Seminário do GRHAFITE

Generating the electroweak scale from cosmological evolution

Ricardo D'Elia Matheus

Think about the Standard Model (SM) as an EFT with a cut-off at M_p:

$$V(H)=m_H^2(lpha,eta)H^2+\lambda h^4+\mathcal{O}(1/M_p^2)$$

The only mass scale is
$$M_p!$$

Technical Naturalness

 $m_H^2 \equiv
ho \; M_P^2$

All dimensionless Wilson coefficients should be of order one.

$$Dim[
ho]=Dim[\lambda]=0$$

 $ho pprox \lambda pprox 1$

 $\langle H
angle$

= v

Think about the Standard Mor

Think about quark masses in QCD! Each one can be as small as you want because you are always getting a new chiral symmetry a cut-off at M_{p} :

fficients

v

Important exception: taking a coefficient to zero increases symmetry. In that case it can be arbitrarily small.

Think about the Standard Model (SM) as an EFT with a cut-off at M_p:

Think about the Standard Model (SM) as an EFT with a cut-off at M_p:

Generating the electroweak scale from cosmological evolution - R.D.Matheus

Solving the Hierarchy Problem

Question: how come we live so close to the line?

Two answers: (1) Some symmetry forces it! (SUSY)

(2) The cut-off Λ , is not really M_p . In fact $\Lambda \ll M_p$ and $\Lambda \sim 1$ TeV (Composite Models, Extra Dimensions et al.)

Both **DEMAND** new physics @ ~TeV

From a 2016 perspective: WHERE IS THE F**KING NEW PHYSICS!?

Generating the electroweak scale from cosmological evolution - R.D.Matheu

A New Hope

Question: how come we live so close to the line?

The Third Way: (3) History! Make α and β dynamical (fields in fact)

(stupid) Example: $m_{H}^{2}(lpha,eta)H^{2}
ightarrow lphaeta H^{2}$ $m_{H}^{2}=\langlelpha
angle\langleeta
angle$

But how does the evolution stop?

Generating the electroweak scale from cosmological evolution - R.D.Matheus

A New Hope

Question: how come we live so close to the line?

The Third Way: (3) History! Make α and β dynamical (fields in fact)

(stupid) Example: $m_{H}^{2}(lpha,eta)H^{2}
ightarrow lphaeta H^{2}$

red by Alex Pomarol)

But how does the evolution stop? Local Minima! A whole LOT OF local minima!

 $m_{_{H}}^{2}=\langle lpha
angle \langle eta
angle$

Can it be done in a (technically) natural way? (spoiler: yes! But...)

Generating the electroweak scale from cosmological evolution - R.D.Matheus

Introduce one scalar field ϕ , and:

$$m_{H}^{2}
ightarrow m_{H}^{2}(\phi) = -\Lambda^{2} \left(1 - rac{g\phi}{\Lambda}
ight)$$

Introduce one scalar field ϕ , and:

$$m_{H}^{2} \rightarrow m_{H}^{2}(\phi) = -\Lambda^{2} \left(1 - \frac{g\phi}{\Lambda}\right)$$

$$m_{H}^{2} \qquad v = 0$$

$$f = 0$$

Introduce one scalar field ϕ , and:

The minimal model:

$$V(\phi,H) = \Lambda^3 g \phi - rac{1}{2} \Lambda^2 igg(1 - rac{g \phi}{\Lambda} igg) H^2 + \epsilon \Lambda_c^2 H^2 \cos(\phi/f)$$

Linear slope for ϕ

½ m_H²

Local minima in $\boldsymbol{\varphi}$

Both g and ε break shift symmetries (more about that later) and can be naturally small !

