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The Need for Regularization

@ In Quantum Field Theory, calculations often lead to divergent
integrals, especially in loop diagrams.

@ These infinities arise from integrating over all possible momentum
values, up to infinity.

o Lattice regularization make these integrals mathematically

well-defined by discretizing spacetime itself, which naturally imposes a

momentum cutoff.
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The Lattice: A Discretized Spacetime

@ We replace continuous Euclidean spacetime with a discrete grid of
points.

@ This grid is a hypercubical lattice, defined as:
AN=aZ"={x|x,/a €}

where a is the lattice spacing, the smallest distance between two
points.

o Continuous integrals are replaced by discrete sums:

/d4x — 342

xeEN

@ The scalar field ¢(x) is now only defined at the points x on the lattice

A.
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Finite Difference Operators

@ Continuous derivatives are replaced by finite differences on the lattice.
o Forward Derivative:

ALOG) = Z[6(x + ai) — 6]

o Backward Derivative:

Abg(x) = f[¢( ) — p(x — ap)]

where [i is the unit vector in the p direction.

Abel Alejos (IFT-UNESP) Lattice Regularization of ¢* Theory July 1, 2025 5/33



Summation by Parts

@ The lattice analogue of integration by parts is "summation by parts”.
@ It connects the forward and backward derivatives:

a3 (ALo(x))e(x) = —a* 3 $(x)(ALe(x))

(Assuming boundary terms vanish, often by using periodic boundary
conditions).

@ This property is crucial for manipulating lattice actions in a way that
mirrors the continuum.
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The Lattice d’Alembert Operator

The d'Alembert operator (0 = —0,,0" in the continuum) is built
from the difference operators.

Applying summation by parts to the kinetic term:
Y (Afo)ag) = —aty_o(apa]
X X

This defines the lattice d'Alembertian:

— b af
O=-AbAT

@ Its explicit action on a field ¢(x) is

Og(x) = Z [26(x) — ¢(x + aft) — (x — aj)]

I
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The Free Field Action

@ The continuum action for a free scalar field is:
Slel = [ dx;00(-0,0" + nP)o(x)

@ On the lattice, this becomes:

Solé o = 5 3 o* [(ALA0NALO()) + mo(x)]

X

@ Using the definition of the lattice [ operator, this can be written
more compactly as:

Sol6,9] = 5 3 P60+ M)y ()
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The Lattice Propagator

@ The propagator G(x, y; a) is the inverse of the kernel of the action,
(O 4 m?).

@ It is the solution to the equation:

Z O+ m)y,G(y,z;a) = a *6x,
y

@ To solve this, we move to momentum space using a Fourier transform.
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Momentum Space and the Brillouin Zone

@ For a finite lattice with periodic boundary conditions, allowed
momenta are also discrete. For a lattice of size L, in each direction:

27
Py = mnu, n,=01,..,[,—-1

@ In the infinite volume limit (L, — o0), the momentum values become
continuous but are restricted to a finite range:

T<p, <
S S Pus
This range is called the first Brillouin Zone.

@ The lattice spacing a introduces a maximum momentum, or an
" ultraviolet (UV) cutoff”.
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The Propagator in Momentum Space

@ The solution of the propagator equation is obtained through Fourier

transformation:

w/a d4p . .
G(x,y;a :/ —F eirx-¥) G p; a),
Gria)= | ey (p:2)

@ After transforming the defining equation, one finds:

{Z 32—2(1 — cos(apy)) + m2} G(p;a)=1

I

o We get the final form:
A -1
~ _ ap
o
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The Propagator in Momentum Space

@ In the continuum limit (a — 0), sin(ax)/a ~ x, and we recover the
familiar continuum propagator

G(p) = (p* + m*)~*

o Simplification: For calculations, we often set a = 1 and define
pu = 2sin(p,/2). The propagator then takes a familiar form:

G(p) =Ap) = ﬁgimg
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Lattice Perturbation Theory

@ Primary Role of Lattice:

e Acts as a regularization method.
o Mainly enables non-perturbative methods (e.g., for strongly coupled
theories like QCD).

