)

as expected.

R gauges.

Abelian case

We start with the abelian case.

In the case of gauge theory not spontaneously broken, the Minkowski Lagrangean is

1 _, oG
Eg‘f, + £gh = —2—€G — bEC s (3113)
where G = 0 is the gauge condition. The gauge transformation is
0A, = =005 09 = —iead (31.14)
and in the Lorenz (covariant) gauge G = 0" A,,, we obtain
oG
— =0 31.15
5o (31.15)
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In the spontaneously broken case, with scalar field expansion, we have

L (¢! +ig? _LU x) +1p(x
56! +i6%) = (04 hla) +ip(@)) (31.16)

where h(x) is the Higgs, and ¢(z) is the Goldstone boson.
We then choose

o=

G=0"A, —Eevyp, (31.17)

which is called the R, gauge, and we note that for v = 0 it reduces to the Lorenz gauge.
We compute the kinetic term for ¢. With D, = 0, —ieA, as usual, we get

1
Dyt = —l(Oul + cipA,) + (0 — (v + 1) A,)] (31.18)
so that

1 1
—|Dugzﬁ|2 = —5(8ﬂh + egoAN)2 — 5(8ug0 —e(v+ h)AM)2

1 1 ?
= _§(auh)8uh - 58%08“90 - %11214“14“ + evA, 0t
+eA, (ho"¢ — po"h)
2

—e2uhA, A — %(h? + P AL AN, (31.19)

The potential expands as

A 2\? 2 A A
V=2 <|¢|2 - %) = S+ SRR 4 ) + S0+ ) (31.20)

The gauge fixing term expands as

d d 1 v Eetv? 2
d'zLy; = d’x _%(a/@q#)a A, — 0 + evpd A,
2,2
_ / 'z {—%(amy)amu — v A0t — 562“ 902] . (31.21)

where in the first term we have partially integrated both derivatives, and in the mixed term
we have partially integrated the derivative. From the mass term for ¢ we have the mass

my = VEev = \/Emy. (31.22)

We see that the mixed term cancels between the kinetic term and the gauge fixing term,
which is one reason why the gauge fixing term was chosen like that.
The ghost term is found as follows. The gauge transformation around the Higgs vacuum

with ¢ = (v+h + ¢)/V2 is

0A, = —0ua; Oh = +eayp; 0p = —ea(v+h). (31.23)
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Then we get
0G0
S da

leading to a ghost term

(0" A, — Eevp) = =0 + Ee®v(v + h) | (31.24)

/ddxﬁgh = — / d*xb[—0* + Ee*v(v + h)]c
/ d*z[0"b0,c + Ee*v?be + Eetvhbd]. (31.25)

From the second term we see that the ghosts b and ¢ have masses

Mpe = \/Eev = \/EmA (31.26)

also.

The kinetic term for A, contains the usual kinetic term from the — [ F7,/4 action, the
term from the gauge fixing term, and the mass term from the scalar kinetic term, giving in
total

1 v v 92 2 v oro”
L2 = _§Au o'oY — g""o* + miyg" — ¢ A, (31.27)
or in momentum space
1 - .
Ly = —§AM(—/<:)[(1<;2 +m%)g" — (1 — & HEFEA, (k). (31.28)
Then the kinetic matrix
[(K* +m%) g™ — (1 — & 1)kME] (31.29)
can be written in terms of the projectors
5 L, KkMEY 5 kHEY
Pr(k) =g — =5 E"(k) = —5-, (31.30)

satisfying the projector, orthogonality and completeness relations, i.e. schematically
P’=pP, K’=K, P-K=0; P+K=1, (31.31)
which can be easily checked, as
(K* +m%) P (k) + €1 (k> + Em%) K™ (k) | (31.32)

which means it can be easily inverted to give the photon propagator in R, gauge,

A - Bl | €

k2 m? kK24 Emy (31.33)

We note that the transverse (physical) part of the propagator, proportional to P, (k),
has mass my, whereas the longitudinal (unphysical) part of the propagator, proportional
to K,,(k), has mass v/ém4. So in total, the quartet of unphysical states, the would-be
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Goldstone boson ¢, the ghosts b and ¢ and the longitudinal photon, all have the mass

\/ETTLA.

We also note that for & = 1 (the equivalent of the Feynman gauge for the unbroken
theory), we have

A Guv
A (k)|e=1 = m ) (31.34)

which is the KG propagator (for a scalar mode). We will nevertheless continue to use
arbitrary £ in order to see ¢ independence for physical quantities (test our calculation).
In conclusion, the propagators are as follows:
-for the Higgs h we have the usual scalar propagator,
1

1.
el (31.35)

where m;, = v \wv.
-for the would-be Goldstone boson (unphysical scalar ¢), we have the scalar propagator
1
- 31.36
Rt eml (31.36)

-same as the ghosts b, c.

-the vector has the propagator AW(IC), with my = ev.