 Λ is the cut-off for the SM

 $\Lambda_{\rm c}$ is the scale at which the periodic potential is generated

The minimal model:

The minimal model:

The minimal model:

The minimal model:

$$V(\phi,H) = \Lambda^3 g \phi - rac{1}{2} \Lambda^2 igg(1 - rac{g \phi}{\Lambda} igg) H^2 + \epsilon \Lambda_c^2 H^2 \cos(\phi/f)$$

Originally the QCD axion: $V(\phi, H) \sim m_u(H) \langle q \bar{q} \rangle \cos(\phi/f)$ $\Lambda_c = \Lambda_{QCD} \quad \epsilon = Y_u$ Does not work, mainly because Λ_c too low leads to low Λ , also: $\theta_{QCD} \sim 1$ The overall slope is controlled by *g*.

close to v

So far, so good. Now on to the little dirty details:

Do we risk overshooting? Do we need to start close to ϕ_c ?

NO, if slow rolling (during an inflationary epoch). Inflation introduces Hubble friction:

$$\dot{\phi} + 3 H_I \dot{\phi} = - \partial_{\phi} V(\phi)$$

 ϕ is not the inflaton)

Consequence: homework for cosmologists as a long period of inflation is needed ($N_e \sim 10^{40}$, smaller if H_I is not constant – Patil, Schwaller, arXiv:1507.08649) (Optional approach: no inflation, temperature dependent potential. E. Hardy, arXiv:1507.07525)

So far, so good. Now on to the little dirty details:

Limitations: Inflation \Rightarrow de Sitter space \Rightarrow Temperature (from Horizon)

Generating the electroweak scale from cosmological evolution - R.D.Matheus

Espinosa et al. arXiv: 1506.09217

from Horizon)

 $\phi_{class} > \Delta \phi_{quant}$

 $g > (H_I/\Lambda)^3$

 $g > (\Lambda/M_p)^3$

 $g\Lambda^3$

 H_{I}^{2}

The Relaxion

So far, so good No

Limi

 $E(\phi)$

g cannot be arbitrarily small

(otherwise it will bring Λ to the TeV scale and

below)

 $V(\phi \sim \Lambda/g) pprox \Lambda^4$

 $V(\phi) < V_I pprox \overline{H_I^2 M_n^2}$

 ϕ is not the inflaton

Generating the electroweak scale from cosmological evolution - R.D.Matheu

 Λ^2

 M_p

 $H_I >$

So far, so good. Now on to the little dirty details:

Is this potential "all it can be"?

$$V(\phi,H) = \Lambda^3 g \phi - rac{1}{2} \Lambda^2 igg(1 - rac{g \phi}{\Lambda} igg) H^2 + \epsilon \Lambda_c^2 H^2 \cos(\phi/f)$$

Even with g, $\varepsilon << 1$ we still have to guarantee the potential is radiatively stable. Similar question to: have I included all terms allowed by symmetry?

Is this potential "all it can be"?

$$V(\phi, H) = \Lambda^{3}g\phi - \frac{1}{2}\Lambda^{2}\left(1 - \frac{g\phi}{\Lambda}\right)H^{2} + \epsilon\Lambda_{c}^{2}H^{2}\cos(\phi/f) + \dots$$

$$g\frac{\Lambda^{3}}{16\pi^{2}}\phi$$
Small correction to first term

Is this potential "all it can be"?

DANGER! Local minima everywhere, even when v = 0.

Is this potential "all it can be"?

DANGER! Local minima everywhere, even when v = 0.

Also:
$$g^n \epsilon^m \Lambda^{4-m-2m} \Lambda_c^{2m} \phi^n \cos^m(\phi/f) \left(1 + rac{1}{2} rac{H^2}{\Lambda^2} + ...
ight)$$

Generating the electroweak scale from cosmological evolution - R.D.Matheu

arXiv: 1506.09217

Is this potential "I it c

Double scanner mechanism: $A\cos(\phi/f)$ $V(\phi,$ $A(\phi,\sigma,H) \equiv \epsilon \Lambda^4 \left(\beta + c_{\phi} \frac{g\phi}{\Lambda} - c_{\sigma} \frac{g_{\sigma}\sigma}{\Lambda} + \frac{|H|^2}{\Lambda^2}\right)$ $\Lambda=\Lambda_c\simeq 10^9 GeV$ σ Also: $g^n \epsilon$ ϕ $2 \Lambda^2$

What are the symmetries involved? Is there a UV completion to this thing?

