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Global Symmetry and
spontaneous symmetry breaking

through the Ising model of ferromagnetism



Ising model

Hamiltonian:

H = −J
∑
x

D∑
µ=1

s(x)s(x + µ̂) (1)

Probability of any given spin
configuration:

Prob[{s(x)}] = 1

Z
e−H/(kT ) (2)

with
Z =

∑
{s(x)}

e−H/(kT ) (3)

Figure: Spins arranged in a two
dimensional quadratic lattice.

The magnetization (average spin)

⟨s⟩ =
∑
{s(x)}

1

Nspins

(∑
x

s(x)

)
Prob[{s(x)}] (4)
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Ising model - Global Symmetry

Hamiltonian:

H = −J
∑
x

D∑
µ=1

s(x)s(x + µ̂) (5)

is invariant under the global transformation

s(x) −→ s ′(x) = zs(x) (6)

where z = ±1
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Ising model - Global Symmetry

As a consequence

⟨s⟩ =
∑
{s(x)}

1

Nspins

(∑
x

s(x)

)
Prob[{s(x)}] = 0 (5)

So, if we look at the average spin, Permanent Magnets are IMPOSSIBLE!
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Ising model - Practical purpose

Hamiltonian:

Hh = −J
∑
x

D∑
µ=1

s(x)s(x + µ̂)− h
∑
x

s(x) (6)

Zh =
∑
{s(x)}

exp [−Hh/(kT )] (7)

Now, ⟨s⟩ ̸= 0 at any temperature. We consider what happens in the following
limits

m = lim
h→0

lim
N→∞

(8)

High T, thermal fluctuations, disordered phase: ⟨s(x)⟩ = 0.

Low T (D > 1), ordered phase, most spins aligned and ⟨s(x)⟩ ̸= 0.

So, Z2 global symmetry is spontaneously broken.
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Ising model - Correlation Function

To characterize the phases more precisely, one can compute the spin-spin
correlation function:

G(R) = ⟨s(0)s(R)⟩ (9)

=
1

Z

∑
{s(x)}

s(0)s(R)e−H/kT (10)

In the ordered phase, spins are correlated over long distances, so:

G(R) → m2 as R → ∞.

In the disordered phase, spins are uncorrelated at large distances, and:

G(R) ∼ e−R/ξ,

where ξ is the correlation length.
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Gauge Invariance

The Unbreakable Symmetry



Lattice Theory

Discrete #D.o.F., ultralocal
interactions, underlating lattice,
built-in cut-off

sites: points in lattice

links: lines joining neighboring
sites

plaquettes: squares formed by
4 adjacent links

Gauge transformation: an be chosen
independently at each site.

We associate dynamical degrees of freedom with the links in the lattice,
and the gauge transformation is specified at each site.
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Elitzur’s Theorem

Hamiltonian of gauge invariant Ising model (Z2 lattice gauge theory):

H = −J
∑
x

D−1∑
µ=1

D∑
ν>µ

sµ(x)sν(x + µ̂)sµ(x + ν̂)sν(x) (11)

is invariant under
sµ −→ s ′µ = z(x)sµ(x)z(x + µ̂) (12)

Local Z2 gauge symmetry is vastly larger than global Z2 symmetry.

A gauge symmetry cannot break spontaneously.

There is no analog to magnetization, ⟨s(x)⟩ = 0 even iw we introduce h and
then apply the same limits as before.

Gauge invariant observables can be constructed from Wilson loops.
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Wilson loops

Wilson line:

W (x , y) = P exp

[
ig

∫ y

x

Aµ(z)dz
µ

]
(13)

Link:

Uµ = W (x , x + aµ̂) = P exp [igaAµ(z)] (14)

Wilson loop:

W (C) =
〈 ∏

(x,µ)∈C

Uµ(x)
〉

(15)

We can generalize the Z2 construction to any symmetry group G .

