PhenoBR Workshop

## Probing the Top-Higgs sector with clustering techniques Ricardo D'Elia Matheus





# Obligatory "problems of the SM slide"



Are we done?

# Obligatory "problems of the SM slide"



Dark matter?

Flavor Structure? (most parameters of the SM)

### Hierarchy of Scales?

#### Neutrino Masses?

(are they Dirac  $\rightarrow$  New DoF are they Majorana  $\rightarrow$  New scale)

Baryogenesis?

Strong CP? Axions?

Gravitons?

Particle physics is only "over" if you are satisfied with: "I don't know"

# Beyond SM

The solution to most of these shortcomings involve new models:

(e.g.: SUSY)

• Simplified models 4

• Effective models (inspired by some UV completion) (e.g.: Composite Higgs Model)

> We will talk about the Minimal Composite Higgs Model (MCHM soon)

• Model Independent EFT

All the rage nowadays (theoreticians and Increasingly experimentalists too)

Most experimental constraints apply here

Model parameter space is multidimensional

$$\mathcal{L} = \mathcal{L}_{ ext{elem}} + \mathcal{L}_{ ext{comp}}^{14} + \mathcal{L}_{ ext{mix}}^{14} + \mathcal{L}_{ ext{int}}^{14}$$

$$\mathcal{L}_{int}^{\mathbf{14}} = -i\underline{c_4}\overline{\Psi}_4 \, \not d\Psi_1 - i\underline{c_9}\overline{\Psi}_{\mathbf{9}}^{ij} \, \not d^i \Psi_{\mathbf{4}}^j - i\frac{c_{T\mathbf{9}}}{4\pi f}\overline{\Psi}_{\mathbf{9}}^{ij} \, d^i_\mu d^{j\,\mu} \, \tilde{T} + h.c.$$
$$\mathcal{L}_{mix}^{\mathbf{14}} = f \operatorname{Tr} \left[ U^{\mathsf{T}} \overline{Q}_L^{\mathbf{14}} U \, (y_{L9}\Psi_{\mathbf{9}} + y_{L4}\Psi_{\mathbf{4}} + y_{L1}\Psi_{\mathbf{1}}) \right] + h.c.$$
$$+ f \operatorname{Tr} \left[ U^{\mathsf{T}} \overline{T}_R^{\mathbf{14}} U \, (y_{R9}\Psi_{\mathbf{9}} + y_{R4}\Psi_{\mathbf{4}} + y_{R1}\Psi_{\mathbf{1}}) \right] + h.c.$$

e.g.: MCHM<sub>14</sub>

 $\neg \neg \neg \downarrow I = 0$   $\downarrow R = 0$   $(gRg \oplus g \neg \neg gR4 \oplus 4 \neg \neg gR1 \oplus 1) = 1.0.$ 

Model parameter space is multidimensional



Model parameters

Model parameter space is multidimensional...



Model parameters

**Physical parameters** 

... and not trivially connected to observables

Model parameter space is multidimensional...



... and not trivially connected to observables

## **Common Solutions**



## **Common Solutions**



# Clustering



We want to group these points into clusters that have similar phenomenology

## Clustering



## Clustering



**Observables** 



We can also get a representative benchmark point for each cluster

<sup>Cn</sup> These points can then be used to design search strategies or figure out constraints that apply across the cluster

As proposed in: A. Carvalho, M. Dall'Osso, T. Dorigo, F. Goertz, C. A. Gottardo and M. Tosi, JHEP 04 (2016) 126, arXiv: 1507.02245

We will do a bin by bin comparison of distributions obtained at different points in parameter space



As proposed in: A. Carvalho, M. Dall'Osso, T. Dorigo, F. Goertz, C. A. Gottardo and M. Tosi, JHEP 04 (2016) 126, arXiv: 1507.02245

We will do a bin by bin comparison of distributions obtained at different points in parameter space



As proposed in: A. Carvalho, M. Dall'Osso, T. Dorigo, F. Goertz, C. A. Gottardo and M. Tosi, JHEP 04 (2016) 126, arXiv: 1507.02245

We will do a bin by bin comparison of distributions obtained at different points in parameter space



As proposed in: A. Carvalho, M. Dall'Osso, T. Dorigo, F. Goertz, C. A. Gottardo and M. Tosi, JHEP 04 (2016) 126, arXiv: 1507.02245

$$TS_{ab} = -2\sum_{i=1}^{N_{bins}} \left[ log(n_{(i,a)}!) + log(n_{(i,b)}!) - 2log\left(\frac{n_{(i,a)} + n_{(i,b)}}{2}!\right) \right]$$



$$|f S_a = S_b \rightarrow TS_{ab} = 0$$

 $TS_{ab} < 0 \leftrightarrow S_a \neq S_b$ (increasingly so)

 $TS_{ab} > TS_{cd}$  means  $S_a$  and  $S_b$  are more alike than  $S_c$  and  $S_d$ 

As proposed in: A. Carvalho, M. Dall'Osso, T. Dorigo, F. Goertz, C. A. Gottardo and M. Tosi, JHEP 04 (2016) 126, arXiv: 1507.02245

$$TS_{ab} = -2\sum_{i=1}^{N_{bins}} \left[ log(n_{(i,a)}!) + log(n_{(i,b)}!) - 2log\left(\frac{n_{(i,a)} + n_{(i,b)}}{2}!\right) \right]$$

We can also sum over more than one kinematical distribution



As proposed in: A. Carvalho, M. Dall'Osso, T. Dorigo, F. Goertz, C. A. Gottardo and M. Tosi, JHEP 04 (2016) 126, arXiv: 1507.02245

#### Let the clustering begin!



#### Step 0

Simulate events for all points and get the kinematical distributions (build samples)

Each point will be its own cluster

As proposed in: A. Carvalho, M. Dall'Osso, T. Dorigo, F. Goertz, C. A. Gottardo and M. Tosi, JHEP 04 (2016) 126, arXiv: 1507.02245

### Let the clustering begin!



Step 1

Compare all pairs of clusters

 $TS^{min} = min_{ab}(\{TS_{ab}\})$ 

*a* and *b* run over all points in their cluster

As proposed in: A. Carvalho, M. Dall'Osso, T. Dorigo, F. Goertz, C. A. Gottardo and M. Tosi, JHEP 04 (2016) 126, arXiv: 1507.02245

#### Let the clustering begin!



Step 1

Compare all pairs of clusters

 $TS^{min} = min_{ab}(\{TS_{ab}\})$ 

*a* and *b* run over all points in their cluster

Merge the pair with the highest TS<sup>min</sup>

As proposed in: A. Carvalho, M. Dall'Osso, T. Dorigo, F. Goertz, C. A. Gottardo and M. Tosi, JHEP 04 (2016) 126, arXiv: 1507.02245

### Let the clustering begin!



Step 3

Compare all pairs of clusters

 $TS^{min} = min_{ab}(\{TS_{ab}\})$ 

*a* and *b* run over all points in their cluster

Merge the pair with the highest TS<sup>min</sup>

At every step the number of clusters diminishes by one

As proposed in: A. Carvalho, M. Dall'Osso, T. Dorigo, F. Goertz, C. A. Gottardo and M. Tosi, JHEP 04 (2016) 126, arXiv: 1507.02245

#### Let the clustering begin!



Step n (final)

Criteria: avoid the extremes

N too big → highly homogeneous clusters, unwieldy number

N too small → highly heterogeneous clusters

As proposed in: A. Carvalho, M. Dall'Osso, T. Dorigo, F. Goertz, C. A. Gottardo and M. Tosi, JHEP 04 (2016) 126, arXiv: 1507.02245

#### Let the clustering begin!



Step n (final)

Criteria: in practice it is a bit subjective, we look for a step were decreasing N will merge two big unlike clusters

As proposed in: A. Carvalho, M. Dall'Osso, T. Dorigo, F. Goertz, C. A. Gottardo and M. Tosi, JHEP 04 (2016) 126, arXiv: 1507.02245