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \Lambda^{3} g \phi - \frac{1}{2} \Lambda g \phi H^{2} - \epsilon \Lambda_{c}^{2} H^{2} \cos(\phi/f)$$

$$g = 0$$

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \epsilon \Lambda_{c}^{2} H^{2} \cos(\phi/f)$$

$$\Rightarrow \text{ symmetric under } \phi \rightarrow \phi + 2n\pi f$$

$$f$$

$$\text{Discrete shift symmetry}$$

$$\mathcal{E} = 0$$

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi \longrightarrow \text{ symmetric under } \phi \rightarrow \phi + c, \forall c$$

$$\text{Continuous shift symmetry}$$

$$\text{Naturalness} \longrightarrow g \ll \epsilon$$

4/26/2016

Generating the electroweak scale from cosmological evolution - R.D.Matheu

Shift symmetries eh? Where do we normally find those?

Spontaneous breaking of a Global Symmetry

Nambu-Goldstone Bosons (NGB)

$$(\pi) = \mathcal{L}(\pi+c), orall c \quad V(\pi) = 0$$

Compact Field Space (2πf) Continuous shift symmetry

Shift symmetries eh? Where do we normally find those?

Nambu-Goldstone Bosons (NGB)

$$\mathcal{L}(\pi) = \mathcal{L}(\pi+c), orall c$$
 $V(\pi) =$

 $\mathbf{0}$

Compact Field Space (2πf) Continuous shift symmetry

Pseudo-NGB (pNGP)

$${\cal L}(\pi)={\cal L}(\pi+2n\pi f)$$

Compact Field Space ($2\pi f$)

Discrete shift symmetry

Allowed potential MUST be periodic in the field!

4/26/2016

Generating the electroweak scale from cosmological evolution - R.D.Matheu:

Shift symmetries eh? Where do we normally find those?

Nambu-Goldstone Bosons (NGB) $\mathcal{L}(\pi) = \mathcal{L}(\pi + c), orall c$ $V(\pi) = 0$

Compact Field Space (2πf) Continuous shift symmetry

Pseudo-NGB (pNGP)

$${\cal L}(\pi) = {\cal L}(\pi + 2n\pi f)$$

Compact Field Space ($2\pi f$)

Discrete shift symmetry

Allowed potential **MUST** be periodic in the field!

4/26/2016

Generating the electroweak scale from cosmological evolution - R.D.Matheu:

pNGP 🔶

Effective theory below m_{σ} : non-linear sigma model

 $m_\pi < m_\sigma$

$$\Sigma = e^{irac{T^a\pi^a}{f}} = \cos\left(rac{\pi}{f}
ight) + irac{T^a\pi^a}{\pi}\sin\left(rac{\pi}{f}
ight)$$

$$\pi=\sqrt{\pi^a\pi^a}$$

What about *g* ≠ *0*? (non-periodic terms)

$$-\Lambda^3 g \phi - {1\over 2} \Lambda g \phi H^2$$

Makes the field space non-compact

 The discrete shift symmetry cannot be broken by local operators (it is a redundancy in the description, a gauge symmetry)

4/26/2016

Generating the electroweak scale from cosmological evolution - R.D.Matheu

$$V(\pi,H)\sim \kappa_1(H^2)\cos\left(rac{\pi}{F}
ight)+\kappa_2(H^2)\cos\left(rac{\pi}{f}
ight) \ F\gg f$$

 $V(\pi,H)\sim \kappa_1(H^2)\cos\left(rac{\pi}{F}
ight)+\kappa_2(H^2)\cos\left(rac{\pi}{f}
ight)$

 $F\gg f$

But how can we get the same pNGB to have two very different periods (compact field spaces) ?

