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Leptons 

Quarks Gauge Bosons 

SU(2)L x U(1)y 
 Generates mass for 

the fermions and 
some gauge bosons 
(W’s and Z) 



Problems and shortcomings of the Standard Model (SM) 

2020 6 R. D. MATHEUS - PHYSICS BEYOND THE STANDARD MODEL 

The physics flavor/family structure (shortcoming) 



Problems and shortcomings of the Standard Model (SM) 

2020 7 R. D. MATHEUS - PHYSICS BEYOND THE STANDARD MODEL 

The physics flavor/family structure (shortcoming) 

Electroweak Symmetry Breaking 



Problems and shortcomings of the Standard Model (SM) 

2020 8 R. D. MATHEUS - PHYSICS BEYOND THE STANDARD MODEL 

The physics flavor/family structure (shortcoming) 

Electroweak Symmetry Breaking 

These “Yukawa” couplings are chosen to fit all the fermion 
masses (plus mixings in the CKM and CP violation) 
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The physics flavor/family structure (shortcoming) 

Fermion mass hierarchy 
(which is technically 
natural) 
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The physics flavor/family structure (shortcoming) 
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The physics flavor/family structure (shortcoming) 

All of these are equivalent to 
fixing Yukawa couplings, in total 
we have 13 parameters (12 
modules and 1 complex phase) 

This is the majority of the 19 
parameters of the standard model! 
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Hierarchy of Scales (Problem?) 

At “tree level” this will produce scalar resonances with mass: 
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Hierarchy of Scales (Problem?!) 

But once I take quantum corrections into consideration, I get extra terms, e.g.: 

+ 
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+ Λ is the theory’s cut-off, that 
means the energy where this 
model is no longer valid. This 
is determined by the UV 
completion! 
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Hierarchy of Scales (Problem?!?!) 

But once I take quantum corrections into consideration, I get extra terms, e.g.: 

+ Λ is the theory’s cut-off, that 
means the energy where this 
model is no longer valid. This 
is determined by the UV 
completion! 

This is a parameter of the low energy 
theory, ideally independent of 

energies away from the regime 
you are measuring 
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Hierarchy of Scales (Problem?!?!?) 
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Hierarchy of Scales (Problem?!?!?!) 

Fine tunning of 1/1030 
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Hierarchy of Scales (Problem?!?!?!?) 

Fine tunning of 1/1030 

Λ’ =  

Λ’ = 6497582134685281997542418963879543 

κ = 6497582134685281997542418963863918 

= 

(warning! Numbers below are made up as an example) 

Attention: I don’t need to know any of these parameters 
but they need to cancel to get ~1252 GeV2 
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Hierarchy of Scales (Problem?!?!?!?!) 

Fine tunning of 1/1030 

Λ’ =  

Λ’ = 6497582134685281997542418963879543 

κ = 6497582134685281997542418963863918 

= 

(warning! Numbers below are made up as an example) 

Attention: I don’t need to know any of these parameters 
but they need to cancel to get ~1252 GeV2 

Q: Is this impossible? A: No 
 
Q: Is this unlikely? A: The question makes 
no sense (to me).  
 
Q: Is it interesting?  
 
Q: Is it worth investigating? 

Q&A 
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Hierarchy of Scales (Problem?!?!?!?!?) 
Q&A 
Q: Is it hard to solve? Theoretician A: Not much 
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Hierarchy of Scales (Problem?!?!?!?!?!) 
Q&A 

Now κ is of order (100 GeV)2 and the cancelation is between 
two numbers of the same order, set by the same physics 
(because now we are close to the cut-off). 
 

New physics at O(1000 GeV)! 

Q: Is it hard to solve? Theoretician A: Not much 
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Hierarchy of Scales (Problem?!?!?!?!?!?) 

Q: Is it hard to solve? Theoretician A: Not much 
Q&A 

Now κ is of order (100 GeV)2 and the cancelation is between 
two numbers of the same order, set by the same physics 
(because now we are close to the cut-off). 
 

