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Eduardo Amâncio (IFT/UNESP) June 30, 2023 1 / 40



Introduction

Over this course, we have worked with QFT in Minkowski spacetime. On its standard
formulation, QFT relies heavily on Poincaré symmetries to pick a preferred representation
and vacuum state (as well as to implement calculations, such as spectral expansions,
expected values, etc.).

However, in more general curved spacetimes, one does not have so many symmetries at
hand. It happens that, for any system with infinitely many DOFs, we actually have an
infinite number of unitarily inequivalent representations.Generally, in curved spacetimes
(and also in flat ones), all representations can be physically meaningful, and one generally
needs more than one to compute many physical effects of the theory.

In this seminar, we will show how to generalize some QFT notions into curved spacetimes,
and use this framework to compute a few nontrivial physical effects in both flat and curved
spaces.
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formulation, QFT relies heavily on Poincaré symmetries to pick a preferred representation
and vacuum state (as well as to implement calculations, such as spectral expansions,
expected values, etc.).

However, in more general curved spacetimes, one does not have so many symmetries at
hand. It happens that, for any system with infinitely many DOFs, we actually have an
infinite number of unitarily inequivalent representations.Generally, in curved spacetimes
(and also in flat ones), all representations can be physically meaningful, and one generally
needs more than one to compute many physical effects of the theory.

In this seminar, we will show how to generalize some QFT notions into curved spacetimes,
and use this framework to compute a few nontrivial physical effects in both flat and curved
spaces.
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desce porra

A Brief Review of QFT in
Minkowski Spaces
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Classical Fields and the Hamilton Principle

We can describe the dynamics of a classical field ϕa in Minkowski spacetime, armed with
the flat metric ηab, through an extreme action principle:

S = SM [ϕa] =

∫
d4x

√
−η(x)L (ϕa(x), ∂bϕa(x);x)

where η = det(ηµν). Extremizing S with respect to ϕa, we obtain the Euler-Lagrange
equations of the field:

δS

δϕa

= ∂b

(
∂L

∂(∂bϕa)

)
−∂L
∂ϕa

= 0
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The Free Scalar Field and Plane-Wave Modes

A pivotal example will be the free real scalar field, whose Lagrangian reads:

L =
1

2
ηab(∂aϕ)(∂bϕ)−

m2

2
ϕ2

It yields the linear Klein-Gordon equation:

[
□x +m2

]
ϕ(x) = 0 ⇒


uk(x, t) =

1√
2ωk

e−iωkteik·x

ϕ(x, t) =
∑
k

αkuk(x, t) + α∗
ku

∗
k(x, t)

Eduardo Amâncio (IFT/UNESP) A Brief Review of QFT in Minkowski Spaces June 30, 2023 5 / 40



The Free Scalar Field and Plane-Wave Modes

A pivotal example will be the free real scalar field, whose Lagrangian reads:

L =
1

2
ηab(∂aϕ)(∂bϕ)−

m2

2
ϕ2

It yields the linear Klein-Gordon equation:

[
□x +m2

]
ϕ(x) = 0 ⇒


uk(x, t) =

1√
2ωk

e−iωkteik·x

ϕ(x, t) =
∑
k

αkuk(x, t) + α∗
ku

∗
k(x, t)
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The Free Scalar Field and Plane-Wave Modes

We define the conserved Klein-Gordon product:

(ϕ, ψ) ≡ i

∫
t

d3x ϕ∗←→∂t ψ = i

∫
t

d3x ϕ∗∂tψ − (∂tϕ
∗)ψ

in terms of which plane-waves are orthornormal:

(uk, uk′) = δkk′ = −(u∗k, u∗k′), (uk, u
∗
k′) = 0

With this product, we can easily obtain the field solutions from some initial conditions at
t0, obtaining the field coefficients as projections:

αk = (uk, ϕ),

α∗
k = −(u∗k, ϕ)
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Field Mode Quantization

In terms of these plane-wave modes, we can quantize our field by promoting the field
amplitudes αk, α

∗
k to field operators ak, a

†
k, imposing the commutation relations:

[ak, ak′ ] = [a†k, a
†
k′ ] = 0, [ak, a

†
k′ ] = δkk′ .

such that the quantized field reads:

ϕ(x) =
∑
k

akuk(x) + a†ku
∗
k(x)

A particularly convenient C.S.C.O is the number operators, Nk ≡ a†kak, which allow us
to construct the Fock space, starting with the vacuum state |0⟩:

ak |0⟩ = 0 |nk1 , nk2 , . . .⟩ =
1√

(nk1)!(nk2)! . . .
(a†k1

)nk1 (a†k2
)nk2 . . . |0⟩
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desce porra

Quantum Field Theory in
Curved Spaces
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Once again, the starting point for us to obtain a quantized field theory is a Lagrangian
formulation, within a minimal action principle. In curved spaces, we write the total action
with a purely geometrical contribution and a (general-covariant) matter contribution:

S = SG[g
ab] + SM [ϕa, g

ab] =

∫
d4x

√
−g(x)

{
LG(x) + LM(x)

}
LG =

R− 2Λ

8πG
LM = LM(ϕa,∇bϕa)

This joint formulation yields both Einstein and Euler-Largrange equations:

δS

δgab
= 0 ⇔ δS

δgab
= −δSM

δgab

Gab − Λgab = −8πGTab

δS

δϕa

=
δSM

δϕa

= 0

∇b

(
∂LM

∂(∇bϕa)

)
−∂LM

∂ϕa

= 0
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Gravitational Coupling

The most direct prescription to obtain a general-covariant matter term from a special-
covariant one in flat space is the so-called “minimal substitution” (∂a, ηab)→ (∇a, gab).