Generating the electroweak scale from cosmological evolution - R.D.Matheus

A Clockwork Axion Kaplan, Rattazzi, arXiv:1511.01827

Clockwork Relaxion

Key element: many pNGBs with the same decay constant *f*:

$$\mathcal{L}_{pNGB} = f^{2} \sum_{j=0}^{N} \partial_{\mu} U_{j}^{\dagger} \partial^{\mu} U_{j} + \left(\epsilon f^{4} \sum_{j=0}^{N-1} U_{j}^{\dagger} U_{j+1}^{3} + h.c.\right) + \cdots$$

$$U_{j} \equiv e^{i\pi_{j}/(\sqrt{2}f)}$$

$$U(1)^{N+1} \qquad U(1)^{N+1} \rightarrow U(1) \qquad \mathcal{Q}_{j+1} = \mathcal{Q}_{j}/3$$

$$\mathcal{L}_{pNGB} = \frac{1}{2} \sum_{j=0}^{N} \partial_{\mu} \pi_{j} \partial^{\mu} \pi_{j} + \epsilon f^{4} \sum_{j=0}^{N-1} e^{i(3\pi_{j+1} - \pi_{j})/(\sqrt{2}f)} + h.c. + \cdots$$

$$V^{(2)} = \frac{1}{2} \epsilon f^{2} \sum_{j=0}^{N} (q\pi_{j+1} - \pi_{j})^{2} \qquad \pi^{(0)} \sim \left(\pi_{0} + \frac{1}{3}\pi_{1} + \frac{1}{9}\pi_{2} + \dots + \frac{1}{3^{N}}\pi_{N}\right)$$

$$V(\pi^{(0)}) \sim \Lambda_{N}^{4} \cos(\pi^{(0)}/F) + \Lambda_{0}^{4} \cos(\pi^{(0)}/f) \qquad F = 3^{N} f$$

Generating the electroweak scale from cosmological evolution - R.D.Matheu

4/26/2016

A Clockwork Axion Kaplan, Rattazzi, arXiv:1511.01827

 $rac{1}{3^N}\pi_N$

Clockwork Relaxid

 $\pi^{(0)}$

 π_2

Key element: many pNGBs with the

F

 $V(\pi^{(0)}) \sim \Lambda_N^4 \cos(\pi^{-1}/F)$

V

 \mathcal{L}_{pNGE}

Generating the electroweak scale from cosmological evolution - R.D.Matheus

Quick Recap

 pNGBs have the low energy potential needed to realize the relaxion mechanism

• radiative stability demands at least two fields (π and σ) to ensure no oscillations trap the relaxion field before the critical line (double scanner scenario)

• more copies of the two fields are needed to generate oscillations of longer period *F* from a theory with scale *f*, but the relation between *F* and *f* is exponential.

Also makes the theory compatible with the needed Large Field Excursions, and the compact space for the field is now 2πF

The N-site model & extra dimensions

Arkani-Hamed, Cohen, Georgi, arXiv:hep-th/0104005v1

$$S_4 = \int \, d^4x \, \left\{ - rac{1}{2} \sum_{j=0}^N {
m Tr}[F_{\mu
u,j}F_j^{\mu
u}] + \sum_{j=1}^N {
m Tr}[(D_\mu \Phi_j)^\dagger (D^\mu \Phi_j)] - V(\Phi)
ight\}$$

This is exactly the same as discretizing a 5th dimension (same as lattice field theory, with the Φ being the link variables).

The N-site model & extra dimensions

Arkani-Hamed, Cohen, Georgi, arXiv:hep-th/0104005v1

$$S_4 = \int d^4x \, \left\{ -rac{1}{2} \sum_{j=0}^N {
m Tr}[F_{\mu
u,j}F_j^{\mu
u}] + \sum_{j=1}^N {
m Tr}[(D_\mu \Phi_j)^\dagger (D^\mu \Phi_j)] - V(\Phi)
ight\}$$

Large *N* limit: SU(2) gauge theory in five dimensions.

Choice of scales determines metric:

 $f_j = f, \ \forall j \Rightarrow$ Flat extra dimension

 $f_j = f q^j, \ \ 0 < q < 1 \
ightarrow {\sf AdS}_5$

Lima, Camila S. Machado, R.D.M.

N-Relaxion

Kaplan-Rattazzi clockwork axion:

No continuum limit!

Goals:

• Find a model closer to a dimensional deconstruction that: (i) has a relaxion and (ii) provides a effective scale F much greater than f.

