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Global Symmetry and
spontaneous symmetry breaking

through the Ising model of ferromagnetism
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Ising model

Hamiltonian:

H==1>"> s(x)s(x+p)

(1)
x p=1
Probability of any given spin
configuration:
Probl{s(x)}] = 2 "¢ (2)
with
zZ=">Y" M (3)

The magnetization (average spin)
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Figure: Spins arranged in a two
dimensional quadratic lattice.
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Hamiltonian:

H= —JZ E s(x)s(x + f1) (5)

is invariant under the global transformation

s(x) — s'(x) = zs(x) (6)
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Hamiltonian:

D
H' =—=J3 "3 s'(x)s'(x+ ) (5)
x p=1
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Hamiltonian:

H =—J Z Z 2’s(x)s(x + p) (5)

is invariant under the global transformation

s(x) — s'(x) = zs(x) (6)
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Ising model - Global Symmetry

Hamiltonian:

H =-J Z Z 2°s(x)

is invariant under the global transformation

s(x) — s'(x) =

where z = +1 — Z» group
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Ising model - Global Symmetry

4
+ ¥
44

(s) = Z Nslins (Z s(x)) Prob[{s(x)}] =0 (5)

So, if we look at the average spin, Permanent Magnets are IMPOSSIBLE!
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Ising model - Practical purpose

Hamiltonian:

D

Hy=—J) > s()s(x+4) = h)_s(x) (6)
Zy= Y exp[—Hy/(kT)] (7)
{s()}
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Ising model - Practical purpose

Hamiltonian:

Hy=—J) > s()s(x+4) = h)_s(x) (6)
Zy= Y exp[—Hy/(kT)] (7)

{s()}

Now, (s) # 0 at any temperature. We consider what happens in the following
limits

m=lim lim (s) (8)

h—0N—oo
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Ising model - Practical purpose

Hamiltonian:

:_JZZ (x)s(x + f1) —hz (6)

x p=1

Zy= Y exp[—Hy/(kT)] (7)
{s()}

Now, (s) # 0 at any temperature. We consider what happens in the following
limits

m = lim_lim ! (Zs(x)) Prob[{s(x)}] ®8)

h—0 N— oo spins

{s()}

X

o High T, thermal fluctuations, disordered phase: (s(x)) = 0.
e Low T (D > 1), ordered phase, most spins aligned and (s(x)) # 0
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Ising model - Practical purpose

Hamiltonian:

:_JZZ (x)s(x + f1) —hz (6)

x p=1

Zy= Y exp[—Hy/(kT)] (7)
{s()}

Now, (s) # 0 at any temperature. We consider what happens in the following
limits

m = lim_lim ! (Zs(x)) Prob[{s(x)}] ®8)

h—0 N— oo spins

{s()}

X

e High T, thermal fluctuations, disordered phase: (s(x)

) =0.
e Low T (D > 1), ordered phase, most spins aligned and (s(

x)) #0

So, Z, global symmetry is spontaneously broken.
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Ising model - Correlation Function

To characterize the phases more precisely, one can compute the spin-spin
correlation function:

G(R) = (s(0)s(R)) 9)
:% S s(0)s(R)e /4T (10)
{s()}

e In the ordered phase, spins are correlated over long distances, so:
G(R) > m* as R — oo.
e In the disordered phase, spins are uncorrelated at large distances, and:
G(R) ~ e R/¢,

where £ is the correlation length.
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Gauge Invariance

The Unbreakable Symmetry
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Lattice Theory

Discrete #D.o.F., ultralocal
interactions, underlating lattice, e ® ‘
built-in cut-off

e sites: points in lattice —@ L 3

e links: lines joining neighboring 7 -
sites !
—@ ® L 3

o plaquettes: squares formed by
4 adjacent links

@
@
@

Gauge transformation: an be chosen =9
independently at each site.

We associate dynamical degrees of freedom with the links in the lattice,
and the gauge transformation is specified at each site.
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Lattice Theory

Discrete #D.o.F., ultralocal
interactions, underlating lattice, —o ] ? °

built-in cut-off [
Xty ’X.*L?*j)
e sites: points in lattice —@® ®
e links: lines joining neighboring I L
sites !
o plaquettes: squares formed by . x, 0 -
4 adjacent links l
|
Gauge transformation: an be chosen =% i . o

independently at each site.

