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Introduction

The porpuse of this final seminar is to apply concepts we leared
along the semester (ressomation of diagrams, renormalization
schemes, unstable prticles decays, running constant etc) to Type 1
Seesaw.

▶ In the first part, I’ll renormalize the Majorana neutrino
self-energy diagram at 1-loop order and diagonalise the
propagator; I’ll then compute it’s contribution to CP violation
parameter.

▶ In the second part, I’ll integrate out these heavy degrees of
fredoom and find an effective non-renormalizable operator at
low energies; I’ll then compute it’s coupling costant running.



Introduction

Type 1 seesaw is a popular extension to SM that explains the
smallness of neutrino masses and breaks U(1)B−L symmetry, then
providing a new source of CP violation.
Type 1 seesaw lagrangian contains 3 new Majorana fields Ni that
couples to SM particles in a Yukawa Type interaction.

L = LSM − 1

2
Nc
i MiNi − (λαi lαH̃PRNi + h.c .) (1)

Where i = 1, 2, 3 and α = e, µ, τ and ψc = Cψ
T

is the
C-conjugated. We also assume Majorana masses are big
Mi >> ⟨H0⟩.
Majorana condition means:

Ni = νR + νcR (2)

Spoiler: The PR is the root of CP violation.



Introduction

If there is something I learned from this semster is that the
lagrangian is not the end of the story, and a ressumation is
mandatory to fiind physical parameters and full propagators. I now
turn to obtain

S(q) =
i

/q −M − Σ(q)
(3)

where −iΣ(q) equals, at leading order:



Calculating Chiral Self Energy Diagram

−iΣ̂ji
R (q) =

∫
d4k

(2π)4
(−iλ∗αiϵabPL)×

i(/q − /k)

(q − k)2
× i

k2
× (−iλαjϵabPR)

(4)

= (h†iαhαj)× ϵ2ab ×
∫

d4k

(2π)4
i(/q − /k)

(q − k)2
1

k2
× PR (5)

= Kij × 2×
∫

d4l

(2π)4

∫ 1

0
dx

1− x

(l2 −∆2)2
(6)



Calculating Chiral Self Energy Diagram

Where:

lµ = kµ − xqµ (7)

∆2 = −x(1− x)q2 (8)

Kij =
∑

α=e,µ,τ

h†iαhαj (9)



Calculating Chiral Self Energy Diagram

then:

−iΣ̂ji
R (q) = iKij × 2×

∫ 1

0

dx

16π2
(1− x)×

(2
ϵ
+ log

( µ̃2
∆2

))
× (/qPR)

(10)

In MS scheme

Σ̂R (q) = KT × a(q2) × (/qPR) (11)

Where

a(q2) =
1

16π2

(
log

(q2
µ2

)
− 2− iπΘ(q2)

)
(12)



Calculating Chiral Self Energy Diagram

Therefore, the full propagator in MS scheme becomes:

S(q) =
i

/q −M − Σ̂MS (q)

(13)

Where

Σ̂MS (q) = ΣR (q2) × (/qPR) + ΣL(q2) × (/qPL) (14)

And

ΣL(q2) = (ΣR (q2))
T = K × a(q2) (15)



Calculating Chiral Self Energy Diagram

We then have: (
/q −M − Σ̂MS (q)

)
S(q) = i =⇒ (16)(

/q −M − ΣR (q2) × (/qPR) + ΣL(q2) × (/qPL)
)
S(q) = i (17)

Making the decomposition

S(q) = PR × SRR
(q2) + PL × SLL

(q2) + PL/q × SLR
(q2) + PR/q × SRL

(q2) (18)



Calculating Chiral Self Energy Diagram

We then find:

SLR = M−1(1− ΣR)S
RR (19)

SRL = M−1(1− ΣL)S
LL (20)

SRR =
i

(1− ΣL)M−1q2(1− ΣR)−M
(21)

SLL =
i

(1− ΣR)M−1q2(1− ΣL)−M
(22)

Here, we start to see that Majorana propagators provide a new
source to distinguish matter from anti-matter, as matter fields
couple to the ” R ” part of the propagator, and anti-matter
couples to the ” L ” part.