SU(3): strong interaction

SU(2)× U(1): electroweak interaction

U(1): compact QED
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Compact QED

Link variables

Uµ(x) = exp[iaeAµ(x)], Aµ(x) ∈
[
− π

ae
,
π

ae

]
(16)

where a is the lattice spacing and e is the electric charge. The probability
distribution,

Prob[{Uµ(x)}] =
1

Z
e−S[U] (17)

where the Euclidean action

S [U] = −β

2

∑
x,µ<ν

Uµ(x)Uν(x + µ̂)U∗
µ(x + ν̂)U∗

ν (x) + c.c. (18)

Local gauge transformation

Uµ(x) −→ e iθ(x)Uµ(x)e
−iθ(x+µ̂) (19)
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Compact QED

Uµ(x) = 1 + iaeAµ(x)−
1

2
a2e2A2

µ(x) + . . . (20)

So, the action

S =
β

2

∑
x

a4e2
∑
µ<ν

[
Aν(x + µ)− Aν(x)

a
− Aµ(x + ν)− Aµ(x)

a

]2
(21)

where β = 1/e2. Then becomes

S =

∫
d4x

1

4
FµνFµν (22)

and the gauge transformation

Aµ(x) −→ Aµ(x)−
1

e
∂µθ(x) (23)

12 / 17



Non-abelian groups: SU(N)

Link variable

U(x) = e iagAµ(x) (24)

where

Aµ(x) = Aa
µ(x)

λa

2
(25)

Euclidean action,

S = − β

2N

∑
x,µ<ν

{
Tr
[
Uµ(x)Uν(x + µ̂)U†

µ(x + ν̂)U†
ν(x)

]
+ c.c.

}
(26)

then

S =

∫
d4x

1

2
Tr [FµνFµν ] (27)

where

Fµν = ∂µAν − ∂νAµ − ig [Aµ,Aν ] (28)

Aµ(x) → G(x)Aµ(x)G
†(x)− i

g
G(x)∂µG

†(x) (29)
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The Monte Carlo Method
Stochastic Sampling in Lattice Field Theories



The Monte Carlo Method

The connection between the Euclidean path integral and the Minkowski space

⟨Q†
t2Qt1⟩ =

1

Z

∫
DA Q†

t2Qt1e
−S (30)

= ⟨Ψ0|Q†
t2e

−H(t2−t1)Qt1 |Ψ0⟩ (31)

in lattice for Monte Carlo,

⟨Q⟩ =
∫

DU Q[U]
1

Z
e−S[U] (32)

≈ 1

Nconf

Nconf∑
n=1

Q
[
U(n)

]
(33)
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Metropolis Algorithm

1. Initial state: choose any convenient configuration {Uµ(x)}.
2. Propose update: for each link choose a random element in G as a

possible replacement: U ′
µ(x).

3. Compute ∆S = SE [U
′]− SE [U].

4. Acceptance rule

Pacc =

{
1, ∆S ≤ 0,
e−∆S , ∆S > 0.

random number generator: χ in [0, 1] with uniform weight.
Then:

▶ Pacc > χ: Make the change
▶ Pacc < χ: Don’t

5. Iterate: sweep over all links repeatedly to build an ensemble.

Guarantees: Detailed balance and (with a suitable proposal) ergodicity ⇒
configurations distributed according to the Boltzmann weight e−SE .
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Static Quark Potential

Action,

Smatter = −
∑
x,µ

(
ϕ†(x)Uµ(x)ϕ(x + µ̂) + c.c.

)
+
∑
x

(
m2 + 2D

)
ϕ†(x)ϕ(x)

we consider the observable

Qt = ϕ†(0, t)Ui (0, t)Ui (ê, t)Ui (2ê, t) . . .Ui ((R − 1)ê, t)ϕ(Rê, t) (34)

and m >> 1. We can get to

⟨Q†
TQ0⟩ = const.× ⟨Tr[UU . . .UU]C ⟩ (35)

=

∑
nm⟨0|Q

†|n⟩⟨n|e−HT |m⟩⟨m|Q|0⟩
⟨0|e−HT |0⟩ (36)

=
∑
n

|cn|2e−∆EnT (37)

∼ e−∆EminT as T → ∞ (38)

Wilson loop

W (R,T ) ∼ e−V (R)T (as T → ∞) (39)
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