Putting together all the interaction terms derived above, we find the interaction La-
grangean

Lo = —0h( 4 6%) = S0+ )

+6A u(hO" @ — cp(?“h)
—e*vhA, A" — —(h2 + *) A, A*
—&e*vhbe. (31.37)

Nonabelian case
In the nonabelian case, the gauge fixing and ghost terms in the Lagrangean are

Lgs + Ly = fG G =0 ii: (31.38)
The gauge covariant derivative is
D, =0,+gA.T, (31.39)
and we expand around the VEV (¢;) = v; as
¢i = v + Xi- (31.40)
Then we choose the gauge condition for the R, gauge as
G = " A} — Eg(T) v X (31.41)
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Then the gauge fixing term becomes
1 a 14 a a a a a
/ddxﬁgf. = /ddx {_E@NAMW A+ Eg(T )z’jUina#Au - 592((T Jirve(T )szz)Xin}
1 a 12 a a a a a
= /ddfc {—2—5(6%4”)3 Au —g(T )ijUjaMXiA,u - 592((T Jirve(T )jlvz)Xin] )
(31.42)

where as before we have partially integrated the two derivatives in the first term and the

derivative in the second. The last term, with x;x;, is a contribution to the mass term for
scalars,

EMY = Eg*((T")irvr(T) jrn). (31.43)
The kinetic term for the scalars is ((7%)7 = —T9)
1 B AT DB 1 1 92 a a Abu
—5(DF¢) Do = —(9"x1)Ouxi — T (T awon(T ")) AL A 4 (T )kukA X
+g AL (T) ;50" x; — g AL A" (T")akve) (T)ig x5 — E(T“Tb)ininAZAb“ :
(31.44)

and again the mixing term between the vector and the would-be Goldstone boson cancels
with the gauge fixing term.

The ghost term is obtained by considering the gauge transformation on the fluctuation,
AL — AL — Dzbab; Xi = —ga(Ty)i(v+h); , (31.45)
leading to

oG

S5 = 0D+ €8P (T)uy(T)a(v + X))

= —8uDzb + 692(Ta)ij/l]j (Tb)iﬂ)l + ng((Ta)ijUj(Tb)il)Xl s (3146)

where the middle term is written as (Mg,)* and is the ghost mass term. Then the ghost
term 1s

/ddxﬁgh = /ddx [—(6ub“)DZbcb — {(M;C)abbacb — £ ((T*)ij0,(T") ) xab"] . (31.47)

Important concepts to remember

e The Goldstone theorem says that there is a massless particle (Goldstone boson) for
every spontaneously broken continuous symmetry.

e The effective potential is the effective action on constant fields, more precisely I'[¢y] =
—(VT)Veysldal-
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Quantum corrections respect the Goldstone theorem.

The R gauge is 0" A, — Eevp = 0.

In the R, gauge, the quartet of unphysical states, would-be Goldstone boson ¢, ghosts
b and ¢ and longitudinal gauge boson have all the mass /¢my, where my = ev; the
Higgs mass is my;, = v/ \v.

With the choice £ = 1, the photon propagator is the KG propagator.

Further reading: See chapter 11.1, 21.1, 21.2 in [3].

311



Exercises, Lecture 31

1) Consider a theory invariant under a symmetry group G, having a spontaneously break-
ing vacuum invariant under H sup G. How many Goldstone bosons there are? Specialize to

the SU(5) — SU(3) x SU(2) x U(1) breaking.
2) Write down all the one-loop Feynman diagrams for the Higgs h 1PI 2-point functionin

the spontaneously broken abelian theory in R, gauge, and the integral expressions for them
using the Feynman rules (without computing them).
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32 Lecture 32. Renormalization of spontaneously bro-
ken gauge theories II: The SU(2)-Higgs model

In this lecture we learn how to renormalize spontaneously broken gauge theories using the R
gauge, for the example of the SU(2)-Higgs system, which is close to the electroweak theory,
without being exactly that. Also, we will not do the full renormalization, but only some of
the important steps.

The theory contains SU(2) gauge fields, and a complex Higgs doublet. Again, the ter-
minology is ambigous, really we have a Higgs field h and would-be Goldstone bosons x*.

With respect to unbroken gauge theories, one important difference is that now there is
one more Ward identity, for the fact that only the combination v + h appears in the classical
Lagrangean. It is of course broken by the gauge fixing term, so we need to check explicitly
that this is still satisfied at the quantum level.

We parametrize the complex field slightly differently from what we had before, now
considering the VEV in the upper component, instead of the lower component. So we start

by parametrizing the complex doublet
o'
= 32.1
¢ < 802) ( )

o= —stwrive) () = o (%) (32.2)

as

The Lagrangean is

1
L= —Z(FEV)Q — (Dup)' Do — V(') (32.3)
where the potential is
V= —129'o + Ao'p)*. (32.4)
The VEV is v
Reg!) = — | 32.5
(Reg’) 7 (32.5)
so we split the scalar into VEV and fluctuations as
v =uv-+h. (32.6)
The gauge-covariant derivative is
i
D,y =0,¢— 59‘420%' (32.7)

This is a particular case for the general procedure from last lecture, so we can write the
Lagrangean that comes from the square of the covariant derivative as a sum of a kinetic
piece, a piece linear in A and a piece quadratic in A, as

1
L = =5l W0h+ @)\
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gv a a g a < a ]' a c
£(A1) = 7(14#8‘“)( )—|— §A#(h aﬂ X ) + EQEG},C(X AZ&“X )

2
L) = =LA 0+ )+ X,

Writing the covariant derivative as
1

D,y = 7

(Dyh+i0°D,x") ,

where we have defined
9 sa
D,h = 0,h+ EAMXQ

a a g c g a
DMX = a,uX -+ §€abcAZ — QAM(U + h) ,

we can rewrite the scalar kinetic term as
1 1 a g a a
L= —5(Duh)* = 5(Dux")’ + SvALO"X".
To cancel the last term, we add the 't Hooft gauge fixing term (in R, gauge)
1 a 1 a ?
% <8”Au + §§gvx > :
Then the quadratic (kinetic) term for x is

