Renormalização do Seesaw Tipo 1

Leandro Fontes
CCNH-UFABC
June 28, 2023

Introduction

The porpuse of this final seminar is to apply concepts we leared along the semester (ressomation of diagrams, renormalization schemes, unstable prticles decays, running constant etc) to Type 1 Seesaw.

- In the first part, l'll renormalize the Majorana neutrino self-energy diagram at 1-loop order and diagonalise the propagator; I'll then compute it's contribution to CP violation parameter.
- In the second part, I'll integrate out these heavy degrees of fredoom and find an effective non-renormalizable operator at low energies; I'll then compute it's coupling costant running.

Introduction

Type 1 seesaw is a popular extension to $S M$ that explains the smallness of neutrino masses and breaks $U(1)_{B-L}$ symmetry, then providing a new source of CP violation.
Type 1 seesaw lagrangian contains 3 new Majorana fields N_{i} that couples to SM particles in a Yukawa Type interaction.

$$
\begin{equation*}
\mathcal{L}=\mathcal{L}_{S M}-\frac{1}{2} \overline{N_{i}^{c}} M_{i} N_{i}-\left(\lambda_{\alpha i} \overline{I_{\alpha}} \tilde{H} P_{R} N_{i}+\text { h.c. }\right) \tag{1}
\end{equation*}
$$

Where $i=1,2,3$ and $\alpha=e, \mu, \tau$ and $\psi^{c}=C \bar{\psi}^{\top}$ is the
C -conjugated. We also assume Majorana masses are big $M_{i} \gg\left\langle H^{0}\right\rangle$.
Majorana condition means:

$$
\begin{equation*}
N_{i}=\nu_{R}+\nu_{R}^{c} \tag{2}
\end{equation*}
$$

Spoiler: The P_{R} is the root of $C P$ violation.

Introduction

If there is something I learned from this semster is that the lagrangian is not the end of the story, and a ressumation is mandatory to fiind physical parameters and full propagators. I now turn to obtain

$$
\begin{equation*}
S_{(q)}=\frac{i}{q-M-\Sigma_{(q)}} \tag{3}
\end{equation*}
$$

where $-i \Sigma_{(q)}$ equals, at leading order:

Calculating Chiral Self Energy Diagram

$$
\begin{align*}
-i \hat{\Sigma}_{R(q)}^{j i} & =\int \frac{d^{4} k}{(2 \pi)^{4}}\left(-i \lambda_{\alpha i}^{*} \epsilon_{a b} P_{L}\right) \times \frac{i(q-k)}{(q-k)^{2}} \times \frac{i}{k^{2}} \times\left(-i \lambda_{\alpha j} \epsilon_{a b} P_{R}\right) \\
& =\left(h_{i \alpha}^{\dagger} h_{\alpha j}\right) \times \epsilon_{a b}^{2} \times \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{i(q-\nmid)}{(q-k)^{2}} \frac{1}{k^{2}} \times P_{R} \tag{4}\\
& =K_{i j} \times 2 \times \int \frac{d^{4} l}{(2 \pi)^{4}} \int_{0}^{1} d \times \frac{1-x}{\left(l^{2}-\Delta^{2}\right)^{2}} \tag{5}
\end{align*}
$$

Calculating Chiral Self Energy Diagram

Where:

$$
\begin{align*}
\mu^{\mu} & =k^{\mu}-x q^{\mu} \tag{7}\\
\Delta^{2} & =-x(1-x) q^{2} \tag{8}\\
K_{i j} & =\sum_{\alpha=e, \mu, \tau} h_{i \alpha}^{\dagger} h_{\alpha j} \tag{9}
\end{align*}
$$

Calculating Chiral Self Energy Diagram

then:

$-i \hat{\Sigma}_{R(q)}^{j i}=i K_{i j} \times 2 \times \int_{0}^{1} \frac{d x}{16 \pi^{2}}(1-x) \times\left(\frac{2}{\epsilon}+\log \left(\frac{\tilde{\mu}^{2}}{\Delta^{2}}\right)\right) \times\left(\not q P_{R}\right)$

