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Model and Preliminaries
At leading order (PRA 63, 063609 (2001))
0 K2
Lerr = v (B — 5 V2= p) Y+ ()?
+ V)P + e )’ +- -

(1)
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At leading order (PRA 63, 063609 (2001))
o R

Lerp = ¢° (ha - TV2 - M)¢+01(7/J*1/1)2
+ V) + e y)’ +- - (1)
e Galilean invariance
e Parity
e Time reversal
o 7y
e U(1)

c1, ¢, and c3 are related to the the low-momentum expansions for
the scattering amplitudes of atoms.
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Lerp = ¢° (hg - TV2 - M)¢+01(7/J*1/1)2
+ V) + e y)’ +- - (1)
e Galilean invariance
e Parity
e Time reversal
o 7y
e U(1)

c1, ¢, and c3 are related to the the low-momentum expansions for
the scattering amplitudes of atoms.

¢ ¢; Two-body scattering (universal) (RMP 76, 599 (2004))

e co Nonuniversal corrections to the two-body scattering

e c3 Three-body scattering
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We consider two interacting and equal-mass bosonic species with
hyperfine states (a = 1,2), in a d-dimensional box of volume L¢
(d =3,2,1), governed by the Euclidean action

hg
S[W, U¥] :/ dT/ dir L[, U] (2)
0 Ld
where =1 = kgT, kg is the Boltzmann constant, ¥ = (¢4, 1,)"
(with periodic conditions),
L= EO + Einta (3)
with

Loy = Z wa h7 - VQ - Ha)%u (4)

a=1,2

and

1
|nt - 5 Z ga0|¢a|2|wo|27 Jaos Jaa > O(< 0) (5)
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In order to obtain the ground state of the mixture we calculate
Q=—-p"1n2z,

1 (" 4
2= [Dwwles]-; [ ar [ dvew) @
0 Ld
So we can set (Ultracold Quantum Fields (2009))

Ya(r, T) = ¢Pa + Nalr, 7), (7)

with ¢o(r) = (Yo (r, 7)), and n, = |¢a|? is the macroscopic con-
densate or quasicondensate density in the mean-field approximation.

The fluctuations around 1), are given by 7,(r, 7).

Now, by expanding the action up to the second order (Gaussian) in
N (r, 7) and 0% (r, 7), the action becomes (PRA 91, 043641 (2015))

S =S+ Z S1s + SgF + higher orders (8)
o=1,2
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where the zeroth-order contribution is
1 1
So = hﬁLd< — 1ot + 59@“1l — 23 + §g¢% + 912¢%¢%>7 (9)
the term linear in fluctuations reads (« # o)

Sta = / [?721( — b + 905 + G1207 ) ba + C-C-}, (10)

where [ = fohﬁ dr [,4d%, and the quadratic term in fluctuations is

(a4 0)
[y 2 [nj; (h% . ;;vQ — fia + 2902 + 912¢¢27)77a
b SodR i + )|
+ 9120102 /(771772 +min2 +c.c.), (11)

where Y = fow dr [;ad%r>,.

6
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In terms of the grand-potential we get
Q= Qo+ Qcr- (12)

Where €)g is the mean-field contribution, while Qg takes into ac-
count both zero- and finite-temperature fluctuations.

Q
=S (it Y geodiR), (13)

a=1,2 o=1,2
The ¢,'s are determined by means of the saddle-point approxima-
tion, 00 /8¢po = 0, from which
Mo = gaaﬁbi + goc)\gbi a,A=1,2 and « 7& A. (14)

Hence the mean-field grand potential becomes (PRA 97, 063605
(2018))

Q0 1 gaaluzy — Jaoc Moo
v 15
Ld 2 Z JaaYoo — ggw ( )

where a, 0 = 1,2, and, o # 0.

~
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In such a case the partition function is (Phys. Rep. 640, 1 (2016))

o0

ZGF:/D[??,U*] exp [—% Y 0 (kwn) G (K, wn)n(k, wn) | (16)
k0

n=—oo

with the bosonic Matsubara’s frequencies w,, = 27n/(h3), and, the
4 x 4 inverse propagator G—! given by (PRA 97, 063605 (2018))

G G
Gl = ( n 1_2) 7 (17)
G121 G221
with the symmetric 2 x 2 matrices
— —ihwy + € + h11 G103 (18)
11 — . )
' g1 é3 ihwy, + €, + h11

with the free-particle energy €, = h2k?/2m, h11 = 291103 +g1203 —
p1, Gy =Gy (1 2), and

G = 9120109 G i) . (19)
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Z6F = H [det G(k,wy,)]/? = exp[ Z In det G(k, wn)}, (20)

k#£0 k,wn#0
wn#0
So
QGF_—— 3 lndetG—% Z In (dtG) (21)
k:;é() Wn

Therefore, the grand potential of the Gaussian fluctuations is (Le
Bellac, Thermal Field Theory, 1996)

1 I
Qcr = — Y Indet[G"(k,wn)]. (22)
2 k>0

n=—oo

By solving the determinant of the propagator, we get

“+o00
1 2 9 2432 2 2
QGF_—% ;O In [(H2w2 + E2)(K*w? + E2)] |, (23)
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with the Bogoliubov spectra (dispersion relation)