Eg.fix =

1 RN AN
EXQ - 2(8/1')() 9 ( 9 ) (X ) )
so the mass of the would-be Goldstone bosons is m, = \/Ema.
The kinetic term for the vectors is now
1 1 rgv\2
L — _Z(F@ 2__(_) AaQ
YM 4( ;UJ) 2 2 ( y,) ?
so ma = gu/2.
The ghost Lagrangean is found as usual, from b,6G/6a’c, as

L. =b "D, c gv 2 a 52 a a b _c
gh = ba uct =& 5 b,C —ngba(hc + €%pex ).

(32.8)

(32.9)

(32.10)

(32.11)

(32.12)

(32.13)

(32.14)

(32.15)

As we mentioned last lecture, we see that the quartet of unphysical states, the Fadeev-
Popov ghosts b, and ¢*, together with the would-be Goldstone bosons x* and the longitudinal

part of the YM field A} have all the same mass m = VEmy.

We will see why shortly, but at the quantum level we need to consider that the gauge

fixing term contains two new parameters, so we will write it as

a 1 a ?
Ly piz = (3‘%“ +589vx ) :

" 2a
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where now a # £ and are equal only at the classical level. But even in this case (at the
quantum level) the quartet of unphysical states will still have the same mass.

We now split the Lagrangean for the spontaneously broken theory into matter, gauge
and ghost parts,

1 a a a C 2
»Cgauge = _4_1 (a,uAu - 81/14# + gf bcAZAV>
1 5 1 a\2 p 2 a2 A 2 a\212
Losier = —5(Dah)? = 5D + 0+ W2 4+ ()] = S [0+ 7P + ()
1 1
Lohost = ba {8“D#c“ — f% <§g(v + h)c* + igfabcxbcc)} ) (32.17)

But we still need to add a term to the Lagrangean. We saw in the unbroken case,
that when we renormalize, we need to add an extra source term to the Lagrangean for the
nonlinear parts of the BRST variations. We add

Lostira = KJQpAL/AN+ KQph/A+ K,QpX*/A+ LoQpc"/A
1 1 1
= K!D,c* - K (§gxac“) + K, <§9(v +h)et + §gf“bcxbcc)

1
+ L, (§g f“bccbcc) : (32.18)

It is useful to write the linear and quadratic mass terms in the scalars as

—Buh — g(hQ +(x"?) (32.19)
where
B=—p?+2x7, (32.20)

though then 8 doesn’t renormalize multiplicatively. Indeed, pu? and Av? both renormalize
multiplicatively, however classically 5 = 0, so we require

B, = = + Aren¥ien, = 0, (32.21)
which means that [ is renormalized additively, as
Bren =0+ ABLY, + .. (32.22)

We will therefore choose to renormalize 3 additively as above, rather than renormalize p?
multiplicatively.

Another observation is that now the matter Lagrangean depends on v + h(z), but the
gauge fixing and ghost terms break this, so at the quantum level we must check explic-
itly. (Note that we could replace v by v + h in the gauge fixing term, but then it is more
complicated).

We also consider that we will have a # £, but we require qep, = Epenn = 1.
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As in the unbroken case, we proceed to write the equivalent of the Ward identities for
the effective action I' in the BRST case, more precisely for

=I-— /Lfmd‘*x , (32.23)
the Lee-Zinn-Justin identities, that are now written as
/d% af/agbfi =0
OK!

0 gu 0 d\ »
1 _ 2z _ =
(8 OKE > Ik, (‘%a)F 0. (32.24)

Here

o' = {h,x% AL Y
K; = {K, K., K" L,). (32.25)

These can be found as in the unbroken case, and we note that restricting to A} and ¢ and
putting v = 0, we find the unbroken case.

Therefore the fields in the theory are A}, b,, ¢, h and x?, the sources are K, K*, K}; and
L,, and the parameters are g, v, A\, and &.

Renormalization is then done as follows. The fields renormalize as

A, = VDA,

¢ =V ZghC?en

ba = vV Zghba,ren
= vV Zhhren

X" = V2 Xren » (32.26)

S}

the sources as

232 gn
K = g Kren
Zn
737
K* = | [Z2RKL,
Zy
KZ =V Zgth,ren
L = ZsLgyen (32.27)
and the parameters as
ZyGrentt' =

=V Zvvren
= Z)\Zhiz)\ren,uz;id
= Z3aren

O > w
|
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Zs
£ = Z; Z Eren. (32.28)
v&x

We must make several observations:

L. by, as well as KF, scale as ¢ and L, scales as Aj. We have seen in the unbroken case
that their renormalization is fixed by analyzing the possible divergent structures that solve
the Lee-Zinn-Justin identities, and now a similar story holds.

But now we also see that Kh, K,x", KI'Aj and L,c” all scale the same way, since the
source terms are K;QpAj, KQph, K*Qpx", L.Qpc".

Therefore the renormalization of the extra source terms is completely fixed.

2. The renormalization of v and £ is fixed by requiring that the gauge fixing term is finite
by itself. The part at v = 0 (from the unbroken theory) fixes in & = Z,apen, Zo = Z3, whereas
the v-dependent term fixes the renormalization of €. The result is a different renormalization
factor for a and &.