In $\overline{M S}$ scheme

$$
\begin{equation*}
\hat{\Sigma}_{R(q)}=K^{T} \times a_{\left(q^{2}\right)} \times\left(\phi P_{R}\right) \tag{11}
\end{equation*}
$$

Where

$$
\begin{equation*}
a_{\left(q^{2}\right)}=\frac{1}{16 \pi^{2}}\left(\log \left(\frac{q^{2}}{\mu^{2}}\right)-2-i \pi \Theta_{\left(q^{2}\right)}\right) \tag{12}
\end{equation*}
$$

Calculating Chiral Self Energy Diagram

Therefore, the full propagator in $\overline{M S}$ scheme becomes:

$$
\begin{equation*}
S_{(q)}=\frac{i}{q-M-\hat{\Sigma}_{\overline{M S}(q)}} \tag{13}
\end{equation*}
$$

Where

$$
\begin{equation*}
\hat{\Sigma}_{\overline{M S}(q)}=\Sigma_{R\left(q^{2}\right)} \times\left(\phi P_{R}\right)+\Sigma_{L\left(q^{2}\right)} \times\left(\phi P_{L}\right) \tag{14}
\end{equation*}
$$

And

$$
\begin{equation*}
\Sigma_{L\left(q^{2}\right)}=\left(\Sigma_{R\left(q^{2}\right)}\right)^{T}=K \times a_{\left(q^{2}\right)} \tag{15}
\end{equation*}
$$

Calculating Chiral Self Energy Diagram

We then have:

$$
\begin{array}{r}
\left(q-M-\hat{\Sigma}_{\overline{M S}(q)}\right) S_{(q)}=i \Longrightarrow \\
\left(q-M-\Sigma_{R\left(q^{2}\right)} \times\left(q P_{R}\right)+\Sigma_{L\left(q^{2}\right)} \times\left(q P_{L}\right)\right) S_{(q)}=i \tag{17}
\end{array}
$$

Making the decomposition

$$
\begin{equation*}
S_{(q)}=P_{R} \times S_{\left(q^{2}\right)}^{R R}+P_{L} \times S_{\left(q^{2}\right)}^{L L}+P_{L q} \times S_{\left(q^{2}\right)}^{L R}+P_{R} \phi \times S_{\left(q^{2}\right)}^{R L} \tag{18}
\end{equation*}
$$

Calculating Chiral Self Energy Diagram

We then find:

$$
\begin{align*}
& S^{L R}=M^{-1}\left(1-\Sigma_{R}\right) S^{R R} \tag{19}\\
& S^{R L}=M^{-1}\left(1-\Sigma_{L}\right) S^{L L} \tag{20}\\
& S^{R R}=\frac{i}{\left(1-\Sigma_{L}\right) M^{-1} q^{2}\left(1-\Sigma_{R}\right)-M} \tag{21}\\
& S^{L L}=\frac{i}{\left(1-\Sigma_{R}\right) M^{-1} q^{2}\left(1-\Sigma_{L}\right)-M} \tag{22}
\end{align*}
$$

Here, we start to see that Majorana propagators provide a new source to distinguish matter from anti-matter, as matter fields couple to the " R" part of the propagator, and anti-matter couples to the " L" part.

Majorana Propagator Mediated $2 \rightarrow 2$ Scattering

Each one of the propagator components accounts for a 2-body scattering processes. Below, we compute one lepton number violating interaction and remember the analogous happens with $\mathscr{M}_{R R}$

$$
\Delta L=-2
$$

$$
\begin{equation*}
i \mathscr{M}_{L L}=\bar{v}_{\left(p^{\prime}\right)} \times\left(-i \epsilon_{d e} \lambda_{\beta l}^{*} P_{L}\right) \times S_{l k}^{L L} \times\left(-i \epsilon_{a b} \lambda_{\alpha k}^{*} P_{L}\right) \times u_{(p)} \tag{23}
\end{equation*}
$$

Majorana Propagator Mediated $2 \rightarrow 2$ Scattering

Also, below there is a lepton number conserving diagrams and the analogous happens for $\mathscr{M}_{R L}$

Majorana Neutrino Decay

The consistent definition of an on-shell contribution of a single heavy Majorana neutrino to the two-body scattering amplitudes requires that the transition amplitudes extracted from lepton-number conserving and lepton-number violating processes are the compatible.
Therefore, in order to be able to talk about decays, we have to diagonalize the $S_{k l}$ matrix when the momenta are on-shell.