In this framework, matter will necessarily be coupled to gravity, even if only indirectly.

Further, one may consider other covariant interaction terms between matter and space-
time. The most common in the literature takes the form:

LI = −ξRϕ2

Special values of ξ are ξ = 0 (minimal coupling) and ξ = ξ(n) (conformal coupling in n
dimensions:

ξ(n) =
n− 2

4(n− 1)
, n = 4⇒ ξ(n) = 1/6
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Mode Quantization in Curved Spacetimes

The outline of our quantization procedure for noninteracting fields in curved spaces follows
very similar lines to what we did in flat space. Generally:

• Classical field: ϕ(x) =
∑
i

αiui(x) + α∗
iu

∗
i (x)

• αi, α
∗
i ∈ C −→ ai, a

†
i ∈ GL(H), [ai, a

†
j] = δij, [ai, aj] = 0 = [a†i , a

†
j]

• Quantized field: ϕ(x) =
∑
i

aiui(x) + a†iu
∗
i (x)
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†
j] = δij, [ai, aj] = 0 = [a†i , a

†
j]

• Quantized field: ϕ(x) =
∑
i

aiui(x) + a†iu
∗
i (x)
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Quantization of the Free Scalar Field

We consider a scalar field with a Lagrangian:

L = 1
2
gab(∇aϕ)(∇bϕ)− 1

2
[m2 + ξR]ϕ2

which yields linear dynamical equations:

δS

δϕ(x)
= 0 ⇒

[
□x +m2 + ξR(x)

]
ϕ(x) = 0

The general field solution can then be written as an expansion in a complete set of modes
{ui, u∗i } :

ϕ(x) =
∑
i

αiui(x) + α∗
iu

∗
i (x)
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Eduardo Amâncio (IFT/UNESP) Quantum Field Theory in Curved Spaces June 30, 2023 12 / 40



Scalar Product

As in flat space, we are interested in a notion of orthornormal modes, in terms of which
it is simple to obtain field solutions from initial conditions. Then, we define the scalar
product:

(ϕ, ψ) ≡ i

∫
Σ

d3x|gΣ(x)|
1
2 nµ(x)ϕ∗(x)

←→
∂µψ(x)

= i

∫
Σ

d3x|gΣ(x)|
1
2 nµ(x)

(
ϕ∗(x)∂µψ(x)− (∂µϕ

∗(x))ψ(x)
)

Orthornormal modes:

(ui, uj) = δij = −(u∗i , u∗j)
(ui, u

∗
j) = 0

Coefficients:

αi = (ui, ϕ)

α∗
i = −(u∗i , ϕ)
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For arbitrary solutions of the field equations u and v, the product (u, v) will be independent
of the choice of Cauchy surface:

(u,w)Σ′ − (u,w)Σ =

∫
Σ′
dµgΣ′ (x) n

µ(x)u∗(x)
↔
∂µw(x)−

∫
Σ

dµgΣ(x) n
µ(x)u∗(x)

↔
∂µw(x)

=

∫
v

dµg(x) ∇µ(u∗(x)
↔
∂µw(x))

=

∫
v

dµg(x)(u
∗(x)∇µ∇µw(x)− w(x)∇µ∇µu

∗(x)) = 0
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Quantized Field and Fock Space

For an expansion in orthornormal modes, one can consistently perform a quantization
by promoting classical field coefficents αi, α

∗
i to field operators ai, a

†
i with the usual

commutation relations:

[ai, aj] = [a†i , a
†
j] = 0 [ai, a

†
j] = δij

in terms of which we obtain a field expansion:

ϕ(x) =
∑
i

aiui(x) + a†iu
∗
i (x)

and define a Fock Space based on the operators Ni = a†iai:

|0⟩ : ai |0⟩ = 0, ∀i |n1, n2, . . .⟩ =
1√

n1!n2! . . .
(a†1)

n1(a†2)
n2 , . . . |0⟩ .
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Different mode representations

In the lack of spacetime symmetries to distiguish particular modes, we should consider on
an equal footing the expansions for a different set of normal modes {ūi, ū∗i }:

ϕ(x) =
∑
i

ᾱiūi(x) + ᾱ∗
i ū

∗
i (x)

Then, we could impose a similar quantization procedure using the coefficients ᾱi, ᾱ
∗
i :

[āi, āj] = [ā†i , ā
†
j] = 0, [āi, ā

†
j] = δij.

yielding the quantized field expansions and Fock space:

ϕ(x) =
∑
i

āiūi(x) + ā†i ū
∗
i (x)


|0̄⟩ : āi |0̄⟩ = 0

|n̄1, n̄2...⟩ =
1√

n̄1!n̄2!...
(ā†1)

n1(ā†2)
n2 , . . . |0̄⟩
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ϕ(x) =
∑
i
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ᾱiūi(x) + ᾱ∗
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Bogolubov Coefficients

Different sets of modes are related by the Bogolubov coeffiecients:{
αij ≡ (uj, ūi) = (ūi, uj)