#### **Benchmarks Points**



For each of the clusters we can chose a point *a* maximizing:

 $TS_a^{min} = min_b(\{TS_{ab}\})$ 

where *b* runs over all other points in that cluster

As proposed in: A. Carvalho, M. Dall'Osso, T. Dorigo, F. Goertz, C. A. Gottardo and M. Tosi, JHEP 04 (2016) 126, arXiv: 1507.02245

#### **Benchmarks Points**



For each of the clusters we can chose a point *a* maximizing:

$$TS_a^{min} = min_b(\{TS_{ab}\})$$

where *b* runs over all other points in that cluster

Those are the benchmark points

C. Bautista, L. de Lima, R. D. Matheus, E. Pontón, L. A. F. do Prado, A Savoy-Navarro. JHEP 2021, 49 (2021)



pNGB of SO(5)  $\rightarrow$  SO(4)

New fermionic DoFs introduced in some representation of the SO(5) MCHM<sub>5</sub>: 5 of SO(5)  $\rightarrow$  4+1 of SO(4)

$$\begin{array}{c} \Psi_{4} \\ \leftrightarrow \end{array} \begin{array}{c} X_{5/3} \\ X_{2/3} \end{array} T \\ \Psi_{1} \end{array} B \end{array}$$

C. Bautista, L. de Lima, R. D. Matheus, E. Pontón, L. A. F. do Prado, A Savoy-Navarro. JHEP 2021, 49 (2021)

Mix with SM (3<sup>rd</sup> gen.): Partial Compositeness MCHM<sub>5</sub>: 5 of SO(5)  $\rightarrow$  4+1 of SO(4)



C. Bautista, L. de Lima, R. D. Matheus, E. Pontón, L. A. F. do Prado, A Savoy-Navarro. JHEP 2021, 49 (2021)

#### Charge 2/3 sector



C. Bautista, L. de Lima, R. D. Matheus, E. Pontón, L. A. F. do Prado, A Savoy-Navarro. JHEP 2021, 49 (2021)

### Charge 2/3 sector



C. Bautista, L. de Lima, R. D. Matheus, E. Pontón, L. A. F. do Prado, A Savoy-Navarro. JHEP 2021, 49 (2021)

#### $\begin{bmatrix} 0 & \frac{1}{2}y_{L4}fa_{+} & -\frac{1}{2} \\ \frac{\sqrt{5}}{y_{L4}fa_{+}} & -\frac{M_{+}}{2} \end{bmatrix}$

| • |                            | 0                                        | $\frac{1}{2}y_{L4}fa_+$ | $-\frac{1}{2}y_{L4}fa_{-}$ | $-\frac{\sqrt{5}}{4}y_{L1}fs_{2h}$ | $-\frac{1}{2}y_{L9}fb_{-}$ | $-\frac{1}{2}y_{L9}fs_{2h}$ | $\frac{1}{4}y_{L9}fb_+$ |
|---|----------------------------|------------------------------------------|-------------------------|----------------------------|------------------------------------|----------------------------|-----------------------------|-------------------------|
|   |                            | $\frac{\sqrt{5}}{4}y_{R4}fs_{2h}$        | $-M_4$                  | 0                          | 0                                  | 0                          | 0                           | 0                       |
| / |                            | $-\frac{\sqrt{5}}{4}y_{R4}fs_{2h}$       | 0                       | $-M_4$                     | 0                                  | 0                          | 0                           | 0                       |
|   | $\mathcal{M}^{14}_{2/3} =$ | $y_{R1}f\left(1-\frac{5}{4}s_h^2\right)$ | 0                       | 0                          | $-M_1$                             | 0                          | 0                           | 0                       |
|   |                            | $\frac{\sqrt{5}}{4}y_{R9}fs_h^2$         | 0                       | 0                          | 0                                  | $-M_9$                     | 0                           | 0                       |
|   |                            | $-\frac{\sqrt{5}}{4}y_{R9}fs_{h}^{2}$    | 0                       | 0                          | 0                                  | 0                          | $-M_9$                      | 0                       |
|   |                            | $\frac{\sqrt{5}}{4}y_{R9}fs_h^2$         | 0                       | 0                          | 0                                  | 0                          | 0                           | $-M_9$                  |
|   |                            |                                          |                         |                            |                                    |                            |                             | $-M_9$                  |

