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The Need for Regularization

In Quantum Field Theory, calculations often lead to divergent
integrals, especially in loop diagrams.

These infinities arise from integrating over all possible momentum
values, up to infinity.

Lattice regularization make these integrals mathematically
well-defined by discretizing spacetime itself, which naturally imposes a
momentum cutoff.
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The Lattice: A Discretized Spacetime

We replace continuous Euclidean spacetime with a discrete grid of
points.

This grid is a hypercubical lattice, defined as:

Λ = aZ4 = {x | xµ/a ∈ Z}

where a is the lattice spacing, the smallest distance between two
points.

Continuous integrals are replaced by discrete sums:∫
d4x −→ a4

∑
x∈Λ

The scalar field ϕ(x) is now only defined at the points x on the lattice
Λ.

Abel Alejos (IFT-UNESP) Lattice Regularization of ϕ4 Theory July 1, 2025 4 / 33



Finite Difference Operators

Continuous derivatives are replaced by finite differences on the lattice.

Forward Derivative:

∆f
µϕ(x) =

1

a
[ϕ(x + aµ̂)− ϕ(x)]

Backward Derivative:

∆b
µϕ(x) =

1

a
[ϕ(x)− ϕ(x − aµ̂)]

where µ̂ is the unit vector in the µ direction.
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Summation by Parts

The lattice analogue of integration by parts is ”summation by parts”.

It connects the forward and backward derivatives:

a4
∑
x

(∆f
µϕ(x))φ(x) = −a4

∑
x

ϕ(x)(∆b
µφ(x))

(Assuming boundary terms vanish, often by using periodic boundary
conditions).

This property is crucial for manipulating lattice actions in a way that
mirrors the continuum.
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The Lattice d’Alembert Operator

The d’Alembert operator (□ = −∂µ∂
µ in the continuum) is built

from the difference operators.

Applying summation by parts to the kinetic term:

a4
∑
x

(∆f
µϕ)(∆

f
µϕ) = −a4

∑
x

ϕ(∆b
µ∆

f
µϕ)

This defines the lattice d’Alembertian:

□ ≡ −∆b
µ∆

f
µ

Its explicit action on a field ϕ(x) is:

□ϕ(x) =
∑
µ

1

a2
[2ϕ(x)− ϕ(x + aµ̂)− ϕ(x − aµ̂)]
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The Free Field Action

The continuum action for a free scalar field is:

S0[ϕ] =

∫
d4x

1

2
ϕ(x)(−∂µ∂

µ +m2)ϕ(x)

On the lattice, this becomes:

S0[ϕ, a] =
1

2

∑
x

a4
[
(∆f

µϕ(x))(∆
f
µϕ(x)) +m2ϕ(x)2

]
Using the definition of the lattice □ operator, this can be written
more compactly as:

S0[ϕ, a] =
1

2

∑
x ,y

a8ϕ(x)(□+m2)x ,yϕ(y)
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The Lattice Propagator

The propagator G (x , y ; a) is the inverse of the kernel of the action,
(□+m2).

It is the solution to the equation:∑
y

a4(□+m2)x ,yG (y , z ; a) = a−4δx ,z

To solve this, we move to momentum space using a Fourier transform.
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Momentum Space and the Brillouin Zone

For a finite lattice with periodic boundary conditions, allowed
momenta are also discrete. For a lattice of size Lµ in each direction:

pµ =
2π

aLµ
nµ, nµ = 0, 1, ..., Lµ − 1

In the infinite volume limit (Lµ → ∞), the momentum values become
continuous but are restricted to a finite range:

−π

a
≤ pµ ≤ π

a

This range is called the first Brillouin Zone.