∗

βij ≡ −(u∗j , ūi) = −(ūi, u∗j)∗

in terms of which we can write modes and operator transformations:
ui =

∑
j

α∗
jiūj − βjiū∗j

ūi =
∑
j

αijuj + βiju
∗
j


ai =

∑
j

αjiāj + β∗
jiā

†
j

āi =
∑
j

α∗
ijaj − β∗

ija
†
j
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• Ambiguity in the mode vacuum concept: in general |0⟩ ≠ |0̄⟩:

ai |0̄⟩ =
∑
j

β∗
ji |1̄j⟩ ̸≡ 0 ⇒ ⟨0̄|Ni|0̄⟩ =

∑
j

|βji|2 ̸≡ 0

• A special case, for which distingushed families of modes arises is stationary spacetimes.
Their time translation symmetry (along a Killing field ξa) allows for a split in positive and
negative frequencies:{

i∂tuk = +ωkuk

i∂tu
∗
k = −ωku

∗
k

{
i£ξuj = +ωjuj

i£ξu
∗
j = −ωju

∗
j

which allows for a dintinguished definition of creation and annihilation operators, and of
a vacuum state.
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desce porra

Particle Detectors
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So far, we have discussed the concepts of vacuum and particles in terms of occupation
numbers of field modes. How do they relate to the experience of particles by localized
observers?

To better investigate this question, we analyze an idealized model of a pointlike particle
detector, with proper time τ , worldline xµ(τ) and internal DOFs {E}:

H |E⟩ = E |E⟩ , |ψ(τ)⟩ = e−iHτ |ψ0⟩

We denote detector and field joint states |E,Ψ⟩, and we consider a simple coupling given
by a local monopole interaction with monopole moment (charge) m(τ):

LI = cm(τ)ϕ(xµ(τ))
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Detection Amplitudes

These interactions will generally lead to transitions in field and detector states |E,Ψ⟩ →
|E ′,Ψ′⟩. We say we have a detection when we excite the detector from its ground state
|E0⟩ → |E⟩ (E > E0). Then, we want to evaluate the probabilities of obtaining any
detection starting from a vacuum state |E0, 0⟩. Perturbatively, we find the amplitudes:

A
(
|E0, 0M⟩ → |E,Ψ⟩

)
= ic ⟨E,Ψ|

∫ +∞

−∞
m(τ)ϕ(xµ(τ))dτ |E0, 0M⟩ .

Also, in the Interaction Picture m(τ) = eiHτm(0)e−iHτ , so we obtain:

A(|E0, 0M⟩ → |E,Ψ⟩) = ic⟨E|m(0) |E0⟩
∫ +∞

−∞
ei(E−E0)τ ⟨Ψ|ϕ(xµ(τ)) |0M⟩dτ.

Note that they depend on the detector’s trajectory.
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|E ′,Ψ′⟩. We say we have a detection when we excite the detector from its ground state
|E0⟩ → |E⟩ (E > E0). Then, we want to evaluate the probabilities of obtaining any
detection starting from a vacuum state |E0, 0⟩. Perturbatively, we find the amplitudes:
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The only transitions that may occur in first perturbative order are those to one-particle
states: |Ψ⟩ = |1k⟩:

⟨1k|ϕ(x) |0⟩ =
∫
d3k′(16π3ωk′)

−1/2 ⟨1k| a†k′ |0⟩ eiω
′t−ik′·x = (16π3ωk)

−1/2eiωt−ik·x

For an inertial world-line x = x0 + vt = x0 + vγvτ :

A(|E0, 0M⟩ → |E, 1k⟩) =
ic ⟨E|m(0) |E0⟩

16π3ω
e−ik·x0

∫ +∞

−∞
ei(E−E0)τei(ω−k·v)γvτdτ

=
ic ⟨E|m(0) |E0⟩

4πω
e−ik·x0δ(E − E0 + [ω − k · v]γv).

= 0

Since E > E0 and ω > |k ·v|. As dictated by energy conservation – a direct consequence
of time translation symmetry.
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Detection Probabilities

For generic trajectories, however, the amplitudes will be nonzero. We sum over all possible
excited final states to obtain the total probability that any transition may occur:

P =
∑
E,Ψ

∣∣A(|E0, 0M⟩ → |E,Ψ⟩)
∣∣2

= c2
∑
E

|⟨E|m(0)|E0⟩|2F (E − E0),

where we defined the response function of the detector F (E):

F (E) ≡
∫∫

dτ dτ ′e−iE(τ−τ ′)G+(x(τ), x(τ ′))

with G+(x, x′) = ⟨0M |ϕ(x)ϕ(x′)|0M⟩ the vacuum 2-point correlation function.
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Stationary detectors – Response Rates

Particularly, for a stationary trajectory, that is, G+(x(τ), x(τ ′)) = G+(∆τ) , we obtain
trivially separable integrals:

F (E) =

(∫ ∞

−∞
dτ̄

)(∫ ∞

−∞
d(∆τ)e−iE∆τG+(∆τ)

)
,

which can be immediately interpreted as a (constant) transition rate multiplied by the
(infinite) time interval of the interactions T ≡

∫
dτ̄ .

In this stationary case, it is more convenient to work directly with transition rates. Thus,
we define the response function per unit time:

F ′(E) =
F (E)

T
=

∫ ∞

−∞
d(∆τ)e−iE∆τG+(∆τ).