7 top partners

### $MCHM_{14}$ : 14 of SO(5) $\rightarrow$ 9+4+1 of SO(4)

### $f, |M_1|, |M_4|, |M_9|, \operatorname{sign}(M_1), \operatorname{sign}(M_4), y_L \text{ and } y_R$

C. Bautista, L. de Lima, R. D. Matheus, E. Pontón, L. A. F. do Prado, A Savoy-Navarro. JHEP 2021, 49 (2021)



C. Bautista, L. de Lima, R. D. Matheus, E. Pontón, L. A. F. do Prado, A Savoy-Navarro. JHEP 2021, 49 (2021)



C. Bautista, L. de Lima, R. D. Matheus, E. Pontón, L. A. F. do Prado, A Savoy-Navarro. JHEP 2021, 49 (2021)



C. Bautista, L. de Lima, R. D. Matheus, E. Pontón, L. A. F. do Prado, A Savoy-Navarro. JHEP 2021, 49 (2021)



C. Bautista, L. de Lima, R. D. Matheus, E. Pontón, L. A. F. do Prado, A Savoy-Navarro. JHEP 2021, 49 (2021)



C. Bautista, L. de Lima, R. D. Matheus, E. Pontón, L. A. F. do Prado, A Savoy-Navarro. JHEP 2021, 49 (2021,

#### Benchmark points

|       |                                    | $C_1$ | $C_2$ | $C_3$ | $C_4$ | $C_5$ | $\mathrm{C}_{6}$ | $C_7$ | $C_8$ | $C_9$ | $C_{10}$ | $C_{11}$ |
|-------|------------------------------------|-------|-------|-------|-------|-------|------------------|-------|-------|-------|----------|----------|
| SI    | $M_1(GeV)$                         | -1323 | -1809 | -1483 | 2965  | 2882  | 2999             | 3000  | -1400 | -1618 | -2384    | -2892    |
| ete   | $M_4(GeV)$                         | 1357  | 1479  | 2235  | 1370  | 1339  | 1479             | 1295  | 1339  | 1309  | 1519     | 1437     |
| ĝ     | f(GeV)                             | 1199  | 1593  | 1071  | 1393  | 1220  | 1168             | 1484  | 1265  | 1229  | 1110     | 1646     |
| are   | $\mathbf{y}_L$                     | 0.91  | 2.25  | 1.38  | 2.35  | 1.83  | 2.33             | 1.98  | 1.34  | 1.22  | 0.51     | 1.03     |
| ğ     | $\mathbf{y}_{R}$                   | 0.88  | 0.58  | 0.72  | 3.38  | 3.57  | 3.28             | 3.25  | 0.66  | 0.74  | 2.30     | 0.85     |
| $\mu$ | $(t\bar{t}h)$ (All Energies)       | 0.90  | 0.94  | 0.86  | 0.83  | 0.78  | 0.79             | 0.84  | 0.91  | 0.90  | 0.81     | 0.94     |
|       | $\mu(t\bar{t}hh)$ (14 TeV)         | 2.14  | 1.47  | 0.80  | 1.51  | 1.53  | 1.02             | 2.00  | 2.25  | 2.41  | 1.39     | 1.58     |
|       | $\mu(t\bar{t}hh)$ (100 TeV)        | 14.58 | 8.84  | 3.28  | 10.28 | 11.18 | 7.04             | 13.42 | 15.20 | 16.11 | 13.68    | 10.57    |
| NR    | $k-t\bar{t}hh/t\bar{t}hh$ (14 TeV) | 0.37  | 0.59  | 0.88  | 0.45  | 0.40  | 0.61             | 0.35  | 0.36  | 0.33  | 0.46     | 0.55     |
| NR    | $-t\bar{t}hh/t\bar{t}hh$ (100 TeV) | 0.05  | 0.10  | 0.22  | 0.07  | 0.05  | 0.09             | 0.05  | 0.05  | 0.05  | 0.05     | 0.08     |
|       | $M_{T^{(1)}}$ (TeV)                | 1.36  | 1.48  | 1.66  | 1.40  | 1.38  | 1.51             | 1.32  | 1.34  | 1.31  | 1.54     | 1.44     |
|       | $M_{T^{(2)}}$ (TeV)                | 1.63  | 2.02  | 2.24  | 3.55  | 2.61  | 3.10             | 3.22  | 1.61  | 1.80  | 1.63     | 2.20     |
|       | $M_{T^{(3)}}$ (TeV)                | 1.79  | 3.88  | 2.68  | 5.55  | 5.21  | 4.85             | 5.67  | 2.17  | 2.02  | 3.47     | 3.21     |
|       | $M_{B^{(1)}}$ (TeV)                | 1.74  | 3.87  | 2.68  | 3.55  | 2.60  | 3.10             | 3.22  | 2.16  | 1.99  | 1.62     | 2.22     |
|       | $M_{X_{5/3}}^{-}$ (TeV)            | 1.36  | 1.48  | 2.24  | 1.37  | 1.34  | 1.48             | 1.29  | 1.34  | 1.31  | 1.52     | 1.44     |
|       | $\Gamma_{T^{(1)}}$ (GeV)           | 8.83  | 5.49  | 26.22 | 51.92 | 60.01 | 71.68            | 44.33 | 6.44  | 7.49  | 43.78    | 10.63    |
|       | $BR(T^{(1)} \rightarrow th)$       | 0.49  | 0.45  | 0.31  | 0.44  | 0.43  | 0.42             | 0.44  | 0.47  | 0.47  | 0.34     | 0.45     |
|       | $BR(T^{(1)} \rightarrow W^+ b)$    | 0.018 | 0     | 0.47  | 0.004 | 0.004 | 0.003            | 0.006 | 0.024 | 0.016 | 0.005    | 0.010    |
|       | $BR(T^{(1)} \rightarrow tZ)$       | 0.39  | 0.41  | 0.22  | 0.42  | 0.43  | 0.42             | 0.43  | 0.40  | 0.41  | 0.50     | 0.41     |
| B     | $R(T^{(1)} \rightarrow W^+W^-t)$   | 0.11  | 0.13  | 0     | 0.13  | 0.13  | 0.16             | 0.12  | 0.10  | 0.10  | 0.14     | 0.12     |

C. Bautista, L. de Lima, R. D. Matheus, E. Pontón, L. A. F. do Prado, A Savoy-Navarro. JHEP 2021, 49 (2021,

#### Benchmark points

|       |                                    | $C_1$ | $C_2$ | $C_3$ | $C_4$ | $C_5$             | $C_6$  | $C_7$ | $C_8$ | $C_9$                | $C_{10}$ | $C_{11}$ |
|-------|------------------------------------|-------|-------|-------|-------|-------------------|--------|-------|-------|----------------------|----------|----------|
| SI    | $M_1(GeV)$                         | -1323 | -1809 | -1483 | 2965  | 2882              | 2999   | 3000  | -1400 | -1618                | -2384    | -2892    |
| ete   | $M_4(GeV)$                         | 1357  | 1479  | 2235  | 1370  | 1339              | 1479   | 1295  | 1339  | 1309                 | 1519     | 1437     |
| ĝ     | f(GeV)                             | 1199  | 1593  | 1071  | 1393  | 1220              | 1168   | 1484  | 1265  | 1229                 | 1110     | 1646     |
| ara   | $\mathbf{y}_L$                     | 0.91  | 2.25  | 1.38  | 2.35  | 1.83              | 2.33   | 1.98  | 1.34  | 1.22                 | 0.51     | 1.03     |
| ď     | $\mathbf{y}_{R}$                   | 0.88  | 0.58  | 0.72  | 3.38  | 3.57              | 3.28   | 3.25  | 0.66  | 0.74                 | 2.30     | 0.85     |
| $\mu$ | $(t\overline{t}h)$ (All Energies)  | 0.90  | 0.94  | 0.86  | 0.83  | 0.78              | 0.79   | 0.84  | 0.91  | 0.90                 | 0.81     | 0.94     |
|       | $\mu(t\bar{t}hh)$ (14 TeV)         | 2.14  | 1.47  | 0.80  | 1.51  | Str               | onge   | r mix | ing   | 2.41                 | 1.39     | 1.58     |
| 1     | $u(t\bar{t}hh)$ (100 TeV)          | 14.58 | 8.84  | 3.28  | 10.28 | 11.18             | 7.04   | 13.42 | 15.20 | 16.11                | 13.68    | 10.57    |
| NR    | $t-t\bar{t}hh/t\bar{t}hh$ (14 TeV) | 0.37  | 0.59  | 0.88  | 0.45  | 0.40              | 0.61   | 0.35  | 0.36  | 0.33                 | 0.46     | 0.55     |
| NR    | $-t\bar{t}hh/t\bar{t}hh$ (100 TeV) | 0.05  | 0.10  | 0.22  | 0.07  | 0.05              | 0.09   | 0.05  | 0.05  | 0.05                 | 0.05     | 0.08     |
|       | $M_{T^{(1)}}$ (TeV)                | 1.36  | 1.48  | 1.66  | 1.40  | 1.38              | 1.51   | 1.32  | 1.34  | 1.31                 | 1.54     | 1.44     |
|       | $M_{T^{(2)}}$ (TeV)                | 1.63  | 2.02  | 2.24  | 3.55  | 2.61              | 3.10   | 3.22  | 1.61  | 1.80                 | 1.63     | 2.20     |
|       | $M_{T^{(3)}}$ (TeV)                | 1.79  | 3.88  | 2.68  | 5.55  | 5.21              | -4.85  | -5.67 | -2.17 | 2.02                 | 3.47     | 3.21     |
|       | $M_{B^{(1)}}$ (TeV)                | 1.74  | 3.87  | 2.68  | 3.55  | <sup>2</sup> \Λ/i | idor t | on n  | arthe | 1.9 <mark>9 م</mark> | 1.62     | 2.22     |
|       | $M_{X_{5/3}}^{-}$ (TeV)            | 1.36  | 1.48  | 2.24  | 1.37  | 1.34V             |        | -0    |       | <b>1</b> .3          | 1.52     | 1.44     |
|       | $\Gamma_{T^{(1)}}$ (GeV)           | 8.83  | 5.49  | 26.22 | 51.92 | 60.01             | 71.68  | 44.33 | 6.44  | 7.49                 | 43.78    | 10.63    |
|       | $BR(T^{(1)} \rightarrow th)$       | 0.49  | 0.45  | 0.31  | 0.44  | 0.43              | 0.42   | 0.44  | 0.47  | 0.47                 | 0.34     | 0.45     |
|       | $BR(T^{(1)} \to W^+ b)$            | 0.018 | 0     | 0.47  | 0.004 | 0.004             | 0.003  | 0.006 | 0.024 | 0.016                | 0.005    | 0.010    |
|       | $BR(T^{(1)} \rightarrow tZ)$       | 0.39  | 0.41  | 0.22  | 0.42  | 0.43              | 0.42   | 0.43  | 0.40  | 0.41                 | 0.50     | 0.41     |
| B     | $R(T^{(1)} \rightarrow W^+W^-t)$   | 0.11  | 0.13  | 0     | 0.13  | 0.13              | 0.16   | 0.12  | 0.10  | 0.10                 | 0.14     | 0.12     |