3. This in turn means that we need separate o and £ as advertised, and ey, = e, = 1.

4. A quick one-loop calculation shows that in fact also Z, # Z;, even though the classical
Lagrangean has them equal.

One can prove renormalizability at all loops by induction. Here we will not prove the
induction step, since we also didn’t in the unbroken case.

5. By analyzing the solution of the Lee-Zinn-Justin identities, we find 9 possible divergent
structures, but we have only 8 renormalization parameters: Zs, Zgy,, Zy, Zy, Zg, Zy, Zy and
Apyen (standing in for Z,,).

This would seem like a contradiction, but as we advertised at the beginning of the lecture,
there is an extra Ward identitty, coming from the fact that we only find the v+h combination
in the classical part (only the gauge fixing and ghost parts break it)

The classical action is the tree level part of the modified effective action, ff«% = Sren-
Then the Ward identity is written as

0 0
(“% _ a—) Soatter = 0. (32.29)
or in terms of I'© as
0 0 0 .
ren — Uren ren F(O) - O 3230
(g aéren ! aUT‘en v ahren) ren ’ ( )

since in the ghost term and the gauge fixing term the combination £v appears.

The above Ward identity allows the reduction of the possible divergences to 8, equal to
the number of renormalization parameters.

Another useful consistency condition is found from ghost number conservation, which
implies (the coefficient of each term is their ghost number)

o L0 0 9 9 o\
_ o iz 0) _—
(b“aba oo TR T ok, Tk 2L“3La) Fren =0 (38231)

317



Important concepts to remember

The SU(2)-Higgs system has a gauge field and a complex scalar doublet, and the Higgs
mechanism generates a quartet of unphysical states.

To renormalize in the R, ('t Hooft) gauge, we need to add sources for the nonlinear parts
of the BRST trasformations to the Lagrangean, K¥, K, K,, L, for Qp A}, Qph, QpXa4, Qpc".

Instead of renormalizing ;2 multiplicatively, we can renormalize 3 = —u? 4+ Av?, which
is 0 classically, additively.

We must consider a and £ renormalizations independently at the quantum level, for
G = O"AS + Egu/2x* and (G*)* /2ar as gauge fixing term.

We must consider v and h renormalizing independently at the quantum level, but
the Ward identity coming from having only v + h dependence reduces the number of
divergent structure to the number matching the number of parameters.

Further reading: See chapter 21.3 in [3].
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33 Lecture 33. Pseudo-Goldstone bosons, nonlinear
sigma model and chiral perturbation theory

In this lecture we will apply the method of effective field theory from lecture 27 to describe
low energy QCD. We will use an approximate symmetry called chiral symmetry, and its
perturbation theory.

We have described spontaneous symmetry breaking, and we saw that Goldstone’s theorem
says we obtain Goldstone bosons for the broken symmetry directions. But in reality, we
never have an exact symmetry, so it is useful to know what happens when an approximate
symmetry is broken. In that case, we say we have a pseudo-Goldstone boson.

In QCD, we have 6 quarks: u,d, s, ¢,b,t. The last 3, ¢, b and t, are heavy, so a different
perturbation theory is used for them. The u and d quarks are nearly massless (their masses
are very small), and the s quark is intermediate in mass. Therefore in low energy QCD we
consider the v and d quarks, and sometimes the s quark. One can consider also source terms
for various currents: vector V,, for the vector current, axial vector A, for the axial vector
current, s for the a scalar current and p for a pseudoscalar current, for a total Lagrangean
in low energy QCD

1

L = _Z(Fﬁv)Q — 4" Dyu — dy* D, d[—3v"D,,s]
— Z mz‘CL‘C]i
=V, q — ALqy'vsq — sqq — pasq) (33.1)

where the first line is the massless QCD, the second line the mass terms, and the third line
the source terms.

We will consider only the v and d quarks for most of the lecture, generalizing to the
introduction of the s quark at the end of the lecture.

We will consider then the quark column vector ¢ = , which is nearly massless

u
d
(my, >~ mg ~ 0). Then the low energy Lagrangean has U(2), x U(2)g symmetry, as we have
described in lecture 25, composed of an SU(2), x SU(2)g part and an U(1) x U(1) part.

The action of the SU(2), x SU(2)g on q is

u LT T (u
q= (d) — exp {zav 5 T 0k 2} (d) : (33.2)

where 7% are the Pauli matrices. In terms of

1£7s
dqr/r = 5 q

grp = €VEA TR

" 14+ “
T8R = ( : 5)T : (33.3)
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the action of SU(2), x SU(2)g is

qr/rR — 9r/R4IL/R
Vit A, — gL/R(Vu + AH)QE/R + Z.(augL/R)gj:/J'%
s+ip — gr(s+ip)gr. (33.4)

Then 77, generate two independent SU(2) algebras, i.e. SU(2) x SU(2),

T8 = detters
[T Thl = e,
[re, 78] = 0. (33.5)

Besides this, we have the U(1) x U(1), acting as
(q) — €T (q). (33.6)

The action by e is (3 times) the U(1)g baryon number (since the baryon number of a
baryon like n and p is 1, the baryon number of the quarks u and d is 1/3).