New physics at O(1000 GeV)! 

Q: All good then? Experimentalist A: Well… no new physics 
has been found (yet)… 
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Dark Matter (Problem) 
There is something dark* out there: 
 

*actually transparent, but that is nowhere near as cool or conducive to Star Wars puns   

Rotation curve of spiral galaxy Messier 33, source: wikipedia 
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Dark Matter (Problem) 
There is something dark out there: 
 

Credit: NASA, ESA & L. Calçada 

Gravitational Lensing 
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Dark Matter (Problem) 
There is something dark out there: 
 

Credit: NASA, ESA & L. Calçada 

Allows careful 
mapping of mass, 
and there is much 
more than the 
“shiny stuff” can 
account for. 

Gravitational Lensing 
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Dark Matter (Problem) 
There is something dark out there: 
 Electromagnetic image Mass Map 

Credit: NASA, ESA, M. J. Jee and H. Ford (Johns Hopkins University) NEWS RELEASE: 2007-17 
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Dark Matter (Problem) 
Maybe it is just gravity working outside Einstein’s GR? Well, then you have to explain these: 

Bullet Cluster 
Source: Wikipedia 
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Dark Matter (Problem) 
Maybe it is just gravity working outside Einstein’s GR? Well, then you have to explain these: 

Visible Galaxies 

Bullet Cluster 
Source: Wikipedia 
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Dark Matter (Problem) 
Maybe it is just gravity working outside Einstein’s GR? Well, then you have to explain these: 

Visible Galaxies Gas shinning 
in X-Rays 
(that is 
where most 
of the 
baryonic 
matter is) 
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Dark Matter (Problem) 
Maybe it is just gravity working outside Einstein’s GR? Well, then you have to explain these: 

Visible Galaxies Gas shinning 
in X-Rays 
(that is 
where most 
of the 
baryonic 
matter is) 

This is where the 
gravitational well 
is deeper 
(according to 
lensing). We 
believe this to be 
the distribution of 
Dark Matter 

Bullet Cluster 
Source: Wikipedia 
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Dark Matter (Problem) 
Also, from cosmology: 
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Dark Matter (Problem) 
Also, from cosmology: 

CMB temperature fluctuations: 

https://arxiv.org/abs/1506.01907 
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Dark Matter (Problem) 
Also, from cosmology: 

CMB temperature fluctuations: 

ΛCDM 

ΛCDM = Lambda Cold Dark Matter 

Cosmological Constant (later) 

Means dark matter must be also non-relativistic at the time, which implies it is 
quite heavy (GeV-ish, bare minimum around keV, but that is already “warm”)  

https://arxiv.org/abs/1506.01907 
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Dark Matter (Problem) 
So, how can we fit Dark Matter in the SM? 
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Dark Matter (Problem) 
So, how can we fit Dark Matter in the SM? 

□ No electrical charge or strong interactions (QED or 
QCD) – almost collisionless 
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□ Stable in cosmological time scales 
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Dark Matter (Problem) 
So, how can we fit Dark Matter in the SM? 

□ No electrical charge or strong interactions (QED or 
QCD) – almost collisionless 

 
□ Stable in cosmological time scales 

 
□ Cold Dark Matter (≈ GeV) 
       … or maybe “Warm” (≈ keV) 

No candidates for DM in the SM! 

Disclaimer: there is still a space for DM 
being composed of MACHOs (MAssive 
Compact Halo Object), but it is small. 

e.g. PBH 

https://arxiv.org/abs/1701.02544 [astro-ph.CO] 

https://arxiv.org/abs/1701.02544�
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Neutrinos have Masses! (Problem) 
Neutrino Oscillations imply masses for the neutrinos (sub eV)  

But in the SM masses are given by: 
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Neutrinos have Masses! (Problem) 
Neutrino Oscillations imply masses for the neutrinos (sub eV)  

But in the SM masses are given by: L R 

L R 

L R L R 

L R L R 

L R L R L R 

L L L 

□ No right handed neutrinos were ever observed (nor would you 
expect to, as they would have almost no interactions) 