Majorana Neutrino Decay

$S^{R R}$ and $S^{L L}$ are symmetric complex matrices, since $\Sigma_{R}=\left(\Sigma_{L}\right)^{T}$. Therefore, they can be diagonalized by complex and orthogonal matrices.

$$
\begin{align*}
& S_{\left(q^{2}\right)}^{L L}=V_{\left(q^{2}\right)}^{T} \times M \times D_{\left(q^{2}\right)} \times V_{\left(q^{2}\right)} \tag{26}\\
& S_{\left(q^{2}\right)}^{R R}=U_{\left(q^{2}\right)}^{T} \times M \times D_{\left(q^{2}\right)} \times U_{\left(q^{2}\right)} \tag{27}
\end{align*}
$$

Then, assuming diagonal elemts of $\Sigma_{L}=\Sigma_{D\left(q^{2}\right)}+\Sigma_{N D\left(q^{2}\right)}$ are much bigger then the non diagonal

$$
\begin{align*}
D_{\left(q^{2}\right)} & =M^{-1} \times V_{\left(q^{2}\right)} \times S_{\left(q^{2}\right)}^{L L} \times V_{\left(q^{2}\right)}^{T}=M^{-1} \times U_{\left(q^{2}\right)} \times S_{\left(q^{2}\right)}^{R R} \times U_{\left(q^{2}\right)}^{T} \\
& =\frac{i}{q^{2}\left(1-\Sigma_{D\left(q^{2}\right)}\right)^{2}-M^{2}}+O\left(\Sigma_{N D}^{2}\right) \tag{28}
\end{align*}
$$

Majorana Neutrino Decay

Expanding for $q^{2}=M_{p h i}^{2}$

$$
\begin{equation*}
D_{i}=\frac{i\left(1-\Sigma_{D\left(M_{p h i}^{2}\right) i i}\right)^{-2}}{q^{2}-M_{i}^{2}\left(1-\Sigma_{D\left(M_{p h i}^{2}\right) i i}\right)^{-2}} \tag{30}
\end{equation*}
$$

We have

$$
\left.\left.\left.\begin{array}{rl}
\left(1-\Sigma_{D\left(M_{p h}\right.}^{2}\right) i i
\end{array}\right)^{-2}\right) ~ \approx 1+2 \Sigma_{i i}=1+2 K_{i i} \times a_{\left(M_{p h_{i}^{2}}^{2}\right)}\right)
$$

Letting $Z_{i}=1+\frac{K_{i i}}{8 \pi^{2}}\left(\log \left(\frac{M_{p h i}^{2}}{\mu^{2}}\right)-2\right)$ we have

$$
\begin{equation*}
D_{i\left(q^{2}\right)}=\frac{i Z_{i}}{q^{2}-M_{i}^{2} Z_{i}+i M_{i}^{2} \frac{K_{i i}}{8 \pi}}+\text { FiniteTerms } \tag{33}
\end{equation*}
$$

Majorana Neutrino Decay

The Majorana Neutrino eigenstates have Masses and Decay Width (at tree level)

$$
\begin{align*}
M_{p h i}^{2} & =M_{i}^{2} \times Z_{i\left(M_{p h i}^{2}\right)} \tag{34}\\
\Gamma_{i} & =\frac{K_{i i} M_{i}}{8 \pi} \tag{35}
\end{align*}
$$

What remains is to take out the diagonalizing matrices U and V .