C. Bautista, L. de Lima, R. D. Matheus, E. Pontón, L. A. F. do Prado, A Savoy-Navarro. JHEP 2021, 49 (2021,

#### Benchmark points

|       |                                    | $C_1$ | $C_2$             | $C_3$ | $C_4$ | $C_5$ | $C_6$  | $C_7$ | $C_8$ | $C_9$  | $C_{10}$ | $C_{11}$ |
|-------|------------------------------------|-------|-------------------|-------|-------|-------|--------|-------|-------|--------|----------|----------|
| SI    | $M_1(GeV)$                         | -1323 | -1809             | -1483 | 2965  | 2882  | 2999   | 3000  | -1400 | -1618  | -2384    | -2892    |
| ete   | $M_4(GeV)$                         | 1357  | 1479              | 2235  | 1370  | 1339  | 1479   | 1295  | 1339  | 1309   | 1519     | 1437     |
| ĝ     | f(GeV)                             | 1199  | 1593              | 1071  | 1393  | 1220  | 1168   | 1484  | 1265  | 1229   | 1110     | 1646     |
| ara   | $\mathbf{y}_L$                     | 0.91  | 2.25              | 1.38  | 2.35  | 1.83  | 2.33   | 1.98  | 1.34  | 1.22   | 0.51     | 1.03     |
| ď     | $\mathbf{y}_{R}$                   | 0.88  | 0.58              | 0.72  | 3.38  | 3.57  | 3.28   | 3.25  | 0.66  | 0.74   | 2.30     | 0.85     |
| $\mu$ | $(t\overline{t}h)$ (All Energies)  | 0.90  | 0.94              | 0.86  | 0.83  | 0.78  | 0.79   | 0.84  | 0.91  | 0.90   | 0.81     | 0.94     |
|       | $\mu(t\bar{t}hh)$ (14 TeV)         | 2.14  | 1.47              | 0.80  | 1.51  | 1.53  | 1.02   | 2.00  | 2.25  | 2.41   | 1.39     | 1.58     |
| 1     | $u(t\bar{t}hh)$ (100 TeV)          | 14.58 | 8.84              | 3.28  | 10.28 | 11.18 | 7.04   | 13.42 | 15.20 | 16.11  | 13.68    | 10.57    |
| NR    | -tthh/tth [14 Tay)                 | 0.37  | 0.59              | 0.88  | 0.45  | 0.40  | 0.61   | 0.35  | 0.36  | 0.33   | 0.46     | 0.55     |
| NR    | . <sub>tīhh/t</sub> 3-douy (       | uecay | S <sub>0.10</sub> | 0.22  | 0.07  | 0.05  | 0.09   | 0.05  | 0.05  | 0.05   | 0.05     | 0.08     |
|       | $M_{T^{(1)}}$ (TeV)                | 1.36  | 1.48              | 1.66  | 1.40  | 1.38  | 1.51   | 1.32  | 1.34  | 1.31   | 1.54     | 1.44     |
|       | $M_{T^{(2)}}$ (TeV)                | 1.63  | 2.02              | 2.24  | 3.55  | 2.61  | 3.10   | 3.22  | 1.61  | 1.80   | 1.63     | 2.20     |
|       | $M_{T^{(3)}}$ (TeV)                | 1.79  | 3.88              | 2.68  | 5.55  | 5.21  | 4.85   | 5.67  | 2.17  | 2.02   | 3.47     | 3.21     |
|       | $M_{B^{(1)}}$ (TeV)                | 1.74  | 3.87              | 2.68  | 3.55  | 2.60  | 3.10   | 3.22  | 2.16  | 1.99   | 1.62     | 2.22     |
|       | $M_{X_{5/3}}^{-}$ (TeV)            | 1.36  | 1.48              | 2.24  | 1.37  | 1.34  | 1.48   | 1.29  | 1.34  | 1.31   | 1.52     | 1.44     |
|       | $\Gamma_{T^{(1)}}$ (GeV)           | 8.83  | 5.49              | 26.22 | 51.92 | 60.01 | 71.68  | 44.33 | 6.44  | 7.49   | 43.78    | 10.63    |
|       | $BR(T^{(1)} \rightarrow th)$       | 0.49  | 0.45              | 0.31  | Only  | CSS   | atisti | es th | easi  | ial as | sump     | otion    |
| ]     | $BR(T^{(1)} \rightarrow W^+ b)$    | 0.018 | 0                 | 0.47  | 0.004 | 0.004 | 0.003  | 0.006 | 0.024 | 0.016  | 0.005    | 0.010    |
|       | $BR(T^{(1)} \rightarrow tZ)$       | 0.39  | 0.41              | 0.22  | 0.42  | 0.43  | 0.42   | 0.43  | 0.40  | 0.41   | 0.50     | 0.41     |
| BI    | $R(T^{(1)} \rightarrow W^+ W^- t)$ | 0.11  | 0.13              | 0     | 0.13  | 0.13  | 0.16   | 0.12  | 0.10  | 0.10   | 0.14     | 0.12     |

C. Bautista, L. de Lima, R. D. Matheus, E. Pontón, L. A. F. do Prado, A Savoy-Navarro. JHEP 2021, 49 (2021,

#### Benchmark points

|       |                                   | $C_1$ | $C_2$                    | $C_3$         | $C_4$               | $C_5$      | $C_6$ | $C_7$ | $C_8$ | $C_9$ | $C_{10}$ | $C_{11}$         |
|-------|-----------------------------------|-------|--------------------------|---------------|---------------------|------------|-------|-------|-------|-------|----------|------------------|
| SI    | $M_1(GeV)$                        | -1323 | -1809                    | -1483         | 2965                | 2882       | 2999  | 3000  | -1400 | -1618 | -2384    | -2892            |
| ete   | $M_4(GeV)$                        | 1357  | 1479                     | 2235          | 1370                | 1339       | 1479  | 1295  | 1339  | 1309  | 1519     | 1437             |
| E E   | f(GeV)                            | 1199  | 1593                     | 1071          | 1393                | 1220       | 1168  | 1484  | 1265  | 1229  | 1110     | 1646             |
| are   | $\mathbf{y}_L$                    | 0.91  | 2.25                     | 1.38          | 2.35                | 1.83       | 2.33  | 1.98  | 1.34  | 1.22  | 0.51     | 1.03             |
| d     | $\mathbf{y}_{R}$                  | 0.88  | 0.58                     | 0.72          | 3.38                | 3.57       | 3.28  | 3.25  | 0.66  | 0.74  | 2.30     | 0.85             |
| $\mu$ | $(t\overline{t}h)$ (All Energies) | 0.90  | 0.94                     | 0.86          | 0.83                | 0.78       | 0.79  | 0.84  | 0.91  | 0.90  | 0.81     | 0.94             |
|       | $\mu(t\bar{t}hh)$ (14 TeV)        | 2.14  | 1.47                     | 0.80          | 1.51                | 1.53       | 1.02  | 2.00  | 2.25  | 2.41  | 1.39     | 1.58             |
| 1     | $u(t\overline{t}hh)$ (100 TeV)    | 14.58 | 8.84                     | 3.28          | 10.28               | 11.18      | 7.04  | 13.42 | 15.20 | 16.11 | 13.68    | 10.57            |
| NR    | -tthh/tib hand                    | 1037  | 0.59                     | $\pm \beta^8$ | h <sup>0.45</sup> h | - 0.40 - I | 0.61  | 0.35  |       | 0.33  | 0.46     |                  |
| NR·   | - <u>tthh/t</u> S-DOUY (          | lecay | <b>S</b> <sub>0.10</sub> | 1 <u>11</u>   | n ch                | anne       | IS al |       | USLIY | supp  | 1622     | eg <sub>os</sub> |
|       | $M_{T^{(1)}}$ (TeV)               | 1.36  | 1.48                     | 1.66          | 1.40                | 1.38       | 1.51  | 1.32  | 1.34  | 1.31  | 1.54     | 1.44             |
|       | $M_{T^{(2)}}$ (TeV)               | 1.63  | 2.02                     | 2.24          | 3.55                | 2.61       | 3.10  | 3.22  | 1.61  | 1.80  | 1.63     | 2.20             |
|       | $M_{T^{(3)}}$ (TeV)               | 1.79  | 3.88                     | 2.68          | 5.55                | 5.21       | 4.85  | 5.67  | 2.17  | 2.02  | 3.47     | 3.21             |
|       | $M_{B^{(1)}}$ (TeV)               | 1.74  | 3.87                     | 2.68          | 3.55                | 2.60       | 3.10  | 3.22  | 2.16  | 1.99  | 1.62     | 2.22             |
|       | $\widetilde{M_{X_{5/3}}}$ (TeV)   | 1.36  | 1.48                     | 2.24          | 1.37                | 1.34       | 1.48  | 1.29  | 1.34  | 1.31  | 1.52     | 1.44             |
|       | $\Gamma_{T^{(1)}}$ (GeV)          | 8.83  | 5.49                     | 26.22         | 51.92               | 60.01      | 71.68 | 44.33 | 6.44  | 7.49  | 43.78    | 10.63            |
|       | $BR(T^{(1)} \rightarrow th)$      | 0.49  | 0.45                     | 0.31          | 0.44                | 0.43       | 0.42  | 0.44  | 0.47  | 0.47  | 0.34     | 0.45             |
| ]     | $BR(T^{(1)} \to W^+ b)$           | 0.018 | 0                        | 0.47          | 0.004               | 0.004      | 0.003 | 0.006 | 0.024 | 0.016 | 0.005    | 0.010            |
|       | $BR(T^{(1)} \rightarrow tZ)$      | 0.39  | 0.41                     | 0.22          | 0.42                | 0.43       | 0.42  | 0.43  | 0.40  | 0.41  | 0.50     | 0.41             |
| BI    | $R(T^{(1)} \rightarrow W^+W^-t)$  | 0.11  | 0.13                     | 0             | 0.13                | 0.13       | 0.16  | 0.12  | 0.10  | 0.10  | 0.14     | 0.12             |