The baryon number is conserved in QCD! (in electroweak theory the baryon number is
broken by anomalies through instantons as we said in lecture 25, since the chiral fermions L
and R couple differently to it, unlike the coupling of the fermions to SU(3).).

On the other hand, e’ is an abelian global chiral symmetry, and is broken by anomalies
in QCD, giving the solution to the U(1) problem, as we explained in lecture 25.

The SU(2), x SU(2)g is broken spontaneously to SU(2)y, acting as

(g) = €7 (g). (33.7)

But the other SU(2), for
(q) = €472 (q) (33.8)

called the chiral (axial) symmetry, is spontaneously broken. That issue, of chiral symmetry
breaking is one of the most important ones of particle physics, and its exact mechanism is
unknown (we don’t know an exact low energy effective action that will show the spontaneous
breaking). This lecture is devoted to a phenomenological description of the phenomenon.

Since we have a spontaneous breaking of an (approximate) symmetry, by the Goldstone
theorem we must have (pseudo-)Goldstone bosons for the 3 generators, and transforming
under the unbroken SU(2)y (isospin). There is only one candidate group, the pions 7%,
which are approximately massless, since m, < Agep. Here Agep is the spontaneously
generated scale for QCD, that gives the mass of the physical states. (There are various ways
to define Agep, but we will not try to define it here).

We note that the Wigner-Eckhart theorem, which says that states should fall under
multiplets of the full symmetry group, does not apply to spontaneous symmetry breaking
(SSB). Indeed, SSB can be described by the fact that the vacuum is not invariant under the
symmetry, i.e. Q|0) # 0, which also means that the low energy states are not in a multiplet.

So in our case, the pions are not in a multiplet of SU(2) 4, but are still in a multiplet of
the unbroken group, SU(2)y or isospin. Indeed, they transform as the adjoint of this group.
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We said that we have spontaneous symmetry breaking for SU(2) 4, but until now we have
seen only SSB via a scalar field VEV, and now we have only fermions and gauge fields in the
theory. But the point is that in such a theory, the fermions form condensates, i.e. composite
scalars made up of the fermions have a VEV. Therefore we have a quark condensate,

(0]Griqh|0) = —vé]. (33.9)

Here 7, 5 are flavour indices. Note that there are ways to see that in a gauge theory we have
a fermion condensate at low energy, and we can show this for QCD, even if we don’t know
the exact mechanism.

Up to now we have described massless quarks leading to massless pions (Goldstone
bosons). But of course in reality, up and down quarks are not massless, and the pions
also have mass, which is much smaller however than the mass of the hadronic states p and
n, made up also of only u and d quarks. So we should make an important distinction:

-For spontaneous symmetry breaking with massless pions, we would still obtain nucleons
n and p (composite fermions) with a mass. In fact, m, an m,, are approximately independent
of the quark masses m,, mq4, as could be guessed from the fact that m,, m, > m,.

-On the other hand, a nonzero quark mass m, is correlated with a nonzero pion mass mx,
so in the presence of quark mass, the pions (Goldstone bosons) are not massless anymore.
In fact, we will see at the end of the lecture that we have the relation

my = Q(mufj%r = 2<mufjr2r e (0lgrqr|0)- (33.10)

The perturbation theory that we will obtain for the pion interactions will be a perturba-
tion theory in p/fr, and also a perturbation theory in m, (related to it through the above),
called chiral perturbation theory, Ch.P.T.

To model spontaneous symmetry breaking for SO(4) ~ SU(2), x SU(2)r — SU(2)y,
we can describe the SO(4) symmetry through a bifundamental action on the set (1, 7%) of
generators which is a complete set in the space of 2 x 2 matrices. So we define the matrix

Y =ocl+irn", (33.11)

which is therefore an arbitrary 2 x 2 matrix field (with some reality properties), and where
7 will be related to the pions, but for now is just a set of real scalars. The action of the
SO(4) ~ SU(2), x SU(2)r symmetry on ¥ is given by

Y = g Ngh. (33.12)

Then, in terms of the field X, we describe phenomenologically the SSB for chiral symmetry
through the Lagrangean that is a simple generalization of the Higgs Lagrangean,
1 iy P n_A 12
L= ~2 Tr[0, 20" %] + vy Tr[2XT] — 1—6[Tr(22 )]°. (33.13)

This is called the linear sigma model. The kinetic term is the standard one (note that for
instance for o, multiplied by the identiy, the trace gives a factor of 2, so the normalization
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is canonical), the mass term has the spontaneous symmetry breaking sign (m? = —pu? < 0),
so the potential is the matrix generalization of the Higgs potential.

If we want to couple to external gauge fields A, and V,, (axial vector and vector), we
would do it through the covariant derivative

DY = 8,5 —i(V, + A5 +i%(V, — A,). (33.14)

The theory has a spontaneously broken vacuum with VEV v, and around it the expansion
of ¥ is a_sa

S(z) = (v + s(2))U(z); Ulz) =e 5. (33.15)
Here s is a scalar with zero VEV, (s) = 0, v is the VEV, and #n'*(z) are massless, so are
indentified with the pions. Indeed, there is no mass term for U, so not for 7’*, while there is
one for s, which therefore is the "Higgs”, i.e. the massive mode.

In the Wilsonian effective action approach, one integrates momenta with |k| > A, which
means in particular that one must integrate all the fields with masses m > A (since they
have always |k| > A). This is called integrating out the massive modes in the Lagrangean.
When doing that, as we saw, we obtain higher dimensional operators in the Lagrangean, but
at sufficiently low energies they are negligible, since they come with inverse powers of A.