Eduardo Amâncio (IFT/UNESP) Particle Detectors June 30, 2023 24 / 40



Stationary detectors – Response Rates

Particularly, for a stationary trajectory, that is, G+(x(τ), x(τ ′)) = G+(∆τ) , we obtain
trivially separable integrals:

F (E) =

(∫ ∞

−∞
dτ̄

)(∫ ∞

−∞
d(∆τ)e−iE∆τG+(∆τ)

)
,

which can be immediately interpreted as a (constant) transition rate multiplied by the
(infinite) time interval of the interactions T ≡

∫
dτ̄ .

In this stationary case, it is more convenient to work directly with transition rates. Thus,
we define the response function per unit time:

F ′(E) =
F (E)

T
=

∫ ∞

−∞
d(∆τ)e−iE∆τG+(∆τ).
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Inertial detectors

Let us consider a massless field in Minkowski spacetime. The vacuum correlations read:

G+
ϵ (x, x

′) =
1

4π2

1

(∆t− iϵ)2 − |∆x|2

Then, for an inertial worldline we find the correlations:{
t = γvτ

x = x0 + vt = x0 + vγvτ
⇒ G+

ϵ

(
x(τ), x(τ ′)

)
=

1

4π2(∆τ − iϵ)2

which yield null response rates:

F ′(E − E0) =

∫ ∞

−∞
d(∆τ)e−i(E−E0)∆τG+(∆τ) = 0, ∀E > E0
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Furthermore, for a many-particle state |Ψ⟩ = |nk1 , nk2 , . . .⟩, we recover an intuitive
response rate in Minkowski space:

⟨Ψ|ϕ(x)ϕ(x′)|Ψ⟩ = G+(x, x′) +

∫
d3kn(k)uk(x)u

∗
k(x

′) +

∫
d3kn(k)u∗k(x)uk(x

′)

Since our detector is insentitive to particle directions, let us consider the detection rates
for isotropic states n(k) = n(k):

F ′(E) =
1

4π2

∞∫
m

dω
√
ω2 −m2 n̄(ω)δ(E − ω)

=
1

4π2

√
E2 −m2 n̄(E)Θ(E −m)

In such a case, we find response rates proportional to the occupation numbers, so that
we can ascribe a clear physical meaning for occupation numbers in terms of detection
rates of inertial observers.
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Uniformly accelerated detector

Now, let us consider an uniformly accelerated detector with proper acceleration a:

{
x(τ) = a−1 cosh(aτ)

t(τ) = a−1 sinh(aτ)
⇒ G+

ϵ (∆τ) =
[
16π2α2 sinh2

(∆τ − 2iϵ

2α

)]−1

Instead of null detection rates, we actually find a thermal spectrum with temperature
T = a/2π. The total detection probability reads:

P ′ = lim
ϵ→0+

c2
∑
E

| ⟨E|m(0)|E0⟩ |2Iϵ =
c2

2π

∑
E

| ⟨E|m(0)|E0⟩ |2

e2π(E−E0)/a − 1
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desce porra

Particle Creation
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We have seen that response rates can relate simply with occupation numbers in special
cases. A special case relates to (asymptotically) stationary spacetimes:

u
(p)
i (x) ≃ e−iωit

√
2ωi

ψ
(p)
i (x), x ∈ Ωp

u
(f)
j (x) ≃ e−iωjt√

2ωj

ψ
(f)
j (x), x ∈ Ωf

We can expand the field operators in both sets of modes:

ϕ(x) =
∑
i

a
(p)
i u

(p)
i (x) + a

†(p)
i u

∗(p)
i (x) =

∑
j

a
(f)
j u

(f)
j (x) + a

†(f)
j u

∗(f)
j (x)

A state that was initially perceived as vacuum will have particles in the future according
to stationary observers:

⟨0p|N (f)
j |0p⟩ =

∑
i

|βji|2
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Particle creation in FLRW spaces

Let us consider asymptotically static spatially flat FLRW metrics:

ds2 = dt2 − a2(t)dΣ2 a(t) −→

{
a1, t→ −∞
a2, t→ +∞

This yields simple separable field equations at all times:

uk(x) =
eik·x√
V a3(t)

hk(t)

In this case, the Bogolubov coefficients will be quasidiagonal and particle creation on
each mode will be simply:{

αkk′ = αkδk,k′

βkk′ = βkδk,−k′
⇒ ⟨0p|N (f)

k |0p⟩ = β2
k
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The conformally coupled case

For conformally flat FLRW spaces (gab = a2(η)ηab), it is simpler to carry an analysis in
conformal time η:

ds2 = dt2 − a2(t)dx2 = a2(η)
[
dη2 − dx2

]
Then, for a conformally coupled field, ξ = ξ(n), we obtain simple rescaled equationd:[

□+ a2(η)m2
]
ϕ̃(η,x) = 0

which yield a time-dependent harmonic oscillator (TDHO):

d2χk

dη2
+ ω2(η)χk = 0 ω2(η) = k2 + a2(η)m2
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A Simple Model for Particle Creation

Let us consider a 1+1-dimensional space-
time, with scale factor:

a2(η) = A+B tanh(ρη)

ω1 =
√
k2 + (A−B)m2

ω2 =
√
k2 + (A+B)m2

Bogolubov coefficients:
|αk|2 =

sinh2(πω+/ρ)

sinh(πω1/ρ) sinh(πω2/ρ)

|βk|2 =
sinh2(πω−/ρ)

sinh(πω1/ρ) sinh(πω2/ρ)

ω± ≡ 1
2
(ω2 ± ω1)
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desce porra