C. Bautista, L. de Lima, R. D. Matheus, E. Pontón, L. A. F. do Prado, A Savoy-Navarro. JHEP 2021, 49 (2021)

#### Benchmark points

|       |                                    | $\mathrm{E}_{1}$ | $E_2$ | $E_3$ | ${ m E}_4$ | $E_5$ | $\mathrm{E}_{6}$ | $E_7$ | $E_8$ | $E_9$ | $E_{10}$ |
|-------|------------------------------------|------------------|-------|-------|------------|-------|------------------|-------|-------|-------|----------|
| ers   | $M_1(\text{TeV})$                  | 22.7             | 19.2  | 11.1  | 23.0       | 26.5  | 3.6              | 19.3  | 10.5  | -10.7 | -27.5    |
| ete   | $M_4(\text{TeV})$                  | 2.4              | 2.1   | 3.2   | 3.2        | 4.0   | 22.5             | 5.1   | 5.1   | 25.6  | 11.3     |
| m     | f(GeV)                             | 1913             | 3273  | 7144  | 1190       | 1300  | 1711             | 1288  | 2812  | 2432  | 1412     |
| arê   | $\mathbf{y}_L$                     | 2.45             | 0.87  | 2.85  | 2.43       | 0.99  | 2.00             | 2.35  | 1.84  | 2.57  | 1.73     |
| d     | $y_R$                              | 1.10             | 1.24  | 2.01  | 1.54       | 3.53  | 1.31             | 2.35  | 3.13  | 1.11  | 2.96     |
| $\mu$ | $(t\overline{t}h)$ (All Energies)  | 0.95             | 0.97  | 0.99  | 0.88       | 0.83  | 0.94             | 0.88  | 0.97  | 0.96  | 0.90     |
| 1     | $\mu(t\bar{t}hh)$ (100 TeV)        | 1.26             | 1.91  | 1.03  | 0.82       | 0.81  | 0.86             | 0.75  | 0.91  | 0.92  | 0.78     |
| NR    | $-t\bar{t}hh/t\bar{t}hh$ (100 TeV) | 0.71             | 0.48  | 0.95  | 0.90       | 0.82  | 1.00             | 1.00  | 1.02  | 1.01  | 1.01     |
|       | $M_{T^{(1)}}$ (TeV)                | 2.45             | 2.12  | 3.21  | 3.23       | 4.07  | 4.28             | 5.08  | 5.15  | 11.0  | 11.3     |
|       | $M_{T^{(2)}}$ (TeV)                | 5.27             | 3.55  | 18.1  | 4.32       | 4.28  | 22.5             | 5.90  | 7.31  | 25.6  | 11.6     |
|       | $M_{T^{(3)}}$ (TeV)                | 22.8             | 19.7  | 20.6  | 23.1       | 26.9  | 22.8             | 19.5  | 13.7  | 26.4  | 27.8     |
|       | $M_{B^{(1)}}$ (TeV)                | 5.28             | 3.55  | 20.6  | 4.33       | 4.24  | 22.8             | 5.90  | 7.30  | 26.4  | 11.6     |
|       | $M_{X_{5/3}}^{-}$ (TeV)            | 2.44             | 2.11  | 3.20  | 3.22       | 4.04  | 22.5             | 5.06  | 5.14  | 25.6  | 11.3     |
|       | $\Gamma_{T^{(1)}}$ (TeV)           | 0.04             | 0.04  | 0.08  | 0.14       | 0.96  | 0.28             | 0.76  | 0.84  | 1.22  | 8.97     |
|       | $\Gamma_{T^{(1)}}/M_{T^{(1)}}$     | 1.6%             | 1.9%  | 2.5%  | 4.3%       | 24%   | 6.5%             | 15%   | 16%   | 11%   | 79%      |
|       | $BR(T^{(1)} \rightarrow th)$       | 0.35             | 0.38  | 0.29  | 0.29       | 0.15  | 0.26             | 0.18  | 0.17  | 0.25  | 0.05     |
|       | $BR(T^{(1)} \to W^+ b)$            | 0.003            | 0.004 | 0     | 0.001      | 0     | 0.50             | 0     | 0     | 0.50  | 0        |
|       | $BR(T^{(1)} \rightarrow tZ)$       | 0.34             | 0.37  | 0.28  | 0.28       | 0.33  | 0.25             | 0.18  | 0.18  | 0.25  | 0.06     |
| B     | $R(T^{(1)} \rightarrow W^+W^-t)$   | 0.30             | 0.25  | 0.43  | 0.43       | 0.52  | 0                | 0.64  | 0.65  | 0     | 0.89     |