We associate dynamical degrees of freedom with the links in the lattice,
and the gauge transformation is specified at each site.
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Elitzur's Theorem

Hamiltonian of gauge invariant Ising model (2> lattice gauge theory):

D—-1 D

H=—J3" 5" su(x)s(x + s (x + #)s.(x) (11)

x p=lv>p

is invariant under ,
51— 5l = 2(x)s, (x)z(x + 1) (12)

Local Z> gauge symmetry is vastly larger than global Z, symmetry.

A gauge symmetry cannot break spontaneously.

There is no analog to magnetization, (s(x)) = 0 even iw we introduce h and
then apply the same limits as before.

Gauge invariant observables can be constructed from Wilson loops.
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Wilson loops

Wilson line:
W(x,y) = Pexp {ig / ’ Au(z)dz“} (13)
Link:
Uy = W(x,x + aji) = Pexp[igaA,(2)] (14)
Wilson loop:
W(C) = <( 1_)[€C U, (x) > (15)

We can generalize the Z» construction to any symmetry group G.

e SU(3): strong interaction
e SU(2) x U(1): electroweak interaction
e U(1): compact QED

10/17



Compact QED

Link variables
U, (x) = expliaeA,(x)], Au(x) € {— 1, 1] (16)

where a is the lattice spacing and e is the electric charge. The probability
distribution,

Probl{ Uy (x)}] = 51" (17)

where the Euclidean action

SIUI = -2 3 GGl UL+ DU + e (18)

X, u<v
Local gauge transformation

Un(x) — MU, (x)e 00+ (19)
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Compact QED

Uu(x) =1+ jaeAu(x) — %a2e2Ai(X) +

So, the action

AH(X) :

4 2 X — A, (x Aux +v) —
ﬁZan[ 'Hi (x)  Aulx+v)

a
p<v

where 3 = 1/€?. Then becomes
4 1
S = d'x= F/J,]/F‘u,ll
and the gauge transformation

Au(x) —> Au(x) — < 0,0(x)

(20)

(21)

(22)

(23)
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Non-abelian groups: SU(N)

Link variable
U(x) = £28Au(x)

where
a )\a
Au(x) = AL 7
Euclidean action,

= —on 3 AT WU (x+ UL+ D) UL + e}

s— /d"x%Tr[FWFW]

where
Fuy = 6”Au - auAu - ’g [Alu A’/]

AX) = G(A()6' () = £ 6()0.G' ()

(24)

(25)

(26)

(27)

(28)
(29)
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The Monte Carlo Method

Stochastic Sampling in Lattice Field Theories
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The Monte Carlo Method

The connection between the Euclidean path integral and the Minkowski space

(QhQu) = 3 / DA QL Qe (30)
<\|’0|QJr —H(t2—n) Q4 |Wo) (31)

in lattice for Monte Carlo,

(@) :/DU Q[U]le*ﬂ“] (32)
~ Nconf i Q |: ] (33)
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Metropolis Algorithm

1. Initial state: choose any convenient configuration {U,(x)}.

2. Propose update: for each link choose a random element in G as a
possible replacement: U}, (x).

Compute AS = Sg[U'] — Sg[U].
4. Acceptance rule

w

b _ L AS <0,
€T e, AS>0.

random number generator: x in [0, 1] with uniform weight.
Then:

» P, > x: Make the change
» P, < x: Don't

5. Iterate: sweep over all links repeatedly to build an ensemble.

Guarantees: Detailed balance and (with a suitable proposal) ergodicity =
configurations distributed according to the Boltzmann weight e °E.
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Static Quark Potential

Action,

Smatier = = > (6" (VU (X)(x + p) + c.c.) + 3 (m* +2D) 61 (x)(x)

we consider the observable
Q= d)T(O, t)Ui(0, t)Ui(é, t)Ui(26,t) ... Ui((R — 1)é, t)p(Ré, t) (34)
and m >> 1. We can get to

(@I Qo) = const. x (Tr[UU... UU]c) (35)
2 (01QT|n)(nle”"T|m) (m|Q|0)
- <0|efHT‘0> (36)
= Z lca|?e 25T (37)
~ e BB T 3 T 5 0 (38)
Wilson loop
W(R,T) ~e VBT (as T — o) (39)
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