Adiabatic Vacuum
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We want to approprately extend the concepts of particle and vacuum to fully dynamical
regions of spacetime, but such regions present many difficulties. Particularly, if we have
a particle creation rate A, we find a fundamental limit for the uncertainty in particle
numbers:

∆Nmin ∼ 2(|A|/m)1/2

Nonetheless, we can see from our previous model that particle creation will be suppressed
in certain limits:

B → 0 : |βk|2 ∝ B2 → 0 ρ→ 0 : |βk|2 ∝ e−2πω1/ρ → 0

Therefore, we turn to the limit of an infinitely slow expansion (adiabatic limit).
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WKB Solutions

To extend the notion of positive-frequency modes, we turn to WKB soulutions of our
TDHO:

χk =
1√

2Wk(η)
e−i

∫ η dη′Wk(η
′)

The dynamic equation for χk then leads us to the nonlinear equation for Wk:

W 2
k (η) = ω2

k(η)−
1

2

(Ẅk

Wk

− 3

2

Ẇ 2
k

W 2
k

)
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Adiabatic Expansions

To analyze the limit of an arbitrarily slow expansion, we introduce the adiabatic parameter
T :

aT (η) ≡ a(η/T ) = a(η1) ⇒ dn

dηn
a
( η
T

)
=

1

T n
a(n)(η1)

With this parameter, we can organize the terms in our solution by their adiabatic order
A (∝ T−A). Taking T →∞, we obtain a zeroth order adiabatic solution:(

(Wk)
(0)(η1)

)2
= ω2

k(η1)

Iterating it, we obtain the 2nd order solution for Wk:

(
W

(2)
k (η1)

)2
= ω2

k(η1)−
1

2T 2

[
ω̈k(η1)

ωk(η1)
− 3

2

ω̇2
k(η1)

ω2
k(η1)

]
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Further iteration and exact solutions

We can repeat the iteration process up to the desired adiabatic order. For exemple, the
next (4th order) term is given by:

(
W

(4)
k

)2
= (W

(2)
k )2 − 1

2T 2

[
Ẅ

(2)
k

W
(2)
k

− 3

2

(Ẇ
(2)
k )2

(W
(2)
k )2

]
And so on for higher orders. We can match exact solutions with an adiabatic expansion up
to the desired order at a given time η0, uk(x, η0) = u

(A)
k (x, η0), to obtain an approximate

notion of positive-frequency modes at η0

uk(x, η) = α
(A)
k (η)u

(A)
k (x, η) + β

(A)
k (η)(u

(A)
k )∗(x, η)

With these modes, we can obtain a corresponding adiabatic vacuum state |0(A)⟩ up to
the desired order A, for any time η0.
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desce porra

Conclusions
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Conclusions

Vacuum is complex. Even classically, it can give rise to nontrivial dynamical
behaviour.

At a quantum level, one finds an even richer multitude of phenomena, like the
Casimir Effect, particle detection and particle creation.

Generally, in the absence of very strict symmetries, one is obliged to consider
multiple unitarily inequivelent representations to account for physical phenomena.

In curved spaces, one may still find suitable extensions to a physical notion of
vacuum, e.g. through the adiabatic condition. (Among other things, this allows
one to carry renormalization and speak meaningfully of vacuum energy).
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desce porra

Thank you!
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Detection amplitudes

To first perturbative order, we find the transition amplitudes A between two states |E,Ψ⟩
and |E ′,Ψ′⟩:

A
(
|E,Ψ⟩ → |E ′,Ψ′⟩

)
= ic ⟨E ′,Ψ′|

∫ +∞

−∞
m(τ)ϕ(xµ(τ))dτ |E,Ψ⟩ . (1)

Particularly, starting from the usual Minkowski vacuum |0M⟩:

A
(
|E0, 0M⟩ → |E,Ψ⟩

)
= ic ⟨E,Ψ|

∫ +∞

−∞
m(τ)ϕ(xµ(τ))dτ |E0, 0M⟩ . (2)

Also, in the Interaction Picture m(τ) = eiH0τm(0)e−iH0τ , so we obtain:

A(|E0, 0M⟩ → |E,Ψ⟩) = ic ⟨E|m(0) |E0⟩
∫ +∞

−∞
ei(E−E0)τ ⟨Ψ|ϕ(xµ(τ)) |0M⟩ dτ. (3)
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The only transitions that may occur in first perturbative order are those to one-particle
states: |Ψ⟩ = |1k⟩:

⟨1k|ϕ(x) |0⟩ =
∫
d3k′(16π3ωk′)

−1/2 ⟨1k| a†k′ |0⟩ eiω
′t−ik′·x

= (16π3ωk)
−1/2eiωt−ik·x. (4)

We must specify trajectory xµ(τ) for the detector. For an inertial world-line x = x0+vt =
x0 + vγvτ :

A(|E0, 0M⟩ → |E, 1k⟩) =
ic ⟨E|m(0) |E0⟩

16π3ω
e−ik·x0

∫ +∞

−∞
ei(E−E0)τei(ω−k·v)γvτdτ

=
ic ⟨E|m(0) |E0⟩

4πω
e−ik·x0δ(E − E0 + [ω − k · v]γv). (5)

But since E > E0 and ω > |k · v| (as v < 1 for any timelike trajectory and ω =√
k2 +m2 ≥ k) there are no roots in the arguments of the δ distribution in (5), and the

transition amplitude is always zero, as dictated by energy conservation – a direct conse-
quence of time translation symmetry (as energy is the global Noether current associated
to this symmetry).
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For generic trajectories, however, the amplitudes will be nonzero. In such cases, we shall
sum over all possible final states |Ψ⟩ and |E⟩ (̸= |E0⟩) to obtain the total probability
that any transition (detection) may occur:∑
E,Ψ

∣∣A(|E0, 0M⟩ → |E,Ψ⟩)
∣∣2=c2∑

E

{
|⟨E|m(0)|E0⟩|2×∫∫

dτ dτ ′ei(E−E0)(τ−τ ′) ⟨0M |ϕ(τ ′)[
∑

Ψ|Ψ⟩⟨Ψ|]ϕ(τ)|0M⟩
}
.