C. Bautista, L. de Lima, R. D. Matheus, E. Pontón, L. A. F. do Prado, A Savoy-Navarro. JHEP 2021, 49 (2021)

#### Benchmark points

|                                              | $\mathrm{E}_{1}$ | $E_2$ | $E_3$ | ${ m E}_4$ | $E_5$ | $\mathrm{E}_{6}$ | $E_7$ | $E_8$ | $E_9$ | $E_{10}$ |
|----------------------------------------------|------------------|-------|-------|------------|-------|------------------|-------|-------|-------|----------|
| $M_1(\text{TeV})$                            | 22.7             | 19.2  | 11.1  | 23.0       | 26.5  | 3.6              | 19.3  | 10.5  | -10.7 | -27.5    |
| $\frac{\omega}{\omega}$ M <sub>4</sub> (TeV) | 2.4              | 2.1   | 3.2   | 3.2        | 4.0   | 22.5             | 5.1   | 5.1   | 25.6  | 11.3     |
| f(GeV)                                       | 1913             | 3273  | 7144  | 1190       | 1300  | 1711             | 1288  | 2812  | 2432  | 1412     |
| 3-body decays                                | 2.45             | 0.87  | 2.85  | 2.43       | 0.99  | 2.00             | 2.35  | 1.84  | 2.57  | 1.73     |
| ⊆. y <sub>R</sub>                            | 1.10             | 1.24  | 2.01  | 1.54       | 3.53  | 1.31             | 2.35  | 3.13  | 1.11  | 2.96     |
| $\mu(t\bar{t}h)$ (All Energies)              | 0.95             | 0.97  | 0.99  | 0.88       | 0.83  | 0.94             | 0.88  | 0.97  | 0.96  | 0.90     |
| $\mu(t\bar{t}hh)$ (100 TeV)                  | 1.26             | 1.91  | 1.03  | 0.82       | 0.81  | 0.86             | 0.75  | 0.91  | 0.92  | 0.78     |
| $NR-t\bar{t}hh/t\bar{t}hh$ (100 TeV)         | 0.71             | 0.48  | 0.95  | 0.90       | 0.82  | 1.00             | 1.00  | 1.02  | 1.01  | 1.01     |
| $M_{T^{(1)}}$ (TeV)                          | 2.45             | 2.12  | 3.21  | 3.23       | 4.07  | 4.28             | 5.08  | 5.15  | 11.0  | 11.3     |
| $M_{T^{(2)}}$ (TeV)                          | 5.27             | 3.55  | 18.1  | 4.32       | 4.28  | 22.5             | 5.90  | 7.31  | 25.6  | 11.6     |
| $M_{T^{(3)}}$ (TeV)                          | 22.8             | 19.7  | 20.6  | 23.1       | 26.9  | 22.8             | 19.5  | 13.7  | 26.4  | 27.8     |
| $M_{B^{(1)}}$ (TeV)                          | 5.28             | 3.55  | 20.6  | 4.33       | 4.24  | 22.8             | 5.90  | 7.30  | 26.4  | 11.6     |
| $M_{X_{5/3}}^{-}$ (TeV)                      | 2.44             | 2.11  | 3.20  | 3.22       | 4.04  | 22.5             | 5.06  | 5.14  | 25.6  | 11.3     |
| $\Gamma_{T^{(1)}}$ (TeV)                     | 0.04             | 0.04  | 0.08  | 0.14       | 0.96  | 0.28             | 0.76  | 0.84  | 1.22  | 8.97     |
| $\Gamma_{T^{(1)}}/M_{T^{(1)}}$               | 1.6%             | 1.9%  | 2.5%  | 4.3%       | 24%   | 6.5%             | 15%   | 16%   | 11%   | 79%      |
| $BR(T^{(1)} \rightarrow th)$                 | 0.35             | 0.38  | 0.29  | 0.29       | 0.15  | 0.26             | 0.18  | 0.17  | 0.25  | 0.05     |
| $BR(T^{(1)} \to W^+ b)$                      | 0.003            | 0.004 | 0     | 0.001      | 0     | 0.50             | 0     | 0     | 0.50  | 0        |
| $BR(T^{(1)} \rightarrow tZ)$                 | 0.34             | 0.37  | 0.28  | 0.28       | 0.33  | 0.25             | 0.18  | 0.18  | 0.25  | 0.06     |
| $BR(T^{(1)} \rightarrow W^+ W^- t)$          | 0.30             | 0.25  | 0.43  | 0.43       | 0.52  | 0                | 0.64  | 0.65  | 0     | 0.89     |

C. Bautista, L. de Lima, R. D. Matheus, E. Pontón, L. A. F. do Prado, A Savoy-Navarro. JHEP 2021, 49 (2021)

#### Benchmark points

|                                              | $\mathrm{E}_{1}$ | $E_2$ | $E_3$  | ${ m E}_4$ | $E_5$ | $E_6$ | $E_7$ | $E_8$ | $E_9$ | $E_{10}$ |
|----------------------------------------------|------------------|-------|--------|------------|-------|-------|-------|-------|-------|----------|
| $M_1(\text{TeV})$                            | 22.7             | 19.2  | 11.1   | 23.0       | 26.5  | 3.6   | 19.3  | 10.5  | -10.7 | -27.5    |
| $\frac{\omega}{\omega}$ M <sub>4</sub> (TeV) | 2.4              | 2.1   | → 3.2  | 3.2        | 4.0   | 22.5  | 5.1   | 5.1   | 25.6  | 11.3     |
| f(GeV)                                       | 1913             | 3273  | 7144   | 1190       | 1300  | 1711  | 1288  | 2812  | 2432  | 1412     |
| 3-body decays                                | 2.45             | 0.87  | 2.85   | 2.43       | 0.99  | 2.00  | 2.35  | 1.84  | 2.57  | 1.73     |
| ⊆ y <sub>R</sub>                             | 1.10             | 1.24  | 2.01   | 1.54       | 3.53  | 1.31  | 2.35  | 3.13  | 1.11  | 2.96     |
| $\mu(t\bar{t}h)$ (All Energies)              | 0.95             | 0.97  | 0.99   | 0.88       | 0.83  | 0.94  | 0.88  | 0.97  | 0.96  | 0.90     |
| $\mu(t\bar{t}hh)$ (100 TeV)                  | 1.26             | 1.91  | 1.03   | 0.82       | 0.81  | 0.86  | 0.75  | 0.91  | 0.92  | 0.78     |
| $NR-t\bar{t}hh/t\bar{t}hh$ (100 TeV)         | 0.71             | 0.48  | 0.95   | 0.90       | 0.82  | 1.00  | 1.00  | 1.02  | 1.01  | 1.01     |
| $M_{T^{(1)}}$ (TeV)                          | 2.45             | 2.12  | ▶ 3.21 | 3.23       | 4.07  | 4.28  | 5.08  | 5.15  | 11.0  | 11.3     |
| $M_{T^{(2)}}$ (TeV)                          | 5.27             | 3.55  | 18.1   | 4.32       | 4.28  | 22.5  | 5.90  | 7.31  | 25.6  | 11.6     |
| $M_{T^{(3)}}$ (TeV)                          | 22.8             | 19.7  | 20.6   | 23.1       | 26.9  | 22.8  | 19.5  | 13.7  | 26.4  | 27.8     |
| $M_{B^{(1)}}$ (TeV)                          | 5.28             | 3.55  | 20.6   | 4.33       | 4.24  | 22.8  | 5.90  | 7.30  | 26.4  | 11.6     |
| $M_{X_{5/3}}$ (TeV)                          | 2.44             | 2.11  | 3.20   | 3.22       | 4.04  | 22.5  | 5.06  | 5.14  | 25.6  | 11.3     |
| $\Gamma_{T^{(1)}}$ (TeV)                     | 0.04             | 0.04  | 0.08   | 0.14       | 0.96  | 0.28  | 0.76  | 0.84  | 1.22  | 8.97     |
| $\Gamma_{T^{(1)}}/M_{T^{(1)}}$               | 1.6%             | 1.9%  | 2.5%   | 4.3%       | 24%   | 6.5%  | 15%   | 16%   | 11%   | 79%      |
| $BR(T^{(1)} \rightarrow th)$                 | 0.35             | 0.38  | 0.29   | 0.29       | 0.15  | 0.26  | 0.18  | 0.17  | 0.25  | 0.05     |
| $BR(T^{(1)} \to W^+ b)$                      | 0.003            | 0.004 | 0      | 0.001      | 0     | 0.50  | 0     | 0     | 0.50  | 0        |
| $BR(T^{(1)} \rightarrow tZ)$                 | 0.34             | 0.37  | 0.28   | 0.28       | 0.33  | 0.25  | 0.18  | 0.18  | 0.25  | 0.06     |
| $BR(T^{(1)} \rightarrow W^+ W^- t)$          | 0.30             | 0.25  | 0.43   | 0.43       | 0.52  | 0     | 0.64  | 0.65  | 0     | 0.89     |