The lattice spacing a introduces a maximum momentum, or an
”ultraviolet (UV) cutoff”.
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The Propagator in Momentum Space

The solution of the propagator equation is obtained through Fourier
transformation:

G (x , y ; a) =

∫ π/a

−π/a

d4p

(2π)4
e ip·(x−y)G̃ (p; a),

After transforming the defining equation, one finds:{∑
µ

2

a2
(1− cos(apµ)) +m2

}
G̃ (p; a) = 1

We get the final form:

G̃ (p; a) =

{∑
µ

4

a2
sin2

(apµ
2

)
+m2

}−1
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The Propagator in Momentum Space

In the continuum limit (a → 0), sin(ax)/a ≈ x , and we recover the
familiar continuum propagator

G̃ (p) = (p2 +m2)−1

.

Simplification: For calculations, we often set a = 1 and define
p̂µ = 2 sin(pµ/2). The propagator then takes a familiar form:

G̃ (p) ≡ ∆̃(p) =
1

p̂2 +m2
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Lattice Perturbation Theory

Primary Role of Lattice:

Acts as a regularization method.
Mainly enables non-perturbative methods (e.g., for strongly coupled
theories like QCD).

Why Perturbation Theory on a Lattice?

Lattice perturbation theory provides the bridge to match
non-perturbative lattice simulations with the continuum perturbation
theory.
Estimating lattice artifacts (e.g., finite-volume effects).
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The ϕ4 Action and Perturbation Theory

We add the simplest interaction term to the action:

S =
∑
x

a4
{
1

2
(∆f

µϕ0)
2 +

m2
0

2
ϕ2
0 +

λ0

4!
ϕ4
0

}
The subscript ’0’ indicates these are bare parameters, not the
physically observed ones.

We can now do perturbation theory using Feynman diagrams. The
rules are similar to the continuum, with key differences:

1 each line is associated with a propagator ∆̃(q),
2 each vertex is an end point of four lines and is associated with a factor

−λ0,
3 at inner vertices momentum conservation holds modulo 2π,
4 loop momenta are integrated over the first Brillouin Zone.
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Two-Loop Correction to the Propagator (two-Point
Function)

We want to compute the two-point function, Γ(2)(p) = −G̃ (p)−1.

Figure: Diagrams for the two-point vertex function up to two loops.
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Two-Loop Correction to the Propagator (two-Point
Function)

The calculation gives:

−G̃ (p)−1 = −
(
p̂ +m2

0

)
− λ0

2
J1(m0) +

λ2
0

4
J1(m0)J2(m0)

+
λ2
0

6
I3(m0, p) + O

(
λ3
0

)
where

Jn(m0) ≡
∫
q
∆̃(q)n,

I3(m0, p) ≡
∫
q1

∫
q2

∆̃(q1)∆̃(q2)∆̃(p − q1 − q2)
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One-Loop Correction to the Vertex (four-Point Function)

Next, we compute the 4-point function, Γ(4), at one-loop.

Figure: Diagrams for the four-point vertex function up to one loop contribution.
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One-Loop Correction to the Vertex (four-Point Function)

The vertex function is given by:

Γ(4)(pi ) = −λ0+
λ2
0

2
[I2(m0, p1+p2)+ I2(m0, p1+p3)+ I2(m0, p1+p4)]

Where the loop integral I2 is defined as:

I2(m0, p) =

∫
q
∆̃(q)∆̃(p − q)

At zero external momenta, this simplifies to:

Γ(4)(0, 0, 0, 0) = −λ0 +
3

2
λ2
0J2(m0) + O(λ3

0)

where J2(m0) = I2(m0, 0) =
∫
q ∆̃(q)2.
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Defining Renormalized Quantities

When we take the continuum limit, a → 0. We want our
physical predictions to be independent of the regulator.

If we held the bare parameters (m0, λ0) fixed while sending a → 0,
our calculated ”physical” mass and coupling would blow up. This is
physically meaningless.

We impose renormalization conditions on our calculated Green’s
functions to define the renormalized quantities.
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Renormalization Conditions

We define the renormalized field ϕR = Z
−1/2
R ϕ0, where ZR is the

wave function renormalization factor. The renormalized Green’s
functions are Γ

(n)
R = Z

n/2
R Γ(n).