(6)

Using the completeness relation
∑

Ψ|Ψ⟩⟨Ψ| = 1, and recognizing the vacuum two-point
correlation G+(x, x′) = ⟨0M |ϕ(τ ′)ϕ(τ)|0M⟩, we have:

P = c2
∑
E

|⟨E|m(0)|E0⟩|2
∫∫

dτdτ ′e−i(E−E0)(τ−τ ′)G+(x(τ), x(τ ′))

= c2
∑
E

|⟨E|m(0)|E0⟩|2F (E − E0), (7)

where we defined the response function of the detector F (E):

F (E) ≡
∫∫

dτ dτ ′e−iE(τ−τ ′)G+(τ, τ ′). (8)
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Detection amplitudes

Performing a change of variables: (τ, τ ′)→ (τ̄ ,∆τ), we have:

F (E) =

∫∫
dτ̄ d(∆τ)e−iE∆τ G̃+(τ̄ ,∆τ), (9)

where G̃+(τ̄ ,∆τ) ≡ G(τ, τ ′).

Particularly, for a stationary trajectory, that is, G+(τ, τ ′) = G+(∆τ) , we obtain trivially
separable integrals:

F (E) =

(∫ ∞

−∞
dτ̄

)(∫ ∞

−∞
d(∆τ)e−iE∆τG+(∆τ)

)
, (10)

which can be immediately interpreted as a (constant) transition rate multiplied by the
(infinite) time interval of the interactions T ≡

∫
dτ̄ .

In this stationary case, it is more convenient to work directly with transition rates. Thus,
we define the response function per unit time:

F ′(E) =
F (E)

T
=

∫ ∞

−∞
d(∆τ)e−iE∆τG+(∆τ). (11)

For a massless field, m=0, for an arbitrary pair of events (x, x′), G+ reads:

G+(x, x′) =
−i

(2π)4

∫
d4k

e−ik(x−x′)

(k0)2 − k2

=
1

(2π)3

∫
d3k

2|k|
e−i|k|∆t+ik·∆x

=
1

(2π)3

∫ ∞

0

d|k|
2|k|
|k|2e−i|k|∆t

∫ 1

−1

d(cos θ)ei|k||∆x| cos θ
(∫ 2π

0

dϕ
)

=
1

4π2

1

2i|∆x|

∫ ∞

0

d|k|(e−i|k|(∆t−∆x) − e−i|k|(∆t+∆x)). (12)
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A convenient trick to work directly with G+ (i.e. is to introduce the regularizer e−ϵ|k|

(ϵ > 0), making (12) absolutely convergent.

G+
ϵ (x, x

′) =
1

4π2

1

(∆t− iϵ)2 − |∆x|2
(13)

In the case of an inertial detector, we have:

1

(∆t− iϵ)2 − |∆x|2
=

1

(γv∆τ − iϵ)2 − (γvv∆τ)2
=

1

∆τ 2 − 2i∆τγvϵ+O(ϵ2)
.

We then absorb the positive factor γ into ϵ and ignore any higher order (O(ϵ2)) corrections
to write:

G+
ϵ (x, x

′) =
1

4π2(∆τ − iϵ)2
. (14)

Eduardo Amâncio (IFT/UNESP) June 30, 2023 5 / 34



The Hamiltonian Formalism

Defining the canonically conjugated momenta πa ≡ ∂L
∂ϕ̇a

, we can perform a Legendre

transformation to obtain the hamiltonian:

H(ϕa, π
a, x) = πa(x)ϕ̇a(x)−L (ϕa, ϕ̇a, x)

A very important geometrical structure in phase space are the Poisson brackets:

{F,G} =
∫
d3x

δF

δϕa(x, t)

δG

δπa(x, t)
− δG

δϕa(x, t)

δF

δπa(x, t)
(15)

Particularly, the fundamental canonical Poisson Brackets:

{ϕa(x, t), π
b(y, t)} = δ b

a δ
(3)(x− y) (16)

which play a key role in canonical quantization.
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Canonical Quantization

Canonical Commutation Relations:

[xi, xj] = [pi, pj] = 0, [xi, pj] = iδij

For fields we have:

[ϕa(x, t), ϕb(y, t)] = [πa(x, t), πb(y, t)] = 0, [ϕa(x, t), π
b(y, t)] = iδ b

a δ
(3)(x− y)

⇒ [ϕ(x), ϕ(y)] = 0, ∀x, y spacelike separated
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Vacuum Energy divergences

In the continuum, we find:

⟨0|H|0⟩ = 1

2

∑
k

ωk −→ lim
L→∞

L3

2(2π)3

∫
d3kωk =

(
lim
V→∞

V

4π2

) ∞∫
0

dk k2ωk

Infinite volume + UV divergences in the energy density.