 
□ Postulating a νR just to take care of masses means extending the 
SM by one (unobserved) degree of freedom 
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Neutrinos have Masses! (Problem) 
Neutrino Oscillations imply masses for the neutrinos (sub eV)  

But in the SM masses are given by: L R 

L R 

L R L R 

L R L R 

L R L R L R 

L L L 

□ No right handed neutrinos were ever observed (nor would you 
expect to, as they would have almost no interactions) 

 
□ Postulating a νR just to take care of masses means extending the 
SM by one (unobserved) degree of freedom 

Theoreticians don’t like it that much, yν < 10-12 … 

…but it is a possibility 

https://arxiv.org/abs/hep-ph/0503086  

https://arxiv.org/abs/hep-ph/0503086�
https://arxiv.org/abs/hep-ph/0503086�
https://arxiv.org/abs/hep-ph/0503086�
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Neutrinos have Masses! (Problem) 
Neutrino Oscillations imply masses for the neutrinos (sub eV)  

But in the SM masses are given by: L R 

L R 

L R L R 

L R L R 

L R L R L R 

L L L 

Since neutrinos are neutral and can be their own anti-particle, one can also postulate a Majorana 
mass coming from the operator: 

But that also means postulating new physics  
(at the scale Λ) 

□ No right handed neutrinos were ever observed (nor would you 
expect to, as they would have almost no interactions) 

 
□ Postulating a νR just to take care of masses means extending the 
SM by one (unobserved) degree of freedom 
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Matter / Antimatter asymmetry and baryogenesis (Problem) 
The lack of gamma rays tells us there is almost no antimatter within our horizon, at very least 
we are living in a “matter pocket” of 100 Gly 
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Matter / Antimatter asymmetry and baryogenesis (Problem) 
The lack of gamma rays tells us there is almost no antimatter within our horizon, at very least 
we are living in a “matter pocket” of 100 Gly 

Initial conditions do not help: 

Big Bang 
(maybe asym., who 

knows?) 

Inflation 
(erases all matter and 

makes the universe cold) 

Reheating 
(whatever caused inflation 

releases energy back) 
Baryogenesis needs to happen here 

(or later) 

Question: starting from a sym. situation (B = 0), how do I get B > 0?  
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□ B-number violation (nucleons have B = +1, antinucleons B = -1) 

Sakharov conditions: 
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Matter / Antimatter asymmetry and baryogenesis (Problem) 
The lack of gamma rays tells us there is almost no antimatter within our horizon, at very least 
we are living in a “matter pocket” of 100 Gly 

Initial conditions do not help: 

Big Bang 
(maybe asym., who 

knows?) 

Inflation 
(erases all matter and 

makes the universe cold) 

Reheating 
(whatever caused inflation 

releases energy back) 
Baryogenesis needs to happen here 

(or later) 

Question: starting from a sym. situation (B = 0), how do I get B > 0?  
 
 
□ B-number violation (nucleons have B = +1, antinucleons B = -1) 
□ B-violating interaction must happen out of thermal equilibrium (in equilibrium, the number of 
particles will depend only on mass, and nucleons and antinucleons have the same mass) 

Sakharov conditions: 
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Matter / Antimatter asymmetry and baryogenesis (Problem) 
The lack of gamma rays tells us there is almost no antimatter within our horizon, at very least 
we are living in a “matter pocket” of 100 Gly 

Initial conditions do not help: 

Big Bang 
(maybe asym., who 

knows?) 

Inflation 
(erases all matter and 

makes the universe cold) 

Reheating 
(whatever caused inflation 

releases energy back) 
Baryogenesis needs to happen here 

(or later) 

Question: starting from a sym. situation (B = 0), how do I get B > 0?  
 