E:I:(k’ M1, “2) = [Gz + 2€kfi(lt1, N2)]1/2’ (24)
and
2§ 3
fi_§{A+Bi\/(A—B) T 4AAB], (25)
where
€ = [g11g22(1 — A) 7 A = g5/ 11922, (26)

A= 911(922#1 - 912#2), B = 922(911/@ - 912#1)- (27)

The sum over the bosonic Matsubara’s frequencies can be read as

1
Qcr = EZE:E+
k,+

= o + (28)
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In the continuum limit, >, — L9 [ d%/(27)?, we have
Q(O ]. Sd d—
L ) Z/ dk k¥ EL, (29)

with Sy = 27%2/T'(d/2) the solid angle in d dimensions and I'(x)
the Euler gamma function.

By means of
9 n2k?

_ 2 _ _
l’:t—m — l':t+1—yj: — y:t_l_t:t7 (30)

and considering the beta-Euler function

a—1

B(a,b) = /0 Oodt(liw) R{a},R{b} >0,  (31)
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the gaussian corrections to the zero-temperature grand-potential are
(PRA 97, 063605 (2018))

Q(GOF)Z Le (:;)d/zB(l—l_d 2+d)zfd+2 (32)

r'(d/2) 2
For d =3
Q(GOF) 8 /m\3/2 5
I3 15m2 (ﬁ) Zi:fi (33)
Ford=1
QgJ,z 2 rm\1/2 3
Tl 2o (34)
For d = 2
0l 3
o ~8(3-2) (35)




To simplify we consider that the intra-species are equal g11 = g22 = g,

and it is also natural to take n1 = ng = n/2, so pu1 = p2 = p.
Therefore,

Ford =3
% - 1587r2 (%)3/2[1 + X2(g, g12)]n®2. (36)
Ford=1
w2 () N e @)
with
Mg, gi2) = T2 (38)

g+ 912
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Two-dimensional Bose-Bose gases

Q 1 Sy [
% - Eﬁ/o dka[./e§+2ekf++(f+—>f-)} (39)

L2 L2
with Sy = 27/I'(1), and
1 1
== — = =AU
fe=5m f-=35Mu
Considering dimensional regularization, we have
_ 87/2L
2 =2—d, dk? — r*dk?, R = K
2/
O prE* (muL2>1—fF(% —ar(-2+¢)
L? 2\/m \ mh? I'(1—¢

(40)

(41)

(42)
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() —ﬁw@) G Rl o
= [Ere@ g [ 4 023) - @)]] + 0)
r(l-¢) = <1>[1 () + e[ )]+ o) (43)
with the Euler digamma function 9(z) = 4 InT'(2). So,

LG -9r(-2+9 _ 1r@) [i +1Ind — % —9] + 0@, (44)

I'(1—¢ 2/ Le
and OF 2 272
1
Ter _ MK [: +ln (L h )} (45)
L? 8mh? L€ el 2mu

Therefore in the MS-scheme

Qcr  my? ( h%k? )_m)\zuz ( h’k? )
2~ srme sth2 el2mAp

p (46)




The matrix element Tige = (k|T|k’) of the transition operator T'
of scattering theory satisfies the T-matrix equation (Introduction to
the Quantum Theory of Scattering, 1970. Sakurai and Napolitano,
Modern Quantum Mechanics 2017.)

ka//
T = Vi +/ddk” e R KK (47)
2y T 2m, T

Figure 1: Pictoral representation of the scattering process in the center-of-
mass reference frame in the construction of Eq (47), (adapted from PRA
107, 033325 (2023)).
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For k ~ k" we have Tj—o(k", k) ~ Ti—o(k,k) = T;—o(k) and

Vico(k, k") =~ Vi—o(k, k) = Vi—o(k). So Eq. (47) becomes
Ti—o(k) = Vieo(k) + Vieo (K)C(K) Ti=o (),

where in the limit € — 0, we have

d/2 0o " md—1
C(k') = - u / dk (k)Q 12
T(d)2) J, (2r)d 2R _ RE)?
M y2BE/2.1—d/2)
h2 (47)/2T(d/2)
where (PRA 107, 033325 (2023))
.m .m 1
Cdzg(k) = _Z47rh2k Cd:]_(k) = —Zﬁ%

(48)

(49)

(50)

For d = 2 in the MS-scheme we get (with the low-energy cutoff

€c = h?R%/m).

m k m .
Camalh) = 55 (=) = g

(51)
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Therefore,

e d=3
Vizo(k) = —4772?2 tan[élk()(k)], k cot[61—o (k)] = _2 +. (52)
e d=2
Amh? 1
Vico(k) = — m coto—o(k)] — ZIn (\/k;),
cot[di—o (k)] = %ln (gae"’> +
e d=1

2

Vi—o(k) = —%k tan[d—o(k)], ktan[d—o(k)] = % oo, (54)

and at low momentum of Vi—y(k) where

Vieo(k) =g+ O(k*) + -+,

(55)
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we obtain the intra-species coupling constants