So now, we integrate out the massive modes, including s, and it means that at low
energies, to zeroth order, we can just drop the dependence on them (on s), since the higher
dimensional operators they will generate are small.

If we do that, the Lagrangean becomes nonlinear, so we have the nonlinear sigma model.
Indeed, the Lagrangean is now

2
Lyp = _UZ Tv[0,U0 U] (33.16)

which looks linear, however we have to remember that now we have the constraint UTU = 1,
or ©I¥ = v? (whereas ¥ was an arbitrary matrix before the integrating out), so if we solve
the constraint, we get a nonlinear action.

To relate to QCD, we must describe who is the matrix U. If the QCD state is the state
|U) instead of the vacuum |0) in (33.9), we have a generalization of the relation,

(U|qriqy|U) = —oU? (33.17)

where Uy is the matrix element of the matrix U associated with the state |U).
The state |U) is a pion state so, using a new normalization that anticipates that v = f;,

U(z) = exp {%} , (33.18)
and plugging in the nonlinear sigma model action, which is now
2

Lyr = —% Tr[0,U0*UT , (33.19)
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and expanding in 1/ f;, we obtain

-2
L= —%%w“@“w“ + %(W“W“@“Wbauﬂb — momt 9, m) + .., (33.20)
which is indeed a perturbation in p/ f, so is chiral perturbation theory. In fact, one can use
the original normalization, and obtain a Lagrangean with v, which can be compared with
predictions about the pion decay, and obtain that v = f,. We will say more on this later in
the lecture.

More generally, we call a linear sigma model as set of N scalars with a symmetry and
some canonical kinetic term.

The SO(N) vector model

The most famous example is the SO(N) model, in terms of a scalar that is a vector (fun-
damental representation) of SO(N), with spontaneous symmetry breaking. The Lagrangean
is a simple generalization of the above linear sigma model Lagrangean,

1 e M e AL e
£ = —Ou ) + 6 = 2, (3321)
and is invariant under SO(N) transformations ¢ — R';¢’. Note that our QCD case is
N =4, for SO(4) ~ SU(2) x SU(2). The potential
2
v =-5(¢) + Zl6) (33.22)

has a spontaneously broken vacuum at

2

(¢ =5, (33.23)
and by a symmetry transformation we can orient ¢y along the Nth direction,
¢o = (0,...,0,0). (33.24)
We expand the fields around it as
¢'(x) = (7"(x),v + o(x)) , (33.25)

where k = 1,..., N — 1. Then the Lagrangean becomes

L - —%(aﬂk)‘z - %(3“0)2 - %(m?)a? W
A, A A
—Vu(r*)?o — 104 - 5(7#“)202 - ZWW' (33.26)

In general, a nonlinear sigma model is defined as any Lagrangean of the type
L= fi;({¢")0u0'0" ¢ (33.27)
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That is, a model with a metric (depending on the scalars) on the space of scalars. For
instance, a famous example is the 2 dimensional field theory on the worldsheet of a string
propagating in a general spacetime, but a more relevant example for phenomenology would
be a modulus scalar field in 4 dimensions.

With respect to the above O(N) linear sigma model, the nonlinear sigma model is

1

L=—
2¢?

(0,01)0"9" (33.28)

with the constraint
> (i) =1, (33.29)
i=1
i.e. the fields to be on a unit sphere. It gives a phenomenological description of a system
with O(N) symmetry spontaneously broken by a VEV, e.g. by integrating out the massive
(radial) mode in the above expansion around a VE to get ¢' — v¢'(z), so the same thing

we did in the SU(2) x SU(2) case.
We can solve the constraint by N — 1 Goldstone bosons 7%, as

o= (', .., 7V o), (33.30)

where

o=1-7. (33.31)

Now the manifest SO(N) symmetry turns into manifest SO(N — 1) symmetry. Then we
find that the kinetic term becomes

_ 2.0 7)2
0,5 = @77 + T 9T (33.32)
1 — 72
so the nonlinear sigma model action becomes
— 1 Lo, (T 8“7?)2
L = gy (0u7)" + [ =
]. — — —
~ o [(0,7)* + (7 0,7)° + ..] . (33.33)

Note that here the dimension of scalars is zero, [¢] = 0, where the coupling has dimension
—1, [¢g] = —1, and in the second line we have expanded in the scalars 7.

To make the connection with chiral perturbation theory, we take N = 4, so SO(4) ~
SU(2) x SU(2), and is spontaneously broken to SU(2) ~ SO(3) acting on the 7*’s. So
initially, SO(4) is manifest, but there is a constraint. When solving the constraint for b
in terms of 7%, only SO(3) remains linearly realized, the other SO(3) becomes nonlinearly
realized.

The issue of nonlinear realizations follows the same pattern in general: what we usually
call a symmetry is a linearly realized symmetry, i.e. a symmetry that acts linearly on the
fields. When we have a nonlinearly realized symmetry, it is indicative of a case when there is
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a more fundamental representation that has the symmetry, like by introducing an auxiliary
field, or by writing the theory with a constraint, or that we are in a spontaneously broken
vacuum. But in any case, the symmetry is not manifest in the action.

We will see that more explicitly in the last form we will describe for the pions.