Majorana Propagator Mediated 2 → 2 Scattering

Each one of the propagator components accounts for a 2-body
scattering processes. Below, we compute one lepton number
violating interaction and remember the analogous happens with
MRR

iMLL = v (p′) × (−iϵdeλ
∗
βlPL)× SLL

lk × (−iϵabλ
∗
αkPL)× u(p) (23)



Majorana Propagator Mediated 2 → 2 Scattering

Also, below there is a lepton number conserving diagrams and the
analogous happens for MRL

iMLR = v (p′) × (−iϵdeλ
∗
βlPL)× /qS

LR
lk × (−iϵabλαkPR)× v(p)

(24)

= v (p′) × (−iϵdeλ
∗
βlPL)× /q[M

−1(1− ΣR)S
RR ]lk × (−iϵabλαkPR)× v(p)

(25)



Majorana Neutrino Decay

The consistent definition of an on-shell contribution of a single
heavy Majorana neutrino to the two-body scattering amplitudes
requires that the transition amplitudes extracted from
lepton-number conserving and lepton-number violating processes
are the compatible.
Therefore, in order to be able to talk about decays, we have to
diagonalize the Skl matrix when the momenta are on-shell.



Majorana Neutrino Decay

SRR and SLL are symmetric complex matrices, since ΣR = (ΣL)
T .

Therefore, they can be diagonalized by complex and orthogonal
matrices.

SLL
(q2) = V T

(q2) ×M × D(q2) × V(q2) (26)

SRR
(q2) = UT

(q2) ×M × D(q2) × U(q2) (27)

Then, assuming diagonal elemts of ΣL = ΣD (q2) +ΣND (q2) are
much bigger then the non diagonal

D(q2) = M−1 × V(q2) × SLL
(q2) × V T

(q2) = M−1 × U(q2) × SRR
(q2) × UT

(q2)

(28)

=
i

q2(1− ΣD (q2))
2 −M2

+ O(Σ2
ND) (29)



Majorana Neutrino Decay

Expanding for q2 = M2
phi

Di =
i(1− ΣD (M2

phi )
ii )

−2

q2 −M2
i (1− ΣD (M2

phi )
ii )−2

(30)

We have

(1− ΣD (M2
phi )

ii )
−2 ≈ 1 + 2Σii = 1 + 2Kii × a(Mph

2
i )

(31)

= 1 +
Kii

8π2

(
log

(M2
phi

µ2

)
− 2− iπ

)
(32)

Letting Zi = 1 + Kii
8π2

(
log

(
M2

phi

µ2

)
− 2

)
we have

Di (q2) =
iZi

q2 −M2
i Zi + iM2

i
Kii
8π

+ FiniteTerms (33)



Majorana Neutrino Decay

The Majorana Neutrino eigenstates have Masses and Decay Width
(at tree level)

M2
phi = M2

i × Zi (M2
phi )

(34)

Γi =
KiiMi

8π
(35)

What remains is to take out the diagonalizing matrices U and V.



Majorana Neutrino Decay
If we substitute the diagonalization of neutrino propagator back in
the scattering amplitude, we find:

iMLL = v (p′) × (−iϵdeλ
∗
βlPL)× (V T

(q2) ×M × D(q2) × V(q2))lk × (−iϵabλ
∗
αkPL)× u(p)

(36)

= v (p′) × (−iϵde(Vλ
†)lβPL)×MlDl × (−iϵab(Vλ

†)lαPL)u(p)
(37)

Therefore, in Lepton Number Violating scatterings, the eigenstate
Nl (at tree level)



Majorana Neutrino Decay
The Lepton Number Conserving scatterings provides the kinect
part of neutrino eigenstate propagator

iMLR = v (p′) × (−iϵdeλ
∗
βlPL)× /q[M

−1(1− ΣR)U
T
(q2)MD(q2)U(q2)]lk × (−iϵabλαkPR)× v(p)

(38)

= v (p′) × [−iϵde(MU(1− ΣL)M
−1λ†)lβPL]× /qDl × (−iϵab(U

T )lαPR)

(39)

Therefore, in Lepton Number Conserving scatterings, the
eigenstate Nl (at tree level)



Majorana neutrino Decay

The analogous also happens to the second lepton number
conserving amplitude. From which we obtain:

U = M × V × (1− ΣR)×M−1 (40)

V = M × U × (1− ΣL)×M−1 (41)

This calculation is not iluminating, but it’s solution is

U(q2) = 1 + u(q2) (42)

V(q2) = 1 + v(q2) (43)