Condition 1 & 2 (Mass and Wave Function): We define the
renormalized mass mR and ZR by the behavior of the full inverse
propagator at small momentum:

G̃ (p)−1 ≡ 1

ZR
(m2

R + p2 + O(p4))

Condition 3 (Coupling): We define the renormalized coupling λR as
the value of the 4-point function at zero external momenta:

λR ≡ −Γ
(4)
R (0, 0, 0, 0)
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Renormalization at One-Loop

Applying conditions to the 2-point function:

G̃ (p)−1 = (p̂2 +m2
0) +

λ0

2
J1(m0) ≈ p2 +

(
m2

0 +
λ0

2
J1(m0)

)
At this order, the momentum dependence is unchanged, so
ZR = 1 + O(λ2

0).

The renormalized mass is:

m2
R = m2

0 +
λ0

2
J1(m0) + O(λ2

0)

Abel Alejos (IFT-UNESP) Lattice Regularization of ϕ4 Theory July 1, 2025 21 / 33



Renormalization at One-Loop

Applying conditions to the 4-point function:

Γ(4)(0, 0, 0, 0) = −λ0 +
3

2
λ2
0J2(m0)

With ZR = 1, we have Γ
(4)
R = Γ(4), so from the condition

λR = −Γ
(4)
R (0, 0, 0, 0) The renormalized coupling is:

λR = λ0 −
3

2
λ2
0J2(m0) + O(λ3

0)
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Renormalization at One-Loop

The relation between the bare parameters (m0, λ0) and the
renormalized ones (mR , λR) involves loop integrals J1 and J2.

For finite lattice spacing, these integrals converge.

To study the divergences that appear in the continuum limit (a → 0),
we consider the renormalized mass mR :

m2
R = m2

0 +
λ0

2

1

a2
J1(am0) + . . .
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Analysis of the Loop Integral J1(y)

The behavior of J1(y) is needed for small y = am0.

At y = 0, the integral converges to a constant:

J1(0) =

∫ π

−π

d4q

(2π)4

4
4∑

µ=1

sin2
qµ
2

−1

≡ r0 ≈ 0.154933390

Near this point the corrections are obtained with the help of the
decomposition

1

m2
0 + q̂2

=
1

q̂2
− m2

0

q̂2
(
m2

0 + q̂2
)

For small y , a logarithmic singularity appears:

J1(y) = r0 + y2
{

1

16π2
ln y2 + r1 + O

(
y2

)}
with the constant r1 ≈ −0.030345755.
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Divergences in Renormalized Mass

In the limit a → 0, the renormalized mass contains a quadratic and a
logarithmic divergence:

m2
R = m2

0 +
λ0

2

r0
a2

+
λ0

32π2
m2

0 ln
(
a2m2

0

)
+

λ0

2
r1m

2
0 + . . .

In lattice units, however, the equation

(amR)
2 = (am0)

2 +
λ0

2
r0 +

λ0

32π2
(am0)

2 ln
(
a2m2

0

)
+

λ0

2
r1(am0)

2 + ...

does not contain any divergent terms.

Tuning Condition: In lattice units, this equation implies that for
amR to be finite in the continuum limit, the bare mass parameter
must be tuned:

(am0)
2 → −λ0

2
r0 + O

(
λ2
0

)
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The Integral J2(y) and Renormalized Coupling

The behavior of J2(y) for small y is found via the recursion relation:

Jn+1(y) = −1

n

d

d (y2)
Jn(y)

This gives:

J2(y) = −r1 −
1

16π2

(
1 + ln y2

)
+ O

(
y2

)
This implies a logarithmic divergence in the renormalized coupling λR :

λR = λ0 +
3

32π2
λ2
0 ln

(
a2m2

0

)
+

3

2
λ2
0

(
1

16π2
+ r1

)
+ . . .
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Renormalized Perturbation Theory

We now have relations between bare (m0, λ0) and renormalized
(mR , λR) parameters. We can invert them order by order:

m2
0 = m2

R − λR

2
J1(mR) + O(λ2

R)

λ0 = λR +
3

2
λ2
RJ2(mR) + O(λ3

R)

We substitute these expressions back into our calculations for any
Green’s function. This procedure is called renormalized
perturbation theory.