• Emulate the discretization of AdS₅ (which is motivated by dualities to strongly coupled theories). This is tricky, since we are taking $f_i = f$

Generalize to non-abelian symmetries

N-Relaxion

Quadratic (mass) terms everywhere, diagonalization needed

4/26/2016

Generating the electroweak scale from cosmological evolution - R.D.Matheus

N-Relaxion

$$M_{\pi}^{2} = f^{2} \begin{pmatrix} q^{2} & -q^{3} & 0 & \dots & 0 & 0 \\ -q^{3} & 2q^{4} & -q^{5} & \dots & 0 & 0 \\ 0 & -q^{5} & 2q^{6} & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 2q^{2(N-1)} & -q^{2N-1} \\ 0 & 0 & 0 & \dots & -q^{2N-1} & q^{2N} \end{pmatrix}$$

$$ec{\eta_0} = \sum_{j=1}^N rac{q^{N-j}}{\sqrt{\sum_{k=1}^N q^{2(k-1)}}} ec{\pi_j}$$

(massless at tree level, loops induce: $m = f^2 q^{2N}$)

Same as the Wilson Line in AdS₅!

N-Relaxion

$$M_{\pi}^{2} = f^{2} \begin{pmatrix} q^{2} & -q^{3} & 0 & \dots & 0 & 0 \\ -q^{3} & 2q^{4} & -q^{5} & \dots & 0 & 0 \\ 0 & -q^{5} & 2q^{6} & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 2q^{2(N-1)} & -q^{2N-1} \\ 0 & 0 & 0 & \dots & -q^{2N-1} & q^{2N} \end{pmatrix}$$

$$ec{\eta_0} = \sum_{j=1}^N rac{q^{N-j}}{\sqrt{\sum_{k=1}^N q^{2(k-1)}}} ec{\pi_j}$$

(massless at tree level, loops induce: $m = f^2 q^{2N}$

Same as the Wilson Line in AdS₅!

 $_{
m V}pprox 1$

$$\mathcal{L}_{\eta} = \sum_{j=1}^{N} igg[rac{1}{2} \partial_{\mu} ec{\eta}_{0} \cdot \partial^{\mu} ec{\eta}_{0} + f^{4} (2 - \delta_{j,1} - \delta_{j,N}) q^{2j} \cos rac{\eta_{0}}{f_{j}} igg] + \sum_{j=1}^{N-1} f^{4} q^{2j+1} \sin rac{\eta_{0}}{f_{j}} \sin rac{\eta_{0}}{f_{j+1}}$$

$$\in fq^{j-N}\mathcal{C}_N$$
 \mathcal{C}_N

 $F=f_1pprox f/q^{N-1}$

 $f_Npprox f$

$$V(\eta_0)$$
 gets flat for $q << 1$

 $f_j \equiv$

N-Relaxion

N-Relaxion

Interaction with the Higgs:

$$\mathcal{L}_{\eta,H} = \left(1 + \frac{|H|^2}{\Lambda^2}\right) \mathcal{L}_{\eta} + |D_{\mu}H|^2 + \frac{\Lambda^2}{2} |H|^2 - \frac{\lambda_H}{4} |H|^4 + \epsilon \frac{\Lambda_c}{16\pi} \operatorname{Tr}[\Phi_N + \Phi_N^{\dagger}]|H|^2$$

Most general thing you can do
Generates the linear terms
$$-\frac{\Lambda^3 g \phi - \frac{1}{2} \Lambda g \phi H^2}{2}$$
New explicit breaking at site N
$$\epsilon f^2 |H|^2 \cos \frac{\eta_0}{f_N}$$

Generates high frequency
oscillations once $v \neq 0$

Also generates high frequency oscillations everywhere, double scanner needed!