C. Bautista, L. de Lima, R. D. Matheus, E. Pontón, L. A. F. do Prado, A Savoy-Navarro. JHEP 2021, 49 (2021)

#### Benchmark points

|                                              | $E_1$ | $E_2$ | $E_3$ | ${ m E}_4$ | $E_5$ | ${\rm E}_6$ | $E_7$ | $E_8$ | $E_9$ | $E_{10}$ |
|----------------------------------------------|-------|-------|-------|------------|-------|-------------|-------|-------|-------|----------|
| $M_1(\text{TeV})$                            | 22.7  | 19.2  | 11.1  | 23.0       | 26.5  | 3.6         | 19.3  | 10.5  | -10.7 | -27.5    |
| $\frac{\omega}{\omega}$ M <sub>4</sub> (TeV) | 2.4   | 2.1   | 3.2   | 3.2        | 4.0   | 22.5        | 5.1   | 5.1   | 25.6  | 11.3     |
| f(GeV)                                       | 1913  | 3273  | 7144  | 1190       | 1300  | 1711        | 1288  | 2812  | 2432  | 1412     |
| 3-body decays                                | 2.45  | 0.87  | 2.85  | 2.43       | 0.99  | 2.00        | 2.35  | 1.84  | 2.57  | 1.73     |
| с. УR                                        | 1.10  | 1.24  | 2.01  | 1.54       | 3.53  | 1.31        | 2.35  | 3.13  | 1.11  | 2.96     |
| $\mu(t\bar{t}h)$ (All Energies)              | 0.95  | 0.97  | 0.99  | 0.88       | 0.83  | 0.94        | 0.88  | 0.97  | 0.96  | 0.90     |
| $\mu(t\bar{t}hh)$ (100 TeV)                  | 1.26  | 1.91  | 1.03  | 0.82       | 0.81  | 0.86        | 0.75  | 0.91  | 0.92  | 0.78     |
| $NR-t\bar{t}hh/t\bar{t}hh$ (100 TeV)         | 0.71  | 0.48  | 0.95  | 0.90       | 0.82  | 1.00        | 1.00  | 1.02  | 1.01  | 1.01     |
| $M_{T^{(1)}}$ (TeV)                          | 2.45  | 2.12  | 3.21  | 3.23       | 4.07  | 4.28        | 5.08  | 5.15  | 11.0  | 11.3     |
| $M_{T^{(2)}}$ (TeV)                          | 5.27  | 3.55  | 18.1  | 4.32       | 4.28  | 22.5        | 5.90  | 7.31  | 25.6  | 11.6     |
| $M_{T^{(3)}}$ (TeV)                          | 22.8  | 19.7  | 20.6  | 23.1       | 26.9  | 22.8        | 19.5  | 13.7  | 26.4  | 27.8     |
| $M_{B^{(1)}}$ (TeV)                          | 5.28  | 3.55  | 20.6  | 4.33       | 4.24  | 22.8        | 5.90  | 7.30  | 26.4  | 11.6     |
| $M_{X_{5/3}}^-$ (TeV)                        | 2.44  | 2.11  | 3.20  | 3.22       | 4.04  | 22.5        | 5.06  | 5.14  | 25.6  | 11.3     |
| $\Gamma_{T^{(1)}}$ (TeV)                     | 0.04  | 0.04  | 0.08  | 0.14       | 0.96  | 0.28        | 0.76  | 0.84  | 1.22  | 8.97     |
| $\Gamma_{T^{(1)}}/M_{T^{(1)}}$               | 1.6%  | 1.9%  | 2.5%  | 4.3%       | 24%   | 6.5%        | 15%   | 16%   | 11%   | 79%      |
| $BR(T^{(1)} \rightarrow th)$                 | 0.35  | 0.38  | 0.29  | 0.29       | 0.15  | 0.26        | 0.18  | 0.17  | 0.25  | 0.05     |
| $BR(T^{(1)} \to W^+ b)$                      | 0.003 | 0.004 | 0     | 0.001      | 0     | 0.50        | 0     | 0     | 0.50  | 0        |
| $BR(T^{(1)} \rightarrow tZ)$                 | 0.34  | 0.37  | 0.28  | 0.28       | 0.33  | 0.25        | 0.18  | 0.18  | 0.25  | 0.06     |
| $BR(T^{(1)} \rightarrow W^+W^-t)$            | 0.30  | 0.25  | 0.43  | 0.43       | 0.52  | 0           | 0.64  | 0.65  | 0     | 0.89     |

### Conclusions

- We have to look far from the street lamp now
- "Smart" algorithms can help to understand complete models
- Regarding top parners:
  - Three body decays are important

• A simplified hierarchical spectrum is only realized in small regions of the MCHM





## Wider resonances in Region I



Must interfere negatively as mass must vanish in the SO(5) restoration limit  $(M_1 - M_4)$ 

$$m_t \sim y_L y_R |M_4 - M_1|$$

In region I, both parameters are positive, and this can be small

To compensate, and obtain the correct  $m_t$ , the couplings must be larger, leading to wider resonances

# Higgs Sector

$$U = \begin{pmatrix} \mathbb{1}_{3\times3} & \vec{0} & \vec{0} \\ \vec{0}^T & \cos\frac{h_0+h}{f} & \sin\frac{h_0+h}{f} \\ \vec{0}^T & -\sin\frac{h_0+h}{f} & \cos\frac{h_0+h}{f}, \end{pmatrix}$$

$$f\sin\frac{h_0}{f} \equiv v = 246 \text{ GeV}$$

$$\xi = \frac{v^2}{f^2} = \sin^2 \frac{h_0}{f}$$

# MCHM<sub>5</sub>

$$\mathcal{L} = \mathcal{L}_{\text{elem}} + \mathcal{L}_{\text{comp}}^{\mathbf{5}} + \mathcal{L}_{\text{mix}}^{\mathbf{5}} + \mathcal{L}_{\text{int}}^{\mathbf{5}}$$
$$\mathcal{L}_{\text{elem}} = \overline{q}_L i \not \!\!\!D q_L + \overline{t}_R i \not \!\!\!D t_R$$
$$\Psi_1 \sim \tilde{T} \qquad \Psi_4 \sim (X_{5/3}, X_{2/3}, T, B)$$

$$\mathcal{L}_{\text{comp}}^{5} = \overline{\Psi}_{4} i (\not \!\!D - i \not\!\!\!/) \Psi_{4} - M_{4} \overline{\Psi}_{4} \Psi_{4} + \overline{\Psi}_{1} i \not \!\!D \Psi_{1} - M_{1} \overline{\Psi}_{1} \Psi_{1}$$

$$\mathcal{L}_{\text{mix}}^{\mathbf{5}} = f \overline{Q}_{L}^{\mathbf{5}} U \left[ y_{L4} \Psi_{\mathbf{4}} + y_{L1} \Psi_{\mathbf{1}} \right] + \text{h.c.}$$
$$+ f \overline{T}_{R}^{\mathbf{5}} U \left[ y_{R4} \Psi_{\mathbf{4}} + y_{R1} \Psi_{\mathbf{1}} \right] + \text{h.c.}$$

$$\mathcal{L}_{\text{int}}^{5} = -i c_L \,\overline{\Psi}_{4} P_L \, \mathscr{A} \,\Psi_{1} - i c_R \,\overline{\Psi}_{4} P_R \, \mathscr{A} \,\Psi_{1} + \text{h.c.}$$