We can use yet another way to solve the constraint of the SO(4) model. We can write
the sigma model as a rotation R acting on the vector (0,0,0,0) parametrized only by the
massive mode o, as

¢i(z) = Ru(x)o(z) , (33.34)

where the matrix R is orthogonal (in SO(4)), so it satisfies RRT = 1. Then by squaring the
above relation and using RRT = 1, we get

o(x) = (33.35)
Replacing in the linear sigma model Lagrangean, we find
1 o oo Ay
L= —§aMO'5WO' — ? 28”Ri48MRi4 + ?O' - ZO’ . (3336)
Parametrizing the fields as
Pa
Ca -
Gy +0
2C,
Ra4 = C—» = _R4a
1+ ¢?
1— )
R44 = C_.
14 ¢2
2,
R = 6~ % , (33.37)
_|._
we obtain the Lagrangean
1 g 2 A
L= —50,00'c —20°D,D" + %02 - ot (33.38)
where .
~ )
B,=- :%2 (33.39)

is often called the covariant derivative of the pion field.
Then the transformation rules for the scalars are:

e for isospin SU(2)y, that acts as a SO(3) rotation of ¢, thus of (,, leaving ¢* and o
invariant, we have

SC=ax¢ 6do=0. (33.40)

which is a linear transformation, since the group is unbroken.
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e for the axial vector SU(2)4, which is broken, from 6(5 = 2¢p, and d¢y = —2¢€ - q;, we
get
0D, =2(( x€) xD,, (33.41)

which is a nonlinear transformation, i.e. broken.

The VEV of the scalar o is () = v, and integrating out the fluctuation in o, we obtain
the nonlinear sigma model Lagrangean

L=-20*D,D" (33.42)
Defining the pions as -
T =20(, (33.43)
we get the pion Lagrangean
10,7 orn
L= O (33.44)

2(1+ )

We now observe that we have written several Lagrangeans for the pions, (33.20), (33.33)
and (33.44). They are all Goldstone boson Lagrangeans, meaning that the interactions all
involve derivatives of the pions, and the Lagrangeans are an expansion in p/f;, i.e. chiral
perturbation theory. What does it mean?

Really, it means that we should use the Wilsonian effective field theory approach for the
pions, and write down the most general Lagrangean consistent with all the symmetries (all
the higher dimension operators consistent with the symmetry), and fix the coefficients from
comparison with experiments. But this will still not account for the difference between our 3
Lagrangeans. The point is that, of course, a (possibly nonlinear) field redefinition consistent
with the symmetries should not change the physics, i.e. the scattering amplitudes, for
instance something like

—

7

1+ 72
should leave the physics invariant. We can use such field redefinitions to put operators we
want to zero, leading to various expressions, depending on what terms we want to keep after
the redefinitions.

As an example of the comparison with experiment, expanding the Lagrangean in (33.44)
in 1/v and comparing with experiment, we see that we need v = f;, as already stated for
(33.20).

We have not described well what f, is until now, so we will rectify this omission now.
The pion decay constant f is fixed by the PCAC relation from lecture 25, which stated that

—/

(33.45)

8“jZ(A)i = frmin®(z) (33.46)

or equivalently
jy* (hadronic) = fu0,m= () (33.47)
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and another relation for 73 that contains also the anomalous part, and from which we have
derived the 7% — v decay. But here we are interested in the decay of 7+, which has no
anomalous component. The normalization of 7~ is given by

1
O~ |m—) = 33.48
O [77) = s, (33.48)
so we get
1
B —\
(0[5, | >_Q,uf7r\/TT- (33.49)

Then we fix f; from the decay 7= — =~ + ©,. The relevant electroweak interaction in the
4-fermi limit is

Gr - v A
cwmzTwawp(H%)wW(ﬁ +547), (33.50)

which after a calculation that will not be reproduced here gives for the decay rate

p ! (M)2 (Grpmums)? (ﬁ)Q (33.51)

8w m2 My

and then experimentally from the decay, we can fix f, >~ 93MeV .

Generalization.

We can also generalize the mechanism of spontaneous symmetry breaking for a chiral
symmetry to any G — H, though we will not do any calculation here. Then the Goldstone
bosons parametrize the coset G/H and transform linearly under H and nonlinearly under
G/H. Again we can find the most general form allowed by symmetries, do field redefinitions,
and fix coefficients from experiment.

Generalization to SU(3).

We now show how to include the s quark, which has a slightly larger mass, so its chiral
perturbation theory is somewhat less useful (the corrections are large). The Goldstone boson
matrix U is now written as

0 o + +
awtw ™ K
U=| = -Z+1L K (33.52)
— 7.0 2 .0

otherwise we have the same idea, so the construction will not be repeated here. We just
note that now the adjoint of SU(3) has 8 components, and these are parametrized by
ot 700 Kt K, K° K°.

As we mentioned, the light quarks are uw and d, possibly together with the s quark,
whereas the ¢, b, t quarks are heavy.

Heavy quark effective field theory

For the ¢, b,t quarks we have another type of effective field theory, one that takes into
account the fact that for many things the quarks can be treated as nonrelativistic. So we
write something like nonrelativistic quantum mechanics (NRQM), but with Lorentz indices.
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We start with the quark Lagrangean
Qi 0,Q: — MQ:Q; — QigAQ; (33.53)

and consider momenta
Puy = Mv + kg (33.54)

where v < 1 and k is small. The 4-vector velocity v satisfies v2 = 1 = ¢*> = 1, and we define

the projectors
1

Py = 5(1 + 9) (33.55)
and split according to it the fields into positive and negative ” chirality”, $h = h and ¢y = —¥x;,
and throw away the "negative chirality”, really negative energy, states (such as to go from
field theory to NRQM) .