@ Why Perturbation Theory on a Lattice?

o Lattice perturbation theory provides the bridge to match
non-perturbative lattice simulations with the continuum perturbation
theory.

o Estimating lattice artifacts (e.g., finite-volume effects).
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The ¢* Action and Perturbation Theory

@ We add the simplest interaction term to the action:
1 m2 )\0
§=> 4 {2(A,§¢o)2 + b+ 4!¢8}
X

The subscript '0" indicates these are bare parameters, not the
physically observed ones.
@ We can now do perturbation theory using Feynman diagrams. The

rules are similar to the continuum, with key differences:

@ each line is associated with a propagator A(q),

@ each vertex is an end point of four lines and is associated with a factor

—Ao,
© at inner vertices momentum conservation holds modulo 27,
© loop momenta are integrated over the first Brillouin Zone.
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Two-Loop Correction to the Propagator (two-Point
Function)

We want to compute the two-point function, F®(p) = —G(p) L.

Figure: Diagrams for the two-point vertex function up to two loops.
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Two-Loop Correction to the Propagator (two-Point
Function)

@ The calculation gives:

. 2

~G(p) = — (p+ mB) — (o) + Ly (o) J(mo)

)\2
+°2B(mo, p) + 0 (X5)

@ where

3(mo, p / A(q1)A(q2)A(p — q1 — qo)
q Jq
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One-Loop Correction to the Vertex (four-Point Function)

Next, we compute the 4-point function, F(4), at one-loop.

. , .
A ’ 1 Al e
Y . o
% + 13 + 2 permutations
P . >
4 A - \\

Figure: Diagrams for the four-point vertex function up to one loop contribution.
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One-Loop Correction to the Vertex (four-Point Function)

@ The vertex function is given by:

22
r®(pi) = =20+ 22 [(mo, pr+p2) + b(mo, pr -+ p3) + (o, p1+ pa)]

@ Where the loop integral /, is defined as:

>(mo, p /A )A(p - q)

@ At zero external momenta, this simplifies to:
3
r4(0,0,0,0) = —Xo + EAng(mo) +0(\3)
where J>(mg) = h(mg,0 f A(q
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Defining Renormalized Quantities

@ When we take the continuum limit, a — 0. We want our
physical predictions to be independent of the regulator.

@ If we held the bare parameters (mg, \g) fixed while sending a — 0,
our calculated " physical” mass and coupling would blow up. This is
physically meaningless.

@ We impose renormalization conditions on our calculated Green's
functions to define the renormalized quantities.
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Renormalization Conditions

@ We define the renormalized field ¢r = Z,;l/zqﬁo, where Zg is the
wave function renormalization factor. The renormalized Green's
functions are F(Rf) = Z,g/2r(”).

e Condition 1 & 2 (Mass and Wave Function): We define the
renormalized mass mgr and Zg by the behavior of the full inverse
propagator at small momentum:

G(p) ' = ——(mi +p*> + O(p"))

1
Zr

e Condition 3 (Coupling): We define the renormalized coupling A as

the value of the 4-point function at zero external momenta:

Ar = —-T(0,0,0,0)
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Renormalization at One-Loop

@ Applying conditions to the 2-point function:
Ao N—1 _ (a2 2y, Ao 2 2, Ao
G(p)~" = (p"+ mp) + ?Jl(mO) ~pt+ | mp+ 7J1(m0)
@ At this order, the momentum dependence is unchanged, so
Zr =1+ O(N}).

@ The renormalized mass is:

A
mp = mj + 2> 1(mo) + O(X3)
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Renormalization at One-Loop

@ Applying conditions to the 4-point function:
F(4)(0, 0,0,0) = —Xo + g)\(z)JQ(mO)

With Zg = 1, we have ') = I¥), so from the condition
AR = —I'g)(O, 0,0,0) The renormalized coupling is:

3
AR = Ao — EA%J2(’770) + 0(X3)
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Renormalization at One-Loop

@ The relation between the bare parameters (mg, \g) and the
renormalized ones (mg, Ag) involves loop integrals J; and Js.
@ For finite lattice spacing, these integrals converge.

e To study the divergences that appear in the continuum limit (a — 0),
we consider the renormalized mass mg:

ol
m% = m3 + 7?J1(amo) +...
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Analysis of the Loop Integral Ji(y)

The behavior of Ji(y) is needed for small y = amy.

o At y =0, the integral converges to a constant:

5(0) = /W

@ Near this point the corrections are obtained with the help of the
decomposition

-1

4Zsm2 e ) = 1 ~0.154933390

11 m3
mi+4¢* ¢ % (mg+§?)

@ For small y, a logarithmic singularity appears:

Jl(y)=r0+y2{ sIny?+n+0(y )}

1672

with the constant 1 ~ —0.030345755.
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Divergences in Renormalized Mass

@ In the limit 2 — 0, the renormalized mass contains a quadratic and a
logarithmic divergence:

Ao Ao

+ Ao
2 a2 3272

2
—nm,
2 1 0+

% = m2 + 21n (azmg) +

@ In lattice units, however, the equation

Ao A
(amg)? = (amp)? +5 T+ (amo)?In (a®m3) + ?Orl(amo)2 + ...