Majorana Neutrino Decay

where, at O(ΣND)

vij = wij(MiΣNDji +MjΣNDij) (44)

uij = wij(MiΣNDij +MjΣNDji ) (45)

And

w−1
ij (q2) = (Mi −Mj)(1 +

MiMj

q2
)− 2a(q2)(MiKjj −MjKii ) (46)



CP Asymetry

The diagonalization provided us with a eigenstate for the Majorana
degrees of freedom, such that it is possible to talk about decay of
a unstable particle. we are intersted in the parameter

ϵCP =
Γ(N1→l+H) − Γ(N1→l+H∗)

Γ(N1→l+H) + Γ(N1→l+H∗)

(47)

Decays width are extracted from the diagonalized vertices

Γ(N1→l+H) ∝
∑
β

|(U(M2
i )
λT )1β|2 (48)

Γ(N1→l+H∗) ∝
∑
β

|(V(M2
i )
λ†)1β|2 (49)



CP Asymetry

Then

ϵCP =
1

K11
Re[(u(M2

1 )
K )11 − (v(M2

1 )
KT )11] =⇒ (50)

ϵCP =
−1

8π

∑
j

Im[K 2
1j ]

K11

M1Mj

M2
1 −M2

j

(51)



Low Energy EFT

Seesaw Type 1 theory is the simplest extension of SM wich
accounts for lepton number violation interaction from a
renormalizable term λαi lαH̃PRNi .
However, at energies far below the RH neutrino mass, we may
prefer to work with the effective local and non-renormalizable
operator, in much the same way we passed from Weak Interaction
to Fermi Theory.
We proceed to integrate out the heavy neutrino degrees of freedom.
From now on, I’ll use a simplified model: suppose we work with
only one generation of lepton doublet l = (νe , e)

T and one of N.



Low Energy EFT

Z = Ñ−1

∫
DlDH exp(−S0)

∫
DνR exp(−Sss) (52)

= N−1

∫
DlDH exp(−S0)× (53)∫

DνR⟨1− (

∫
λl H̃νR + h.c .) +

1

2

∫ ∫
(λl H̃νRν

c
RHlλ

∗ + h.c .) + ...⟩

(54)

We take the propagator evaluated at small p2

⟨νRνcR⟩ =
1

M
C (2π)4δ(4)(p) (55)



Low Energy EFT

Then

Z = N−1

∫
DlDH exp(−S0)⟨1 +

∫
λM−1λ†

2
(lcH)(H̃†l) + ...⟩

(56)

=

∫
DlDH exp(−S0 −

∫
−λM−1λ†

2
(lcH)(H̃†l)) (57)

Finally

Leff = L0 −
λM−1λ†

2
(lcH)(H̃†l) (58)

= L0 − cwOw (59)

Where Ow is the dim-5 Weinberg operator



Low Energy EFT

I now turn to calculate the anomalous dimension for the dim-5
Weinberg operator.
The 1-loop contribution to Ow correction is then

= i
c2w
16π2

∫ 1

0
x(

2

ϵ
− log(

∆2

µ2
)) dx/p (60)

= i
c2w
16π2

(...− 1

2
log(

−p2

µ2
))/p (61)

then, at p2 = −Λ2

iδw /p = −i
c2w
16π2

(...− 1

2
log(

Λ2

µ2
))/p (62)



Low Energy EFT

Therefore

Λ
∂δw
∂Λ

=
c2w
16π2

(63)

To proceed to calculate the anomalous dimension, we have to
obtain the δν and δH0 wich involves a two loop calculation. Once
both contribute with 2 external legs, the anomalous dimension is
given by:

γw = Λ
∂

∂Λ
(−δw + δν + δH0) (64)

The solution I found in the literature was

γw =
−3c2w
16π2

(65)

A result that makes me suspect that maybe δν = δH0 =
−c2w
16π2



Low Energy EFT

It is now a matter of solving the running of cw as

Λ
∂cw
∂Λ

= γwcw (66)

=
−3c3w
16π2

(67)

And therefore

cw
2
eff =

c2w

1 + 3c2w
16π2 log(

Λ2)
µ2

(68)

For the Weinberg operator, contrary to QED and λϕ4, the
anomalous dimensions is negative, meaning that the interaction
becomes stronger as external momenta are more energetic. It
seems to me negative anomalous dimension happens for
non-renormalizable operators.
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