Majorana Neutrino Decay

If we substitute the diagonalization of neutrino propagator back in the scattering amplitude, we find:

$$
\begin{align*}
i \mathscr{M}_{L L} & =\bar{v}_{\left(p^{\prime}\right)} \times\left(-i \epsilon_{d e} \lambda_{\beta l}^{*} P_{L}\right) \times\left(V_{\left(q^{2}\right)}^{T} \times M \times D_{\left(q^{2}\right)} \times V_{\left(q^{2}\right)}\right)_{l k} \times\left(-i \epsilon_{a b} \lambda^{\prime}\right. \tag{36}\\
& =\bar{v}_{\left(p^{\prime}\right)} \times\left(-i \epsilon_{d e}\left(V \lambda^{\dagger}\right)_{l \beta} P_{L}\right) \times M_{l} D_{l} \times\left(-i \epsilon_{a b}\left(V \lambda^{\dagger}\right)_{I \alpha} P_{L}\right) u_{(p)} \tag{37}
\end{align*}
$$

Therefore, in Lepton Number Violating scatterings, the eigenstate N_{l} (at tree level)

Lepton Number Violating

Majorana Neutrino Decay

The Lepton Number Conserving scatterings provides the kinect part of neutrino eigenstate propagator

$$
\begin{align*}
i \mathscr{M}_{L R} & =\bar{v}_{\left(p^{\prime}\right)} \times\left(-i \epsilon_{d e} \lambda_{\beta l}^{*} P_{L}\right) \times \not q\left[M^{-1}\left(1-\Sigma_{R}\right) U_{\left(q^{2}\right)}^{T} M D_{\left(q^{2}\right)} U_{\left(q^{2}\right)}\right]_{l k} \times(- \tag{38}\\
& =\bar{v}_{\left(p^{\prime}\right)} \times\left[-i \epsilon_{d e}\left(M U\left(1-\Sigma_{L}\right) M^{-1} \lambda^{\dagger}\right)_{l \beta} P_{L}\right] \times \not q D_{l} \times\left(-i \epsilon_{a b}\left(U^{T}\right)_{l \alpha}\right. \tag{39}
\end{align*}
$$

Therefore, in Lepton Number Conserving scatterings, the eigenstate N_{l} (at tree level)

Lepton Number Conserving

Majorana neutrino Decay

The analogous also happens to the second lepton number conserving amplitude. From which we obtain:

$$
\begin{align*}
& U=M \times V \times\left(1-\Sigma_{R}\right) \times M^{-1} \tag{40}\\
& V=M \times U \times\left(1-\Sigma_{L}\right) \times M^{-1} \tag{41}
\end{align*}
$$

This calculation is not iluminating, but it's solution is

$$
\begin{align*}
& U_{\left(q^{2}\right)}=1+u_{\left(q^{2}\right)} \tag{42}\\
& V_{\left(q^{2}\right)}=1+v_{\left(q^{2}\right)} \tag{43}
\end{align*}
$$

Majorana Neutrino Decay

where, at $O\left(\Sigma_{N D}\right)$

$$
\begin{align*}
& v_{i j}=w_{i j}\left(M_{i} \Sigma_{N D j i}+M_{j} \Sigma_{N D i j}\right) \tag{44}\\
& u_{i j}=w_{i j}\left(M_{i} \Sigma_{N D i j}+M_{j} \Sigma_{N D j i}\right) \tag{45}
\end{align*}
$$

And

$$
\begin{equation*}
w_{i j}^{-1}\left(q^{2}\right)=\left(M_{i}-M_{j}\right)\left(1+\frac{M_{i} M_{j}}{q^{2}}\right)-2 a_{\left(q^{2}\right)}\left(M_{i} K_{j j}-M_{j} K_{i i}\right) \tag{46}
\end{equation*}
$$