For noninteracting fields in flat space, one is only interested in energy differences, so a
trivial procedure to get rid of the divergent vacuum energies is normal ordering:

:H : =
∑
k

ωka
†
kak =

∑
k

ωkNk ⇒ ⟨0| :H : |0⟩ = 0
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To handle the divergent vacuum energy, we write it as the limit of a convergent sum:

ρ0(a) =
1

V
⟨0a|H|0a⟩ =

1

2aL2

∑
k

ωk = −
1

2aL2
lim

α→0+

[ d
dα

∑
k

e−αωk

]
and we define the auxiliary function:

S(α, a) =
1

(2π)2

+∞∑
l=−∞

∫
d2k⊥ exp[−α(k2

⊥ + (2π
a
)2l2)1/2]

=
1

2π

[
F (0) + 2

∑
lF (l)

]
F (l) ≡ F (l) ≡

∫ ∞

0

dk⊥k⊥e
−α

[
k2⊥+

(
2π
a

)2
l2
]1/2

=

[
1

α2
+

1

α

2πl

a

]
e−

2πl
a

α
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The strategy then is to isolate the divergent contributions by means of a convenient series
expansion (Euler-MacLauren formula):

1
2
F (b) +

∞∑
l=1

F (b+ l) =

∫ ∞

b

dlF (l)−
∞∑

m=1

B2m

(2m)!
F (2m−1)(b)

F (1)(0) = 0, F (3)(0) = 2α
(2π
a

)3

, and F (j)(0) = O(α2), j ≥ 5

We then arrive at:

ρ0(a) = −
1

2a
lim

α→0+

{ d

dα
S(α, a)

}
= − 1

2π
lim

α→0+
G′(α)− π2

90a4
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Once again, the starting point for us to obtain a quantized field theory is a Lagrangian
formulation, within a minimal action principle. In curved spaces, we write the total action
with a purely geometrical contribution and a (general-covariant) matter contribution:

S = SG[g
ab] + SM [ϕa, g

ab] =

∫
d4x

√
−g(x)

{
LG(x) + LM(x)

}
LG =

R− 2Λ

8πG
LM = LM(ϕa,∇bϕa)

This joint formulation yields both Einstein and Euler-Largrange equations:

δS

δgab
= 0 ⇔ δS

δgab
= −δSM

δgab

Gab − Λgab = −8πGTab Tab ≡
2

|g| 12
δSM

δgab

δS

δϕa

=
δSM

δϕa

= 0

∇b

(
∂LM

∂(∇bϕa)

)
−∂LM

∂ϕa

= 0
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Global Hiperbolicity and Cauchy Surfaces

We consider a smooth, n-dimensional, globally hyperbolic spacetime, so that we can
derive any predictions from information a “simultaneity surface”:

Domains of dependence:

Cauchy Surfaces:
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Technical Remarks on Adiabatic Subtraction

■ Each adiabatic order will contain divergent and convergent terms. One must
subtract all terms in a given order.

■ Some special values of the theory parameters (masses, coupling constants...) can
make the leading coefficients in a given adiabatic term vanish. One must subtract
divergent terms for generic paramenters.

■ Classically positive-definite observers can present negative expected values upon
renormalization, due to the subtractions.
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WKB frequencies

Similarly, we write WKB solutions in proper-time:

hk(t) =
1√
2Wk

e−i
∫ t dt′Wk(t

′) ⇒ W 2
k = Ω2

k + ω
1
2
k

d2

dt2
ω
− 1

2
k

Then, iteractively, we can compute an expansion for Wk in successive adiabatic orders:

Wk ∼ ωk + ω
(2)
k + ω

(4)
k + . . .

Similarly, any functions of Wk are expanded as:

f(Wk) ∼ f (0)(Wk) + f (2)(Wk) + f (4)(Wk) + . . .
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Expansions of WKB Functions

In applying this method, one must calculate expansions of various functions of Wk to any
desired adiabatic order in terms of ω(n). Parlticularly, we find power-laws:

Wα ∼
[
ω + ω(2) + ω(4) + ...

]α
= ωα

[
1 + α

(ω(2)

ω
+
ω(4)

ω
+ ...

)
+
α(α− 1)

2

(ω(2)

ω
+
ω(4)

ω
+ . . .

)2

+...

]
.

(Wα)(0) = ωα, (Wα)(2) = α
ω(2)

ω
ωα, (Wα)(4) =

[
α
ω(4)

ω
+
α(α− 1)

2

(ω(2)

ω

)2]
ωα

(W−1)(0) = ω−1, (W−1)(2) =
−ω(2)

ω2
, (W−1)(4) =

−ω(4)

ω2
+

(ω(2))2

ω3
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desired adiabatic order in terms of ω(n). Parlticularly, we find power-laws:

Wα ∼
[
ω + ω(2) + ω(4) + ...

]α
= ωα

[
1 + α

(ω(2)

ω
+
ω(4)

ω
+ ...

)
+
α(α− 1)

2

(ω(2)

ω
+
ω(4)

ω
+ . . .

)2

+...

]
.