 
□ B-number violation (nucleons have B = +1, antinucleons B = -1) 
□ B-violating interaction must happen out of thermal equilibrium (in equilibrium, the number of 
particles will depend only on mass, and nucleons and antinucleons have the same mass) 
□ There must be C and CP violation (the chance to increase B is greater than the chance do 
decrease B) 

Sakharov conditions: 
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Matter / Antimatter asymmetry and baryogenesis (Problem) 
How well does the SM works for Sakharov’s three? 
□ B-number violation – can happen through sphaleron (field configuration generated by non-
perturbative effects). Good 

 
□ B-violating interaction must happen out of thermal equilibrium – could happen if EW was 
“strongly first order”, but it is not. Bad 

 
□ There must be C and CP violation – there is a complex phase in the CKM matrix (from the 
Yukawa couplings), but it is too small. Bad 
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Matter / Antimatter asymmetry and baryogenesis (Problem) 
How well does the SM works for Sakharov’s three? 
□ B-number violation – can happen through sphaleron (field configuration generated by non-
perturbative effects). Good 

 
□ B-violating interaction must happen out of thermal equilibrium – could happen if EW was 
“strongly first order”, but it is not. Bad 

 
□ There must be C and CP violation – there is a complex phase in the CKM matrix (from the 
Yukawa couplings), but it is too small. Bad 

CP violation from QCD, strong CP problem (Fine tuning. Problem?)  
We simply did not include an allowed operator: 

Experimentally θ is constrained to be smaller than 10-9, but quantum effects should generate a θ 
of O(1)  
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Cosmological Constant (Shortcoming? Fine tuning?) 
Using the SM vacuum to calculate it, goes wrong by 120 orders of magnitude 

No graviton (Shortcoming) 
Well… no quantum gravity for us yet 

Probably related 
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Cosmological Constant (Shortcoming? Fine tuning?) 
Using the SM vacuum to calculate it, goes wrong by 120 orders of magnitude 

No graviton (Shortcoming) 
Well… no quantum gravity for us yet 

Probably related 

I hope I have convinced you there are enough reasons to look for physics: 
Conclusion 

Beyond the Standard Model (BSM) 

so we move on to that next… 
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The Effective Approach 
The SM works! (Very well indeed). So whatever new theory I cook up, it must reduce to the SM 
in some limit. Is there hope for that? 
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The Effective Approach 

E  

Λ  mt mh mZ mW 

What we do know 

SU(3)c x SU(2)L x U(1)y 

the unknown 
(UV completion)   
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The Effective Approach 

E  

Λ  mt mh mZ mW 

the unknown 
(UV completion)   What we do know 

SU(3)c x SU(2)L x U(1)y e.g.: 
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The Effective Approach 

E  

Λ  mt mh mZ mW 

What we do know 

SU(3)c x SU(2)L x U(1)y e.g.: 

Higher dimensional  
operator 

the unknown 
(UV completion)   
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E  

Λ  mt mh mZ mW 

The Effective Approach (Effective Field Theory) 

We can then approach the problem in the following way: 

Unknown UV can generate all Higher Dimensional Operators that… 

□ Are built only of known fields (no new particles below Λ) 
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E  

Λ  mt mh mZ mW 

The Effective Approach (Effective Field Theory) 

We can then approach the problem in the following way: 

Unknown UV can generate all Higher Dimensional Operators that… 

□ Are built only of known fields (no new particles below Λ) 
□ Are invariant under SU(3)c x SU(2)L x U(1)y  
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E  

Λ  mt mh mZ mW 

The Effective Approach (Effective Field Theory) 

We can then approach the problem in the following way: 

Unknown UV can generate all Higher Dimensional Operators that… 

□ Are built only of known fields (no new particles below Λ) 
□ Are invariant under SU(3)c x SU(2)L x U(1)y  
□ Conserve baryon number 
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E  

Λ  mt mh mZ mW 

The Effective Approach (Effective Field Theory) 

We can then approach the problem in the following way: 

Unknown UV can generate all Higher Dimensional Operators that… 

□ Are built only of known fields (no new particles below Λ) 
□ Are invariant under SU(3)c x SU(2)L x U(1)y  
□ Conserve baryon number 

The full SM EFT has: 
□ 1 operator of dimension 5 (Majorana mass) 
□ 59 operators of dimension 6 

Not counting flavor indexes (if you do, it is around 
2500 operators!) 