CP Asymetry

The diagonalization provided us with a eigenstate for the Majorana degrees of freedom, such that it is possible to talk about decay of a unstable particle. we are intersted in the parameter

$$
\begin{equation*}
\epsilon_{C P}=\frac{\Gamma_{\left(N_{1} \rightarrow I+H\right)}-\Gamma_{\left(N_{1} \rightarrow \bar{I}+H^{*}\right)}}{\Gamma_{\left(N_{1} \rightarrow I+H\right)}+\Gamma_{\left(N_{1} \rightarrow \bar{I}+H^{*}\right)}} \tag{47}
\end{equation*}
$$

Decays width are extracted from the diagonalized vertices

$$
\begin{align*}
& \Gamma_{\left(N_{1} \rightarrow I+H\right)} \propto \sum_{\beta}\left|\left(U_{\left(M_{i}^{2}\right)} \lambda^{T}\right)_{1 \beta}\right|^{2} \tag{48}\\
& \Gamma_{\left(N_{1} \rightarrow \bar{I}+H^{*}\right)} \propto \sum_{\beta}\left|\left(V_{\left(M_{i}^{2}\right)} \lambda^{\dagger}\right)_{1 \beta}\right|^{2} \tag{49}
\end{align*}
$$

CP Asymetry

Then

$$
\begin{align*}
\epsilon_{C P} & =\frac{1}{K_{11}} \operatorname{Re}\left[\left(u_{\left(M_{1}^{2}\right)} K\right)_{11}-\left(v_{\left(M_{1}^{2}\right)} K^{T}\right)_{11}\right] \Longrightarrow \tag{50}\\
\epsilon_{C P} & =\frac{-1}{8 \pi} \sum_{j} \frac{\operatorname{Im}\left[K_{1 j}^{2}\right]}{K_{11}} \frac{M_{1} M_{j}}{M_{1}^{2}-M_{j}^{2}} \tag{51}
\end{align*}
$$

Low Energy EFT

Seesaw Type 1 theory is the simplest extension of SM wich accounts for lepton number violation interaction from a renormalizable term $\lambda_{\alpha i} \overline{l_{\alpha}} \tilde{H} P_{R} N_{i}$. However, at energies far below the RH neutrino mass, we may prefer to work with the effective local and non-renormalizable operator, in much the same way we passed from Weak Interaction to Fermi Theory.
We proceed to integrate out the heavy neutrino degrees of freedom.
From now on, I'll use a simplified model: suppose we work with only one generation of lepton doublet $I=\left(\nu_{e}, e\right)^{T}$ and one of N.

Low Energy EFT

$$
\begin{align*}
Z= & \tilde{N}^{-1} \int D I D H \exp \left(-S_{0}\right) \int D \nu_{R} \exp \left(-S_{s s}\right) \tag{52}\\
= & N^{-1} \int D I D H \exp \left(-S_{0}\right) \times \tag{53}\\
& \int D \nu_{R}\left\langle 1-\left(\int \lambda \bar{I} \tilde{H} \nu_{R}+\text { h.c. }\right)+\frac{1}{2} \iint\left(\lambda \bar{I} \tilde{H} \nu_{R} \overline{\nu_{R}^{c}} H I \lambda^{*}+\text { h.c. }\right)+\ldots\right. \tag{54}
\end{align*}
$$

We take the propagator evaluated at small p^{2}

$$
\begin{equation*}
\left\langle\nu_{R} \overline{\nu_{R}^{c}}\right\rangle=\frac{1}{M} C(2 \pi)^{4} \delta^{(4)}(p) \tag{55}
\end{equation*}
$$

Low Energy EFT

Then

$$
\begin{align*}
Z & =N^{-1} \int D I D H \exp \left(-S_{0}\right)\left\langle 1+\int \frac{\lambda M^{-1} \lambda^{\dagger}}{2}(\overline{I c} H)\left(\tilde{H}^{\dagger} /\right)+\ldots\right\rangle \tag{56}\\
& =\int D I D H \exp \left(-S_{0}-\int \frac{-\lambda M^{-1} \lambda^{\dagger}}{2}(\overline{I c} H)\left(\tilde{H}^{\dagger} I\right)\right) \tag{57}
\end{align*}
$$