(Wα)(0) = ωα, (Wα)(2) = α
ω(2)

ω
ωα, (Wα)(4) =

[
α
ω(4)

ω
+
α(α− 1)

2

(ω(2)

ω

)2]
ωα

(W−1)(0) = ω−1, (W−1)(2) =
−ω(2)

ω2
, (W−1)(4) =

−ω(4)

ω2
+

(ω(2))2

ω3
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de Sitter spaces

A very convenient way to visualize these spaces is by considering a 4-dimensional hyper-
boloid embedded in a 5-dimensional flat Lorentzian space. If this embedding space is
covered with Cartesian coordinates (T,X, Y, Z,W ), such that its line element is:

dS2 = dT 2 − dX2 − dY 2 − dZ2 − dW 2, (17)

the hypersurface that represents a de Sitter space can be written by the equation:

T 2 −X2 − Y 2 − Z2 −W 2 = −H−2. (18)

Among the many coordinates we can use to cover (portions of) de Sitter spaces, we can
use exponentially expanding ones:

ds2 = dt2 − e2Ht(dx2 + dy2 + dz2)
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Field equations

We can cover de Sitter spaces with exponentially expanding FLRW coordinates:

ds2 = dt2 − e2Htdx2

which results in simple field equations:

∂2t ϕ+ 3H∂tϕ− e−2Ht∇2ϕ+M2ϕ = 0

with effective mass M2 = m2 + 12ξH2.

General field solutions:

hk(t) =

√
π

2H

(
E(k)H(2)

ν (v) + F (k)H(1)
ν (v)

)
, ν ≡

(
9

4
− M2

H2

)1
2
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Adiabatic Field Modes and Bunch-Davies Vacuum

Then imposing the adiabatic condition and requiring invariance under de Sitter symme-
tries, we arrive at positive-frequency solutions:

hk ∼ (2ke−Ht)−1/2 exp
(
−i

∫ t
ke−Ht′dt′

)
⇒ hk(t) =

√
π

2H
H(1)

ν

( k
H
e−Ht

)
These solutions allow us to construct a distinguished notion of positive-frequency modes:

fk(x) =

√
π

2H

eik·x√
2(2π)3e3Ht

H(1)
ν

( k
H
e−Ht

)
in terms of which we define a distinguished vacuum state: the Bunch-Davies vacuum.
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Pathological parameters

We have well behaved parameters only for 1/2 ≤ ν ≤ 3/2.

Images/mathematica/PSu+2(-0,5;0,2).png

Considering, for example, negative effective masses M2 < 0, we obtain IR divergences.
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The Renormalized Trace

Numerically integrating the the power spectrum we can obtain the stress tensor trace for
various parameters:

Images/mathematica/Trace_Table(ugly-line).png
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Equilibrium renormalized energy

Starting a definite integral from ρ = 0 we find both a decaying transient amplitude ∝ a−4

and an equilibrium value:

Images/mathematica/time_rhop(0,0;0,1).pngImages/mathematica/time_rhop(1,0;0,0).png
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Initial Conditions

We know that the observable universe was highly homogeneous (with tiny density fluc-
tuations at very early times). Then a seemingly natural choice would be to consider a
homogeneous ϕ.

However, this choice is extremely particular. Besides, we cannot safely extrapolate our
observations earlier than ∼ 10−13s. More generally, we start by considering limits for a
classical description of spacetime:

R2 ≲M4
p ⇔ (∂0ϕ)(∂

0ϕ), (∂iϕ)(∂
iϕ), V (ϕ) ≲M4

p

• Ignorance and “generic initial conditions” around Planck time tP ∼ 10−43s:

R2 ∼M4
p (∂0ϕ)(∂

0ϕ) ∼ (∂iϕ)(∂
iϕ) ∼ V (ϕ) ∼M4

p
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Initial Conditions and Chaotic Inflation

For roughly random initial conditions at t ∼ tp, we can obtain an inflationary region from
a single roughly homogeneous region of initial diameter ∼ 2lp, since:

In de Sitter spaces, every observer is surrounded by an event horizon at distance
H−1; inhomogeneities falling out of the horizon lose causal contact from an
inflating region. (“No hair” theorems.)

Particularly, for V (ϕ) ∼M4
p , the Hubble radius becomes extremely small

H−1(ϕ) ∼M−1
p ∼ lp.

Then, in a region where ϕ has small spacetime variations, V (ϕ) ≈ cte, and
Tab ≈ V (ϕ)gab ≈ Λgab.
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Symmetry Breaking?

Out of league.
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We can draw rough estimates for power-law potentials:

V (ϕ) =
λnϕ

n

nMn−4
p

, λn ≪Mn−4
p V (ϕ0) ∼M4

p ⇒ ϕ0 ≫M4
p

Slow-roll scale factor:

a(t) = a0e
4π

nM2
p

(
ϕ2
0−ϕ2(t)

)
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desce porra

Beamer Junk
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a = b

E = mc2 +

∫ a

a

x dx

a = b

E = mc2 +

∫ a

a

x dx

a = b

E = mc2 +

∫ a

a

x dx

a = b

E = mc2 +

∫ a

a

x dx
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Pestana
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Pestana
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Text

Now Let’s write something with a litte more content to it. We want to see multiple lines
in a paragraph.

And we want to see multiple paragraphs.

Deus é Deus e as planta cura. Graças a Jesus, que ama todas as faḿılias.
Let us also add some small text to this paragraph. This is so small I may have to get repetitive. Let us also add some small
text to this paragraph. This is so small I may have to get repetitive. Let us also add some small text to this paragraph.
This is so small I may have to get repetitive. Let us also add some small text to this paragraph. This is so small I may
have to get repetitive.
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Columned Slide
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Text?
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math101

∫ 1

0

f(x)dx =∞. (19)
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