See https://arxiv.org/abs/1008.4884  

https://arxiv.org/abs/1008.4884�
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Case Study: Lepton Flavor Violation (LFV) 
The operator below, for instance, can induce LFV (otherwise absent in the SM): 
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Case Study: Lepton Flavor Violation (LFV) 

Matrix in flavor space 

The operator below, for instance, can induce LFV (otherwise absent in the SM): 
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Case Study: Lepton Flavor Violation (LFV) 
The operator below, for instance, can induce LFV (otherwise absent in the SM): 
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Case Study: Lepton Flavor Violation (LFV) 
The operator below, for instance, can induce LFV (otherwise absent in the SM): 
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Case Study: Lepton Flavor Violation (LFV) 

In the SM I can diagonalize M and Y with the same rotation, the new operator makes that 
impossible. That will generate flavor changing interactions with the Higgs:   

The operator below, for instance, can induce LFV (otherwise absent in the SM): 
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Case Study: Lepton Flavor Violation (LFV) 

In the SM I can diagonalize M and Y with the same rotation, the new operator makes that 
impossible. That will generate flavor changing interactions with the Higgs:   

has never been observed, that puts a limit on 

Which can mean: 

The operator below, for instance, can induce LFV (otherwise absent in the SM): 

Λ is large (New physics is far away) 

λ’ is small (operator is suppressed or forbidden in the UV) 
… or even both! 
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Case Study: Gauge boson scattering 
Life is not always that easy though, consider the following operators (d = 6): 
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Case Study: Gauge boson scattering 
They contribute to a lot of different scatterings: 

arXiv:1310.6708 and arXiv:1309.7890 

It can be a lot harder to set limits to their coefficients 



UV models 
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E  

Λ  

Another approach is to write possible UV models that contain the SM in some limits 
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E  

Λ  

Another approach is to write possible UV models that contain the SM in some limits 

The traditional solutions to the hierarchy problem can be roughly divided  in two classes: 

= _ 

□ There is a light fundamental scalar & cancel quantum corrections 

(SUSY) 
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E  

Λ  

Another approach is to write possible UV models that contain the SM in some limits 

The traditional solutions to the hierarchy problem can be roughly divided  in two classes: 

= _ 

(Composite Higgs Models) 

□ There is a light fundamental scalar & cancel quantum corrections 

(SUSY) 

□ The light scalar is not fundamental & quantum corrections only make sense up to the 
compositeness scale 



UV models 
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E  

Λ  

Another approach is to write possible UV models that contain the SM in some limits 

In most cases there is a DECOUPLING LIMIT where, by making the scale Λ associated with the new 
physics very big, one gets a theory increasingly SIMILAR to the SM. New physics effects DECREASE 
with INCREASING Λ. 
 

Precision measurements 

Agreement with SM 
Pushes Λ away! 

The models are never really gone, just pushed away. 
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E  

Λ  

Another approach is to write possible UV models that contain the SM in some limits 

In most cases there is a DECOUPLING LIMIT where, by making the scale Λ associated with the new 
physics very big, one gets a theory increasingly SIMILAR to the SM. New physics effects DECREASE 
with INCREASING Λ. 
 

Precision measurements 

Agreement with SM 
Pushes Λ away! 