(3d) 47Th2 (2d) 47Th2 1
- 7@, - Y VD RN
g m g m In (1577)
2h2
g = =2, (56)
ma
with a the s-wave scattering length
In a similar way the inter-species coupling constants are
(3d) ATh? (2d) Amh? 1
g2~ = ai2, 912" = =
m m In (a%ec )
1d 2h2
gy = ———, (57)
maiz
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d-dimensional grand potential for Bose-Bose gases

Ford =3
{2 w 8 (m\3/2 5/2 5/2
3™ g+gn a(ja) LX)l (58)
For d = 2
2__ N2 B m'u2 n( h2n2 >_m)\2'u2 ( h2l<,2 > (59)
L2 g+gqi2 8nh? el2my 8mh2 el2m )’
Ford=1
Q Iu,2 2 rmN\1/2
L~ g+gn 3 <ﬁ> [1+A%2(g, gr2) 2. (60)

Ag; g12) = g9 (61)
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From thermodynamics @ = E — uN —TS. So

E. 7h?
N = @t
32V/2m h?
5 m —[(a+ a12)®? + (a — a12)*?n3/%. (62)
In a local density approximation (LDA)
0 h? 2mh?
10 = [ v T a raloP]s, (63)

and we have a mean-field instability by collapse if —|a12| 2 |al.

, PRL 115, 155302 (2015) (using quantum mechanics)

E K2 256/ K2
52 = o~ anl T+ EE

(64)

Experimental evidence: Science 359, 301 (2018); PRL 120, 235301
(2018); PRL 120, 135301 (2018) +
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In what region would the droplets exist?

E, = \/fi — eklg — g12|n, (65)

then, the threshold where the energy E becomes imaginary is

2m
ke < \/ ﬁ\g — gi2|n (66)

In terms of the healing length £ we have a region where the contri-
bution of Ey can be neglected (for the 3d case)

¢ < (87la — ayaln) V2, (67)

if |a—a2| =|1—1.1]a = 0.1 x 100 x 10~ m, n ~ 1012 atoms/m?,
&< 2um.

[o.¢]
/ dkk41 [\/ei + €xlg + gi2|n + \/6% —exlg — 912|n]

~ /0 dk k1 /€2 + 2ex|gn (68)




“g: —--- Eypyimy/N
& 81 o Re(Bapyuay/N)
N 1 opd_ q0-l A
L 6{ @ DMC:pR=10 &
2, ¢ DueR=10? A o
| & DucP=1? 9’ -

< 0

e £+ y = =L1.0a,
éj o.o ‘ Q:A' (] 0P 00 11

[

0 1 ) ) 3 ; |

11 JPy

10°pay;
Figure 2: 3d energy per particle of Bose-Bose gases as function of the
density ((PRA 99, 023618 (2019))). The droplet energy per particle in

Eq. (64) (dashed black line), the real part of Eq. (62) (dotted line), and
the diffusion Monte Carlo (DMC) results (colors).
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PRL 117, 100401 (2016)

E 1
WD = 4 +gi2)n
1 Ak 3/2 3/21,,1/2
a m(ﬁ> (9 +912)"% + (9 — g12)”“In /= (69)
E 2 1/2
]\? |9 gi2|n <h2> g3/2n1/2 (70)
In a LDA we have
agb h2 82 1

8t _%82 ’9 gr2]|6]? —*<ﬁ> 3/2|¢’} (71)
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For simplicity 4 =m =1, and (PRL 117, 100401 (2016))

de™*
€. = K2 = ¢ , (72)
aai2
47 4
— = 73
g In(aiz/a)’ g1 In(a/a12) (73)
where g = —g12
Ep _ QZL In (L) (74)
N In“(a12/a) eng
with ng the equilibrium density
no = Le—-s2nlaz/a), (75)
T aal12

Finally, in a LDA we obtain

|% [_ 1V2

> o (1256 )

In? (alg/a) Veng

25 /27



- ;Zm (1 — e PE), (77)

Q(Gjll +o0 kd

where Ag—3 = (67T ) 1 , Ag=o = (47T) and Ay—1 = = —7n L
The Gaussian contrlbut|on to the grand potential of d-dimensional
Bose-Bose gases at low temperature is

(1)
QLGdF = Ag(kpT)™ )" (h:;iy/z [r(d+ 1)¢(d+1)
+
- d(’“ﬁf) D(d+3)C(d+3) + . (79)

with the Euler's gamma function I'(x) and the Riemann’s zeta func-

tion ((x).
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Summary and perspectives

e Leading quantum corrections to the equation of state in atomic
Bose-Bose gases are obtained employing elements of QFT II.

e The presence of the Gaussian fluctuations allow the droplet
existence in Bose-Bose gases.

Under construction...

@ Dipole-dipole interaction

2 2
pom~ 1 — 3cos” 0
Uda(r) = 47 r3

I

m = permanent dipole moment
® RG in 2d, critical exponents?

©® Two-loops corrections, ~ (1)*1))
(EPJ B11, 143 (1999))

3
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