Modification of AdS₅ near the infrared brane (IR), enforces that the SM Higgs should be IR localized

N-Relaxion

Interaction with the Higgs:

$$\mathcal{L}_{\eta,H} = \left(1 + \frac{|H|^2}{\Lambda^2}\right) \mathcal{L}_{\eta} + |D_{\mu}H|^2 + \frac{\Lambda^2}{2}|H|^2 - \frac{\lambda_H}{4}|H|^4 + \epsilon \frac{\Lambda_c}{16\pi} \text{Tr}[\Phi_N + \Phi_N^{\dagger}]|H|^2$$
Solving for the classical stopping of the rolling: $v^2 \sim \frac{f^2}{\epsilon} q^{N+1}$

 $|q^{N+1} < \epsilon < 1|$

N-Relaxion

Interaction with the Higgs:

$$\mathcal{L}_{\eta,H} = \left(1 + rac{|H|^2}{\Lambda^2}
ight) \mathcal{L}_\eta + |D_\mu H|^2 + rac{\Lambda^2}{2}|H|^2 - rac{\lambda_H}{4}|H|^4 + \epsilon rac{\Lambda_c}{16\pi} ext{Tr}[\Phi_N + \Phi_N^\dagger]|H|^2$$

Solving for the classical stopping of the rolling: $v^2 \sim rac{f^2}{\epsilon} q^{N+1}$

Constraints:

"not the inflaton"

"classical rolling vs quantum fluctuations"

$$H_I M_p > \Lambda^2 \ q^{N+1} > H_I^3/f^3$$

N-Relaxion

Interaction with the Higgs:

$$\mathcal{L}_{\eta,H} = \left(1 + rac{|H|^2}{\Lambda^2}
ight) \mathcal{L}_\eta + |D_\mu H|^2 + rac{\Lambda^2}{2}|H|^2 - rac{\lambda_H}{4}|H|^4 + \epsilon rac{\Lambda_c}{16\pi} ext{Tr}[\Phi_N + \Phi_N^\dagger]|H|^2$$

Solving for the classical stopping of the rolling: $v^2 \sim rac{f^2}{\epsilon} q^{N+1}$

Constraints:

"suppressing terms like arepsilon Cos^2" arphi $\epsilon < v^2/f^2$

 $|q^{N+1} < \epsilon < 1|$

 $\boldsymbol{\epsilon}$

N-Relaxion

Interaction with the Higgs:

$$\mathcal{L}_{\eta,H} = \left(1 + rac{|H|^2}{\Lambda^2}
ight) \mathcal{L}_\eta + |D_\mu H|^2 + rac{\Lambda^2}{2}|H|^2 - rac{\lambda_H}{4}|H|^4 + \epsilon rac{\Lambda_c}{16\pi} ext{Tr}[\Phi_N + \Phi_N^\dagger]|H|^2$$

Solving for the classical stopping of the rolling: $v^2 \sim rac{f^2}{-}q^{N+1}$

Constraints:

N-Relaxion

Interaction with the Higgs:

$$\mathcal{L}_{\eta,H} = \left(1 + \frac{|H|^2}{\Lambda^2}\right) \mathcal{L}_{\eta} + |D_{\mu}H|^2 + \frac{\Lambda^2}{2} |H|^2 - \frac{\lambda_H}{4} |H|^4 + \epsilon \frac{\Lambda_c}{16\pi} \operatorname{Tr}[\Phi_N + \Phi_N^{\dagger}]|H|^2$$
Solving for the classical stopping of the rolling:

$$v^2 \sim \frac{f^2}{\epsilon} q^{N+1}$$

$$q^{N+1} < \epsilon < 1$$
Co

$$q = 10^{-24/(N+1)} \& \epsilon = 10^{-12}$$

$$f \approx 10^8 \text{ GeV}$$

$$N = 2 \to m_{\eta_0} \approx 10^{-7} \text{ eV}$$

$$N = 3 \to m_{\eta_0} \approx 10^{-11} \text{ eV}$$

$$f \leq 10^8 \text{ GeV}$$

4/26/2016

Conclusions

• The relaxation models are a **proof of concept**. If we come to the conclusion that they are self-consistent, then the hierarchy problem ceases to be an argument for **new physics at the TeV scale**.

• We manage to build an N-site relaxion model with a well defined continuum limit. Some improvements are needed and/or interesting:

• To build the **double scanner** sector (or another solution to the high frequency oscillations induced by the Higgs)

• To explore other symmetry breaking patterns. Can any of the possible patterns allow us to increase the cut-off? Or do away with the double scanner?

• What about the continuum limit? What theory do we get in AdS₅?

Thank You!