Thus we define
Q=e ™Mb+ y), (33.56)

where x# is a 4-vector like v#, and h(z) now contains only the small variation k* and throw
away Y, arriving at the HQET Lagrangean to zeroth order

L= hy(iv-D)h;. (33.57)

Keeping the next order also, we get from general considerations
1
L= Z{ v - D)h 2M hila(iD)? + B(v - D)3h,| . (33.58)

But by reparametrization invariance we can put o = 1, and the second term doesn’t con-
tribute to physical processes, so can be dropped.

Coupling to nucleons

Until now we have described only the pions, but from a phenomenological perspective it
is even more interesting to describe how they couple to the nucleons that compose matter.

The free nucleon Lagrangean is written as

~NJIN —myNN. (33.59)

The interaction is written as follows. From Lorentz invariance it must have A" and N
From the pions point of view it must be a derivative interaction, so 9,7, which means that
we need y#7% in the action as well. The coupling is an axial coupling, so it will have an s
as well, and by dimensional analysis we need a ga/f,, for a total interaction

—zf—8 TN 75—N (33.60)
where g4 is an axial vector coupling, experimentally found to be about 1.27. By partially
integrating the derivative, using the free equation of motion for the nucleon to replace it
with my, we get

mnga

7 (33.61)

grNN =
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Defining the fields

meT?
2fx

A, = %(uTauu—uauuT)

u = exp{

V, = %(uTﬁuquuc?“uT) (33.62)

(note that u = v/U) we can complete the interaction term to the full terms
NVAN = gaN A 5N (33.63)

Then with the field redefinition

1 1
N = (uT —;%jtu 275)N, (33.64)

we can rewrite the Lagrangean as

2 2 2
(33.65)

_ _ 1 1-— 1 _ 1 1-—
L= -NIN—myN (UT R 275> N—=(ga—1)Ny" (U&,ﬂ*% LU, 75) N.

Note that it is written in terms of U, not u now.
Mass terms
By an SU(2);, x SU(2) g transformation, we can put the quark mass matrix in the diagonal

form
_(my, O —i0/2
M = ( 0 md) e ) (33.66)
Then the mass term is
‘Cmass = - TY[QLMC]R] 5 (3367)

where the trace is over the flavor indices i, j. Since we in the vacuum we have the fermion
condensate (33.9), and in the physical state we have (33.17), we replace the mass term by

Lonass = v Te[MU + MTUT. (33.68)

Considering a real mass matrix, M = MT, and expanding in 1/f,, we get

()

'Cmass = T T
E

(Tr M)7mm® + .5, (33.69)
which implies
2(my, + mq)v
m2 = T , (33.70)
as advertised at the beginning of the lecture. This is called the Gell-Mann-Oakes-Renner
relation.
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Note that sometimes one replaces the mass term by
—m2Tr[U + UT — 2] (33.71)

considering that m, ~ m, and subtracting the constant term from the Lagrangean.

Important concepts to remember

e When we have an approximate symmetry spontaneously broken, we get pseudo-Goldstone
bosons.

e Chiral symmetry is the U(2) x U(2) approximate symmetry of low energy QCD with
just u and d quarks. The two U(1)’s are the conserved baryon number and an abelian
chiral symmetry broken by anomalies, and the SU(2);, x SU(2)g is spontaneously
broken to SU(2)y .

e The VEV that breaks the symmetry is a fermion (quark) condensate, i.e. a composite
field.

e The exact mechanism of chiral symmetry breaking is unknown, but we make models
for it.

e The quark masses do not affect the nucleon masses much (they are nonzero because of
confinement, not because of quark masses), but the pion mass squared is proportional
to the quark masses.

e Chiral perturbation theory is the effective theory for pions, which is an expansion in
p/ fr and m,.

e The linear sigma model is a phenomenological model for the SSB of chiral symmetry,
in terms of the pions 7* and the massive o field, with canonical (linear) kinetic term.
There are various descriptions for it.

e The nonlinear sigma model is the nonlinear model in terms of only the pions, obtained
by integrating out the massive modes. In general it is a model with a metric on scalar
field space.

e In the SO(N) model, we have N scalars in a vector representation of SO(N). The
nonlinear sigma model corresponds to the scalars on a unit sphere.

e In general, for G — H breaking, the Goldstone bosons live in the coset G/H and
transform linearly under H and nonlinearly under G/H.

e Chiral perturbation theory is undestood from the Wilsonian effective field theory ap-
proach: write the most general Lagrangean consistent with the symmetries, and use
field redefinitions to put various terms to zero.
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e One can include the s quark in chiral perturbation theory, and the Goldstone boson
matrix includes now K+, K% K° and n°, but is less useful since it has larger corrections.

e For the heavy quarks ¢, b, t, one can use heavy quark effective field theory, which is like
nonrelativistic quantum mechanics with Lorentz indices.

Further reading: See chapter 83 in Srednicki, 11.1 and 13.3 in [3], chapters 19.4 and
19.5 in Weinberg vol. II.
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