Finally

$$
\begin{align*}
\mathcal{L}_{\text {eff }} & =\mathcal{L}_{0}-\frac{\lambda M^{-1} \lambda^{\dagger}}{2}(\overline{I c} H)\left(\tilde{H}^{\dagger} /\right) \tag{58}\\
& =\mathcal{L}_{0}-c_{w} O_{w} \tag{59}
\end{align*}
$$

Where O_{w} is the dim-5 Weinberg operator

Low Energy EFT

I now turn to calculate the anomalous dimension for the dim-5
Weinberg operator.
The 1-loop contribution to O_{w} correction is then

$$
\begin{align*}
& =i \frac{c_{w}^{2}}{16 \pi^{2}} \int_{0}^{1} x\left(\frac{2}{\epsilon}-\log \left(\frac{\Delta^{2}}{\mu^{2}}\right)\right) d x \not p \tag{60}\\
& =i \frac{c_{w}^{2}}{16 \pi^{2}}\left(\ldots-\frac{1}{2} \log \left(\frac{-p^{2}}{\mu^{2}}\right)\right) p \tag{61}
\end{align*}
$$

then, at $p^{2}=-\Lambda^{2}$

$$
\begin{equation*}
i \delta_{w} \not p=-i \frac{c_{w}^{2}}{16 \pi^{2}}\left(\ldots-\frac{1}{2} \log \left(\frac{\Lambda^{2}}{\mu^{2}}\right)\right) \phi \tag{62}
\end{equation*}
$$

Low Energy EFT

Therefore

$$
\begin{equation*}
\Lambda \frac{\partial \delta_{w}}{\partial \Lambda}=\frac{c_{w}^{2}}{16 \pi^{2}} \tag{63}
\end{equation*}
$$

To proceed to calculate the anomalous dimension, we have to obtain the δ_{ν} and $\delta_{H^{0}}$ wich involves a two loop calculation. Once both contribute with 2 external legs, the anomalous dimension is given by:

$$
\begin{equation*}
\gamma_{w}=\Lambda \frac{\partial}{\partial \Lambda}\left(-\delta_{w}+\delta_{\nu}+\delta_{H^{0}}\right) \tag{64}
\end{equation*}
$$

The solution I found in the literature was

$$
\begin{equation*}
\gamma_{w}=\frac{-3 c_{w}^{2}}{16 \pi^{2}} \tag{65}
\end{equation*}
$$

A result that makes me suspect that maybe $\delta_{\nu}=\delta_{H^{0}}=\frac{-c_{w}^{2}}{16 \pi^{2}}$

Low Energy EFT

It is now a matter of solving the running of c_{w} as

$$
\begin{align*}
\Lambda \frac{\partial c_{w}}{\partial \Lambda} & =\gamma_{w} c_{w} \tag{66}\\
& =\frac{-3 c_{w}^{3}}{16 \pi^{2}} \tag{67}
\end{align*}
$$

And therefore

$$
\begin{equation*}
c_{w}{ }_{\text {eff }}^{2}=\frac{c_{w}^{2}}{1+\frac{3 c_{w}^{2}}{16 \pi^{2}} \log \left(\frac{\left.\Lambda^{2}\right)}{\mu^{2}}\right.} \tag{68}
\end{equation*}
$$

For the Weinberg operator, contrary to QED and $\lambda \phi^{4}$, the anomalous dimensions is negative, meaning that the interaction becomes stronger as external momenta are more energetic. It seems to me negative anomalous dimension happens for non-renormalizable operators.

References

1 Plumacher, M. (1998, July 30). Baryon Asymmetry, Neutrino Mixing and Supersymmetric SO(10) Unification. arXiv.org. https://arxiv.org/abs/hep-ph/9807557v1
2 R.D. Matheus' lecture notes "Teoria Quântica de Campos II"
3 Coy, R., Frigerio, M. (2019, May 31). Effective approach to lepton observables: The seesaw case. Physical Review; American Physical Society. https://doi.org/10.1103/physrevd.99.095040