# MCHM<sub>14</sub>

$$\mathcal{L} = \mathcal{L}_{\rm elem} + \mathcal{L}_{\rm comp}^{14} + \mathcal{L}_{\rm mix}^{14} + \mathcal{L}_{\rm int}^{14}$$

$$\Psi_{\mathbf{9}} \sim (U_{8/3}, U_{5/3}, U_{2/3}, V_{5/3}, V_{2/3}, V_{-1/3}, F_{2/3}, F_{-1/3}, F_{-4/3})$$

$$\mathcal{L}_{\text{comp}}^{\mathbf{14}} = \mathcal{L}_{\text{comp}}^{\mathbf{5}} + \text{Tr}\left[\overline{\Psi}_{\mathbf{9}}\left(i\not\!\!\!D\Psi_{\mathbf{9}} - i\left[\not\!\!\!e,\Psi_{\mathbf{9}}\right]\right)\right] - M_{9}\text{Tr}\left[\overline{\Psi}_{\mathbf{9}}\Psi_{\mathbf{9}}\right]$$

$$\mathcal{L}_{\text{mix}}^{\mathbf{14}} = f \operatorname{Tr} \left[ U^{\mathsf{T}} \overline{Q}_{L}^{\mathbf{14}} U \left( y_{L9} \Psi_{\mathbf{9}} + y_{L4} \Psi_{\mathbf{4}} + y_{L1} \Psi_{\mathbf{1}} \right) \right] + \text{h.c.} \\ + f \operatorname{Tr} \left[ U^{\mathsf{T}} \overline{T}_{R}^{\mathbf{14}} U \left( y_{R9} \Psi_{\mathbf{9}} + y_{R4} \Psi_{\mathbf{4}} + y_{R1} \Psi_{\mathbf{1}} \right) \right] + \text{h.c.} \\ = 4 \operatorname{Tr} \left[ o_{\mathsf{T}} \Psi_{\mathbf{6}} \left( o_{\mathsf{4}} \Psi_{\mathbf{9}} + g_{\mathsf{6}} \Psi_{\mathbf{9}} + g_{\mathsf{6}} \Psi_{\mathbf{4}} + g_{\mathsf{7}} \Psi_{\mathbf{1}} \right) \right] + \text{h.c.} \\ = 4 \operatorname{Tr} \left[ o_{\mathsf{T}} \Psi_{\mathbf{6}} \left( o_{\mathsf{4}} \Psi_{\mathbf{9}} + g_{\mathsf{6}} \Psi_{\mathbf{9}} + g_{\mathsf{7}} \Psi_{\mathbf{4}} + g_{\mathsf{7}} \Psi_{\mathbf{1}} \right) \right] + \text{h.c.} \\ = 4 \operatorname{Tr} \left[ o_{\mathsf{T}} \Psi_{\mathbf{6}} \left( o_{\mathsf{7}} \Psi_{\mathbf{9}} + g_{\mathsf{7}} \Psi_{\mathbf{9}} + g_{\mathsf{7}} \Psi_{\mathbf{1}} + g_{\mathsf{7}} \Psi_{\mathbf{1}} \right) \right] + \text{h.c.} \\ = 4 \operatorname{Tr} \left[ o_{\mathsf{T}} \Psi_{\mathbf{6}} \left( o_{\mathsf{7}} \Psi_{\mathbf{9}} + g_{\mathsf{7}} \Psi_{\mathbf{9}} + g_{\mathsf{7}} \Psi_{\mathbf{1}} + g_{\mathsf{7}} \Psi_{\mathbf{1}} \right) \right] + \text{h.c.} \\ = 4 \operatorname{Tr} \left[ o_{\mathsf{T}} \Psi_{\mathbf{7}} \left( g_{\mathsf{7}} \Psi_{\mathbf{9}} + g_{\mathsf{7}} \Psi_{\mathbf{7}} + g_{\mathsf{7}} \Psi_{\mathbf{1}} \right) \right] + \text{h.c.} \\ = 4 \operatorname{Tr} \left[ o_{\mathsf{7}} \Psi_{\mathbf{7}} \left( g_{\mathsf{7}} \Psi_{\mathbf{9}} + g_{\mathsf{7}} \Psi_{\mathbf{7}} + g_{\mathsf{7}} \Psi_{\mathbf{7}} \right) \right] + \text{h.c.} \\ = -i \operatorname{c_{4}} \overline{\Psi}_{\mathbf{4}} \left( g_{\mathsf{7}} \Psi_{\mathbf{1}} - i \operatorname{c_{9}} \overline{\Psi}_{\mathbf{9}} \right) \left[ g_{\mathsf{7}} \psi_{\mathbf{7}} + g_{\mathsf{7}} \Psi_{\mathbf{7}} \right] \left[ g_{\mathsf{7}} \psi_{\mathbf{7}} + g_{\mathsf{7}} \Psi_{\mathbf{7}} \right] \right]$$

# Constraints MCHM<sub>5</sub>

Overlayed regions indicate constraints: the dark one is given by direct exclusion of top partners in the left plot and by expected constraints in the HL-LHC in the right one ( $M_{T(1)} < 4$  TeV). In the white region, the top mass cannot be reached without violating perturbativity.



# Constraints MCHM<sub>14</sub>

Overlayed regions indicate constraints: the dark one is given by direct exclusion of top partners in the left plot and by expected constraints in the HL-LHC in the right one ( $M_{T(1)} < 4$  TeV). In the white region, the top mass cannot be reached without violating perturbativity. The green region is constrained by  $c_g$  measurements in the left and by the  $c_g$  expected constraints in the right.



# tthh process



### tth



# NR-tthh

|                                                                                                                                                  |                       | $\mathbf{P}_1$                              | $P_2$                  | $P_3$                                       | $P_4$                                       | $P_5$                                       | Disregarded diagrams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------|------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\sigma_{ m bh}/\sigma_{ m NR}^{tar{t}hh} \ \sigma_{ m bh}/\sigma_{ m NR}^{tar{t}hh}$                                                            | (14 TeV)<br>(100 TeV) | $\begin{array}{c} 1.05 \\ 1.05 \end{array}$ | 1.04 $1.03$            | $\begin{array}{c} 1.03 \\ 1.03 \end{array}$ | $\begin{array}{c} 1.01 \\ 1.01 \end{array}$ | $\begin{array}{c} 1.01 \\ 1.01 \end{array}$ | $f$ $g$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{1}$ |
| $\sigma_{ m Yuk}/\sigma_{ m NR}^{tar{t}hh} \ \sigma_{ m Yuk}/\sigma_{ m NR}^{tar{t}hh}$                                                          | (14 TeV)<br>(100 TeV) | $0.86 \\ 0.87$                              | $0.85 \\ 0.87$         | 0.84<br>0.87                                | $0.82 \\ 0.85$                              | $0.82 \\ 0.85$                              | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\sigma_{	ext{NR}}^{tar{t}hh}/\sigma_{	ext{SM}}^{tar{t}hh} \ \sigma_{	ext{NR}}^{tar{t}hh}/\sigma_{	ext{SM}}^{tar{t}hh} \ (y_t/y_t^{	ext{SM}})^4$ | (14 TeV)<br>(100 TeV) | $0.65 \\ 0.65 \\ 0.69$                      | $0.69 \\ 0.69 \\ 0.72$ | $0.82 \\ 0.82 \\ 0.85$                      | $0.94 \\ 0.93 \\ 0.95$                      | $0.90 \\ 0.89 \\ 0.91$                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

**Table 3**. Study of NR- $t\bar{t}hh$  for the MCHM<sub>5</sub> points in table 1. The cross sections  $\sigma_{ph}$  and  $\sigma_{Yuk}$  are obtained by disregarding the classes of diagrams on the last column and  $\sigma_{NR}$  is the total NR- $t\bar{t}hh$ . The LO SM  $t\bar{t}hh$  production is indicated by  $\sigma^{SM}$  and  $\sigma_{Yuk}^{SM}$  means we disregarded the SM trilinear Higgs coupling. The top Yukawa couplings are indicated by  $y_t$  and  $y_t^{SM}$  in the MCHM and SM respectively.

respectively.

the providence of the providence of the second of the seco

### EFT

$$\mathcal{L}_{h} = \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \frac{1}{2} m_{h}^{2} h^{2} - \kappa_{\lambda} \lambda_{\rm SM} v h^{3} - \frac{m_{t}}{v} \left( v + \kappa_{t} h + \frac{c_{2}}{v} h h \right) \left( \overline{t}_{L} t_{R} + \text{h.c.} \right)$$
$$+ \frac{1}{4} \frac{\alpha_{s}}{3\pi v} \left( c_{g} h - \frac{c_{2g}}{2v} h h \right) G^{\mu\nu} G_{\mu\nu}$$



Figure 20. Values of some selected EFT parameters in the low scale scan of the MCHM<sub>5</sub> and the MCHM<sub>14</sub> parameter spaces. The colors indicate the different Regions in each model (I and II for the MCHM<sub>5</sub> and I, II, III and IV for the MCHM<sub>14</sub>, in that order). The SM is represented by the black square.