For example, the 2-point function becomes:

G̃R(p)
−1 = (p̂2 +m2

R)
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Renormalized Perturbation Theory

The 4-point function becomes:

Γ
(4)
R (p1, p2, p3, p4) = −λR +

λ2
R

2
[I ′2(mR , p1 + p2) + I ′2(mR , p1 + p3)

+I ′2(mR , p1 + p4)] + O
(
λ3
R

)
,

where

I ′2(mR , p) ≡ I ′2(mR , p)− J2(mR , p) =

∫
q

(
∆̃(q)∆̃(p − q)− ∆̃2(q)

)
The result is a power series in the finite, physical coupling λR . The
divergences as a → 0 are now hidden inside the bare parameters, and
the final expressions for physical observables are finite.
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The RGE and the Beta Function

The Core Principle: Physical reality cannot depend on our choice of
regulator or the arbitrary energy scale at which we defined our
renormalized parameters.

The Renormalization Group Equation (RGE) tells us how our
renormalized coupling constant must change with energy scale to
keep physics constant.

This change is quantified by the beta function:

β(λR) = mR
∂λR

∂mR

∣∣∣∣
λ0
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Deriving the Beta Function

We start with our relation: λR = λ0 − 3
2λ

2
0J2(m0).

Differentiate with respect to m0 at fixed λ0:

∂λR

∂m0
= −3

2
λ2
0

∂J2(m0)

∂m0
= −3

2
λ2
0

(
2m0

dJ2(m0)

d(m2
0)

)
= 6λ2

0m0J3(m0)

(Here we used the identity Jn+1(y) = − 1
n

d
d(y2)

Jn(y)).

Using the chain rule, β = mR
∂λR
∂m0

(
∂mR
∂m0

)−1
, and the fact that

∂mR
∂m0

≈ mR
m0

at this order, we get the lattice beta function:

β(λR ,mR) = 6λ2
Rm

2
RJ3(mR) + O(λ3

R)
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The Continuum Limit and Physical Meaning

Our calculated β(λR ,mR) explicitly depends on amR . This is a lattice
artifact known as a scaling violation. A physical beta function
should only depend on the coupling itself.

To get the physical result, we must take the continuum limit, a → 0.
We analyze the behavior of the integral J3 in this limit.

In the limit y → 0, we have that y2J3(y) → 1
32π2 .

This gives the celebrated continuum one-loop beta function for ϕ4

theory:

β(λR) = 6λ2
R

(
1

32π2

)
+ O(λ3

R) =
3

16π2
λ2
R + O(λ3

R)
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Summary and Key Takeaways

Lattice Regularization provides non-perturbative definition of
quantum field theory by discretizing spacetime, which introduces a
natural UV cutoff.

The framework allows for systematic perturbative calculations where
divergences appear as the lattice spacing a → 0.

For ϕ4 theory, these divergences can be absorbed by tuning the bare
parameters (m0, λ0).This process of absorption is called
renormalization

The theory defined by finite, physical parameters (mR , λR) has a
well-behaved continuum limit, and universal quantities like the
β-function can be recovered.
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Summary and Key Takeaways

The Bridge to Non-Perturbative Physics: The main purpose of
the lattice is for non-perturbative simulations (e.g., Lattice QCD).
Perturbative calculations like the one we’ve seen are essential. They
provide a crucial cross-check in the weak-coupling regime, allowing us
to verify that our complex numerical codes are producing correct
results. This matching between perturbative and non-perturbative
results is a cornerstone of confidence in lattice simulations.
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