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—

¢ = (¢1,02, - ,¢,) € R™ (order parameter)

1 number of directions in which the symmetry can break:
« n = 1, scalar: liquid gas transitions, binary mixtures, uniaxial magnets.

e n = 2, 2-component vector / complex field: superfluidity, superconductivity, planar
magnets.

« n = 3, 3-component vector: classical magnets
« n > 3, tensor: chirality crystal
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Effective Hamiltonian

Interactions:
o [d(a)] = f P20 [5(2), V6, 9%,

Locélity

Analyticity:
Going from microscopic to mesoscopic scales, non-analyticities associated with
microscopic degrees of freedom are washed out.

Macroscopic non-analyticities associated with phase transitions involve infinitely
many degrees of freedom.
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Landau-Ginzburg Hamiltonian
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Landau-Ginzburg Hamiltonian
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Continuous symmetry breaking

Superfluidity V(x) = Yr() + i) = |[Y(x)]e?@
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Continuous symmetry breaking

Superfluidity
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Continuous symmetry breaking

Superfluidity U(x) = vr(a) + i (x) = [(z)]e?@

K
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4 )

Goldstone modes: massless angular
fluctuations along the manifold of minima.

v(@) = g

Energy of a Goldstone mode:

K_2
GH = BHq + > loa)
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Correlation functions:
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a=2
Correlation functions:
Gop(@, @) = (6¢a()0¢s(x))
506_5 ddq eiq-(w—w')
K (@)t + &2
(W(2)*(0)) = p* (/@00 Mermim-Wagner Theorem
B There is no spontaneous breaking of a
_ § ?* for d > 2 continuous symmetry in systems with
Q}LHSOW(QTW (0)) = 0 ford<?2 short-range interactions in dimensions
— d <2,




Perturbation Theory
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Perturbation Theory
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Wick's Theorem

¢ 4
0 for ¢ odd
0

sum over all pairwise contractions for ¢ even.
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Conclusion




Thanks ;)
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