Ao
3272
does not contain any divergent terms.

@ Tuning Condition: In lattice units, this equation implies that for
ampg to be finite in the continuum limit, the bare mass parameter
must be tuned:

A
(amg)? — —70r0 +0 (/\3)
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The Integral J(y) and Renormalized Coupling

The behavior of J(y) for small y is found via the recursion relation:

Ial9) = =5 )
This gives:
b(y)=—n— 16 — (1 +Iny ) + 0 (y2)

This implies a logarithmic divergence in the renormalized coupling Ag:

3 . 3.,( 1
AR:)\0+32 520 In(am0)+ A\§ <167r2+r1)+"'
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Renormalized Perturbation Theory

@ We now have relations between bare (mg, \g) and renormalized
(mgr, Ar) parameters. We can invert them order by order:

A
m§ = mig — =X i(mg) + O(A)
3,2 3
Ao = Ar+ EARJQ(mR) + O(\g)
@ We substitute these expressions back into our calculations for any

Green's function. This procedure is called renormalized
perturbation theory.

@ For example, the 2-point function becomes:

Gr(p) ™" = (p* + mi)
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Renormalized Perturbation Theory

@ The 4-point function becomes:

)\2
F%‘)(pl, P2, P3, Pa) = —AR + 7R[/2/(mR, p1+ p2) + h(mg, p1 + p3)

+15(mr, P+ pa)l + O (A})
where

b(me. p) = (e, )~ (me. p) = [ (B(@A(p - 4) - B3(q))

q

@ The result is a power series in the finite, physical coupling Ag. The
divergences as a — 0 are now hidden inside the bare parameters, and
the final expressions for physical observables are finite.
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The RGE and the Beta Function

@ The Core Principle: Physical reality cannot depend on our choice of
regulator or the arbitrary energy scale at which we defined our
renormalized parameters.

e The Renormalization Group Equation (RGE) tells us how our
renormalized coupling constant must change with energy scale to
keep physics constant.

@ This change is quantified by the beta function:

OAR
)\ = R —
B(Ar) mR@mR N
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Deriving the Beta Function

o We start with our relation: Ag = \g — %)\%Jg(mo).

o Differentiate with respect to mg at fixed Ag:

8)\R 3 28./2(”’10) 3 2 dJQ(mo) 2
—_— = —— —_— = —— 2 =
8m0 5 )\O 8m0 5 )\0 mo d(mg) 6)\0 m0J3(m0)
(Here we used the identity J,11(y) = —%ﬁJn( ).
: : _ g (omg) 1
@ Using the chain rule, g = MR e (Tmo) , and the fact that
omg . Mg

_a N

O my at this order, we get the lattice beta function:

B(Ar, mg) = 6AzmzJs(mg) + O(\})
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The Continuum Limit and Physical Meaning

@ Our calculated S(Ar, mg) explicitly depends on amg. This is a lattice
artifact known as a scaling violation. A physical beta function
should only depend on the coupling itself.

@ To get the physical result, we must take the continuum limit, a — 0.
We analyze the behavior of the integral J; in this limit.
o In the limit y — 0, we have that y? k(y) — 3217

@ This gives the celebrated continuum one-loop beta function for ¢*
theory:

80w) =63 50 ) + 00%) = 10 + O0R)
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Summary and Key Takeaways

o Lattice Regularization provides non-perturbative definition of
quantum field theory by discretizing spacetime, which introduces a
natural UV cutoff.

@ The framework allows for systematic perturbative calculations where
divergences appear as the lattice spacing a — 0.

e For ¢* theory, these divergences can be absorbed by tuning the bare

parameters (mg, Ag).This process of absorption is called
renormalization

@ The theory defined by finite, physical parameters (mg, Ag) has a
well-behaved continuum limit, and universal quantities like the
[B-function can be recovered.
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Summary and Key Takeaways

@ The Bridge to Non-Perturbative Physics: The main purpose of
the lattice is for non-perturbative simulations (e.g., Lattice QCD).
Perturbative calculations like the one we've seen are essential. They
provide a crucial cross-check in the weak-coupling regime, allowing us
to verify that our complex numerical codes are producing correct
results. This matching between perturbative and non-perturbative
results is a cornerstone of confidence in lattice simulations.
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