The hierarchy problem is thus reintroduced, e.g.: 

= _ 

Cancelation only works if the masses of top and stop are equal 
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Supersymmetry 
Very attractive from a variety of theoretical reasons: 

□ Quantum corrections to Higgs mass are (partially) canceled 
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□ Unification of Gauge Couplings 
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Supersymmetry 
Very attractive from a variety of theoretical reasons: 

□ Quantum corrections to Higgs mass are (partially) canceled 
 

□ Unification of Gauge Couplings 
 
 
 
 
 
 
 

 
□ Dark Matter candidates as a direct consequence of stabilizing the proton 
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Supersymmetry 
Very attractive from a variety of theoretical reasons: 

□ Quantum corrections to Higgs mass are (partially) canceled 
 

□ Unification of Gauge Couplings 
 
 
 
 
 
 
 

 
□ Dark Matter candidates as a direct consequence of stabilizing the proton 

 
□ UV completion / Strings 
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Composite Higgs Models  
Broad class that can refer to a lot of different models (including some extra dimensional models). 
Nowadays used more in connection with the Higgs being a pNGB of some broken global symmetry. 
The motivations are more empirical: 

□ No loop contributions from above the composition scale 
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Composite Higgs Models  
Broad class that can refer to a lot of different models (including some extra dimensional models). 
Nowadays used more in connection with the Higgs being a pNGB of some broken global symmetry. 
The motivations are more empirical: 

□ No loop contributions from above the composition scale 
 

□ No other fundamental scalars ever detected 
 

□ Has been realized in nature time and again, at various scales (pions, Cooper pairs) 
 

□ Some models also implement unification 
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DM candidates and portals  
It is fairly easy to “plug-in” a Dark Matter candidate to an existing model, you just have to add 
some ad-hoc symmetry to stabilize some particle, but it is much more interesting when the model 
already has candidates due to its own symmetries (as is the case of the MSSM or some strongly 
coupled models). 
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Another popular option is to postulate a Dark Sector that only interacts with the SM through 
some specific mediator, e.g. the Higgs: 
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DM candidates and portals  
It is fairly easy to “plug-in” a Dark Matter candidate to an existing model, you just have to add 
some ad-hoc symmetry to stabilize some particle, but it is much more interesting when the model 
already has candidates due to its own symmetries (as is the case of the MSSM or some strongly 
coupled models). 
 
Another popular option is to postulate a Dark Sector that only interacts with the SM through 
some specific mediator, e.g. the Higgs: 

The challenge lies in having the right couplings / masses to get the abundance we see today and 
avoid direct detection experiments 
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Neutrino Mass  
Again, easy from the theoretical point of view: 

□ If you are happy with a right-handed neutrino: SM + νR 
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Neutrino Mass  
Again, easy from the theoretical point of view: 

□ If you are happy with a right-handed neutrino: SM + νR 
 

□ Otherwise, the next to simplest option is the effective Majorana Mass 
 

□ A combination of SM + νR + Majorana mass generated at very large scale (GUT scale), can 
give very light neutrinos without tiny Yukawa couplings. This is called the seesaw mechanism 
and “neutrino people” love it! 
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Neutrino Mass  
Again, easy from the theoretical point of view: 

Of course people have found much more complicated models, but the main question at this 
moment is whether the neutrinos are Dirac or Majorana Fermions. This question might be 
answered experimentally in the next 10 years. 

□ If you are happy with a right-handed neutrino: SM + νR 
 

□ Otherwise, the next to simplest option is the effective Majorana Mass 
 

□ A combination of SM + νR + Majorana mass generated at very large scale (GUT scale), can 
give very light neutrinos without tiny Yukawa couplings. This is called the seesaw mechanism 
and “neutrino people” love it! 
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The list goes on…  

New Particles Working Group  
Report of the Snowmass 2013  

Community Summer Study,  
arXiv:1504.07551 



The search for BSM physics 
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In one sentence: nothing to see here! 
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But it is a very complicated “nothing”, so there might still be something hiding in the details: 
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But it is a very complicated “nothing”, so there might still be something hiding in the details: 

https://arxiv.org/abs/1410.4960  

https://arxiv.org/abs/1410.4960�
https://arxiv.org/abs/1410.4960�
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But it is a very complicated “nothing”, so there might still be something hiding in the details: 

https://arxiv.org/abs/1601.07512  

https://arxiv.org/abs/1601.07512�
https://arxiv.org/abs/1601.07512�
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The only sensible thing to do right now… 

… is to keep looking 
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